WO2024018851A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2024018851A1
WO2024018851A1 PCT/JP2023/023728 JP2023023728W WO2024018851A1 WO 2024018851 A1 WO2024018851 A1 WO 2024018851A1 JP 2023023728 W JP2023023728 W JP 2023023728W WO 2024018851 A1 WO2024018851 A1 WO 2024018851A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive layer
layer
semiconductor device
gate
Prior art date
Application number
PCT/JP2023/023728
Other languages
English (en)
French (fr)
Inventor
和則 富士
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024018851A1 publication Critical patent/WO2024018851A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to a semiconductor device.
  • Patent Document 1 discloses an example of such a semiconductor device.
  • the source electrode and the drain electrode are located on opposite sides.
  • a top plate electrode is electrically connected to the source electrode.
  • a drain electrode pattern is conductively bonded to the drain electrode.
  • the semiconductor element is sandwiched between a top plate electrode and a drain electrode pattern.
  • An object of the present disclosure is to provide a semiconductor device that is improved over conventional ones. Particularly, in view of the above-mentioned circumstances, an object of the present disclosure is to provide a semiconductor device that can reduce the parasitic inductance of the device and improve the heat dissipation of the device.
  • a semiconductor device provided by a first aspect of the present disclosure includes: a first insulating layer; a first conductive layer bonded to one side of the first insulating layer in a first direction; a second conductive layer located on the same side as the first conductive layer and bonded to the first insulating layer; and a second conductive layer located on the opposite side of the first conductive layer and the second conductive layer with respect to the first insulating layer.
  • a first heat dissipation layer located on the first insulating layer and bonded to the first insulating layer, and a first electrode and a second electrode located on opposite sides in the first direction, and the first electrode is connected to the first conductive layer.
  • a first semiconductor element conductively bonded to the second conductive layer; a third electrode and a fourth electrode located on opposite sides in the first direction; and a semiconductor element conductively bonded to the second conductive layer; 2 semiconductor elements, a conductive member conductively joined to the second electrode and the third electrode, and a sealing resin that covers the first semiconductor element and the second semiconductor element, and the polarity of the second electrode and the polarity of the third electrode are different from each other, and the first heat radiation layer and the conductive member are exposed from the sealing resin.
  • FIG. 1 is a plan view of a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. 2 is a plan view corresponding to FIG. 1, in which the sealing resin, the second insulating layer and the second heat dissipation layer of the conductive member are transparently shown.
  • FIG. 3 is a plan view corresponding to FIG. 2, and further shows the third conductive layer of the conductive member.
  • FIG. 4 is a bottom view of the semiconductor device shown in FIG. 1.
  • FIG. 5 is a sectional view taken along line VV in FIG. 2.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 1 is a plan view of a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. 2 is a plan view corresponding to FIG. 1, in which the sealing resin, the second insulating layer and the second heat dissipation layer of the conductive
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is a partially enlarged view of FIG. 3, showing the first semiconductor element and its vicinity, and also showing the first semiconductor element as transparent.
  • FIG. 10 is a cross-sectional view taken along line XX in FIG.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG.
  • FIG. 12 is a partially enlarged view of FIG. 3, showing the second semiconductor element and its vicinity.
  • FIG. 13 is a sectional view taken along line XIII-XIII in FIG. 12.
  • FIG. 14 is a plan view of a semiconductor device according to a second embodiment of the present disclosure, in which the sealing resin, the second insulating layer and the second heat dissipation layer of the conductive member are transparently shown.
  • FIG. 15 is a plan view corresponding to FIG. 14, and further shows the third conductive layer of the conductive member.
  • FIG. 16 is a cross-sectional view taken along line XVI-XVI in FIG. 14.
  • FIG. 17 is a cross-sectional view taken along line XVII-XVII in FIG. 14.
  • FIG. 18 is a cross-sectional view taken along line XVIII-XVIII in FIG. 14.
  • FIG. 19 is a cross-sectional view taken along line XIX-XIX in FIG. 14.
  • FIG. 14 is a plan view of a semiconductor device according to a second embodiment of the present disclosure, in which the sealing resin, the second insulating layer and the second heat dissipation layer of the conductive member are transparently shown.
  • FIG. 20 is a plan view of the first semiconductor element included in the semiconductor device shown in FIG. 14.
  • FIG. 21 is a bottom view of the first semiconductor element shown in FIG. 20.
  • FIG. 22 is a cross-sectional view taken along line XXII-XXII in FIG. 20.
  • FIG. 23 is a cross-sectional view taken along line XXIII-XXIII in FIG. 20.
  • FIG. 24 is a sectional view taken along line XXIV-XXIV in FIG. 20.
  • FIG. 25 is a cross-sectional view taken along line XXV-XXV in FIG. 20.
  • FIG. 26 is a partially enlarged view of FIG. 15, showing the first semiconductor element and its vicinity.
  • FIG. 27 is a cross-sectional view taken along line XXVII-XXVII in FIG. 26.
  • FIG. 28 is a plan view of the second semiconductor element included in the semiconductor device shown in FIG. 14. 29 is a bottom view of the second semiconductor element shown in FIG. 28.
  • FIG. 30 is a cross-sectional view taken along the line XXX-XXX in FIG. 28.
  • FIG. 31 is a cross-sectional view taken along line XXXI-XXXI in FIG. 28.
  • FIG. 32 is a cross-sectional view taken along the line XXXII-XXXII in FIG. 28.
  • FIG. 33 is a partially enlarged view of FIG. 15, showing the second semiconductor element and its vicinity.
  • FIG. 34 is a sectional view taken along line XXXIV-XXXIV in FIG. 33.
  • FIG. 35 is a plan view of the semiconductor device according to the third embodiment of the present disclosure, showing the sealing resin and the coating layer transparently.
  • FIG. 36 is a cross-sectional view taken along line XXXVI-XXXVI in FIG. 35.
  • FIG. 37 is a cross-sectional view taken along line XXXVII-XXXVII in FIG. 35.
  • the semiconductor device A10 includes a first insulating layer 11, a first conductive layer 12, a second conductive layer 13, a first heat dissipation layer 16, a conductive member 17, a plurality of first semiconductor elements 21, a plurality of second semiconductor elements 22, a plurality of , a first spacer 31 , a plurality of second spacers 32 , a plurality of power terminals 40 , and a sealing resin 60 .
  • the semiconductor device A10 includes a first gate conductive layer 141, a second gate conductive layer 142, a first detection conductive layer 151, a second detection conductive layer 152, a first gate terminal 441, a second gate terminal 442, a first detection terminal 451 and a second detection terminal 452.
  • FIG. 2 shows the sealing resin 60 and the second insulating layer 171 and second heat dissipation layer 173 of the conductive member 17, which will be described later, as being transparent.
  • FIG. 3 shows a third conductive layer 172 of the conductive member 17, which will be described later with respect to FIG. 2, in a transparent manner.
  • FIG. 9 shows the first semiconductor element 21 in a more transparent manner than in FIG.
  • the outline of the sealing resin 60 that has passed through is shown by an imaginary line (two-dot chain line).
  • the outlines of elements of the conductive member 17 that have been seen through are shown in imaginary lines.
  • the transparent first semiconductor element 21 is shown by an imaginary line.
  • the VV line, the VI-VI line, and the VII-VII line are each indicated by a dashed-dotted line.
  • first direction z the normal direction of the first main surface 12A of the first conductive layer 12, which will be described later, will be referred to as a "first direction z.”
  • second direction x One direction perpendicular to the first direction z is called a "second direction x.”
  • third direction y A direction perpendicular to both the first direction z and the second direction x is referred to as a "third direction y.”
  • the semiconductor device A10 applies a DC power supply voltage applied to a first input terminal 41 and a second input terminal 42, which will be described later, among the plurality of power terminals 40 to the plurality of first semiconductor elements 21 and the plurality of second semiconductor elements 22. Converts to AC power.
  • the converted AC power is input from an output terminal 43 (described later) among the plurality of power terminals 40 to a power supply target such as a motor.
  • the semiconductor device A10 constitutes a part of a power conversion circuit such as an inverter.
