WO2024018895A1 - エンドミル、マイクロレンズ作製用金型の製造方法、及びマイクロレンズ作製用金型の製造装置 - Google Patents

エンドミル、マイクロレンズ作製用金型の製造方法、及びマイクロレンズ作製用金型の製造装置 Download PDF

Info

Publication number
WO2024018895A1
WO2024018895A1 PCT/JP2023/024854 JP2023024854W WO2024018895A1 WO 2024018895 A1 WO2024018895 A1 WO 2024018895A1 JP 2023024854 W JP2023024854 W JP 2023024854W WO 2024018895 A1 WO2024018895 A1 WO 2024018895A1
Authority
WO
WIPO (PCT)
Prior art keywords
end mill
cutting edge
degrees
microlens
center
Prior art date
Application number
PCT/JP2023/024854
Other languages
English (en)
French (fr)
Inventor
雄太 鈴木
克浩 土井
和彦 野田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2024018895A1 publication Critical patent/WO2024018895A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process

Definitions

  • the present invention relates to an end mill, a method for manufacturing a mold for manufacturing a microlens, and an apparatus for manufacturing a mold for manufacturing a microlens.
  • a method in which the microlens is formed by using an R-shaped cutting tool and scanning with an R-shaped locus (see FIGS. 1A to 1C).
  • the cutting tool is provided with a "relief" so that parts other than the cutting edge do not come into contact with the workpiece during cutting, but as shown in FIG. 2, there is a manufacturing limit to the angle of the relief (relief angle). That is, during cutting, it is difficult to cut deep microlenses (deep drilling) because cutting can only be done at an incident angle that does not allow the "relief" of the cutting tool to come into contact with the workpiece.
  • a cutting process using a ball end mill with a spherical tip shape is an example of a microlens processing method that allows deep processing.
  • deep microlenses can be cut by cutting while rotating the ball end mill at high speed.
  • a ball end mill for example, a rounded nose end mill is proposed as shown in FIG. 1 of Patent Document 1.
  • the rounded nose end mill since the rounded nose end mill has multiple cutting edges with two or more blades, the diameter of the cutting edge becomes large, and it is difficult to handle microlenses with an outer diameter of 100 ⁇ m or less. There is a problem that it cannot be applied to cutting processing.
  • the present invention includes an end mill that can cut deeper microlenses without causing machining defects due to the rotation center of the end mill, a method for manufacturing a microlens manufacturing mold using the end mill, and the end mill.
  • the purpose of the present invention is to provide a manufacturing device for a mold for manufacturing microlenses.
  • one aspect of the present invention has a pointed end and a circular bottom surface, and the pointed end of the pointed end is located on a center line passing through the center of the bottom surface, and Provided is an end mill characterized in that it has a convex-shaped cutting edge portion having one curved surface obtained by dividing a conical body having a circumferential side surface including an enlarged diameter region having a large diameter by a plane including the center line. do.
  • an end mill capable of cutting a deeper microlens without machining defects caused by the rotation center of the end mill, a method for manufacturing a microlens manufacturing mold using the end mill, and a micro lens having the end mill.
  • An apparatus for manufacturing a lens manufacturing mold can be provided.
  • FIG. 1A is a schematic diagram showing an example of an R-shaped cutting tool.
  • FIG. 1B is a diagram illustrating a method of forming a microlens by scanning an R-shaped cutting tool along an R-shaped locus.
  • FIG. 1C is a schematic diagram showing a microlens formed by scanning an R-shaped cutting tool along an R-shaped locus.
  • FIG. 2 is a diagram illustrating that it is difficult to cut deep microlenses because cutting can only be done at an incident angle where the "relief" of the cutting tool does not come into contact with the workpiece.
  • FIG. 3 is a diagram illustrating a method of cutting a deep microlens using a ball end mill.
  • FIG. 1A is a schematic diagram showing an example of an R-shaped cutting tool.
  • FIG. 1B is a diagram illustrating a method of forming a microlens by scanning an R-shaped cutting tool along an R-shaped locus.
  • FIG. 1C is a schematic diagram showing a
  • FIG. 4 is a diagram showing that when cutting using a ball end mill, machining defects occur due to interference of the rotation center of the end mill with the machined surface.
  • FIG. 5A is a diagram showing a state in which a workpiece is cut using a ball end mill.
  • FIG. 5B is a diagram illustrating a method of cutting the workpiece by tilting the rotation axis of the ball end mill with respect to the workpiece.
  • FIG. 6A is a schematic diagram showing an example of a cutting edge portion of a conventional ball end mill.
  • FIG. 6B is a diagram illustrating that when the rotation axis of the cutting blade of the conventional ball end mill shown in FIG. 6A is tilted, the depth that can be cut becomes shallower than in horizontal cutting or vertical cutting.
  • FIG. 6A is a diagram showing a state in which a workpiece is cut using a ball end mill.
  • FIG. 5B is a diagram illustrating a method of cutting the workpiece by tilting the rotation axis of the ball end
  • FIG. 7 is a schematic diagram showing an example of the end mill of the present invention.
  • FIG. 8A is a diagram showing a conical body for forming the cutting edge portion of the end mill of the present invention.
  • FIG. 8B is a diagram illustrating one half-cone-shaped body obtained by dividing the cone-shaped body into two, which constitutes the cutting edge portion of the end mill of the present invention.
  • FIG. 8C is a diagram in which a conical body for forming the cutting edge portion of the end mill of the present invention is divided into two halves.
  • FIG. 9A is a schematic diagram showing another example of the cutting blade portion of the end mill of the present invention.
  • FIG. 9B is a schematic diagram showing a state in which a microlens is cut using the end mill of the present invention.
  • FIG. 9A is a schematic diagram showing another example of the cutting blade portion of the end mill of the present invention.
  • FIG. 9B is a schematic diagram showing a state in which a microlens is cut
  • FIG. 10A is a CAD drawing showing the cutting edge portion of the end mill of Comparative Example 1.
  • FIG. 10B is a diagram showing a microlens manufactured using the end mill of Comparative Example 1.
  • FIG. 11A is a CAD drawing showing the cutting edge portion of the end mill of Example 1.
  • FIG. 11B is a diagram showing a microlens array produced using the end mill of Example 1.
  • the end mill of the present invention preferably has a cutting edge and a shank, and further includes other members as necessary.
  • the end mill is used for various cutting processes by, for example, being attached to a milling machine or a machining center (M/C) and moving it in three-dimensional directions such as a horizontal plane, a vertical plane, or a curved plane.
  • M/C machining center
