WO2024019398A1 - 세척 공정 없이 불순물이 적은 금속-유기 골격체의 제조방법 및 금속-유기 골격체 - Google Patents

세척 공정 없이 불순물이 적은 금속-유기 골격체의 제조방법 및 금속-유기 골격체 Download PDF

Info

Publication number
WO2024019398A1
WO2024019398A1 PCT/KR2023/009879 KR2023009879W WO2024019398A1 WO 2024019398 A1 WO2024019398 A1 WO 2024019398A1 KR 2023009879 W KR2023009879 W KR 2023009879W WO 2024019398 A1 WO2024019398 A1 WO 2024019398A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
metal
organic framework
benzene
organic
Prior art date
Application number
PCT/KR2023/009879
Other languages
English (en)
French (fr)
Inventor
최경민
지서현
Original Assignee
숙명여자대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숙명여자대학교산학협력단 filed Critical 숙명여자대학교산학협력단
Publication of WO2024019398A1 publication Critical patent/WO2024019398A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds

Definitions

  • the present invention relates to a method for producing a metal-organic framework that has few impurities and can increase the adsorption amount of gases such as acetylene without a washing process, and to the metal-organic framework produced by this method.
  • Nanomaterials which form pores by combining molecules, have emerged as a major research field over the past few decades and are applied in various fields such as catalysts, adsorption/separation/storage, electronics, health, semiconductors, food, and detergents.
  • Nanomaterials with such pores not only have very high adsorption performance, but also allow for control of adsorption performance, can create active sites within the framework, are suitable for selective absorption/separation of gases, and most of the pores have excellent ion exchange ability. It also has insulator, semiconductor, and conductor properties.
  • a metal-organic framework is a porous material in which metal ion clusters and organic linkers or organic bridging ligands are connected by coordination bonds to form a three-dimensional structure.
  • This metal-organic framework not only has a large surface area but also has an open pore structure, allowing the movement of large quantities of molecules or solvents compared to other previously known porous materials.
  • the metal-organic framework contains pores ranging in size from angstroms to several nanometers, so a cleaning process for the material to remove impurities is essential after production of the metal-organic framework. This is for removing impurities present in the pores that interfere with selective storage of the target gas.
  • the metal-organic framework has many active points and absorbs target gases well, but it also has the disadvantage of making it difficult to remove impurities contained in it during manufacturing. Impurities that were not removed even after a long cleaning process are gradually separated during use for the purpose of storage and separation of the target gas and are continuously mixed with the target gas and discharged, making it difficult to use in applications requiring high purity. brought it
  • 'DMF' N,N-dimethyl formamide
  • One object of the present invention is to manufacture an organometallic framework that can not only reduce the remaining impurities used in the synthesis process without a washing process and increase the amount of gas adsorption compared to the conventional method for producing an organometallic framework.
  • the goal is to provide a method.
  • Another object of the present invention is to provide a metal-organic framework that has excellent adsorption capacity for gases such as acetylene and does not contain DMF.
  • One aspect of the present invention for achieving the above object is a method for producing a metal-organic framework comprising a coordination product of a metal ion and an organic ligand, which includes (a) reacting a metal precursor and an organic ligand in a first solvent; A metal-organic framework comprising the step of producing an intermediate, and (b) immersing the intermediate in a second solvent for a predetermined time to produce a crystallized metal-organic framework from the intermediate and simultaneously removing impurities.
  • Another aspect of the present invention for achieving the above object is a metal-organic framework containing a coordination product of a metal ion and an organic ligand, wherein the content of organic impurities contained in the metal-organic framework is 5% by mass or less, and at 77K.
  • a metal-organic framework having a nitrogen adsorption amount of 250 cm3/g or more is provided.
  • the method for producing a metal-organic framework according to an embodiment of the present invention can significantly reduce the content of impurities included in the synthesis process compared to the conventional method.
  • the method for producing a metal-organic framework according to an embodiment of the present invention has a very low impurity content without the washing process, which requires the most energy and time in the conventional synthesis process of the metal-organic framework. It is possible to manufacture a metal-organic framework without a metal-organic framework, thereby significantly reducing process time and manufacturing costs.
  • the metal-organic framework prepared according to an embodiment of the present invention does not contain dimethylformamide (DMF) in the metal-organic framework, and thus dimethylformamide (DMF) is used during the storage, discharge, and use of gas such as acetylene. There is no contamination problem due to leakage of formamide (DMF).
  • DMF dimethylformamide
  • the metal-organic framework prepared according to one embodiment of the present invention has an increased number of active sites capable of adsorbing gases such as acetylene, and thus can improve gas adsorption per unit weight.
  • Figure 1 is a scanning electron micrograph of a sample obtained after synthesizing an intermediate through the method according to Example 1 of the present invention and then immersing it in ethanol for 1 day.
  • Figure 2 is a scanning electron micrograph of a sample obtained after synthesizing the intermediate through the method according to Example 1 of the present invention and then immersing it in ethanol for 2 days.
  • Figure 3 is a scanning electron micrograph of a sample obtained after synthesizing an intermediate through the method according to Example 1 of the present invention and immersing it in ethanol for 3 days.
  • Figure 4 is a scanning electron micrograph of a sample obtained after synthesizing an intermediate through the method according to Example 1 of the present invention and then immersing it in ethanol for 7 days (one week).
  • Figure 5 shows the results of XRD analysis of samples obtained after immersing the intermediate synthesized through the method according to Example 1 of the present invention in ethanol for 1, 2, 3, and 7 days.
  • Figure 6 is a scanning electron micrograph of a sample obtained after immersing the intermediate synthesized through the method according to Example 2 of the present invention in methanol at 25°C and 60°C for 1 day.
  • Figure 7 shows a sample obtained after immersing the intermediate synthesized through the method according to Example 2 of the present invention in methanol at 25°C and 60°C for 1 day, and after synthesizing the metal-organic framework according to Comparative Example 1. This is the XRD analysis result of the sample obtained through the cleaning process.
  • Figure 8 shows samples obtained after immersing the intermediate synthesized through the method according to Example 1 of the present invention in ethanol for 1, 2, 3, and 7 days, and the metal-organic framework according to Comparative Example 2. This is the result of a nitrogen adsorption test at 77K for a sample that was not washed after synthesis.
  • Figure 9 shows the results of an acetylene adsorption test at 298K for samples obtained according to Example 2 of the present invention and samples obtained according to Comparative Examples 1 and 2.
  • Figure 10 shows the XRD analysis results of samples obtained according to Example 2 of the present invention and samples obtained according to Comparative Examples 1 and 2.
  • Figure 11 shows the results of nuclear magnetic resonance spectroscopy (NMR) analysis of the metal-organic framework synthesized according to Example 2 of the present invention.
  • Figure 12 shows the results of NMR analysis of the metal-organic framework synthesized according to Comparative Example 1.
  • Figure 13 shows the results of NMR analysis of the metal-organic framework synthesized according to Comparative Example 2.
  • the method for producing a metal-organic framework comprising a coordination product of a metal ion and an organic ligand includes the steps of (a) reacting a metal precursor and an organic ligand in a first solvent to produce an intermediate, (b) ) To provide a method for producing a metal-organic framework, comprising the step of immersing the intermediate in a second solvent for a predetermined time to produce a crystallized metal-organic framework from the intermediate and simultaneously removing impurities.
  • the conventional method for producing a metal-organic framework involves dissolving a metal precursor and an organic ligand in a solvent to create a metal-organic framework through a single reaction and then undergoing a long-time washing process
  • the method according to the present invention requires a long-time washing process.
  • the difference is that the metal-organic framework is manufactured through two steps: firstly synthesizing the intermediate, and then secondarily producing a metal-organic framework with very little or no impurities from the intermediate without a separate washing process. there is.
  • a non-crystallized intermediate (meta-phase) is produced by reacting a metal ion and an organic ligand in a first solvent, and then the intermediate is crystallized in a second solvent to produce a metal-organic framework, the crystallization process
  • Substances that need to be discharged can be discharged through many spaces formed in the intermediate. Accordingly, it is possible to reduce the final residue of the raw materials added in the synthesis process in the metal-organic framework, thereby preventing contamination by the raw materials, as well as increasing the number of active sites capable of adsorbing gas. The effect of increasing the adsorption amount can be obtained. Accordingly, it is possible to obtain a metal-organic framework with very little or no impurities without a long washing process that must be performed to remove impurities after synthesizing the conventional metal-organic framework.
  • 'impurities' refers to raw materials unintentionally included as components constituting the metal-organic framework or organic components mixed during the process.
  • the organic impurity content contained in the metal-organic framework produced through step (b) may be 1.5 mass% or less, 1.0 mass% or less, or 0.5 mass% or less.
  • the metal ion may be one or more ions selected from the group consisting of Ti, Cr, Fe, Co, Ni, Cu, Zr, and Al.
  • the organic ligand is 1,3,5-benzenetricarboxylic acid (1,3,5-benzenetricarboxylic acid), 4,4'-biphenyldicarboxylic acid (4,4 '-biphenyldicarboxilic acid), benzene-1,4-dicarboxylic acid, 9,10-anthracenedicarboxylic acid, biphenyl-3, 3,5,5'-tetracarboxylic acid (biphenyl-3,3,5,5'-tetracarboxylic acid), biphenyl-3,4',5-tricarboxylic acid (biphenyl-3,4',5 -tricarboxylic acid), 5-bromoisophthalic acid, 5-cyano-1,3-benzenedicarboxylic acid, 2,2-dia 2,2-diamino-4,4'-stilbenedicarboxylic acid, 2,5-diaminoterephthalic acid, 1,1,2 ,2-te