  • the first insulating layer 11 includes a first conductive layer 12, a second conductive layer 13, a first gate conductive layer 141, a second gate conductive layer 142, a first detection conductive layer 151, The second detection conductive layer 152 and the first heat dissipation layer 16 are supported.
  • the first insulating layer 11 is made of a material with relatively high thermal conductivity.
  • the first insulating layer 11 is made of ceramics containing aluminum nitride (AlN), for example. The periphery of the first insulating layer 11 is sandwiched between the sealing resin 60 in the first direction z.
  • the thickness of the first insulating layer 11 is smaller than the thickness of each of the first conductive layer 12, the second conductive layer 13, and the first heat dissipation layer 16. Therefore, in the semiconductor device A10, each of the first conductive layer 12, the second conductive layer 13, and the first heat dissipation layer 16 is thicker than the first insulating layer 11.
  • the first conductive layer 12 is bonded to one side of the first insulating layer 11 in the first direction z, as shown in FIGS. 2, 3, 5, 6, and 8.
  • the first conductive layer 12 has a plurality of first semiconductor elements 21 and a plurality of first spacers 31 mounted thereon.
  • the first conductive layer 12 has a rectangular shape with its long side extending in the third direction y.
  • the first conductive layer 12 is surrounded by the periphery of the first insulating layer 11 when viewed in the first direction z.
  • the composition of the first conductive layer 12 includes copper (Cu).
  • the first conductive layer 12 has a first main surface 12A facing in the first direction z.
  • the plurality of first semiconductor elements 21 and the plurality of first spacers 31 face the first main surface 12A.
  • the second conductive layer 13 is located on the same side as the first conductive layer 12 in the first direction z, and is bonded to the first insulating layer 11. ing.
  • the second conductive layer 13 has a plurality of second semiconductor elements 22 mounted thereon.
  • the second conductive layer 13 is separated from the first conductive layer 12 in the second direction x.
  • the second conductive layer 13 has a rectangular shape with its long side extending in the third direction y.
  • the second conductive layer 13 is surrounded by the periphery of the first insulating layer 11 when viewed in the first direction z.
  • the composition of the second conductive layer 13 includes copper.
  • the second conductive layer 13 has a second main surface 13A facing the same side as the first main surface 12A of the first conductive layer 12 in the first direction z.
  • the plurality of second semiconductor elements 22 face the second main surface 13A.
  • the first heat dissipation layer 16 is located on the opposite side of the first conductive layer 12 and the second conductive layer 13 with respect to the first insulating layer 11, and is located on the opposite side of the first insulating layer 11. is joined to.
  • the first heat dissipation layer 16 is exposed from the sealing resin 60.
  • the volume of the first heat dissipation layer 16 is larger than the sum of the volumes of the first conductive layer 12 and the second conductive layer 13.
  • the first heat dissipation layer 16 is surrounded by the periphery of the first insulating layer 11 when viewed in the first direction z.
  • the composition of the first heat dissipation layer 16 includes copper.
  • a heat sink (not shown) is bonded to the first heat dissipation layer 16.
  • the plurality of first semiconductor elements 21 are bonded to the plurality of first spacers 31, as shown in FIGS. 5 and 8. All of the plurality of first semiconductor elements 21 are the same element.
  • the plurality of first semiconductor elements 21 are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
  • the plurality of first semiconductor elements 21 may be field-effect transistors including MISFETs (Metal-Insulator-Semiconductor Field-Effect Transistors), or bipolar transistors such as IGBTs (Insulated Gate Bipolar Transistors).
  • the plurality of first semiconductor elements 21 are n-channel type MOSFETs with a vertical structure.
  • the plurality of first semiconductor elements 21 include a compound semiconductor substrate.
  • the composition of the compound semiconductor substrate includes silicon carbide (SiC).
  • the plurality of first semiconductor elements 21 are arranged along the third direction y.
  • the plurality of first semiconductor elements 21 have a first electrode 211, a second electrode 212, and a first gate electrode 213.
  • the first electrode 211 faces the first main surface 12A of the first conductive layer 12. A current corresponding to the power converted by the first semiconductor element 21 flows through the first electrode 211 . That is, the first electrode 211 corresponds to the source electrode of the first semiconductor element 21.
  • the second electrode 212 is located on the side opposite to the first main surface 12A of the first conductive layer 12 in the first direction z. A current corresponding to the power before being converted by the first semiconductor element 21 flows through the second electrode 212 . That is, the second electrode 212 corresponds to the drain electrode of the first semiconductor element 21.
  • the first gate electrode 213 faces the first main surface 12A of the first conductive layer 12. Therefore, the first gate electrode 213 is located on the same side as the first electrode 211 in the first direction z. A gate voltage for driving the first semiconductor element 21 is applied to the first gate electrode 213 . As shown in FIG. 9, the area of the first gate electrode 213 is smaller than the area of the first electrode 211 when viewed in the first direction z.
  • the plurality of second semiconductor elements 22 are bonded to the second main surface 13A of the second conductive layer 13, as shown in FIGS. 5 to 7.
  • the plurality of second semiconductor elements 22 are the same elements as the plurality of first semiconductor elements 21. Therefore, the plurality of second semiconductor elements 22 are n-channel type MOSFETs with a vertical structure.
  • the plurality of second semiconductor elements 22 are arranged along the third direction y.
  • the plurality of second semiconductor elements 22 have a third electrode 221, a fourth electrode 222, and a second gate electrode 223.
  • the third electrode 221 is located on the side opposite to the second main surface 13A of the second conductive layer 13 in the first direction z. A current corresponding to the power converted by the second semiconductor element 22 flows through the third electrode 221 . That is, the third electrode 221 corresponds to the source electrode of the second semiconductor element 22.
  • the fourth electrode 222 faces the second main surface 13A of the second conductive layer 13. A current corresponding to the power before being converted by the second semiconductor element 22 flows through the fourth electrode 222 . That is, the fourth electrode 222 corresponds to the drain electrode of the second semiconductor element 22.
  • the fourth electrode 222 is conductively bonded to the second main surface 13A via the conductive bonding layer 29. Thereby, the fourth electrodes 222 of the plurality of second semiconductor elements 22 are electrically connected to the second conductive layer 13.
  • the conductive bonding layer 29 is, for example, solder.
  • the conductive bonding layer 29 may be a sintered metal containing silver (Ag) or the like.
  • the second gate electrode 223 is located on the side opposite to the second main surface 13A of the second conductive layer 13 in the first direction z. Therefore, the second gate electrode 223 is located on the same side as the third electrode 221 in the first direction z.
  • a gate voltage for driving the second semiconductor element 22 is applied to the second gate electrode 223 .
  • the area of the second gate electrode 223 is smaller than the area of the third electrode 221 when viewed in the first direction z.
  • the plurality of first semiconductor elements 21 constitute part of the upper arm circuit
  • the plurality of second semiconductor elements 22 constitute part of the lower arm circuit.
  • the configuration of the plurality of first semiconductor elements 21 is equivalent to the configuration when the plurality of second semiconductor elements 22 are reversed around the direction orthogonal to the first direction z. Therefore, the polarity of the first electrode 211 of each of the plurality of first semiconductor elements 21 and the polarity of the fourth electrode 222 of each of the plurality of second semiconductor elements 22 are different from each other.
  • the second electrode 212 of each of the plurality of first semiconductor elements 21 and the third electrode 221 of each of the plurality of second semiconductor elements 22 are different from each other.
  • the plurality of first spacers 31 are electrically bonded to the first main surface 12A of the first conductive layer 12.
  • the first electrodes 211 of each of the plurality of first semiconductor elements 21 are individually conductively bonded to the plurality of first spacers 31. Therefore, each of the plurality of first spacers 31 conductively connects the first conductive layer 12 and the first electrode 211 of one of the plurality of first semiconductor elements 21.
  • the first electrode 211 of each of the plurality of first semiconductor elements 21 is individually electrically connected to the plurality of first spacers 31 and is electrically connected to the first conductive layer 12 via any one of the plurality of first spacers 31. ing.
  • the plurality of first spacers 31 are arranged along the third direction y.