  • the cutting edge has a pointed end and a circular bottom surface, the pointed end of the pointed end is located on a center line passing through the center of the bottom surface, and includes an enlarged diameter region having a larger diameter than the bottom surface. It is a convex shape having one curved surface obtained by dividing a cone having a circumferential side by a plane including the center line.
  • “circular” includes a substantially circular shape
  • “cone” includes a substantially conical shape
  • convex shape includes a substantially convex shape.
  • the effective cutting edge range (W.A.), which is the range in which the cutting edge of the end mill functions as a cutting edge, can be expanded to more than 90 degrees and less than 180 degrees, and the cutting surface of the mold base can be
  • W.A. the effective cutting edge range
  • the shape of the convex portion having a curved surface is not particularly limited as long as it has a curved surface at least in part, and can be appropriately selected depending on the purpose, for example, a substantially semi-conical shape, a substantially semi-elliptic cone shape, etc. Examples include shape, kamaboko shape, etc.
  • the surface shape of the circumferential side surface in a cross section including the center line and perpendicular to each of the plane including the center line and the bottom surface is curved.
  • “orthogonal” includes substantially orthogonal.
  • the curved shape is preferably a circular arc shape or an elliptical arc shape, and more preferably a circular arc shape.
  • arc means a part of the circumference of a perfect circle.
  • Elliptical arc means a part of the circumferential side of an ellipse.
  • the end mill is rotatable around a rotation axis, and a straight line connects an end of the cutting blade on the rotation axis side and a center of the cutting blade, and a straight line connects the other end and the center of the cutting blade.
  • the angle (effective cutting edge range (WA)) with a straight line is preferably more than 90 degrees and less than 180 degrees, more preferably 100 degrees or more and 150 degrees or less.
  • the rotation axis of the end mill means the center of rotation of the end mill when rotational motion is applied to the end mill.
  • the center of the cutting edge means a point equidistant from one end and the other end of the cutting edge on a curve formed by one end and the other end of the cutting edge. .
  • the cutting edge becomes a single blade, which can be suitably used for producing minute microlenses with an outer diameter of 100 ⁇ m or less.
  • the maximum diameter of the surface shape of the peripheral side of the cutting edge is preferably 100 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less, and even more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the maximum diameter of the surface shape of the circumferential side of the cutting edge is 100 ⁇ m or less, it is applicable to cutting microlenses having an outer diameter of 100 ⁇ m or less.
  • Examples of the material of the cutting edge of the end mill include single crystal diamond, polycrystalline diamond, cubic boron nitride (CBN), ceramic (alumina type, titanium carbide type, silicon nitride type), cermet, cemented carbide, high Examples include speed tool steel (high speed steel) and carbon tool steel.
  • single crystal diamond is preferred. When single-crystal diamond is used as the material for the cutting edge, a cleaner cut surface can be produced compared to polycrystalline diamond.
  • a cutting edge portion having the shape and structure as described above can be produced, for example, by a fine precision polishing technique.
  • the shank portion is a portion of the end mill other than the cutting edge portion, and is a portion that rotatably holds the end mill in, for example, a machining center (M/C) or a milling machine.
  • M/C machining center
  • the cutting edge portion is fixed to the shank portion by brazing. Brazing allows the cutting blade to be more firmly fixed to the shank than screwing.
  • Other members are not particularly limited and can be appropriately selected depending on the purpose, and include, for example, a neck portion provided between the shank portion and the cutting edge portion.
  • FIG. 7 is a schematic diagram showing an example of the end mill of the present invention.
  • the end mill 10 shown in FIG. 7 has a cutting edge portion 1 and a shank portion 2.
  • the cutting edge portion 1 is fixed to the shank portion 2 by brazing.
  • the cutting edge is a single blade and has a generally convex shape with a curved surface.
  • the cutting blade 1 has a pointed end 3 and a circular bottom surface 4, and the pointed end 3a of the pointed end 3 is located on a center line CL passing through the center C of the bottom surface 4.
  • a generally convex shape (approximately semi-conical shape) having one curved surface obtained by dividing a pyramidal body 6 having a circumferential side surface 5 including an enlarged diameter region having a diameter larger than the bottom surface 4 into two by a plane including the center line CL. )
  • FIG. 8C is a diagram in which the substantially convex-shaped (substantially semi-conical) cutting edge portion 1 having the curved surface shown in FIG. 8B is bisected by a plane P including the center line CL.
  • the surface shape of the circumferential side 5 in a cross section that is orthogonal to each of the plane P including the center line CL and the bottom surface 4 and including the center line CL is preferably curved, more preferably circular arc or elliptical arc shape.
  • the cutting edge 1 is connected to a straight line L1 connecting the end of the end mill cutting edge 1 on the rotating shaft side and the center C1 of the imaginary circle 7 of the cutting edge, and the other end to the cutting edge.
  • the angle formed by the straight line L2 connecting the blade part 1 with the center C1 of the virtual circle 7 is preferably more than 90 degrees and less than 180 degrees, and more than 100 degrees and less than 150 degrees. It is more preferable that the temperature be 110 degrees or more and 140 degrees or less.
  • the range that functions as a cutting edge increases, so the rotation axis of the cutting edge of the end mill increases.
  • the slope can be made steeper, making it possible to perform deep machining of minute microlenses.
  • the cutting blade part 1 preferably has a cutting blade part on one side with respect to the rotation axis of the cutting blade part of the end mill.
  • the end mill becomes a single-edged cutting edge, which can be used for producing minute microlenses with an outer diameter of 100 ⁇ m or less.
  • the end mill of the present invention it is possible to realize deeper cutting of microlenses, which was difficult with conventional cutting tools. Furthermore, by expanding the effective cutting edge range (W.A.) of the cutting edge of the end mill, microlens cutting using the end mill of the present invention can be performed without machining defects caused by the rotation center of the end mill. , it is possible to realize deep machining of minute microlenses up to 1/2 the radius of the cutting edge of the end mill.