  • the first solvent may be water or a polar organic solvent mixed with water.
  • Polar organic solvents include, but are not limited to, alcohols such as methanol and ethanol, acetone, N,N ⁇ -dimethyl formaldehyde, dimethyl sulfoxide, 1,4-dioxane, etc., and are not limited to these. Any polar organic solvent known to be usable in the synthesis of the sieve may be used without particular restrictions.
  • the first solvent may preferably be ethanol or methanol. When ethanol or methanol is used as the first solvent, DMF, which has been used in the synthesis of metal-organic frameworks for acetylene adsorption, can be fundamentally removed as an impurity.
  • the second solvent may be ethanol or methanol, preferably methanol. This is because methanol produces a metal-organic framework from intermediates significantly faster than ethanol.
  • the immersion process may be performed at 0 to 80° C. for 12 hours or more. If the temperature of the immersion process is less than 0°C, the rate at which the metal-organic framework is produced from the intermediate slows down, which is not desirable. If the temperature is higher than 80°C, it may exceed the boiling point of the polar organic solvent. In addition, if the immersion process is performed for less than 12 hours, the metal-organic framework may not be sufficiently produced from the intermediate, so it is preferably performed for more than 12 hours. More preferably, the immersion process is performed at 20 to 65°C for 12 hours or more.
  • the metal-organic framework may be, for example, HKUST-1, but the production method of the present invention is not limited to HKUST-1 and can also be used to produce other metal-organic frameworks. You can.
  • the metal-organic framework according to the present invention is a metal-organic framework containing a coordination product of a metal ion and an organic ligand, and the content of organic impurities contained in the metal-organic framework is 5% by mass or less, and nitrogen at 77K It is characterized by an adsorption amount of 250 cm3/g or more.
  • the organic impurity content is 5 mass% or less, 4.5 mass% or less, 4 mass% or less, 3.5 mass% or less, 3 mass% or less, 2.5 mass% or less, 2 mass% or less, It may be 1.5 mass% or less, 1 mass% or less, and 0.5 mass% or less.
  • the metal-organic framework contains 5 mass% or less of DMF, 4.5 mass% or less, 4 mass% or less, 3.5 mass% or less, 3 mass% or less, 2.5 mass% or less, 2 mass% or less, 1.5 mass% or less, 1 It may be less than 0.5% by mass or less.
  • metal-organic frameworks developed for acetylene adsorption contained a significant amount of DMF, which caused the problem of DMF being released during use and contaminating the stored gas.
  • the metal-organic framework according to the present invention contains DMF. Not only does it contain virtually nothing, but its gas adsorption capacity is superior to that of conventional metal-organic frameworks.
  • the metal-organic framework of the present invention may be in powder form.
  • the powder phase may be made of synthesized particles (polyhedrons, flakes, etc.) or may be made by pelletizing the synthesized powder.
  • the metal-organic framework of the present invention has an acetylene adsorption amount of 100 cm3/g or more, 110 cm3/g or more, 120 cm3/g or more, 130 cm3/g or more, 140 cm3/g or more, or 150 cm3/g at 298K. It could be more than that.
  • the metal ion may be one or more ions selected from the group consisting of Ti, Cr, Fe, Co, Ni, Cu, Zr, and Al.
  • the organic ligand is preferably 1,3,5-benzenetricarboxylic acid, 4,4'-biphenyldicar. Boxylic acid (4,4'-biphenyldicarboxilic acid), benzene-1,4-dicarboxylic acid, 9,10-anthracenedicarboxylic acid , biphenyl-3,3,5,5'-tetracarboxylic acid, biphenyl-3,4',5-tricarboxylic acid (biphenyl-3,3,5,5'-tetracarboxylic acid) 3,4',5-tricarboxylic acid), 5-bromoisophthalic acid, 5-cyano-1,3-benzenedicarboxylic acid , 2,2-diamino-4,4'-stilbenedicarboxylic acid, 2,5-diaminoterephthalic acid , 1,1,2,2-tetra(4-carboxylphenyl)ethylene, 2,5-dihydroxy
  • Metal-organic frameworks according to the invention include, for example, acetylene, ammonia, arsine, boron trichloride, boron trifluoride, diborane, dichlorosilane, difluoromethane, disilane, fluorine, germane, germanium tetrafluoride.
  • hexafluoroethane hydrogen bromide, hydrogen chloride, hydrogen fluoride, methyl fluoride, methylsilane, nitrogen trifluoride, perfluoropropane, phosphine, silane, silicon tetrachloride, tetrafluoromethane, tetramethylsilane, silicon tetrafluoride , stibine, sulfur hexafluoride, trichlorosilane, trifluoromethane, trimethylsilane, and tungsten hexafluoride, but is not limited to this and may also store gases other than the exemplified gases. It could be.
  • the metal-organic framework according to the present invention preferably has a structure classified as HKUST-1 and may be used for acetylene adsorption.
  • Table 1 below shows the conditions of the metal precursor and ligand used in Example 1 of the present invention.
  • the metal precursor was dissolved using 1,125 mL of water, and the organic ligand was dissolved using a mixed solvent of 750 mL of ethanol and 1,125 mL of water.
  • the solution dissolved in the first solvent (the first solvent is a mixture of water and ethanol in a ratio of 75:25) was placed in a 5L glass neck bottle and reacted at room temperature for 24 hours to produce the intermediate as shown in Figure 1.
  • a porous body composed of the indicated fibrous tissue was synthesized. As a result of the analysis, the porous body was confirmed to be in an amorphous phase.
  • the synthesized fibrous amorphous porous material was immersed in ethanol, a second solvent, with stirring for 1 day, 2 days, 3 days, and 7 days (one week).
  • Figures 1 to 4 are scanning electron micrographs of samples obtained after synthesizing the intermediate through the method according to Example 1 of the present invention and then immersing it in ethanol for 1 day, 2 days, 3 days, and 7 days, respectively; 5 is the XRD analysis result of a sample obtained after immersing the intermediate synthesized through the method according to Example 1 of the present invention in ethanol for 1, 2, 3, and 7 days. Meanwhile, the intermediate synthesized through the method according to Example 1 was an amorphous porous body substantially the same as the state after immersion in ethanol for 1 day in FIG. 1.
  • the fibrous amorphous porous body synthesized in Example 1 was immersed in methanol, a second solvent, at 25°C and 60°C for 1 day with stirring.
  • Figure 6 is a scanning electron microscope photograph of a sample obtained after synthesizing a fibrous amorphous porous body through the method according to Example 2 of the present invention and immersing it in methanol (second solvent) at 25°C and 60°C for 1 day;
  • Figure 7 shows a sample obtained after immersing the intermediate synthesized through the method according to Example 2 of the present invention in methanol at 25°C and 60°C for 1 day, and Comparative Example 1, which is a conventional synthesis method of HKUST-1. This is the result of XRD analysis of the synthesized metal-organic framework sample.
  • Example 2 which used methanol as the second solvent, is a more preferable method in terms of process efficiency because it takes less than 1 day to produce a metal-organic framework from an amorphous porous body compared to Example 1, which uses ethanol as the second solvent. am.
  • the organic ligand H 3 BTC (0.714 mmol, 150 g) was dissolved in 800 mL of DMF and 800 mL of ethanol, and the metal precursor, Cu(NO 3 ) 2 H 2 O (1.4 mmol, 338.24 g) was dissolved in 800 mL of distilled water.
  • the dissolved metal precursor solution is slowly added to the organic ligand solution and stirred.
  • a 5L DURAN narrow-mouth bottle was used, and the reaction was performed in an oven at 80°C for more than 20 hours without closing the lid.
  • the solvent was removed and filtered, and a washing process was performed to remove DMF while stirring the reactant with methanol (4 L or more) for at least 4 days. Finally, it was dried in a vacuum oven (room temperature).
  • the organic ligand H 3 BTC (0.714 mmol, 150 g) was dissolved in 800 mL of DMF and 800 mL of ethanol, and the metal precursor, Cu(NO 3 ) 2 H 2 O (1.4 mmol, 338.24 g) was dissolved in 800 mL of distilled water.
  • the dissolved metal precursor solution is slowly added to the organic ligand solution and stirred.
  • a 5L DURAN narrow-mouth bottle was used, and the reaction was performed in an oven at 80°C for more than 20 hours without closing the lid.
  • the solvent was removed, filtered, and solvent exchanged twice with acetone before drying. Finally, it is dried under vacuum at room temperature.
  • Figure 8 shows samples obtained after immersing the intermediate synthesized through the method according to Example 1 of the present invention in ethanol for 1, 2, 3, and 7 days, and the metal-organic framework according to Comparative Example 2. This is the result of a nitrogen adsorption test at 77K for a sample that was not washed after synthesis.
  • HKUST-1(DMF)-No wash is the metal-organic framework prepared in Comparative Example 2
  • HKUST-1(meta)(1 day) is the metal-organic framework prepared in Example 1.
  • the one indicated as "HKUST-1(meta) (2 day)” is an amorphous porous body synthesized through the method according to Example 1.
  • "HKUST-1(meta)(3 day)” indicates a sample in which the amorphous porous material synthesized through the method according to Example 1 was immersed in ethanol for 3 days
  • "HKUST-1(meta)(a week)” represents a sample of the amorphous porous material synthesized through the method according to Example 1 immersed in ethanol for 7 days.
  • Figure 9 shows the results of an acetylene adsorption test at 298K for samples obtained according to Example 2 of the present invention and samples obtained according to Comparative Examples 1 and 2.
  • Figure 10 shows the XRD analysis results of samples obtained according to Example 2 of the present invention and samples obtained according to Comparative Examples 1 and 2.
  • Figure 11 is a nuclear magnetic resonance spectroscopy (NMR) analysis result of a metal-organic framework synthesized according to Example 2 of the present invention
  • Figure 12 is a result of a metal-organic framework synthesized according to Comparative Example 1. This is the NMR analysis result
  • Figure 13 shows the NMR analysis result of the metal-organic framework synthesized according to Comparative Example 2.
  • Comparative Example 2 in which no washing process was performed, the content of DMF, an impurity, was found to be very high at 10.5% by mass. Additionally, in Comparative Example 1, in which a long-time washing process was performed, the content of DMF, an impurity, was 5.6% by mass.
  • Example 2 organic impurities excluding water were measured to be less than 1.1 mass% and DMF was also detected, but this amount of DMF corresponds to the noise level of the analysis device and is highly unlikely to actually exist. Even if it does exist, Since DMF was not used in the synthesis raw materials of 2, it is highly likely that it originated from synthesis equipment such as containers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 아세틸렌과 같은 기능성 물질의 저장량을 증대시킬 수 있는 금속-유기 골격체의 제조방법에 관한 것이다. 본 발명은 금속 이온과 유기 리간드의 배위 생성물을 포함하는 금속-유기 골격체의 제조방법으로,(a) 금속 전구체와, 유기 리간드를 제 1 용매 중에서 반응시켜 중간체를 생성하는 단계와, (b) 상기 중간체를 제 2 용매에 소정 시간 동안 침지시켜 상기 중간체로부터 결정화된 금속-유기 골격체를 생성하면서 동시에 불순물을 제거하는 단계를 포함하는 것을 특징으로 한다.