  • the plurality of first spacers 31 are located between the first main surface 12A and the plurality of first semiconductor elements 21.
  • the plurality of first spacers 31 include a first portion 311 and a second portion 312.
  • the plurality of first spacers 31 have a rectangular shape when viewed in the first direction z.
  • the plurality of first spacers 31 may have a circular shape when viewed in the first direction z.
  • the composition of the plurality of first spacers 31 includes copper.
  • the first portion 311 has a second surface 311A, a third surface 311B, and a fourth surface 311C.
  • the second surface 311A faces the first main surface 12A of the first conductive layer 12.
  • the second surface 311A is conductively bonded to the first main surface 12A via the conductive bonding layer 29.
  • the second surface 311A may be conductively bonded to the first main surface 12A by solid-phase diffusion.
  • the third surface 311B faces the opposite side from the second surface 311A in the first direction z.
  • the first semiconductor element 21 is surrounded by the periphery of the third surface 311B.
  • the fourth surface 311C faces a direction perpendicular to the first direction z.
  • the fourth surface 311C includes a plurality of regions.
  • the first portion 311 is provided with a first recess 311D that is recessed from the third surface 311B and the fourth surface 311C.
  • the first gate electrode 213 of the first semiconductor element 21 overlaps the first recess 311D.
  • the second portion 312 is located between the first portion 311 and the first electrode 211 of the first semiconductor element 21.
  • the second portion 312 is connected to the first portion 311 at a third surface 311B.
  • the second portion 312 is surrounded by the periphery of the first semiconductor element 21 when viewed in the first direction z.
  • the second portion 312 is separated from the first gate electrode 213 of the first semiconductor element 21 when viewed in the first direction z.
  • the dimension t1 of the first part 311 in the first direction z is larger than the dimension t2 of the second part 312 in the thickness direction.
  • the dimension t1 is 3 times or more and 30 times or less of the dimension t2.
  • the second portion 312 has a first surface 312A.
  • the first surface 312A faces the first semiconductor element 21.
  • the first surface 312A is separated from the first gate electrode 213 of the first semiconductor element 21 when viewed in the first direction z.
  • the first surface 312A is surrounded by the periphery of the second surface 311A of the first portion 311.
  • the area of the first surface 312A is smaller than the area of the first electrode 211 of the first semiconductor element 21.
  • the first electrode 211 of each of the plurality of first semiconductor elements 21 is individually conductively bonded to the first surface 312A of each of the plurality of first spacers 31 by solid-phase diffusion.
  • the first electrode 211 of each of the plurality of first semiconductor elements 21 may be individually conductively bonded to the first surface 312A of each of the plurality of first spacers 31 via the conductive bonding layer 29.
  • the second portion 312 is provided with a second recess 312B that is recessed in a direction perpendicular to the first direction z.
  • the second recess 312B penetrates the second portion 312 in the first direction z and is connected to the first recess 311D of the first portion 311.
  • the second recess 312B overlaps the first recess 311D and the first gate electrode 213 of the first semiconductor element 21.
  • the plurality of second spacers 32 are individually conductively bonded to the third electrodes 221 of each of the plurality of second semiconductor elements 22, as shown in FIGS. 7 and 13.
  • the plurality of second spacers 32 are arranged along the third direction y.
  • the plurality of second spacers 32 are located between the plurality of second semiconductor elements 22 and the conductive member 17.
  • each of the plurality of second spacers 32 has a rectangular shape when viewed in the first direction z.
  • each of the plurality of second spacers 32 may have a circular shape when viewed in the first direction z.
  • the area of each of the plurality of second spacers 32 is smaller than the area of the third electrode 221 when viewed in the first direction z.
  • the composition of the plurality of second spacers 32 includes copper.
  • Each of the plurality of second spacers 32 is individually conductively bonded to the third electrode 221 of each of the plurality of second semiconductor elements 22 by solid phase diffusion.
  • each of the plurality of second spacers 32 may be individually conductively bonded to the third electrode 221 of each of the plurality of second semiconductor elements 22 via the conductive bonding layer 29.
  • the first gate conductive layer 141 is located on the same side as the first conductive layer 12 in the first direction z, and is bonded to the first insulating layer 11. ing.
  • the first gate conductive layer 141 is located on the opposite side of the first conductive layer 12 with respect to the second conductive layer 13 in the second direction x.
  • the first gate conductive layer 141 extends along the third direction y.
  • the composition of the first gate conductive layer 141 includes copper.
  • the first gate terminal 441 is located on the opposite side of the first conductive layer 12 with respect to the first gate conductive layer 141 in the second direction x.
  • the first gate terminal 441 is electrically connected to the first gate conductive layer 141.
  • the first gate terminal 441 is a metal lead made of a material containing copper or a copper alloy.
  • a portion of the first gate terminal 441 is covered with a sealing resin 60.
  • the first gate terminal 441 has an L-shape when viewed in the third direction y.
  • the first gate terminal 441 includes a portion that stands up in the first direction z. This portion is exposed from the sealing resin 60.
  • a gate voltage for driving the plurality of first semiconductor elements 21 is applied to the first gate terminal 441 .
  • each of the plurality of first gate wirings 51 is electrically connected to the first gate electrode 213 of any one of the plurality of first semiconductor elements 21 and the first gate conductive layer 141. Thereby, the first gate electrodes 213 of the plurality of first semiconductor elements 21 are electrically connected to the first gate conductive layer 141.
  • the plurality of first gate wirings 51 are metal leads.
  • the composition of the first gate wiring 51 includes copper.
  • the second gate conductive layer 142 is located on the same side as the second conductive layer 13 in the first direction z, and is bonded to the first insulating layer 11. ing.
  • the second gate conductive layer 142 is located on the opposite side of the first gate conductive layer 141 with respect to the first conductive layer 12 and the second conductive layer 13 in the second direction x.
  • the second gate conductive layer 142 extends along the third direction y.
  • the composition of the second gate conductive layer 142 includes copper.
  • the second gate terminal 442 is located on the opposite side of the second conductive layer 13 with respect to the second gate conductive layer 142 in the second direction x.
  • the second gate terminal 442 is electrically connected to the second gate conductive layer 142.
  • the second gate terminal 442 is a metal lead made of a material containing copper or a copper alloy.
  • a portion of the second gate terminal 442 is covered with a sealing resin 60.
  • the second gate terminal 442 has an L-shape when viewed in the third direction y.
  • the second gate terminal 442 includes a portion that stands up in the first direction z. This portion is exposed from the sealing resin 60.
  • a gate voltage for driving the plurality of second semiconductor elements 22 is applied to the second gate terminal 442.
  • each of the plurality of second gate wirings 53 is electrically connected to the second gate electrode 223 of any one of the plurality of second semiconductor elements 22 and the second gate conductive layer 142.
  • the second gate electrodes 223 of the plurality of second semiconductor elements 22 are electrically connected to the second gate conductive layer 142.
  • the plurality of second gate wirings 53 are wires.
  • the composition of the plurality of second gate wirings 53 includes gold (Au).
  • the composition of the plurality of second gate wirings 53 may include copper or aluminum.
  • the semiconductor device A10 further includes two first wires 55.
  • the two first wires 55 are individually bonded to the first gate terminal 441 and the second gate terminal 442, and the first gate conductive layer 141 and the second gate conductive layer 142, as shown in FIGS. 2 and 5. ing.
  • the first gate terminal 441 is electrically connected to the first gate conductive layer 141
  • the second gate terminal 442 is electrically connected to the second gate conductive layer 142.
  • the composition of each of the two first wires 55 includes gold.
  • the composition of the two first wires 55 may include copper or aluminum.
  • the first detection conductive layer 151 is located on the same side as the second conductive layer 13 in the first direction z, and is bonded to the first insulating layer 11. ing.
  • the first detection conductive layer 151 is located next to the first gate conductive layer 141 in the second direction x.
  • the first detection conductive layer 151 extends along the third direction y.
  • the composition of the first detection conductive layer 151 includes copper.
  • the first detection terminal 451 is located on the opposite side of the first conductive layer 12 with respect to the first detection conductive layer 151 in the second direction x.
  • the first detection terminal 451 is located next to the first gate terminal 441 in the third direction y.