  • W.A. effective cutting edge range
  • the end mill of the present invention is suitable as an end mill for microlens processing.
  • the method for manufacturing a mold for producing a microlens of the present invention uses the end mill of the present invention, and rotates the end mill so that the center of rotation of the end mill is not located on the machined surface of the mold base, and Machining is performed by tilting the axis at an angle greater than 0 degrees and less than 90 degrees.
  • the rotation axis of the cutting blade portion of the end mill is tilted at an angle of 40 degrees or more and 80 degrees or less.
  • processing defects caused by the center of rotation of the cutting blade of the end mill do not occur on the machined surface of the workpiece, and the radius (R) of the cutting blade of the end mill is 1/2. It becomes possible to perform deep machining of minute microlenses.
  • the surface of the mold base preferably has a surface layer made of nickel phosphorus (Ni--P) plating, copper (Cu) plating, or the like.
  • the size of the mold is not particularly limited and can be appropriately selected depending on the purpose.
  • Examples of the shape of the mold base include a flat shape, a stamper shape, a roll shape, and the like.
  • the microlens manufacturing mold manufacturing apparatus of the present invention includes the end mill of the present invention, and further includes other means as necessary.
  • a manufacturing device for the microlens manufacturing mold for example, a machining center (M/C) or a milling machine can be used as is.
  • a fixing part provided to extend in a vertical direction with respect to the base of a manufacturing apparatus for a mold for producing a microlens, a stage supported by the fixing part, and a rotation support member are provided.
  • the stage is supported by a fixed part so as to be movable along each of three directions, XYZ, by a driving part.
  • a mold base which is an object to be processed, is fixed on the stage.
  • the rotation support member is supported by a fixed portion so as to be rotatable about an axis along the X-axis.
  • An end mill is rotatably fixed to the rotation support member so that the rotation shaft extends in a direction perpendicular to the axis along the X-axis.
  • the form of the rotation support member is not limited to this, and may be configured to rotate around an axis along the Y-axis, for example.
  • a microlens manufactured by the method for manufacturing a mold for manufacturing a microlens and the apparatus for manufacturing a mold for manufacturing a microlens of the present invention has, for example, a semicircular shape with an outer diameter of 100 ⁇ m or less and a depth of 10 ⁇ m to 50 ⁇ m. This is a high quality product that does not cause machining defects due to the center of rotation of the end mill.
  • a microlens array in which a large number of the microlenses are arranged is suitably used in fields where light is controlled by focusing, diffusing, reflecting, diffraction, etc., such as liquid crystal displays, light coupling optical elements, image input devices, etc.
  • Comparative example 1 In Comparative Example 1, an end mill having a normal cutting edge with a radius of 50 ⁇ m (R50) and an effective cutting edge range (WA) of 90° as shown in the CAD drawing of the cutting edge in FIG. 10A was used.
  • the material of the cutting edge of this end mill is single crystal diamond.
  • the material of the mold base to be cut was copper, the shape was cylindrical, and the size was 132 mm in diameter x 250 mm in length.
  • a lathe machine is used as a manufacturing device for a mold for producing microlenses, the mold base is fixed to the lathe machine, an end mill is held, and the end mill is rotated at 100,000 min -1 or more for cutting. I did it.
  • the effective cutting edge range (W.A.) of the cutting edge of the end mill in Comparative Example 1 is 90 degrees, and the rotation axis of the cutting edge of the end mill is 45 degrees with respect to the machined surface of the mold base.
  • the microlens was cut by tilting the lens.
  • machining defects caused by interference of the rotation center with the machining surface of the mold matrix occur, making deep machining of the microlens difficult.
  • Example 1 In Comparative Example 1, an end mill having a cutting edge with a radius of 50 ⁇ m (R50) and an effective cutting edge range (W.A.) of 120° as shown in the CAD drawing of the cutting edge in FIG. 11A was manufactured, and the rotation center of the end mill was Microlens cutting was carried out in the same manner as in Comparative Example 1, except that the rotation axis of the cutting blade of the end mill was tilted 60 degrees with respect to the processing surface of the mold base so that the end mill was not located on the processing surface. Ta.
  • a microlens array with a depth of 24 ⁇ m and a beautiful honeycomb structure could be machined without any machining defects caused by the rotation center of the end mill on the machined surface of the mold matrix.
  • the end mill of Example 1 in which the effective cutting edge range (W.A.) of the cutting edge was expanded to 120°, is designed so that the rotation center of the end mill is not located on the machining surface and is relative to the machining surface of the mold base.
  • the rotation center of the end mill's cutting edge is not located on the machining surface and is relative to the machining surface of the mold base.
  • a cone with The end mill is characterized in that it has a protruding cutting edge portion having one curved surface divided by a plane including the center line.
  • ⁇ 3> The end mill according to ⁇ 2>, wherein the curved shape is a circular arc or an elliptical arc.
  • the end mill is rotatable around a rotation axis, and a straight line connecting an end of the cutting blade on the rotation axis side and the center of the cutting blade, and a line connecting the other end and the center of the cutting blade.
  • ⁇ 5> The end mill according to ⁇ 4>, wherein the angle is 100 degrees or more and 150 degrees or less.
  • ⁇ 6> The end mill according to ⁇ 2>, wherein the maximum diameter of the surface shape on the peripheral side is 100 ⁇ m or less.
  • ⁇ 7> The end mill according to any one of ⁇ 1> to ⁇ 6>, wherein the cutting edge portion includes single crystal diamond.
  • ⁇ 8> The end mill according to any one of ⁇ 1> to ⁇ 7>, which has a shank portion, and the cutting blade portion is fixed to the shank portion by brazing.
  • ⁇ 9> The end mill according to any one of ⁇ 1> to ⁇ 8>, which is used for microlens processing.
  • ⁇ 10> Using the end mill according to any one of ⁇ 1> to ⁇ 9>, The micro-processing is performed by tilting the rotation axis of the end mill at an angle of more than 0 degrees and less than 90 degrees with respect to the machining surface of the mold base so that the rotation center of the end mill is not located on the machining surface.
  • This is a method for manufacturing a lens manufacturing mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Milling Processes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