Description

세척 공정 없이 불순물이 적은 금속-유기 골격체의 제조방법 및 금속-유기 골격체
본 발명은 세척 공정 없이 불순물이 적으며 아세틸렌과 같은 가스의 흡착량을 증대시킬 수 있는 금속 유기 골격체의 제조방법과 이 방법에 의해 제조된 금속 유기 골격체에 관한 것이다.
분자를 조합하여 기공을 형성하는 나노 물질들은 지난 수십 년 동안 주요 연구 분야로 떠오르고 있으며, 촉매, 흡착/분리/저장, 전자, 보건, 반도체, 식품, 세제 등 다양한 분야에 응용되고 있다.
이러한 기공을 갖는 나노 물질들은 흡착 성능이 매우 높을 뿐만 아니라, 흡착 성능의 조절이 가능하고, 활성 사이트들을 골격 내에 생성할 수 있으며, 기체의 선택적 흡수/분리에 적합하며, 기공 대부분이 우수한 이온교환 능력이 있으며, 절연체, 반도체 및 도체 특성도 갖는다.
현재 기공성 물질들 중에서 금속-유기 골격체(Metal-Organic Framework; MOF)가 가장 주목을 받고 있는 물질이다. 금속-유기 골격체는 금속 이온 클러스터와 유기 링커(organic linker) 또는 유기 브리징 리간드(organic bridging ligands)가 배위결합에 의해 연결되어 3차원적인 구조를 형성하는 다공성 물질이다. 이러한 금속-유기 골격체는 표면적이 넓을 뿐만 아니라 개기공 구조를 가지고 있기 때문에 기존에 알려진 다른 다공성 물질에 비해 대량의 분자 또는 용매 등의 이동이 가능하다.
금속-유기골격체는 옹스트롱에서 수 나노(nano) 정도의 크기를 가진 기공을 포함하고 있어, 금속유기 골격체의 생산 후 불순물의 제거를 위한 소재의 세척 공정이 반드시 필요하다. 이는 기공 내에 존재하여 타겟 가스를 선택적으로 저장하는데 방해를 하는 불순물을 제거하기 위한 용도이다.
하지만, 이러한 공정은 세척을 위해 많은 양의 유기용매를 사용하게 되고, 또 오랜 시간의 제거 공정을 거쳐야 하므로, 금속-유기골격체의 제조시간 및 제조비용을 증가시키는데 결정적인 역할을 한다.
또한, 금속-유기골격체는 활성점이 많아서 타겟 기체도 잘 흡수하지만, 제조할 때 함유된 불순물을 제거하기 어려운 단점도 있다. 긴 세척과정을 거치더라도 제거되지 않던 불순물은, 타겟 기체의 저장 및 분리 목적을 위해 사용 과정에 점차적으로 분리되어 지속적으로 타겟 기체에 섞여 토출되게 되므로, 높은 순도를 요하는 응용처에 사용하기 어려운 한계를 가져왔다.
특히, 반도체나 전자제품 공정에 적용될때는, 아주 미량으로 존재하는 불순물이 토출되어 불량을 유발하는 결정적 요인이 되기도 하였다. 특히 금속-유기골격체를 생산할 때 주로 사용하는 N,N-디메틸 포름아미드(이하 'DMF'라 함)라는 물질은 전술한 장시간 동안 많은 비용을 사용하는 불순물 제거 공정으로도 완전히 제거되지 않으면서, 제품의 적용시 토출되어 불량을 일으키는 주요 원인으로 지목되어 왔다.
본 발명의 일 목적은 종래의 유기 금속 골격체의 제조방법에 비해 세척 공정 없이 합성과정에 사용된 불순물이 잔류하는 것을 줄일 수 있을 뿐 아니라, 가스 흡착량을 증대시킬 수 있는 유기 금속 골격체의 제조방법을 제공하는데 있다.
본 발명의 다른 목적은 아세틸렌과 같은 가스의 흡착량이 우수하고, DMF를 포함하지 않는 금속 유기 골격체를 제공하는데 있다.
상기 목적을 달성하기 위한 본 발명의 일 측면은, 금속 이온과 유기 리간드의 배위 생성물을 포함하는 금속-유기 골격체의 제조방법으로, (a) 금속 전구체와, 유기 리간드를 제 1 용매 중에서 반응시켜 중간체를 생성하는 단계와, (b) 상기 중간체를 제 2 용매에 소정 시간 동안 침지시켜 상기 중간체로부터 결정화된 금속-유기 골격체를 생성하면서 동시에 불순물을 제거하는 단계를 포함하는, 금속-유기 골격체의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 다른 측면은, 금속 이온과 유기 리간드의 배위 생성물을 포함하는 금속-유기 골격체로, 금속-유기 골격체에 포함된 유기 불순물 함량이 5질량% 이하이고, 77K에서의 질소 흡착량이 250 ㎤/g 이상인, 금속-유기 골격체를 제공하는 것이다.
본 발명의 일 실시형태에 따른 금속-유기 골격체의 제조방법은 종래의 방법에 비해 합성 과정에 포함되는 불순물의 함량을 현저하게 줄일 수 있다.
또한, 본 발명의 일 실시형태에 따른 금속-유기 골격체의 제조방법은 종래의 금속-유기 골격체의 합성과정에서 가장 많은 에너지와 시간이 소요되는 세척(washing) 공정 없이도 불순물 함량이 매우 낮거나 없는 금속-유기 골격체를 제조할 수 있어, 공정 시간과 제조비용을 현저하게 절감할 수 있다.
본 발명의 일 실시형태에 따라 제조된 금속 유기 골격체는 종래의 방법과 달리 금속 유기 골격체 내에 디메틸포름아미드(DMF)를 포함하지 않기 때문에, 아세틸렌과 같은 가스의 저장, 토출 및 사용 과정에 디메틸포름아미드(DMF)의 유출에 따른 오염 문제가 발생하지 않는다.
또한, 본 발명의 일 실시형태에 따라 제조된 금속 유기 골격체는 아세틸렌과 같은 가스를 흡착할 수 있는 활성 사이트가 증가하기 때문에, 단위 중량 당 가스 흡착량을 향상시킬 수 있다.
도 1은 본 발명의 실시예 1에 따른 방법을 통해 중간체를 합성한 후 에탄올에 1일 동안 침지시킨 후 얻은 샘플의 주사전자 현미경 사진이다.
도 2는 본 발명의 실시예 1에 따른 방법을 통해 중간체를 합성한 후 에탄올에 2일 동안 침지시킨 후 얻은 샘플의 주사전자 현미경 사진이다.
도 3은 본 발명의 실시예 1에 따른 방법을 통해 중간체를 합성한 후 에탄올에 3일 동안 침지시킨 후 얻은 샘플의 주사전자 현미경 사진이다.
도 4는 본 발명의 실시예 1에 따른 방법을 통해 중간체를 합성한 후 에탄올에 7일(일주일) 동안 침지시킨 후 얻은 샘플의 주사전자 현미경 사진이다.
도 5는 본 발명의 실시예 1에 따른 방법을 통해 합성된 중간체를 에탄올에 1일, 2일, 3일, 7일 동안 침지시킨 후 얻은 샘플의 XRD 분석 결과이다.
도 6은 본 발명의 실시예 2에 따른 방법을 통해 합성된 중간체를 25℃와 60℃의 메탄올에 1일 동안 침지시킨 후 얻은 샘플의 주사전자 현미경 사진이다.
도 7은 본 발명의 실시예 2에 따른 방법을 통해 합성된 중간체를 25℃와 60℃의 메탄올에 1일 동안 침지시킨 후 얻은 샘플과, 비교예 1에 따라 금속-유기골격체를 합성한 후 세척 공정을 하여 얻은 샘플의 XRD 분석 결과이다.
도 8은 본 발명의 실시예 1에 따른 방법을 통해 합성된 중간체를 에탄올에 1일, 2일, 3일 및 7일 동안 침지시킨 후 얻은 샘플과, 비교예 2에 따라 금속-유기골격체를 합성한 후 세척 공정을 하지 않은 샘플의 77K에서의 질소 흡착 시험 결과이다.
도 9는 본 발명의 실시예 2에 따라 얻은 샘플과, 비교예 1 및 비교예 2에 따라 얻은 샘플의 298K에서의 아세틸렌 흡착 시험 결과이다.
도 10은 본 발명의 실시예 2에 따라 얻은 샘플과, 비교예 1 및 비교예 2에 따라 얻은 샘플의 XRD 분석 결과이다.
도 11은 본 발명의 실시예 2에 따라 합성된 금속-유기 골격체의 핵자기 공명 분석(nuclear magnetic resonance spectroscopy,NMR) 결과이다.
도 12는 비교예 1에 따라 합성된 금속-유기 골격체의 NMR 분석 결과이다.
도 13은 비교예 2에 따라 합성된 금속-유기 골격체의 NMR 분석 결과이다.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.