  • the first detection terminal 451 is electrically connected to the first detection conductive layer 151.
  • the first detection terminal 451 is a metal lead made of a material containing copper or a copper alloy.
  • a portion of the first detection terminal 451 is covered with a sealing resin 60.
  • the first detection terminal 451 is L-shaped when viewed in the third direction y.
  • the first detection terminal 451 includes a portion that stands up in the first direction z. This portion is exposed from the sealing resin 60.
  • a voltage having the same potential as the voltage applied to the first electrodes 211 of the plurality of first semiconductor elements 21 is applied to the first detection terminal 451 .
  • each of the plurality of first detection wirings 52 is electrically bonded to the third surface 311B of any one of the plurality of first spacers 31 and the first detection conductive layer 151.
  • the first electrodes 211 of the plurality of first semiconductor elements 21 are electrically connected to the first detection conductive layer 151.
  • the plurality of second gate wirings 53 are wires.
  • the composition of the plurality of second gate wirings 53 includes gold.
  • the composition of the plurality of second gate wirings 53 may include copper or aluminum.
  • the second detection conductive layer 152 is located on the same side as the second conductive layer 13 in the first direction z, and is bonded to the first insulating layer 11. ing.
  • the second sensing conductive layer 152 is located next to the second gate conductive layer 142 in the second direction x.
  • the second detection conductive layer 152 extends along the third direction y.
  • the composition of the second detection conductive layer 152 includes copper.
  • the second detection terminal 452 is located on the opposite side of the second conductive layer 13 with respect to the second detection conductive layer 152 in the second direction x.
  • the second detection terminal 452 is located next to the second gate terminal 442 in the third direction y.
  • the second detection terminal 452 is electrically connected to the second detection conductive layer 152.
  • the second detection terminal 452 is a metal lead made of a material containing copper or a copper alloy.
  • a portion of the second detection terminal 452 is covered with a sealing resin 60.
  • the second detection terminal 452 is L-shaped when viewed in the third direction y.
  • the second detection terminal 452 includes a portion that stands up in the first direction z. This portion is exposed from the sealing resin 60.
  • a voltage having the same potential as the voltage applied to the third electrodes 221 of the plurality of second semiconductor elements 22 is applied to the second detection terminal 452 .
  • each of the plurality of second detection wirings 54 is electrically connected to the third electrode 221 of one of the plurality of second semiconductor elements 22 and the second detection conductive layer 152.
  • the third electrodes 221 of the plurality of second semiconductor elements 22 are electrically connected to the second detection conductive layer 152.
  • the plurality of second detection wirings 54 are wires.
  • the composition of the plurality of second detection wirings 54 includes gold.
  • the composition of the plurality of second detection wirings 54 may include copper or aluminum.
  • the semiconductor device A10 further includes two second wires 56.
  • the two second wires 56 are individually joined to the first detection terminal 451 and the second detection terminal 452, and the first detection conductive layer 151 and the second detection conductive layer 152. ing.
  • the first detection terminal 451 is electrically connected to the first detection conductive layer 151
  • the second detection terminal 452 is electrically connected to the second detection conductive layer 152.
  • the composition of the two second wires 56 includes gold.
  • the composition of each of the two second wires 56 may include copper or aluminum.
  • the conductive member 17 is separated from the first insulating layer 11 on the side facing the first main surface 12A of the first conductive layer 12 in the first direction z.
  • the conductive member 17 is electrically connected to the second electrode 212 of each of the plurality of first semiconductor elements 21 and the third electrode 221 of each of the plurality of second semiconductor elements 22 .
  • the conductive member 17 is exposed from the sealing resin 60.
  • the conductive member 17 has a joint surface 17A and a heat radiation surface 17B.
  • the bonding surface 17A is conductively bonded to the second electrode 212 of each of the plurality of first semiconductor elements 21 via the conductive bonding layer 29. Furthermore, the bonding surface 17A is electrically bonded to the third electrode 221 of each of the plurality of second semiconductor elements 22 via the conductive bonding layer 29 and the plurality of second spacers 32.
  • the heat radiation surface 17B faces the opposite side to the bonding surface 17A in the first direction z.
  • the heat radiation surface 17B is exposed from the sealing resin 60.
  • the joint surface 17A is surrounded by the periphery of the heat radiation surface 17B.
  • the area of the heat radiation surface 17B is larger than the area of the bonding surface 17A.
  • the conductive member 17 includes a second insulating layer 171, a third conductive layer 172, and a second heat dissipation layer 173.
  • the material of the second insulating layer 171 includes the material of the first insulating layer 11.
  • the third conductive layer 172 includes a bonding surface 17A and is bonded to the second insulating layer 171.
  • the material of the third conductive layer 172 includes the materials of the first conductive layer 12 and the second conductive layer 13.
  • the second heat dissipation layer 173 includes a heat dissipation surface 17B and is bonded to the first insulating layer 11.
  • the material of the second heat dissipation layer 173 includes the material of the first heat dissipation layer 16. As shown in FIG.
  • the second heat dissipation layer 173 is surrounded by the periphery of the second insulating layer 171 when viewed in the first direction z.
  • the thickness of each of the third conductive layer 172 and the second heat dissipation layer 173 is greater than the thickness of the second insulating layer 171.
  • a plurality of first gate wirings 51, a plurality of first detection wirings 52, a plurality of second gate wirings 53, and a plurality of second The detection wiring 54 overlaps each of the second insulating layer 171 and the second heat dissipation layer 173.
  • the plurality of power terminals 40 are individually conductively bonded to the first conductive layer 12, the second conductive layer 13, and the third conductive layer 172 of the conductive member 17.
  • the plurality of power terminals 40 include a first input terminal 41 , a second input terminal 42 and an output terminal 43 .
  • the first input terminal 41 is located on one side in the third direction y with the first insulating layer 11 as a reference, as shown in FIGS. 1 to 3. As shown in FIG. 8, the first input terminal 41 is electrically connected to the first conductive layer 12. Thereby, the first input terminal 41 is electrically connected to the first electrodes 211 of the plurality of first semiconductor elements 21 via the first conductive layer 12 and the plurality of first spacers 31.
  • the first input terminal 41 is a metal plate made of a material containing copper or a copper alloy. A portion of the first input terminal 41 is covered with a sealing resin 60.
  • the first input terminal 41 has a first attachment hole 411 penetrating in the first direction z. The first attachment hole 411 is apart from the sealing resin 60.
  • the first input terminal 41 is an N terminal (negative electrode) to which a DC power supply voltage to be subjected to power conversion is applied.
  • the second input terminal 42 is located on the same side as the first input terminal 41 with respect to the first insulating layer 11 in the third direction y.
  • the second input terminal 42 is separated from the first input terminal 41 in the second direction x.
  • the second input terminal 42 is conductively bonded to the second conductive layer 13.
  • the second input terminal 42 is electrically connected to the fourth electrodes 222 of the plurality of second semiconductor elements 22 via the second conductive layer 13.
  • the second input terminal 42 is a metal plate made of a material containing copper or a copper alloy. A portion of the second input terminal 42 is covered with a sealing resin 60.
  • the second input terminal 42 has a second attachment hole 421 penetrating in the first direction z. The second attachment hole 421 is separated from the sealing resin 60.
  • the second input terminal 42 is a P terminal (positive electrode) to which a DC power supply voltage to be subjected to power conversion is applied.
  • the output terminal 43 is located on the opposite side of the first input terminal 41 and the second input terminal 42 with respect to the first insulating layer 11 in the third direction y. As shown in FIG. 7, the output terminal 43 is separated from the first insulating layer 11 on the side toward which the first main surface 12A of the first conductive layer 12 faces in the first direction z.
  • the output terminal 43 is electrically conductively bonded to the third conductive layer 172 of the conductive member 17 . Thereby, the output terminal 43 is electrically connected to the second electrodes 212 of the plurality of first semiconductor elements 21 and the third electrodes 221 of the plurality of second semiconductor elements 22 via the conductive member 17.
  • the output terminal 43 is a metal plate made of a material containing copper or a copper alloy. A portion of the output terminal 43 is covered with a sealing resin 60.