尖端部を有しかつ底面が円形であって、前記尖端部の尖端が前記底面の中心を貫通する中心線上に位置し、前記底面よりも大きな直径を有する拡大径領域を含む周側面を有する錐状体を、前記中心線を含む平面で分割した一方の曲表面を有する凸部形状である切刃部を有するエンドミルである。

Description

エンドミル、マイクロレンズ作製用金型の製造方法、及びマイクロレンズ作製用金型の製造装置
 本発明は、エンドミル、マイクロレンズ作製用金型の製造方法、及びマイクロレンズ作製用金型の製造装置に関する。
 従来、機械加工によってマイクロレンズ原盤を形成する場合、R形状のバイトを用い、R形状の軌跡で走査することでマイクロレンズを形成する方法が知られている(図1A~図1C参照)。前記バイトは、切削時に切刃部以外の部分がワークと接触しないように「逃げ」が設けられるが、図2に示すように、逃げの角度(逃げ角)には製作上の限界がある。即ち、切削加工時はバイトの「逃げ」がワークと接触しない入射角でしか切削できないため、深いマイクロレンズの切削加工(深堀加工)が困難である。
 そこで、深堀加工が可能なマイクロレンズの加工方法として先端形状が球状であるボールエンドミルを用いた切削加工が挙げられる。図3に示すように、ボールエンドミルを高速回転させながら切削加工することにより、深いマイクロレンズの切削加工が可能となる。このようなボールエンドミルとしては、例えば、特許文献1の図1に丸め成形されたノーズエンドミルが提案されている。
特表2013-511394号公報
 しかし、従来のボールエンドミルは、加工面にエンドミルの回転中心が干渉することによって加工不良(切削痕)が生じてしまうという問題がある(図4参照)。そのため、加工面に加工不良を生じさせない方法として、ワークに対してエンドミルの切刃部の回転軸を傾けて切削加工することにより、加工面とエンドミルの回転中心との干渉を避けることが考えられる(図5A及び図5B参照)。しかし、エンドミルの切刃部が切刃として機能する範囲である有効刃範囲(Window Angle:W.A.)を有するため、エンドミルの切刃部の回転軸を傾けると水平切削又は垂直切削に比べて切削可能な深さが浅くなってしまうという問題がある(図6A及び図6B参照)。
 また、丸め成形されたノーズエンドミルは、2枚刃以上の複数枚の切刃部を有しているため、切刃部の径が大きくなってしまい、外径が100μm以下の微小なマイクロレンズの切削加工には適用できないという課題がある。
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、エンドミルの回転中心に由来する加工不良が生じることなく、より深いマイクロレンズを切削加工できるエンドミル、前記エンドミルを用いたマイクロレンズ作製用金型の製造方法、及び前記エンドミルを有するマイクロレンズ作製用金型の製造装置を提供することを目的とする。
 前記課題を解決するため、本発明の一態様は、尖端部を有しかつ底面が円形であって、前記尖端部の尖端が前記底面の中心を貫通する中心線上に位置し、前記底面よりも大きな直径を有する拡大径領域を含む周側面を有する錐状体を、前記中心線を含む平面で分割した一方の曲表面を有する凸部形状の切刃部を有することを特徴とするエンドミルを提供する。
 本発明によると、エンドミルの回転中心に由来する加工不良が生じることなく、より深いマイクロレンズを切削加工できるエンドミル、前記エンドミルを用いたマイクロレンズ作製用金型の製造方法、及び前記エンドミルを有するマイクロレンズ作製用金型の製造装置を提供することができる。
図1Aは、R形状のバイトの一例を示す概略図である。 図1Bは、R形状のバイトをR形状の軌跡で走査させることによりマイクロレンズを形成する方法を説明する図である。 図1Cは、R形状のバイトをR形状の軌跡で走査して形成したマイクロレンズを示す概略図である。 図2は、切削時はバイトの「逃げ」がワークと接触しない入射角でしか切削できないため、深いマイクロレンズの切削加工が困難であることを説明する図である。 図3は、ボールエンドミルを用いて深いマイクロレンズの切削加工する方法を説明する図である。 図4は、ボールエンドミルを用いて切削加工すると加工面にエンドミルの回転中心が干渉することにより加工不良が生じることを示す図である。 図5Aは、ワークに対してボールエンドミルを用いて切削加工する状態を示す図である。 図5Bは、ワークに対してボールエンドミルの回転軸を傾けて切削加工する方法を説明する図である。 図6Aは、従来のボールエンドミルの切刃部の一例を示す概略図である。 図6Bは、図6Aの従来のボールエンドミルの切刃部の回転軸を傾けると水平切削又は垂直切削に比べて切削可能な深さが浅くなってしまうことを説明する図である。 図7は、本発明のエンドミルの一例を示す概略図である。 図8Aは、本発明のエンドミルの切刃部を形成するための錐状体を示す図である。 図8Bは、本発明のエンドミルの切刃部を構成する、錐状体を二分割した一方の半円錐形状体を示す図である。 図8Cは、本発明のエンドミルの切刃部を形成するための錐状体を二等分した図である。 図9Aは、本発明のエンドミルの切刃部の他の一例を示す概略図である。 図9Bは、本発明のエンドミルを用いてマイクロレンズの切削加工を行う状態を示す概略図である。 図10Aは、比較例1のエンドミルの切刃部を示すCAD図面である。 図10Bは、比較例1のエンドミルを用いて作製したマイクロレンズを示す図である。 図11Aは、実施例1のエンドミルの切刃部を示すCAD図面である。 図11Bは、実施例1のエンドミルを用いて作製したマイクロレンズアレイを示す図である。
(エンドミル)
 本発明のエンドミルは、切刃部を有し、シャンク部を有することが好ましく、更に必要に応じてその他の部材を有する。
 前記エンドミルは、例えば、フライス盤又はマシニングセンタ(M/C)などに取り付けて、水平面、垂直面、又は曲面などの三次元方向に移動させることにより、様々な切削加工に用いられる。
<切刃部>
 切刃部は、尖端部を有しかつ底面が円形であって、前記尖端部の尖端が前記底面の中心を貫通する中心線上に位置し、前記底面よりも大きな直径を有する拡大径領域を含む周側面を有する錐状体を、前記中心線を含む平面で分割した一方の曲表面を有する凸部形状である。本明細書において、「円形」には略円形が含まれ、「錐状体」には略錐状体が含まれ、「凸部形状」には略凸部形状が含まれる。
 これにより、エンドミルの切刃部の切刃として機能する範囲である有効刃範囲(W.A.)を90度超180度未満に拡大した形状とすることができ、金型母体の加工面に対してエンドミルの切刃部の回転軸を傾けて切削加工しても、エンドミルの切刃部の回転中心に由来する加工不良が生じることなく、より深い高品質なマイクロレンズの切削加工が可能となる。