그러나 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다.
본 발명에 따른 금속 이온과 유기 리간드의 배위 생성물을 포함하는 금속-유기 골격체의 제조방법은, (a) 금속 전구체와, 유기 리간드를 제 1 용매 중에서 반응시켜 중간체를 생성하는 단계와, (b) 상기 중간체를 제 2 용매에 소정 시간 동안 침지시켜 상기 중간체로부터 결정화된 금속-유기 골격체를 생성하면서 동시에 불순물을 제거하는 단계를 포함하는, 금속-유기 골격체의 제조방법을 제공하는 것이다.
종래의 금속-유기 골격체의 제조방법은 금속 전구체와 유기 리간드를 용매에 용해하여 한 번의 반응을 통해 금속-유기 골격체를 만든 후 오랜 시간 동안 세척 공정을 거치는데 비해, 본 발명에 따른 방법은 1차적으로 중간체를 합성한 후, 2차적으로 중간체로부터 별도의 세척 공정 없이 불순물이 극히 적거나 없는 금속-유기 골격체를 생성하는 2개의 단계를 통해 금속-유기 골격체를 제조하는 점에서 차이가 있다.
본 발명에서는, 제 1 용매에서 금속 이온과 유기 리간드를 반응시켜 결정화되지 않은 중간체(meta-phase)를 생성한 후에, 제 2 용매에서 중간체를 결정화시켜 금속-유기 골격체를 생성시키게 되면, 결정화 과정에 배출되어야 할 물질이 중간체에 형성된 많은 공간을 통해 배출될 수 있다. 이에 따라, 합성 과정에 투여된 원료 물질이 최종적으로 금속-유기 골격체에 잔류하는 것을 줄일 수 있게 되어 원료 물질에 의한 오염을 방지할 뿐 아니라, 가스를 흡착할 수 있는 활성 사이트의 증가에 의한 가스의 흡착량의 증대 효과를 얻을 수 있게 된다. 이에 따라, 종래의 금속-유기 골격체를 합성한 후 불순물을 제거하기 위해 진행해야 했던 장시간의 세척(washing) 공정 없이도 불순물이 극히 적거나 없는 금속-유기 골격체를 얻을 수 있다.
본 발명에 있어서, '불순물'이란 금속-유기 골격체를 구성하는 성분으로 의도되지 않게 포함되는 원료 또는 공정 중 혼입되는 유기 성분을 의미한다.
본 발명에 따른 방법에 있어서, 상기 (b) 단계를 통해 생성된 금속-유기 골격체에 포함된 유기 불순물 함량은 1.5질량% 이하, 1.0질량% 이하, 또는 0.5질량% 이하일 수 있다.
본 발명에 따른 방법에 있어서, 상기 금속 이온은 Ti, Cr, Fe, Co, Ni, Cu, Zr, Al로 이루어진 군으로부터 선택되는 1종 이상의 이온일 수 있다.
본 발명에 따른 방법에 있어서, 상기 유기 리간드는, 1,3,5-벤젠트리카르복실산(1,3,5-benzenetricarboxylic acid), 4,4'-비페닐디카르복실산(4,4'-biphenyldicarboxilic acid), 벤젠-1,4-디카르복실산(benzene-1,4-dicarboxylic acid), 9,10-안트라센디카르복실산(9,10-anthracenedicarboxylic acid), 비페닐-3,3,5,5'-테트라카르복실산(biphenyl-3,3,5,5′-tetracarboxylic acid), 비페닐-3,4',5-트리카르복실산(biphenyl-3,4',5-tricarboxylic acid), 5-브로모이소프탈산(5-bromoisophthalic acid), 5-시아노-1,3-벤젠디카르복실산(5-cyano-1,3-benzenedicarboxylic acid), 2,2-디아미노-4,4'-스틸벤디카르복실산(2,2-diamino-4,4'-stilbenedicarboxylic acid), 2,5-디아미노테레프탈산(2,5-diaminoterephthalic acid), 1,1,2,2-테트라(4-카르복실페닐)에틸렌(1,1,2,2-tetra(4-carboxylphenyl)ethylene), 2,5-디하이드록시테레프탈산(2,5-dihydroxyterephthalic acid), 2,2-디니트로-4,4-스틸벤디카르복실산(2,2-dinitro-4,4-stilbenedicarboxylic acid), 5-에티닐-1,3-벤젠디카르복실산(5-ethynyl-1,3-benzenedicarboxylic acid), 2-하이드록시테레프탈산(2-hydroxyterephthalic acid), 2,6-나프탈렌디카르복실산(2,6-naphthalenedicarboxylic acid), 1,2,4,5-테트라키스(4-카르복시페닐)벤젠(1,2,4,5-tetrakis(4-carboxyphenyl)benzene), 4,4,4″-s-트리아진-2,4,6-트리일-트리벤조산(4,4,4″-s-triazine-2,4,6-triyltribenzoic acid), 1,4,7,10-테트라아자시클로도데칸-N,N',N'',N'''-테트라아세트산(1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid), 1,3,5-트리스(4-카르복시[1,1'-비페닐]-4-일)벤젠(1,3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene), 1,3,5-트리스(4-카르복시페닐)벤젠(1,3,5-tris(4-carboxyphenyl)benzene), 1,3,5-트리스카르복시페닐에티닐벤젠(1,3,5-triscarboxyphenylethynylbenzene)으로 이루어진 그룹으로부터 선택된 1종 이상일 수 있다.
본 발명에 따른 방법에 있어서, 상기 제 1 용매는 물 또는 물과 혼합되는 극성 유기 용매일 수 있다. 예를 들어, 물만 사용되거나 물과 극성 유기 용매의 혼합용매가 사용될 수 있다. 극성 유기 용매로는 메탄올, 에탄올과 같은 알코올, 아세톤, N,N´-디메틸 포름알데히드, 디메틸 술폭시화물, 1,4-디옥산 등이 사용될 수 있으나, 이에 제한되는 것은 아니며, 금속-유기 골격체의 합성에 사용될 수 있는 것으로 알려진 극성 유기 용매라면 특별한 제한 없이 사용될 수 있다. 상기 제 1 용매로는, 바람직하게 에탄올 또는 메탄올일 수 있다. 에탄올 또는 메탄올을 제 1 용매로 사용할 경우, 종래 아세틸렌 흡착용 금속-유기 골격체의 합성에 사용되어온 DMF가 불순물로 포함되는 것을 원천적으로 제거할 수 있다.
본 발명에 따른 방법에 있어서, 상기 제 2 용매는 에탄올 또는 메탄올일 수 있으며, 바람직하게는 메탄올이다. 메탄올은 에탄올에 비해 중간체로부터 금속-유기 골격체를 생성하는 속도가 현저하게 빠르기 때문이다.
본 발명에 따른 방법에 있어서, 상기 침지 공정은 0 ~ 80℃에서 12시간 이상 수행될 수 있다. 상기 침지 공정의 온도가 0℃ 미만일 경우, 중간체로부터 금속-유기 골격체가 생성되는 속도가 느려져 바람직하지 않고, 80℃ 초과일 경우, 극성 유기 용매의 끓는점을 초과할 수 있기 때문이다. 또한, 상기 침지 공정이 12시간 미만으로 수행될 경우, 중간체로부터 금속-유기 골격체의 생성이 충분히 이루어지지 않을 수 있기 때문에 12시간 이상 수행되는 것이 바람직하다. 보다 바람직하게 상기 침지 공정은 20 ~ 65℃에서 12시간 이상 수행하는 것이다.
본 발명에 따른 방법에 있어서, 상기 금속-유기 골격체는 예를 들어 HKUST-1일 수 있으나, 본 발명의 제조방법이 HKUST-1에 한정되는 것은 아니고 다른 금속-유기 골격체의 제조에도 이용될 수 있다.
본 발명에 따른 금속-유기 골격체는, 금속 이온과 유기 리간드의 배위 생성물을 포함하는 금속-유기 골격체로, 금속-유기 골격체에 포함된 유기 불순물 함량이 5질량% 이하이고, 77K에서의 질소 흡착량이 250 ㎤/g 이상인 것을 특징으로 한다.