  • the output terminal 43 has a third attachment hole 431 penetrating in the first direction z. The third attachment hole 431 is separated from the sealing resin 60. AC power converted by the plurality of first semiconductor elements 21 and the plurality of second semiconductor elements 22 is output from the output terminal 43 .
  • the sealing resin 60 covers the plurality of first semiconductor elements 21 and the plurality of second semiconductor elements 22, as shown in FIGS. 5 to 8.
  • the sealing resin 60 is an insulator.
  • the sealing resin 60 is made of a material containing, for example, a black epoxy resin. A portion of the sealing resin 60 is sandwiched between the first insulating layer 11 and the third conductive layer 172 of the conductive member 17 in the first direction z.
  • the sealing resin 60 has a top surface 61, a bottom surface 62, two first side surfaces 63, and two second side surfaces 64.
  • the top surface 61 faces the same side as the first main surface 12A of the first conductive layer 12 in the first direction z.
  • a heat radiation surface 17B of the conductive member 17 is exposed from the top surface 61.
  • the bottom surface 62 faces opposite to the top surface 61 in the first direction z.
  • the first heat dissipation layer 16 is exposed from the bottom surface 62.
  • the two first side surfaces 63 are separated from each other in the second direction x and are connected to the top surface 61 and the bottom surface 62.
  • the first gate terminal 441 and the first detection terminal 451 are exposed from one of the two first side surfaces 63 .
  • the second gate terminal 442 and the second detection terminal 452 are exposed from the other of the two first side surfaces 63 .
  • the two second side surfaces 64 are separated from each other in the third direction y, and are connected to the top surface 61 and the bottom surface 62.
  • the first input terminal 41 and the second input terminal 42 are exposed from one of the two second side surfaces 64 .
  • Output terminal 43 is exposed from the other of the two second side surfaces 64 .
  • the semiconductor device A10 includes a first insulating layer 11, a first conductive layer 12, a second conductive layer 13, a first heat dissipation layer 16, a first semiconductor element 21, a second semiconductor element 22, a conductive member 17, and a sealing resin 60. Be prepared.
  • the first semiconductor element 21 includes a first electrode 211 that is conductively bonded to the first conductive layer 12 and a second electrode 212 that is conductively bonded to the conductive member 17 .
  • the second semiconductor element 22 has a third electrode 221 to which the conductive member 17 is conductively bonded, and a fourth electrode 222 to which the second conductive layer 13 is conductively bonded.
  • the polarity of the second electrode 212 and the polarity of the third electrode 221 are different from each other.
  • the first heat dissipation layer 16 and the conductive member 17 are exposed from the sealing resin 60.
  • the length of the conductive path from the second electrode 212 to the third electrode 221 is further shortened. Thereby, it is possible to reduce the parasitic inductance of the semiconductor device A10.
  • the heat generated from the first semiconductor element 21 and the second semiconductor element 22 is transmitted through the first heat dissipation layer 16 and the conductive member 17 located on both sides of the semiconductor device A10 in the first direction z. released to the outside. Therefore, according to this configuration, in the semiconductor device A10, it is possible to reduce the parasitic inductance of the semiconductor device A10 and improve the heat dissipation of the semiconductor device A10.
  • the conductive member 17 has a joint surface 17A and a heat radiation surface 17B.
  • the bonding surface 17A is conductively bonded to the second electrode 212 of the first semiconductor element 21 and the third electrode 221 of the second semiconductor element 22.
  • the heat radiation surface 17B is exposed from the sealing resin 60.
  • the area of the heat radiation surface 17B is larger than the area of the bonding surface 17A.
  • the joint surface 17A is surrounded by the periphery of the heat radiation surface 17B.
  • the conductive member 17 includes a second insulating layer 171 and a bonding surface 17A, and a third conductive layer 172 that is bonded to the second insulating layer 171, and a heat dissipation surface 17B that is bonded to the second insulating layer 171. and a second heat dissipation layer 173.
  • the second heat dissipation layer 173 is surrounded by the periphery of the second insulating layer 171 when viewed in the first direction z.
  • each of the third conductive layer 172 and the second heat dissipation layer 173 is greater than the thickness of the second insulating layer 171.
  • the first gate electrode 213 of the first semiconductor element 21 is located on the same side as the first electrode 211 of the first semiconductor element 21 in the first direction z.
  • the semiconductor device A10 further includes a first spacer 31 that conductively connects the first conductive layer 12 and the first electrode 211.
  • the first spacer 31 has a first surface 312A facing the first electrode 211.
  • the first surface 312A is separated from the first gate electrode 213 when viewed in the first direction z.
  • the first spacer 31 has a second surface 311A facing the first conductive layer 12.
  • the area of the second surface 311A is larger than the area of the first surface 312A.
  • the first surface 312A is surrounded by the periphery of the second surface 311A.
  • the first spacer 31 is set as a virtual plane that extends from the periphery of the first surface 312A toward the second surface 311A and has an inclination angle of 45° with respect to the first direction z, the first spacer 31 The heat conducted to is uniformly diffused in the area surrounded by the virtual plane.
  • the heat conducted from the first surface 312A to the first spacer 31 is easily diffused uniformly in the first direction z and the direction orthogonal to the first direction z.
  • the heat conducted from the first electrode 211 of the first semiconductor element 21 to the first spacer 31 is conducted to the first conductive layer 12 more quickly.
  • each of the first conductive layer 12 , the second conductive layer 13 , and the first heat dissipation layer 16 is greater than the thickness of the first insulating layer 11 .
  • FIG. 14 shows the sealing resin 60 and the second insulating layer 171 and second heat dissipation layer 173 of the conductive member 17 transparently.
  • FIG. 15 shows the third conductive layer 172 of the conductive member 17 in a more transparent manner than in FIG. 14 .
  • the outline of the sealing resin 60 that has passed through is shown with imaginary lines.
  • the outlines of elements of the conductive member 17 that are transmitted through are shown with imaginary lines.
  • the XVI-XVI line, the XVII-XVII line, and the XVIII-XVIII line are each indicated by a dashed-dotted line.
  • the structure of the plurality of first semiconductor elements 21 and the plurality of second semiconductor elements 22 and the fact that the plurality of first spacers 31 and the plurality of second spacers 32 are not provided are different from the semiconductor device A10. This is different from the case of
  • each of the plurality of first semiconductor elements 21 includes a first detection electrode 214, a first element body 215, a first rewiring 216, a second rewiring 217, a first resin 218, and It has a covering layer 219.
  • the plurality of first semiconductor elements 21 are resin packages.
  • the first element main body 215 is an element corresponding to any one of the plurality of first semiconductor elements 21 of the semiconductor device A10.
  • the first element body 215 includes a first pad 215A and a first gate pad 215B. As shown in FIG. 27, the first pad 215A and the first gate pad 215B are located on the side facing the first conductive layer 12 in the first direction z.
  • the first pad 215A corresponds to the first electrode 211 of the first semiconductor element 21 of the semiconductor device A10.
  • the first gate pad 215B corresponds to the first gate electrode 213 of the first semiconductor element 21 of the semiconductor device A10.
  • the first element body 215 includes a second electrode 212 .
  • the first resin 218 covers a portion of the first element body 215 and at least a portion of each of the first rewiring 216 and the second rewiring 217.
  • the first electrode 211 , the second electrode 212 , the first gate electrode 213 , and the first detection electrode 214 are exposed from the first resin 218 .
  • the first electrode 211 is electrically connected to the first pad 215A of the first element body 215, and is in contact with the first pad 215A.
  • the first electrode 211 includes a portion that protrudes outward from the second electrode 212 when viewed in the first direction z. When viewed in the first direction z, the area of the first electrode 211 is larger than the area of the first pad 215A.
  • the first gate electrode 213 and the first detection electrode 214 are located on the same side as the second electrode 212 in the first direction z.
  • the first detection electrode 214 is separated from the first gate electrode 213 in the third direction y.
  • the first rewiring 216 connects the first gate pad 215B of the first element body 215 and the first gate electrode 213. A portion of the first rewiring 216 is covered with a first resin 218.