 前記曲表面を有する凸部形状としては、少なくとも一部に曲表面を有していれば特に制限はなく、目的に応じて適宜選択することができ、例えば、略半円錐形状、略半楕円錐形状、蒲鉾形状などが挙げられる。
 前記切刃部において、前記中心線を含む平面及び前記底面のそれぞれに対して直交し、かつ前記中心線を含む断面における、前記周側面の表面形状が、曲線状であることが好ましい。本明細書において、「直交」には、略直交が含まれる。このように周側面の表面形状が曲線状であると、より深い高品質なマイクロレンズの切削加工が可能になる。
 前記曲線状は、円弧状乃至楕円弧状であることが好ましく、円弧状であることがより好ましい。ここで、「円弧」とは真円の円周の一部を意味する。「楕円弧」とは楕円の周側面の一部を意味する。このように曲線状が円弧状乃至楕円弧状であると、より深い高品質なマイクロレンズの切削加工が高い精度で可能になる。
 前記エンドミルが回転軸回りに回転可能であり、前記切刃部の回転軸側の端部と前記切刃部の中心とを結ぶ直線と、他方の端部と前記切刃部の中心とを結ぶ直線とのなす角度(有効刃範囲(W.A.))は90度超180度未満が好ましく、100度以上150度以下がより好ましい。これにより、金型母体の加工面に対してエンドミルの切刃部の回転軸を傾けて切削加工しても、エンドミルの切刃部の回転中心に由来する加工不良が生じることなく、より深い高品質なマイクロレンズの切削加工が可能となる。
 前記エンドミルの回転軸とは、エンドミルに回転運動を与えた場合における、エンドミルの回転の中心を意味する。
 前記切刃部の中心とは、切刃部の一方の端部と他方の端部からなる曲線における、切刃部の一方の端部と他方の端部とから等距離になる点を意味する。
 また、前記回転軸に対して一方の側に切刃部を有することにより、切刃部が一枚刃となり、外径100μm以下の微小なマイクロレンズの作製に好適に用いることができる。
 前記切刃部の周側面の表面形状の最大径は100μm以下が好ましく、10μm以上100μm以下がより好ましく、10μm以上50μm以下が更に好ましい。切刃部の周側面の表面形状の最大径が100μm以下であると、外径100μm以下の微小なマイクロレンズの切削加工に適用可能である。
 前記エンドミルの切刃部の材質としては、例えば、単結晶ダイヤモンド、多結晶ダイヤモンド、立方晶窒化ホウ素(CBN)、セラミック(アルミナ系、炭化チタン系、窒化ケイ素系)、サーメット、超硬合金、高速度工具鋼(ハイス)、炭素工具鋼などが挙げられる。これらの中でも、単結晶ダイヤモンドが好ましい。切刃部の材質として単結晶ダイヤモンドを用いると、多結晶ダイヤモンドに比べて綺麗な切削面を加工することができる。
 上記のような形状及び構造の切刃部は、例えば、微細精密研磨技術により作製することができる。
<シャンク部>
 シャンク部は、エンドミルにおける前記切刃部以外の部分であり、例えば、マシニングセンタ(M/C)又はフライス盤などに回転可能にエンドミルを保持する部である。
 シャンク部の形状、大きさ(長さ、径)、材質などについては特に制限はなく、目的に応じて適宜選択することができるが、よりエンドミルを高速回転させた際の振れを抑制しするためには、高精度に設計されていることが望ましい。
 前記切刃部はロウ付けによってシャンク部に固定されていることが好ましい。ロウ付けによると、ネジ付けに比べて強固に切刃部をシャンク部に固定することができる。
<その他の部材>
 その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シャンク部と切刃部の間に設けられるネック部などが挙げられる。
 ここで、図面を参照して、本発明のエンドミルについて詳細に説明する。図7は、本発明のエンドミルの一例を示す概略図である。この図7のエンドミル10は、切刃部1と、シャンク部2とを有している。切刃部1はロウ付けによってシャンク部2に固定されている。切刃部は一枚刃であり、曲表面を有する略凸部形状である。
 切刃部1は、図8Aに示すように、尖端部3を有しかつ底面4が円形であって、尖端部3の尖端3aが底面4の中心Cを貫通する中心線CL上に位置し、底面4よりも大きな直径を有する拡大径領域を含む周側面5を有する錐状体6を、中心線CLを含む平面で二分割した一方の曲表面を有する略凸部形状(略半円錐形状)の半円錐形状体である(図8B)。なお、図8Cは、図8Bの曲表面を有する略凸部形状(略半円錐形状)の切刃部1を、中心線CLを含む平面Pで二等分した図である。
 図8B及び図8Cに示すように、切刃部1において、中心線CLを含む平面P及び底面4のそれぞれに対して直交し、かつ中心線CLを含む断面における、周側面5の表面形状が、曲線状であることが好ましく、円弧状乃至楕円弧状であることがより好ましい。
 切刃部1は、図9Aに示すように、エンドミルの切刃部1の回転軸側の端部と切刃部の仮想円7の中心C1とを結ぶ直線L1と、他方の端部と切刃部1の仮想円7の中心C1とを結ぶ直線L2とのなす角度(有効刃範囲(W.A.))は90度超180度未満であることが好ましく、100度以上150度以下であることがより好ましく、110度以上140度以下であることが更に好ましい。
 前記なす角度が90度超180度未満であると、図9Aに示すように、切刃として機能する範囲(有効刃範囲(W.A.))が広がるので、エンドミルの切刃部の回転軸の傾斜を急にすることができ、微小なマイクロレンズの深堀加工が実現可能となる。
 また、切刃部1は、図9Bに示すように、エンドミルの切刃部の回転軸に対して一方の側に切刃部を有することが好ましい。これにより、エンドミルが一枚刃である切刃部となり、外径100μm以下の微小なマイクロレンズの作製に用いることができる。
 本発明のエンドミルによると、従来のバイト切削では困難であった、より深い微小なマイクロレンズの切削加工が実現できる。また、本発明のエンドミルを用いたマイクロレンズの切削加工は、エンドミルの切刃部の有効刃範囲(W.A.)を拡大することによって、エンドミルの回転中心に由来する加工不良を生じることなく、エンドミルの切刃部の半径の1/2までの微小なマイクロレンズの深堀加工が実現できる。
 したがって、本発明のエンドミルは、マイクロレンズ加工用のエンドミルとして好適である。
(マイクロレンズ作製用金型の製造方法及びマイクロレンズ作製用金型の製造装置)
 本発明のマイクロレンズ作製用金型の製造方法は、本発明のエンドミルを用い、金型母体の加工面に対し、前記エンドミルの回転中心が前記加工面に位置しないように、かつ前記エンドミルの回転軸を0度超90度未満の角度に傾けて加工する。
 その際、前記エンドミルの切刃部の回転軸を40度以上80度以下の角度に傾けて加工することが好ましい。
 本発明のマイクロレンズ作製用金型の製造方法によると、ワークの加工面にエンドミルの切刃部の回転中心による加工不良が生じることなく、エンドミルの切刃部の半径(R)の1/2程度までの微小なマイクロレンズの深堀加工が可能となる。