상기 금속-유기 골격체에 있어서, 상기 유기 불순물 함량은, 5질량% 이하, 4.5질량% 이하, 4질량% 이하, 3.5질량% 이하, 3질량% 이하, 2.5질량% 이하, 2질량% 이하, 1.5질량% 이하, 1질량% 이하, 0.5질량% 이하일 수 있다.
상기 금속-유기 골격체는 DMF를 5질량% 이하, 4.5질량% 이하, 4질량% 이하, 3.5질량% 이하, 3질량% 이하, 2.5질량% 이하, 2질량% 이하, 1.5질량% 이하, 1질량% 이하, 0.5질량% 이하일 수 있다.
아세틸렌 흡착용으로 개발된 종래의 금속-유기 골격체는 DMF의 상당량이 포함되어 있어 사용 중에 DMF가 방출됨으로써, 저장하는 가스를 오염시키는 문제가 있었으나, 본 발명에 따른 금속-유기 골격체는 DMF를 실질적으로 포함하지 않을 뿐 아니라 종래의 금속-유기 골격체에 비해 가스 흡착량이 우수하다.
본 발명의 금속-유기 골격체는 분말상일 수 있다. 상기 분말상은 합성된 상태의 입자(다면체, 플레이크 등)로 이루어지거나 합성된 분말을 펠릿화한 것으로 이루어질 수 있다.
본 발명의 금속-유기 골격체는, 298K에서 아세틸렌 흡착량이 100 ㎤/g 이상, 110 ㎤/g 이상, 120 ㎤/g 이상, 130 ㎤/g 이상, 140 ㎤/g 이상, 또는 150 ㎤/g 이상일 수 있다.
본 발명의 금속-유기 골격체에 있어서, 상기 금속 이온은 Ti, Cr, Fe, Co, Ni, Cu, Zr, Al로 이루어진 군으로부터 선택되는 1종 이상의 이온일 수 있다.
본 발명의 금속-유기 골격체에 있어서, 상기 유기 리간드는, 바람직하게, 1,3,5-벤젠트리카르복실산(1,3,5-benzenetricarboxylic acid), 4,4'-비페닐디카르복실산(4,4'-biphenyldicarboxilic acid), 벤젠-1,4-디카르복실산(benzene-1,4-dicarboxylic acid), 9,10-안트라센디카르복실산(9,10-anthracenedicarboxylic acid), 비페닐-3,3,5,5'-테트라카르복실산(biphenyl-3,3,5,5′-tetracarboxylic acid), 비페닐-3,4',5-트리카르복실산(biphenyl-3,4',5-tricarboxylic acid), 5-브로모이소프탈산(5-bromoisophthalic acid), 5-시아노-1,3-벤젠디카르복실산(5-cyano-1,3-benzenedicarboxylic acid), 2,2-디아미노-4,4'-스틸벤디카르복실산(2,2-diamino-4,4'-stilbenedicarboxylic acid), 2,5-디아미노테레프탈산(2,5-diaminoterephthalic acid), 1,1,2,2-테트라(4-카르복실페닐)에틸렌(1,1,2,2-tetra(4-carboxylphenyl)ethylene), 2,5-디하이드록시테레프탈산(2,5-dihydroxyterephthalic acid), 2,2-디니트로-4,4-스틸벤디카르복실산(2,2-dinitro-4,4-stilbenedicarboxylic acid), 5-에티닐-1,3-벤젠디카르복실산(5-ethynyl-1,3-benzenedicarboxylic acid), 2-하이드록시테레프탈산(2-hydroxyterephthalic acid), 2,6-나프탈렌디카르복실산(2,6-naphthalenedicarboxylic acid), 1,2,4,5-테트라키스(4-카르복시페닐)벤젠(1,2,4,5-tetrakis(4-carboxyphenyl)benzene), 4,4,4″-s-트리아진-2,4,6-트리일-트리벤조산(4,4,4″-s-triazine-2,4,6-triyltribenzoic acid), 1,4,7,10-테트라아자시클로도데칸-N,N',N'',N'''-테트라아세트산(1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid), 1,3,5-트리스(4-카르복시[1,1'-비페닐]-4-일)벤젠(1,3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene), 1,3,5-트리스(4-카르복시페닐)벤젠(1,3,5-tris(4-carboxyphenyl)benzene), 1,3,5-트리스카르복시페닐에티닐벤젠(1,3,5-triscarboxyphenylethynylbenzene)으로 이루어진 그룹으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 금속-유기 골격체는, 예를 들어, 아세틸렌, 암모니아, 아르신, 삼염화 붕소, 삼불화 붕소, 디보란, 디클로로실란, 디플루오로메탄, 디실란, 불소, 게르만, 사불화 게르마늄, 헥사플루오로에탄, 브롬화 수소, 염화 수소, 불화 수소, 불화 메틸, 메틸실란, 삼불화 질소, 퍼플루오로프로판, 포스핀, 실란, 사염화 규소, 테트라플루오로메탄, 테트라메틸실란, 사불화 규소, 스티빈, 육불화 황, 트리클로로실란, 트리플루오로메탄, 트리메틸실란 및 육불화 텅스텐으로 이루어지는 그룹으로부터 선택되는 가스를 저장하는 것일 수 있으나, 이에 한정되는 것은 아니며 예시된 가스 외의 다른 가스도 저장될 수도 있다.
본 발명에 따른 금속-유기 골격체는 바람직하게 HKUST-1로 분류되는 구조를 가지고, 아세틸렌 흡착용으로 사용되는 것일 수 있다.
<실시예 1>
아래 표 1은 본 발명의 실시예 1에서 사용한 금속 전구체와 리간드의 조건을 나타낸 것이다.
[표 1]
Figure PCTKR2023009879-appb-img-000001
금속 전구체는 1,125mL의 물을 사용하여 용해하였고, 유기 리간드는 에탄올 750mL와 물 1,125mL의 혼합용매를 사용하여 용해하였다. 제 1 용매에 용해된 용액(제 1 용매는 물과 에탄올이 75:25의 비율로 혼합된 상태)을 5L 유리 세구병에 넣고 상온(room temperature)에서 24시간 동안 반응시켜, 중간체로 도 1에 나타난 섬유 형상의 조직으로 이루어진 다공질체를 합성하였다. 분석 결과 상기 다공질체는 비정질상으로 확인되었다.
합성된 섬유상 비정질 다공질체를 제 2 용매인 에탄올에 1일, 2일, 3일, 7일(일주일) 동안 교반하며 침지하였다.
도 1 ~ 4는, 각각 본 발명의 실시예 1에 따른 방법을 통해 중간체를 합성한 후 에탄올에 1일, 2일, 3일, 7일 동안 침지시킨 후 얻은 샘플의 주사전자 현미경 사진이고, 도 5는 본 발명의 실시예 1에 따른 방법을 통해 합성된 중간체를 에탄올에 1일, 2일, 3일, 7일 동안 침지시킨 후 얻은 샘플의 XRD 분석 결과이다. 한편, 실시예 1에 따른 방법을 통해 합성된 중간체는 도 1의 에탄올에 1일 동안 침지된 후의 상태와 실질적으로 동일하게 비정질의 다공질체였다.
도 1 ~ 5에서 확인되는 바와 같이, 비정질 다공질체로 이루어진 중간체를 합성한 후 에탄올에 1일 동안 침지시켰을 때는 그 형상에 변화가 관찰되지 않았다. 에탄올에 2일 동안 침지시켰을 때는 비정질 다공질체에서 입자상이 일부 생성되었으며, 도 5의 XRD 분석결과에서 확인되는 바와 같이, 생성된 입자상의 결정성은 낮은 상태였다. 에탄올에 3일 동안 침지시켰을때는, 비정질 다공질체로부터 생성된 입자상의 결정성이 높아졌다. 에탄올에 7일 동안 침지시켰을 때는, 모든 비정질 다공질체가 완전히 입자상으로 변화되었음을 알 수 있고, XRD 분석결과 HKUST-1 금속-유기 골격체로 확인되었다.