  • the second rewiring 217 connects the first pad 215A of the first element body 215 and the first detection electrode 214. A portion of the second rewiring 217 is covered with the first resin 218. The second rewiring 217 is connected to the first electrode 211.
  • the first rewiring 216, the second rewiring 217, and the first resin 218 can be formed by, for example, the LDS (Laser Direct Structuring) method disclosed in US Patent Application Publication No. 2010/0019370.
  • the material of the first resin 218 includes an additive containing a metal element.
  • Each of the first rewiring 216 and the second rewiring 217 includes the metal element.
  • the covering layer 219 covers each portion of the first rewiring 216 and the second rewiring 217 exposed from the first resin 218.
  • Covering layer 219 is an insulator. The covering layer 219 is in contact with the first rewiring 216, the second rewiring 217, and the first resin 218. Covering layer 219 is, for example, a solder resist.
  • the bonding surface 17A of the third conductive layer 172 of the conductive member 17 is conductively bonded to the second electrode 212 of each of the plurality of first semiconductor elements 21 via the conductive bonding layer 29.
  • each of the plurality of first detection wirings 52 is electrically connected to the first detection electrode 214 of any one of the plurality of first semiconductor elements 21 and the first detection conductive layer 151. ing.
  • the plurality of first detection wirings 52 are metal leads.
  • the composition of the plurality of first detection wirings 52 includes copper.
  • each of the plurality of second semiconductor elements 22 includes a second detection electrode 224, a second element body 225, a third rewiring 226, a fourth rewiring 227, and a second resin 228.
  • the plurality of second semiconductor elements 22 are resin packages.
  • the second element main body 225 is an element corresponding to any one of the plurality of second semiconductor elements 22 of the semiconductor device A10.
  • the second element body 225 includes a second pad 225A and a second gate pad 225B. As shown in FIG. 34, the second pad 225A and the second gate pad 225B are located on the opposite side to the side facing the second conductive layer 13 in the first direction z.
  • the second pad 225A corresponds to the third electrode 221 of the second semiconductor element 22 of the semiconductor device A10.
  • the second gate pad 225B corresponds to the second gate electrode 223 of the second semiconductor element 22 of the semiconductor device A10.
  • the first element body 215 includes a fourth electrode 222 .
  • the second resin 228 covers a portion of the second element main body 225 and at least a portion of each of the third rewiring 226 and the fourth rewiring 227.
  • a third electrode 221 , a fourth electrode 222 , a second gate electrode 223 , and a second detection electrode 224 are exposed from the second resin 228 .
  • the third electrode 221 is electrically connected to the second pad 225A of the second element main body 225, and is in contact with the second pad 225A. As shown in FIG. 28, the third electrode 221 includes a portion that protrudes outward from the fourth electrode 222 when viewed in the first direction z. When viewed in the first direction z, the area of the third electrode 221 is larger than the area of the second pad 225A.
  • the second gate electrode 223 and the second detection electrode 224 are located on the same side as the third electrode 221 in the first direction z.
  • the second detection electrode 224 is separated from the second gate electrode 223 in the third direction y.
  • the third rewiring 226 connects the second gate pad 225B of the second element main body 225 and the second gate electrode 223. A portion of the third rewiring 226 is covered with a second resin 228.
  • the fourth rewiring 227 connects the second pad 225A of the second element main body 225 and the second detection electrode 224. A portion of the fourth rewiring 227 is covered with a second resin 228. The fourth rewiring 227 is connected to the third electrode 221.
  • the third rewiring 226, fourth rewiring 227, and second resin 228 can be formed by the LDS method described above.
  • the material of the second resin 228 includes an additive containing a metal element.
  • Each of the third rewiring 226 and the fourth rewiring 227 includes the metal element.
  • the bonding surface 17A of the third conductive layer 172 of the conductive member 17 is conductively bonded to the third electrode 221 of each of the plurality of second semiconductor elements 22 via the conductive bonding layer 29.
  • each of the plurality of second detection wirings 54 is electrically connected to the second detection electrode 224 of any one of the plurality of second semiconductor elements 22 and the second detection conductive layer 152. ing.
  • Each of the plurality of second gate wirings 53 and the plurality of second detection wirings 54 is a metal lead.
  • the composition of each of the plurality of second gate wirings 53 and the plurality of second detection wirings 54 includes copper.
  • the semiconductor device A20 includes a first insulating layer 11, a first conductive layer 12, a second conductive layer 13, a first heat dissipation layer 16, a first semiconductor element 21, a second semiconductor element 22, a conductive member 17, and a sealing resin 60. Be prepared.
  • the first semiconductor element 21 includes a first electrode 211 that is conductively bonded to the first conductive layer 12 and a second electrode 212 that is conductively bonded to the conductive member 17 .
  • the second semiconductor element 22 has a third electrode 221 to which the conductive member 17 is conductively bonded, and a fourth electrode 222 to which the second conductive layer 13 is conductively bonded.
  • the polarity of the second electrode 212 and the polarity of the third electrode 221 are different from each other.
  • the first heat dissipation layer 16 and the conductive member 17 are exposed from the sealing resin 60. Therefore, according to this configuration, also in the semiconductor device A20, it is possible to reduce the parasitic inductance of the semiconductor device A20 and improve the heat dissipation of the semiconductor device A20. Further, the semiconductor device A20 has the same configuration as the semiconductor device A10, so that the same effects as the semiconductor device A10 can be achieved.
  • the first semiconductor element 21 includes a first element body 215 including a second electrode 212, a first pad 215A, and a first gate pad 215B, a first gate pad 215B, and a first gate electrode 213.
  • the first rewiring 216 is electrically conductive.
  • the first gate electrode 213 is located on the same side as the second electrode 212 in the first direction z.
  • the first electrode 211 is electrically connected to the first pad 215A.
  • the second semiconductor element 22 includes a first element body 215 including a fourth electrode 222, a second pad 225A, and a second gate pad 225B, a second gate pad 225B, and a second gate electrode 223. and a third rewiring 226 that conducts.
  • the second gate electrode 223 is located on the same side as the third electrode 221 in the first direction z.
  • the third electrode 221 is in contact with the second pad 225A.
  • FIG. 35 shows the sealing resin 60 and the coating layer 18, which will be described later, transparently.
  • the outline of the transparent sealing resin 60 is shown with imaginary lines.
  • the XXXVI-XXXVI line and the XXVII-XXXVII line are each shown by a dashed-dotted line.
  • the semiconductor device A30 differs from the semiconductor device A20 in the configuration of the conductive member 17 and in that it further includes a covering layer 18.
  • the conductive member 17 is a single member made of metal, unlike a composite member including an insulator and a conductor, such as the conductive member 17 included in the semiconductor device A20.
  • the metal contains copper, for example.
  • a step is provided at the end of the conductive member 17 in the direction perpendicular to the first direction z.
  • the covering layer 18 covers the heat radiation surface 17B of the conductive member 17 and is exposed to the outside.
  • Covering layer 18 is an insulator.
  • the sealing resin 60 is in contact with the covering layer 18 .
  • the conductive member 17 and covering layer 18 included in the semiconductor device A30 can be applied not only to the semiconductor device A20 but also to the semiconductor device A10.
  • the semiconductor device A30 includes a first insulating layer 11, a first conductive layer 12, a second conductive layer 13, a first heat dissipation layer 16, a first semiconductor element 21, a second semiconductor element 22, a conductive member 17, and a sealing resin 60. Be prepared.
  • the first semiconductor element 21 has a first electrode 211 conductively bonded to the first conductive layer 12 and a second electrode 212 to which the conductive member 17 is conductively bonded.
  • the second semiconductor element 22 includes a third electrode 221 to which the conductive member 17 is conductively bonded, and a fourth electrode 222 to which the second conductive layer 13 is conductively bonded.
  • the polarity of the second electrode 212 and the polarity of the third electrode 221 are different from each other.
  • the first heat dissipation layer 16 and the conductive member 17 are exposed from the sealing resin 60. Therefore, according to this configuration, also in the semiconductor device A30, it is possible to reduce the parasitic inductance of the semiconductor device A30 and improve the heat dissipation of the semiconductor device A30. Further, the semiconductor device A30 has the same configuration as the semiconductor device A10, so that it can achieve the same effects as the semiconductor device A10.