 切削加工対象である金型母体の材質としては、例えば、銅、鉄、アルミニウム、アルミニウム合金、ステンレス鋼などが挙げられる。金型母体の表面は、ニッケルリン(Ni-P)めっき、又は銅(Cu)めっき等からなる表面層を有することが好ましい。
 前記金型の大きさは、特に制限はなく、目的に応じて適宜選択することができる。
 前記金型母体の形状としては、例えば、平型、スタンパー、ロール形状などが挙げられる。
 本発明のマイクロレンズ作製用金型の製造装置は、本発明のエンドミルを有し、更に必要に応じてその他の手段を有する。なお、前記マイクロレンズ作製用金型の製造装置としては、例えば、マシニングセンタ(M/C)又はフライス盤などをそのまま使用することができる。
 前記その他の手段としては、例えば、マイクロレンズ作製用金型の製造装置の基部に対して鉛直方向に延びるように設けられた固定部と、固定部に支持されたステージ、及び回転支持部材とを有する。
 前記ステージは、駆動部によってXYZの3方向のそれぞれに沿って移動可能となるように固定部に支持されている。ステージ上には加工対象物である金型母体が固定される。
 前記回転支持部材はX軸に沿った軸を中心として回転可能となるように固定部によって支持されている。回転支持部材には、上記X軸に沿った軸に直交する方向に回転軸が延びるようにエンドミルが回転可能に固定される。なお、回転支持部材の形態はこれに限定されず、例えば、Y軸に沿った軸を中心として回転するようにしてもよい。
 本発明のマイクロレンズ作製用金型の製造方法及びマイクロレンズ作製用金型の製造装置により作製されるマイクロレンズは、例えば、外径が100μm以下の半円形状、深さが10μm~50μmであり、エンドミルの回転中心に由来する加工不良が生じることがない高品質なものである。
 また、前記マイクロレンズを多数配列したマイクロレンズアレイは、光を集光、拡散、反射、回折などで制御する分野、例えば、液晶ディスプレイ、光結合光学素子、画像入力装置などに好適に用いられる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
 (比較例1)
 比較例1では、図10Aの切刃部のCAD図面に示す半径50μm(R50)、有効刃範囲(W.A.)90°の通常の切刃部を有するエンドミルを用いた。このエンドミルの切刃部の材質は単結晶ダイヤモンドである。
 切削対象である金型母体の材質は銅、形状は円筒状、大きさは直径132mm×長さ250mmのものを用いた。
 マイクロレンズ作製用金型の製造装置として旋盤加工機を用い、この旋盤加工機に上記金型母体を固定してエンドミルを保持し、前記エンドミルを100,000min-1以上で回転させて、切削加工を行った。
 図10Aに示すように、比較例1のエンドミルの切刃部の有効刃範囲(W.A.)は90°であり、金型母体の加工面に対しエンドミルの切刃部の回転軸を45°傾斜させてマイクロレンズの切削加工を行った。その結果、およそ14μmの深さまで切り込むと、図10Bに示すように、金型母体の加工面に回転中心が干渉した加工不良(切削痕)が生じてしまい、マイクロレンズの深堀加工が困難であった。
(実施例1)
 比較例1において、図11Aの切刃部のCAD図面に示す半径50μm(R50)、有効刃範囲(W.A.)が120°の切刃部を有するエンドミルを作製し、前記エンドミルの回転中心が加工面に位置しないように、かつ金型母体の加工面に対しエンドミルの切刃部の回転軸を60°傾斜させた以外は、比較例1と同様にして、マイクロレンズの切削加工を行った。
 その結果、図11Bに示すように、深さが24μm、金型母体の加工面にエンドミルの回転中心に由来する加工不良が生じなく、綺麗なハニカム構造のマイクロレンズアレイを切削加工できた。
 したがって、切刃部の有効刃範囲(W.A.)を120°に拡大した実施例1のエンドミルは、エンドミルの回転中心が加工面に位置しないように、かつ金型母体の加工面に対しエンドミルの切刃部の回転軸を60°傾斜させることにより、加工面にエンドミルの回転中心に由来する加工不良が生じなく、エンドミルの切刃部の半径50μm(R50)の1/2(25μm)の深さまで切削加工できることがわかった。
 以下、本発明の好ましい態様を付記する。
<1> 尖端部を有しかつ底面が円形であって、前記尖端部の尖端が前記底面の中心を貫通する中心線上に位置し、前記底面よりも大きな直径を有する拡大径領域を含む周側面を有する錐状体を、
 前記中心線を含む平面で分割した一方の曲表面を有する凸部形状の切刃部
を有することを特徴とするエンドミルである。
<2> 前記切刃部において、
 前記中心線を含む平面及び前記底面のそれぞれに対して直交し、かつ前記中心線を含む断面における、前記周側面の表面形状が、
 曲線状である、前記<1>に記載のエンドミルである。
<3> 前記曲線状が、円弧状乃至楕円弧状である、前記<2>に記載のエンドミルである。
<4> 前記エンドミルが回転軸回りに回転可能であり、前記切刃部の回転軸側の端部と前記切刃部の中心とを結ぶ直線と、他方の端部と前記切刃部の中心とを結ぶ直線とのなす角度が90度超180度未満であり、前記回転軸に対して一方の側に前記切刃部を有する、前記<1>から<3>のいずれかに記載のエンドミルである。
<5> 前記なす角度が100度以上150度以下である、前記<4>に記載のエンドミルである。
<6> 前記周側面における表面形状の最大径が100μm以下である、前記<2>に記載のエンドミルである。
<7> 前記切刃部が単結晶ダイヤモンドを含む、前記<1>から<6>のいずれかに記載のエンドミルである。
<8> シャンク部を有し、前記切刃部がロウ付けで前記シャンク部に固定されている、前記<1>から<7>のいずれかに記載のエンドミルである。
<9> マイクロレンズ加工用である、前記<1>から<8>のいずれかに記載のエンドミルである。
<10> 前記<1>から<9>のいずれかに記載のエンドミルを用い、
 金型母体の加工面に対し、前記エンドミルの回転中心が前記加工面に位置しないように、かつ前記エンドミルの回転軸を0度超90度未満の角度に傾けて加工することを特徴とするマイクロレンズ作製用金型の製造方法である。
<11> 前記<1>から<9>のいずれかに記載のエンドミルを有することを特徴とするマイクロレンズ作製用金型の製造装置である。
 本出願は、2022年7月21日に出願された日本国特許出願2022-116247号に基づく優先権を主張するものであり、その全内容をここに援用する。
   1   切刃部
   2   シャンク部
   3   尖端部
   4   底面
   5   周側面
   6   錐状体
   7   仮想円
  10   エンドミル
  CL   中心線