<실시예 2>
실시예 1에서 합성된 섬유상 비정질 다공질체를 25℃와 60℃의 제 2 용매인 메탄올에 1일 동안 교반하며 침지하였다.
도 6은 본 발명의 실시예 2에 따른 방법을 통해 섬유상 비정질 다공질체를 합성한 후 25℃와 60℃의 메탄올(제 2 용매)에 1일 동안 침지시킨 후 얻은 샘플의 주사전자현미경 사진이고, 도 7은 본 발명의 실시예 2에 따른 방법을 통해 합성된 중간체를 25℃와 60℃의 메탄올에 1일 동안 침지시킨 후 얻은 샘플과, 종래의 HKUST-1의 합성 방법인 비교예 1에 따라 합성된 금속-유기골격체 샘플의 XRD 분석 결과이다.
도 6 및 7에 나타낸 바와 같이, 메탄올에 1일 동안 침지된 2가지 샘플의 경우, 1일 이내에 모든 비정질 다공질체가 입자상으로 변화되었음을 알 수 있고, XRD 분석 결과 HKUST-1 금속-유기 골격체로 확인되었다.
한편, 제 2 용매로 메탄올을 사용한 실시예 2는 제 2 용매로 에탄올을 사용한 실시예 1에 비해 비정질 다공질체로부터 금속-유기 골격체가 생성되는데 1일 미만으로 소요되므로 공정의 효율 측면에서 보다 바람직한 방법이다.
<비교예 1>
유기 리간드 H3BTC (0.714 mmol, 150g)을 DMF 800mL와 에탄올 800mL에, 금속 전구체, Cu(NO3)2 H2O (1.4mmol, 338.24g)을 증류수 800mL에 각각 용해하였다. 용해한 금속 전구체 용액을 유기 리간드 용액에 천천히 투입하며 교반시킨다. 이때, 5L DURAN 세구병을 사용하였으며, 뚜껑을 닫지 않은 상태로 80℃ 오븐에서 20시간 이상 반응시켰다. 반응 후, 용매를 제거하여 여과하였으며, 메탄올(4L 이상)로 반응물을 최소 4일 이상 교반하면서 DMF를 제거하는 세척 공정을 수행하였다. 최종적으로 진공 오븐(상온)에서 건조하였다.
<비교예 2>
유기 리간드 H3BTC (0.714 mmol, 150g)을 DMF 800mL와 에탄올 800mL에, 금속 전구체, Cu(NO3)2 H2O (1.4mmol, 338.24g)을 증류수 800mL에 각각 용해하였다. 용해한 금속 전구체 용액을 유기 리간드 용액에 천천히 투입하며 교반시킨다. 이때, 5L DURAN 세구병을 사용하였으며, 뚜껑을 닫지 않은 상태로 80℃ 오븐에서 20시간 이상 반응시켰다. 반응 후, 용매를 제거하여 여과하였으며 건조 전 아세톤으로 2번 용매 교환(Solvent exchange)을 시켜준다. 최종적으로 진공 상온에서 건조시켜준다.
저온 질소흡착 분석
도 8은 본 발명의 실시예 1에 따른 방법을 통해 합성된 중간체를 에탄올에 1일, 2일, 3일 및 7일 동안 침지시킨 후 얻은 샘플과, 비교예 2에 따라 금속-유기골격체를 합성한 후 세척 공정을 하지 않은 샘플의 77K에서의 질소 흡착 시험 결과이다.
도 8에서 "HKUST-1(DMF)-No wash"로 표시된 것은 비교예 2에 의해 제조된 금속-유기 골격체이고, "HKUST-1(meta)(1 day)"로 표시된 것은 실시예 1에 따른 방법을 통해 합성된 비정질 다공질체를 에탄올에 1일 동안 침지한 샘플을 나타낸 것이고, "HKUST-1(meta)(2 day)"로 표시된 것은 실시예 1에 따른 방법을 통해 합성된 비정질 다공질체를 에탄올에 2일 동안 침지한 샘플을 나타낸 것이고, "HKUST-1(meta)(3 day)"로 표시된 것은 실시예 1에 따른 방법을 통해 합성된 비정질 다공질체를 에탄올에 3일 동안 침지한 샘플을 나타낸 것이고, "HKUST-1(meta)(a week)"로 표시된 것은 실시예 1에 따른 방법을 통해 합성된 비정질 다공질체를 에탄올에 7일 동안 침지한 샘플을 나타낸 것이다.
도 8에서 확인되는 바와 같이, 침지되는 시간이 증가함에 따라 질소 흡착량이 증가하였으며, 7일 동안 침지하여 생성된 HKUST-1 샘플의 질소 흡착량은 비교예 2에 따라 세척공정을 하지 않은 HKUST-1에 비해 현저하게 많은 질소 흡착이 가능하여, 상대적으로 기체를 흡착할 수 있는 활성 사이트가 많음을 알 수 있다.
아세틸렌 흡착 분석
도 9는 본 발명의 실시예 2에 따라 얻은 샘플과, 비교예 1 및 비교예 2에 따라 얻은 샘플의 298K에서의 아세틸렌 흡착 시험 결과이다.
도 9에서 "HKUST-1(DMF)-MeOH wash"로 표시된 것은 비교예 1에 따라 얻은 샘플이고, "HKUST-1(DMF)-No wash"로 표시된 것은 비교예 2에 따라 얻은 샘플이며, "HKUST-1(meta)"로 표시된 것은 실시예 2에 따라 얻은 샘플을 나타낸 것이다.
도 9에서 확인되는 바와 같이, 세척 공정을 하지 않은 비교예 2에 비해 세척 공정을 한 비교예 1의 HKUST-1 금속-유기 골격체의 아세틸렌 흡착량이 현저하게 증가하였다.
또한, 장시간의 세척 공정을 한 비교예 1에 비해, 세척 공정을 하지 않은 본 발명의 실시예 2에 따른 HKUS-1 금속-유기 골격체의 아세틸렌 흡착 거동은 거의 유사하였으나 더 나은 결과를 나타내었다.
불순물 분석
도 10은 본 발명의 실시예 2에 따라 얻은 샘플과, 비교예 1 및 비교예 2에 따라 얻은 샘플의 XRD 분석 결과이다.
도 10에서 "HKUST-1(DMF)-MeOH wash"로 표시된 것은 비교예 1에 따라 얻은 샘플이고, "HKUST-1(DMF)-No wash"로 표시된 것은 비교예 2에 따라 얻은 샘플이며, "HKUST-1(meta)"로 표시된 것은 실시예 2에 따라 얻은 샘플을 나타낸 것이다.
도 10에서 확인되는 바와 같이, HKUST-1 합성 후에 세척 공정을 하지 않은 비교예 2 샘플에서는 불순물에 기인하는 화살표로 지시된 큰 피크가 관찰되었다. 또한, HKUST-1의 합성 후에 장시간의 세척 공정을 한 비교예 1 샘플에서는 비교예 2 샘플에서 나타난 불순물에 기인하는 피크가 현저하게 줄어들었으나 약하게 관찰되었다. 이에 비해, 본 발명의 실시예 2의 경우 비교예 1 및 2에서 관찰되는 불순물에 의한 피크가 전혀 관찰되지 않았다.
도 11은 본 발명의 실시예 2에 따라 합성된 금속-유기 골격체의 핵자기 공명 분석(nuclear magnetic resonance spectroscopy,NMR) 결과이고, 도 12은 비교예 1에 따라 합성된 금속-유기 골격체의 NMR 분석 결과이고, 도 13는 비교예 2에 따라 합성된 금속-유기 골격체의 NMR 분석 결과이다.
실시예 2, 비교예 1 및 비교예 2에 따라 합성된 HKUST-1은 모두 원료 또는 용매에서 기인하는 불순물인 DMF가 검출되었다.
구체적으로, 세척 공정을 하지 않은 비교예 2에서 불순물인 DMF의 함량은 10.5질량%로 매우 높게 나타났다. 또한, 장시간의 세척 공정을 실시한 비교예 1에서 불순물인 DMF의 함량은 5.6질량% 였다.
한편, 실시예 2에서는 물을 제외한 유기 불순물이 1.1질량% 이하로 측정되었고 DMF도 검출되었으나, 이 정도의 DMF 양은 분석 장치의 노이즈 수준에 해당하여 실제로는 존재하지 않을 가능성이 크며, 존재하더라도 실시예 2의 합성 원료에 DMF가 사용되지 않았으므로, 용기 등 합성 장치로부터 기인한 것일 가능성이 높다.
이상과 같은 분석결과로부터, 본 발명에 따른 방법에 의하면, 많은 에너지와 공정 시간이 소요되는 세척 공정을 하지 않아도 유기 불순물의 함량이 낮으면서, 가스 흡착량이 우수한 금속-유기 골격체를 얻을 수 있음을 알 수 있다.