  • the conductive member 17 is a single member made of metal. With this configuration, heat is more easily conducted from the joint surface 17A to the heat radiation surface 17B of the conductive member 17 than in the case of the conductive member 17 included in the semiconductor device A20. Therefore, it becomes possible to further improve the heat dissipation performance of the semiconductor device A30. In this case, by providing the semiconductor device A30 with the covering layer 18, it is possible to electrically insulate the conductive member 17 from the outside.
  • a first insulating layer a first conductive layer bonded to one side of the first insulating layer in the first direction; a second conductive layer located on the same side as the first conductive layer in the first direction and joined to the first insulating layer; a first heat dissipation layer located on the opposite side of the first conductive layer and the second conductive layer with respect to the first insulating layer and joined to the first insulating layer; a first semiconductor element having a first electrode and a second electrode located opposite to each other in the first direction, and the first electrode being conductively bonded to the first conductive layer; a second semiconductor element having a third electrode and a fourth electrode located opposite to each other in the first direction, and the fourth electrode is conductively bonded to the second conductive layer; a conductive member electrically connected to the second electrode and the third electrode; a sealing resin that covers the first semiconductor element and the second semiconductor element, The polarity of the second electrode and the polar
  • the conductive member includes a joint surface conductively joined to the second electrode and the third electrode, and a heat dissipation surface facing opposite to the joint surface in the first direction and exposed from the sealing resin. has The semiconductor device according to appendix 1, wherein the area of the heat dissipation surface is larger than the area of the bonding surface. Appendix 3. The semiconductor device according to appendix 2, wherein the bonding surface is surrounded by a periphery of the heat dissipation surface when viewed in the first direction. Appendix 4.
  • the conductive member includes a second insulating layer, a third conductive layer including the bonding surface and bonded to the second insulating layer, and a third conductive layer including the heat dissipation surface and bonded to the second insulating layer.
  • 2 heat dissipation layers The semiconductor device according to appendix 2 or 3, wherein the second heat dissipation layer is surrounded by a periphery of the second insulating layer when viewed in the first direction. Appendix 5.
  • the semiconductor device according to appendix 4 wherein each of the third conductive layer and the second heat dissipation layer has a thickness greater than the second insulating layer. Appendix 6.
  • the first semiconductor element has a first gate electrode, further comprising a first gate wiring conductively bonded to the first gate electrode, 6.
  • the semiconductor device according to appendix 4 or 5 wherein the first gate wiring overlaps the second insulating layer when viewed in the first direction.
  • Appendix 8 The semiconductor device according to appendix 7, wherein the first gate wiring overlaps the second heat dissipation layer when viewed in the first direction.
  • the first gate electrode is located on the same side as the first electrode in the first direction, further comprising a first spacer that electrically connects the first conductive layer and the first electrode,
  • the first spacer has a first surface facing the first electrode, 9.
  • Appendix 10 The first spacer has a second surface facing the first conductive layer, The area of the second surface is larger than the area of the first surface, The semiconductor device according to appendix 9, wherein the first surface is surrounded by a periphery of the second surface when viewed in the first direction.
  • the first semiconductor element includes a first element body including a first pad and a first gate pad located on a side opposite to the first conductive layer in the first direction, the first gate pad and the first gate. a first rewiring conductive to the electrode;
  • the first element body includes the second electrode,
  • the first gate electrode is located on the same side as the second electrode in the first direction, 9.
  • Appendix 12 The semiconductor device according to appendix 11, wherein the first electrode is in contact with the first pad. Appendix 13.
  • the first semiconductor element has a first resin that covers a part of the first element body and at least a part of the first rewiring, The semiconductor device according to appendix 12, wherein the first electrode, the second electrode, and the first gate electrode are exposed from the first resin.
  • Appendix 14 The first semiconductor element includes a first detection electrode located on the same side as the first gate electrode in the first direction, and a second rewiring that connects the first pad and the first detection electrode. have, At least a portion of the second rewiring is covered with the first resin, The semiconductor device according to attachment 13, wherein the first detection electrode is exposed from the first resin. Appendix 15.
  • the second semiconductor element includes a second element body including a second pad and a second gate pad located on a side opposite to a side facing the second conductive layer in the first direction, and a second element body including a second gate pad and a second pad located on a side opposite to the second conductive layer in the first direction; a second gate electrode that is electrically conductive;