 

Claims (11)

  1.  尖端部を有しかつ底面が円形であって、前記尖端部の尖端が前記底面の中心を貫通する中心線上に位置し、前記底面よりも大きな直径を有する拡大径領域を含む周側面を有する錐状体を、
     前記中心線を含む平面で分割した一方の曲表面を有する凸部形状の切刃部
    を有することを特徴とするエンドミル。
  2.  前記切刃部において、
     前記中心線を含む平面及び前記底面のそれぞれに対して直交し、かつ前記中心線を含む断面における、前記周側面の表面形状が、
     曲線状である、請求項1に記載のエンドミル。
  3.  前記曲線状が、円弧状乃至楕円弧状である、請求項2に記載のエンドミル。
  4.  前記エンドミルが回転軸回りに回転可能であり、前記切刃部の回転軸側の端部と前記切刃部の中心とを結ぶ直線と、他方の端部と前記切刃部の中心とを結ぶ直線とのなす角度が90度超180度未満であり、前記回転軸に対して一方の側に前記切刃部を有する、請求項1から3のいずれかに記載のエンドミル。
  5.  前記なす角度が100度以上150度以下である、請求項4に記載のエンドミル。
  6.  前記周側面における表面形状の最大径が100μm以下である、請求項2に記載のエンドミル。
  7.  前記切刃部が単結晶ダイヤモンドを含む、請求項1から3のいずれかに記載のエンドミル。
  8.  シャンク部を有し、前記切刃部がロウ付けで前記シャンク部に固定されている、請求項1から3のいずれかに記載のエンドミル。
  9.  マイクロレンズ加工用である、請求項1から3のいずれかに記載のエンドミル。
  10.  請求項1から3のいずれかに記載のエンドミルを用い、
     金型母体の加工面に対し、前記エンドミルの回転中心が前記加工面に位置しないように、かつ前記エンドミルの回転軸を0度超90度未満の角度に傾けて加工することを特徴とするマイクロレンズ作製用金型の製造方法。
  11.  請求項1から3のいずれかに記載のエンドミルを有することを特徴とするマイクロレンズ作製用金型の製造装置。