Claims (17)

  1. (a) 금속 전구체와, 유기 리간드를 제 1 용매 중에서 반응시켜 중간체를 생성하는 단계와,
    (b) 상기 중간체를 제 2 용매에 소정 시간 동안 침지시켜 상기 중간체로부터 결정화된 금속-유기 골격체를 생성하면서 동시에 불순물을 제거하는 단계를 포함하는, 금속-유기 골격체의 제조방법.
  2. 제 1 항에 있어서,
    상기 (b) 단계를 통해 생성된 금속-유기 골격체에 포함된 유기 불순물 함량이 5질량% 이하인, 금속-유기 골격체의 제조방법.
  3. 제 1 항에 있어서,
    상기 금속 이온은 Ti, Cr, Fe, Co, Ni, Cu, Zr, Al로 이루어진 군으로부터 선택되는 1종 이상의 이온인, 금속-유기 골격체의 제조방법.
  4. 제 1 항에 있어서,
    상기 유기 리간드는, 1,3,5-벤젠트리카르복실산(1,3,5-benzenetricarboxylic acid), 4,4'-비페닐디카르복실산(4,4'-biphenyldicarboxilic acid), 벤젠-1,4-디카르복실산(benzene-1,4-dicarboxylic acid), 9,10-안트라센디카르복실산(9,10-anthracenedicarboxylic acid), 비페닐-3,3,5,5'-테트라카르복실산(biphenyl-3,3,5,5′-tetracarboxylic acid), 비페닐-3,4',5-트리카르복실산(biphenyl-3,4',5-tricarboxylic acid), 5-브로모이소프탈산(5-bromoisophthalic acid), 5-시아노-1,3-벤젠디카르복실산(5-cyano-1,3-benzenedicarboxylic acid), 2,2-디아미노-4,4'-스틸벤디카르복실산(2,2-diamino-4,4'-stilbenedicarboxylic acid), 2,5-디아미노테레프탈산(2,5-diaminoterephthalic acid), 1,1,2,2-테트라(4-카르복실페닐)에틸렌(1,1,2,2-tetra(4-carboxylphenyl)ethylene), 2,5-디하이드록시테레프탈산(2,5-dihydroxyterephthalic acid), 2,2-디니트로-4,4-스틸벤디카르복실산(2,2-dinitro-4,4-stilbenedicarboxylic acid), 5-에티닐-1,3-벤젠디카르복실산(5-ethynyl-1,3-benzenedicarboxylic acid), 2-하이드록시테레프탈산(2-hydroxyterephthalic acid), 2,6-나프탈렌디카르복실산(2,6-naphthalenedicarboxylic acid), 1,2,4,5-테트라키스(4-카르복시페닐)벤젠(1,2,4,5-tetrakis(4-carboxyphenyl)benzene), 4,4,4″-s-트리아진-2,4,6-트리일-트리벤조산(4,4,4″-s-triazine-2,4,6-triyltribenzoic acid), 1,4,7,10-테트라아자시클로도데칸-N,N',N'',N'''-테트라아세트산(1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid), 1,3,5-트리스(4-카르복시[1,1'-비페닐]-4-일)벤젠(1,3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene), 1,3,5-트리스(4-카르복시페닐)벤젠(1,3,5-tris(4-carboxyphenyl)benzene), 1,3,5-트리스카르복시페닐에티닐벤젠(1,3,5-triscarboxyphenylethynylbenzene)으로 이루어진 그룹으로부터 선택된 1종 이상인, 금속-유기 골격체의 제조방법.
  5. 제 1 항에 있어서,
    상기 제 1 용매는 물 또는 물과 혼합되는 극성 유기 용매인, 금속-유기 골격체의 제조방법.
  6. 제 5 항에 있어서,
    상기 제 1 용매는 물과 에탄올의 혼합용매인, 금속-유기 골격체의 제조방법.
  7. 제 1 항에 있어서,
    상기 제 2 용매는 메탄올인, 금속-유기 골격체의 제조방법.
  8. 제 1 항에 있어서,
    상기 침지 공정은 0 ~ 80℃에서 12 시간 이상 유지되는, 금속-유기 골격체의 제조방법.
  9. 제 1 항에 있어서,
    상기 중간체는 비정질의 다공질 물질인, 금속 유기 골격체의 제조방법.
  10. 제 1 항에 있어서,
    상기 금속-유기 골격체는 HKUST-1인, 금속-유기 골격체의 제조방법.
  11. 금속 이온과 유기 리간드의 배위 생성물을 포함하는 금속-유기 골격체로,
    금속-유기 골격체에 포함된 유기 불순물 함량이 5질량% 이하이고,
    77K에서의 질소 흡착량이 250 ㎤/g 이상인, 금속-유기 골격체.
  12. 제 11 항에 있어서,
    상기 금속-유기 골격체는 DMF를 5질량% 이하로 포함하는, 금속-유기 골격체.
  13. 제 11 항에 있어서,
    상기 금속-유기 골격체는 298K에서 아세틸렌 흡착량이 100 ㎤/g 이상인, 금속-유기 골격체.
  14. 제 11 항에 있어서,
    상기 금속 이온은 Ti, Cr, Fe, Co, Ni, Cu, Zr, Al로 이루어진 군으로부터 선택되는 1종 이상의 이온인, 금속-유기 골격체.
  15. 제 11 항에 있어서,
    상기 유기 리간드는, 1,3,5-벤젠트리카르복실산(1,3,5-benzenetricarboxylic acid), 4,4'-비페닐디카르복실산(4,4'-biphenyldicarboxilic acid), 벤젠-1,4-디카르복실산(benzene-1,4-dicarboxylic acid), 9,10-안트라센디카르복실산(9,10-anthracenedicarboxylic acid), 비페닐-3,3,5,5'-테트라카르복실산(biphenyl-3,3,5,5′-tetracarboxylic acid), 비페닐-3,4',5-트리카르복실산(biphenyl-3,4',5-tricarboxylic acid), 5-브로모이소프탈산(5-bromoisophthalic acid), 5-시아노-1,3-벤젠디카르복실산(5-cyano-1,3-benzenedicarboxylic acid), 2,2-디아미노-4,4'-스틸벤디카르복실산(2,2-diamino-4,4'-stilbenedicarboxylic acid), 2,5-디아미노테레프탈산(2,5-diaminoterephthalic acid), 1,1,2,2-테트라(4-카르복실페닐)에틸렌(1,1,2,2-tetra(4-carboxylphenyl)ethylene), 2,5-디하이드록시테레프탈산(2,5-dihydroxyterephthalic acid), 2,2-디니트로-4,4-스틸벤디카르복실산(2,2-dinitro-4,4-stilbenedicarboxylic acid), 5-에티닐-1,3-벤젠디카르복실산(5-ethynyl-1,3-benzenedicarboxylic acid), 2-하이드록시테레프탈산(2-hydroxyterephthalic acid), 2,6-나프탈렌디카르복실산(2,6-naphthalenedicarboxylic acid), 1,2,4,5-테트라키스(4-카르복시페닐)벤젠(1,2,4,5-tetrakis(4-carboxyphenyl)benzene), 4,4,4″-s-트리아진-2,4,6-트리일-트리벤조산(4,4,4″-s-triazine-2,4,6-triyltribenzoic acid), 1,4,7,10-테트라아자시클로도데칸-N,N',N'',N'''-테트라아세트산(1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid), 1,3,5-트리스(4-카르복시[1,1'-비페닐]-4-일)벤젠(1,3,5-tris(4-carboxy[1,1'-biphenyl]-4-yl)benzene), 1,3,5-트리스(4-카르복시페닐)벤젠(1,3,5-tris(4-carboxyphenyl)benzene), 1,3,5-트리스카르복시페닐에티닐벤젠(1,3,5-triscarboxyphenylethynylbenzene)으로 이루어진 그룹으로부터 선택된 1종 이상인, 금속-유기 골격체.
  16. 제 11 항에 있어서,
    상기 금속-유기 골격체는, 아세틸렌, 암모니아, 아르신, 삼염화 붕소, 삼불화 붕소, 디보란, 디클로로실란, 디플루오로메탄, 디실란, 불소, 게르만, 사불화 게르마늄, 헥사플루오로에탄, 브롬화 수소, 염화 수소, 불화 수소, 불화 메틸, 메틸실란, 삼불화 질소, 퍼플루오로프로판, 포스핀, 실란, 사염화 규소, 테트라플루오로메탄, 테트라메틸실란, 사불화 규소, 스티빈, 육불화 황, 트리클로로실란, 트리플루오로메탄, 트리메틸실란 및 육불화 텅스텐으로 이루어지는 그룹으로부터 선택되는 가스를 저장하는 것인, 금속-유기 골격체.
  17. 제 11 항에 있어서,
    상기 금속-유기 골격체는 HKUST-1이고, 상기 가스는 아세틸렌인, 금속-유기 골격체.
PCT/KR2023/009879 2022-07-20 2023-07-11 세척 공정 없이 불순물이 적은 금속-유기 골격체의 제조방법 및 금속-유기 골격체 WO2024019398A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220089377A KR20240012012A (ko) 2022-07-20 2022-07-20 세척 공정 없이 불순물이 적은 금속-유기 골격체의 제조방법 및 금속-유기 골격체
KR10-2022-0089377 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024019398A1 true WO2024019398A1 (ko) 2024-01-25

Family

ID=89618007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009879 WO2024019398A1 (ko) 2022-07-20 2023-07-11 세척 공정 없이 불순물이 적은 금속-유기 골격체의 제조방법 및 금속-유기 골격체

Country Status (2)

Country Link
KR (1) KR20240012012A (ko)
WO (1) WO2024019398A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004364A1 (en) * 2001-04-30 2003-01-02 Yaghi Omar M. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage
JP2006290774A (ja) * 2005-04-08 2006-10-26 Honda Motor Co Ltd 金属−有機骨格構造体の製造方法
KR20130057785A (ko) * 2011-11-24 2013-06-03 한화케미칼 주식회사 다공성 금속-유기 골격체의 제조 방법
CN113444260A (zh) * 2021-08-04 2021-09-28 太原理工大学 一种环糊精-金属有机骨架材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493756B1 (ko) 2008-09-16 2015-02-17 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 아세틸렌을 제공하기 위한 방법 및 시스템
JP5460803B2 (ja) 2012-09-25 2014-04-02 岩谷瓦斯株式会社 アセチレン吸蔵材料とアセチレン吸蔵容器及び高純度アセチレンの供給装置並びに高純度アセチレンの精製装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004364A1 (en) * 2001-04-30 2003-01-02 Yaghi Omar M. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage
JP2006290774A (ja) * 2005-04-08 2006-10-26 Honda Motor Co Ltd 金属−有機骨格構造体の製造方法
KR20130057785A (ko) * 2011-11-24 2013-06-03 한화케미칼 주식회사 다공성 금속-유기 골격체의 제조 방법
CN113444260A (zh) * 2021-08-04 2021-09-28 太原理工大学 一种环糊精-金属有机骨架材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIANG, S. ET AL.: "Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal si tes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, 2009, pages 12415 - 12419, XP055319914, DOI: 10.1021/ja904782h *

Also Published As

Publication number Publication date
KR20240012012A (ko) 2024-01-29

Similar Documents

Publication Publication Date Title
WO2016099202A1 (ko) 탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도
WO2021040455A1 (ko) 2종 이상의 리간드를 포함하는, 3차원 다공성 구조를 갖는 신규한 알루미늄-기반 금속-유기 골격체, 이의 제조방법 및 용도
WO2013025046A2 (ko) 결정성 하이브리드 나노세공체 분말을 포함하는 복합체 및 그 제조방법
CN101125649B (zh) 分离金属性单壁碳纳米管的方法
Chai et al. Low-cost Y-type zeolite/carbon porous composite from coal gasification fine slag and its application in the phenol removal from wastewater: fabrication, characterization, equilibrium, and kinetic studies
CN107583620B (zh) 一种壳聚糖基金属离子吸附剂及其制备方法
WO2024019398A1 (ko) 세척 공정 없이 불순물이 적은 금속-유기 골격체의 제조방법 및 금속-유기 골격체
CN113277527A (zh) 以粉煤灰为原料快速制备Na-X和Na-A分子筛的方法
CN112023981A (zh) 一种共价三嗪有机框架材料及其制备方法和应用
CN110270231B (zh) Mof衍生气体分离膜及其制备方法和应用
CN108163820B (zh) 一种低温制备二硒化锡纳米线的方法
WO2018190672A1 (ko) 4b족 원소를 포함하는 금속-유기 복합체의 제조방법
Yin et al. Amino-acid-substituted polyacetylene-based chiral core–shell microspheres: Helix structure induction and application for chiral resolution and adsorption
WO2022055172A1 (ko) Cha 제올라이트 제조방법 및 이로부터 제조된 거대입자의 cha 제올라이트
CN114345300A (zh) 一种吸附剂及其制备方法,一种提纯环烯烃聚合物的方法
CN116120568B (zh) 一种中空MOFs、其制备方法及其在SF6/N2分离领域的应用
Liu et al. Facile Synthesis of MIL‐68 (In) Films with Controllable Morphology
CN110420621A (zh) 一种脱除水中镍离子的氧化石墨烯吸附膜的制备方法
JPH04292401A (ja) ナトリウムボロハイドライドの製造方法
US5057242A (en) Composition, process, and apparatus, for removal of water and silicon mu-oxides from chlorosilanes
CN114345388B (zh) 一种类石墨相氮化碳的改性方法
CN111115569B (zh) 一种高效吸附氢气的硼碳氮纳米带材料及其制备方法
CN107226913B (zh) 一种以四核钴为节点的框架配位材料及其制备方法
WO2010120025A1 (ko) 실란의 정제 방법
WO2011019251A2 (ko) 암모니아보란을 포함하는 다공성 결정 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843249

Country of ref document: EP

Kind code of ref document: A1