     
PCT/JP2023/024854 2022-07-21 2023-07-05 エンドミル、マイクロレンズ作製用金型の製造方法、及びマイクロレンズ作製用金型の製造装置 WO2024018895A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022116247A JP2024013853A (ja) 2022-07-21 2022-07-21 エンドミル、マイクロレンズ作製用金型の製造方法、及びマイクロレンズ作製用金型の製造装置
JP2022-116247 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024018895A1 true WO2024018895A1 (ja) 2024-01-25

Family

ID=89617756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024854 WO2024018895A1 (ja) 2022-07-21 2023-07-05 エンドミル、マイクロレンズ作製用金型の製造方法、及びマイクロレンズ作製用金型の製造装置

Country Status (2)

Country Link
JP (1) JP2024013853A (ja)
WO (1) WO2024018895A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537243A (en) * 1978-09-04 1980-03-15 Toshiba Tungaloy Co Ltd Ball end mill
JPS5990566U (ja) * 1982-12-07 1984-06-19 ジ−エヌツ−ル株式会社 球面カツタ−
JP2001315021A (ja) * 2000-05-01 2001-11-13 Daishowa Seiki Co Ltd スローアウェイチップ及びその製造方法並びにスローアウェイ式ボールエンドミル
JP2004148471A (ja) * 2002-10-31 2004-05-27 Allied Material Corp 単結晶ダイヤモンドを用いたエンドミル
JP2009226637A (ja) * 2008-03-19 2009-10-08 Konica Minolta Opto Inc マスター成形型の製造方法
JP2011025374A (ja) * 2009-07-27 2011-02-10 Osg Corp エンドミル及びその製造方法
WO2011055627A1 (ja) * 2009-11-05 2011-05-12 コニカミノルタオプト株式会社 切削工具、金型の製造方法及びアレイレンズ用金型

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537243A (en) * 1978-09-04 1980-03-15 Toshiba Tungaloy Co Ltd Ball end mill
JPS5990566U (ja) * 1982-12-07 1984-06-19 ジ−エヌツ−ル株式会社 球面カツタ−
JP2001315021A (ja) * 2000-05-01 2001-11-13 Daishowa Seiki Co Ltd スローアウェイチップ及びその製造方法並びにスローアウェイ式ボールエンドミル
JP2004148471A (ja) * 2002-10-31 2004-05-27 Allied Material Corp 単結晶ダイヤモンドを用いたエンドミル
JP2009226637A (ja) * 2008-03-19 2009-10-08 Konica Minolta Opto Inc マスター成形型の製造方法
JP2011025374A (ja) * 2009-07-27 2011-02-10 Osg Corp エンドミル及びその製造方法
WO2011055627A1 (ja) * 2009-11-05 2011-05-12 コニカミノルタオプト株式会社 切削工具、金型の製造方法及びアレイレンズ用金型

Also Published As

Publication number Publication date
JP2024013853A (ja) 2024-02-01

Similar Documents

Publication Publication Date Title
EP1179512B1 (en) Cutter wheel, apparatus and method for scribing brittle materials
EP2497592B1 (en) Cutting tool, method for manufacturing molding die
US7765903B2 (en) Method and device for processing optical workpiece surfaces
US7390242B2 (en) Diamond tool blade with circular cutting edge
US7473059B2 (en) Small radius end mill tool
JP2006297513A (ja) 溝付き形成体の製造方法
CN102046313A (zh) 切削刀片套组、铣削刀具和切削刀片
CN109333385B (zh) 一种带有微结构的金刚石砂轮及其制备方法
JP3161423U (ja) 研削工具
JP2006297715A (ja) 輪帯光学素子の製造方法および輪帯光学素子用金型の製造方法
JP6089596B2 (ja) エンドミル及びその製造方法
JPH01159118A (ja) 端面研削工具による加工物の機械加工方法
WO2024018895A1 (ja) エンドミル、マイクロレンズ作製用金型の製造方法、及びマイクロレンズ作製用金型の製造装置
JP2006198743A (ja) 小径回転工具及び高硬度材料ワークの切削方法
TW202415472A (zh) 立銑刀、微透鏡製造用模具的製造方法、及微透鏡製造用模具的製造裝置
JP5599526B2 (ja) エンドミルの製造装置
JP4746339B2 (ja) 切削工具の製造方法
CN111113168B (zh) 一种微小径铣磨复合pcd球头铣刀及其刃磨方法
JP2014108506A (ja) エンドミル
JP4670249B2 (ja) 加工装置、加工方法及びダイヤモンド工具
JP2002321146A (ja) 回折光学素子用金型加工方法
JP2002361510A (ja) 微細凹面のミーリング加工法とその装置
JP2008229764A (ja) 回転工具及び加工方法
JP2000052217A (ja) 工具と加工方法
JP2005342805A (ja) ラジアスエンドミル及びそれを用いた切削加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842820

Country of ref document: EP

Kind code of ref document: A1