  • the second element body includes the fourth electrode, The second gate electrode is located on the same side as the third electrode in the first direction, 15.
  • each of the first conductive layer, the second conductive layer, and the first heat dissipation layer has a thickness greater than that of the first insulating layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

半導体装置は、第1絶縁層と、第1導電層と、第2導電層と、第1放熱層と、第1半導体素子と、第2半導体素子と、導通部材と、封止樹脂とを備える。前記第1放熱層は、前記第1絶縁層を基準として前記第1導電層および前記第2導電層とは反対側に位置する。前記第1半導体素子は、前記第1導電層に導電接合された第1電極と、前記導通部材が導電接合される第2電極とを有する。前記第2半導体素子は、前記導通部材が導電接合される第3電極と、前記第2導電層に導電接合される第4電極とを有する。前記第2電極および前記第3電極の極性は、互いに異なっている。前記第1放熱層および前記導通部材は、前記封止樹脂から露出している。

Description

半導体装置
 本開示は、半導体装置に関する。
 従来、スイッチング機能を有する半導体素子が搭載された半導体装置が広く知られている。当該半導体装置は、主に電力変換用に利用されている。特許文献1には、このような半導体装置の一例が開示されている。
 特許文献1に開示された半導体装置に搭載された半導体素子は、ソース電極とドレイン電極が互いに反対側に位置する。ソース電極には、上面板電極が導電接合されている。ドレイン電極には、ドレイン電極パターンが導電接合されている。半導体素子は、上面板電極とドレイン電極パターンとに挟まれている。本構成をとることにより、半導体装置の小型化を図りつつ、当該半導体装置における寄生インダクタンスを低減することが可能である。しかし、一般的に、ソース電極の面積は、ドレイン電極の面積よりも小さい。このため、当該半導体装置においては、ドレイン電極からドレイン電極パターンへの放熱量に対してソース電極から上面板電極への放熱量が少なくなり、半導体素子の放熱が十分に発揮されていないという課題がある。
特開2013-258387号公報
 本開示は、従来よりも改良が施された半導体装置を提供することを一の課題とする。特に本開示は、先述の事情に鑑み、装置の寄生インダクタンスを低減しつつ、当該装置の放熱性の向上を図ることが可能な半導体装置を提供することを一の課題とする。
 本開示の第1の側面によって提供される半導体装置は、第1絶縁層と、前記第1絶縁層の第1方向の一方側に接合された第1導電層と、前記第1方向において前記第1導電層と同じ側に位置し、かつ前記第1絶縁層に接合された第2導電層と、前記第1絶縁層を基準として前記第1導電層および前記第2導電層とは反対側に位置し、かつ前記第1絶縁層に接合された第1放熱層と、前記第1方向において互いに反対側に位置する第1電極および第2電極を有するとともに、前記第1電極が前記第1導電層に導電接合された第1半導体素子と、前記第1方向において互いに反対側に位置する第3電極および第4電極を有するとともに、前記第4電極が前記第2導電層に導電接合された第2半導体素子と、前記第2電極および前記第3電極に導電接合された導通部材と、前記第1半導体素子および前記第2半導体素子を覆う封止樹脂と、を備え、前記第2電極の極性と、前記第3電極の極性とは、互いに異なっており、前記第1放熱層および前記導通部材が、前記封止樹脂から露出している。
 上記構成によれば、寄生インダクタンスを低減しつつ、放熱性の向上を図ることが可能な半導体装置を提要することができる。
 本開示のその他の特徴および利点は、添付図面に基づき以下に行う詳細な説明によって、より明らかとなろう。
図1は、本開示の第1実施形態にかかる半導体装置の平面図である。 図2は、図1に対応する平面図であり、封止樹脂と、導通部材の第2絶縁層および第2放熱層とを透過して示している。 図3は、図2に対応する平面図であり、導通部材の第3導電層をさらに透過して示している。 図4は、図1に示す半導体装置の底面図である。 図5は、図2のV-V線に沿う断面図である。 図6は、図2のVI-VI線に沿う断面図である。 図7は、図2のVII-VII線に沿う断面図である。 図8は、図2のVIII-VIII線に沿う断面図である。 図9は、図3の部分拡大図であり、第1半導体素子およびその近傍を示すとともに、当該第1半導体素子を透過して示している。 図10は、図9のX-X線に沿う断面図である。 図11は、図9のXI-XI線に沿う断面図である。 図12は、図3の部分拡大図であり、第2半導体素子およびその近傍を示している。 図13は、図12のXIII-XIII線に沿う断面図である。 図14は、本開示の第2実施形態にかかる半導体装置の平面図であり、封止樹脂と、導通部材の第2絶縁層および第2放熱層とを透過して示している。 図15は、図14に対応する平面図であり、導通部材の第3導電層をさらに透過して示している。 図16は、図14のXVI-XVI線に沿う断面図である。 図17は、図14のXVII-XVII線に沿う断面図である。 図18は、図14のXVIII-XVIII線に沿う断面図である。 図19は、図14のXIX-XIX線に沿う断面図である。 図20は、図14に示す半導体装置が具備する第1半導体素子の平面図である。 図21は、図20に示す第1半導体素子の底面図である。 図22は、図20のXXII-XXII線に沿う断面図である。 図23は、図20のXXIII-XXIII線に沿う断面図である。 図24は、図20のXXIV-XXIV線に沿う断面図である。 図25は、図20のXXV-XXV線に沿う断面図である。 図26は、図15の部分拡大図であり、第1半導体素子およびその近傍を示している。 図27は、図26のXXVII-XXVII線に沿う断面図である。 図28は、図14に示す半導体装置が具備する第2半導体素子の平面図である。 図29は、図28に示す第2半導体素子の底面図である。 図30は、図28のXXX-XXX線に沿う断面図である。 図31は、図28のXXXI-XXXI線に沿う断面図である。 図32は、図28のXXXII-XXXII線に沿う断面図である。 図33は、図15の部分拡大図であり、第2半導体素子およびその近傍を示している。 図34は、図33のXXXIV-XXXIV線に沿う断面図である。 図35は、本開示の第3実施形態にかかる半導体装置の平面図であり、封止樹脂および被覆層を透過して示している。 図36は、図35のXXXVI-XXXVI線に沿う断面図である。 図37は、図35のXXXVII-XXXVII線に沿う断面図である。
 本開示を実施するための形態について、添付図面に基づいて説明する。
 第1実施形態:
 図1~図13に基づき、本開示の第1実施形態にかかる半導体装置A10について説明する。半導体装置A10は、第1絶縁層11、第1導電層12、第2導電層13、第1放熱層16、導通部材17、複数の第1半導体素子21、複数の第2半導体素子22、複数の第1スペーサ31、複数の第2スペーサ32、複数の電力端子40、および封止樹脂60を備える。さらに半導体装置A10は、第1ゲート導電層141、第2ゲート導電層142、第1検出導電層151、第2検出導電層152、第1ゲート端子441、第2ゲート端子442、第1検出端子451および第2検出端子452を備える。
 ここで、図2は、理解の便宜上、封止樹脂60と、後述する導通部材17の第2絶縁層171および第2放熱層173を透過して示している。図3は、理解の便宜上、図2に対して後述する導通部材17の第3導電層172をさらに透過して示している。図9は、理解の便宜上、図3に対して第1半導体素子21をさらに透過して示している。図2および図3では、透過した封止樹脂60の外形を想像線(二点鎖線)で示している。図2および図3では、透過した導通部材17の要素の外形を想像線で示している。図9では、透過した第1半導体素子21を想像線で示している。図2において、V-V線、VI-VI線、およびVII-VII線をそれぞれ一点鎖線で示している。
 半導体装置A10の説明においては、便宜上、後述する第1導電層12の第1主面12Aの法線方向を「第1方向z」と呼ぶ。第1方向zに対して直交する1つの方向を「第2方向x」と呼ぶ。第1方向zおよび第2方向xの双方に対して直交する方向を「第3方向y」と呼ぶ。
 半導体装置A10は、複数の電力端子40のうち後述する第1入力端子41および第2入力端子42に印加された直流の電源電圧を、複数の第1半導体素子21および複数の第2半導体素子22により交流電力に変換する。変換された交流電力は、複数の電力端子40のうち後述する出力端子43からモータなどの電力供給対象に入力される。半導体装置A10は、インバータなどの電力変換回路の一部を構成する。
 第1絶縁層11は、図5および図6に示すように、第1導電層12、第2導電層13、第1ゲート導電層141、第2ゲート導電層142、第1検出導電層151、第2検出導電層152および第1放熱層16を支持している。第1絶縁層11は、熱伝導率が比較的高い材料からなる。第1絶縁層11は、たとえば、窒化アルミニウム(AlN)を含むセラミックスからなる。第1絶縁層11の周縁は、第1方向zにおいて封止樹脂60に挟まれている。第1絶縁層11の厚さは、第1導電層12、第2導電層13および第1放熱層16の各々の厚さよりも小さい。したがって、半導体装置A10においては、第1導電層12、第2導電層13および第1放熱層16の各々の厚さは、第1絶縁層11の厚さよりも大きい。
 第1導電層12は、図2、図3、図5、図6および図8に示すように、第1絶縁層11の第1方向zの一方側に接合されている。第1導電層12は、複数の第1半導体素子21、および複数の第1スペーサ31を搭載している。第1導電層12は、第3方向yを長辺とする矩形状である。第1方向zに視て、第1導電層12は、第1絶縁層11の周縁に囲まれている。第1導電層12の組成は、銅(Cu)を含む。第1導電層12は、第1方向zを向く第1主面12Aを有する。複数の第1半導体素子21、および複数の第1スペーサ31は、第1主面12Aに対向している。
 第2導電層13は、図2、図3、および図5~図7に示すように、第1方向zにおいて第1導電層12と同じ側に位置し、かつ第1絶縁層11に接合されている。第2導電層13は、複数の第2半導体素子22を搭載している。第2導電層13は、第2方向xにおいて第1導電層12から離れている。第2導電層13は、第3方向yを長辺とする矩形状である。第1方向zに視て、第2導電層13は、第1絶縁層11の周縁に囲まれている。第2導電層13の組成は、銅を含む。第2導電層13は、第1方向zにおいて第1導電層12の第1主面12Aと同じ側を向く第2主面13Aを有する。複数の第2半導体素子22は、第2主面13Aに対向している。
 第1放熱層16は、図5~図8に示すように、第1絶縁層11を基準として第1導電層12および第2導電層13とは反対側に位置し、かつ第1絶縁層11に接合されている。第1放熱層16は、封止樹脂60から露出している。第1放熱層16の体積は、第1導電層12および第2導電層13の各々の体積の和よりも大きい。図4に示すように、第1方向zに視て、第1放熱層16は、第1絶縁層11の周縁に囲まれている。第1放熱層16の組成は、銅を含む。半導体装置A10の使用の際、第1放熱層16には、ヒートシンク(図示略)接合される。
 複数の第1半導体素子21は、図5および図8に示すように、複数の第1スペーサ31に接合されている。複数の第1半導体素子21は、いずれも同一の素子である。複数の第1半導体素子21は、たとえばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。この他、複数の第1半導体素子21は、MISFET(Metal-Insulator-Semiconductor Field-Effect Transistor)を含む電界効果トランジスタや、IGBT(Insulated Gate Bipolar Transistor)のようなバイポーラトランジスタでもよい。半導体装置A10の説明においては、複数の第1半導体素子21は、nチャネル型であり、かつ縦型構造のMOSFETを対象とする。複数の第1半導体素子21は、化合物半導体基板を含む。当該化合物半導体基板の組成は、炭化ケイ素(SiC)を含む。複数の第1半導体素子21は、第3方向yに沿って配列されている。
 図10および図11に示すように、複数の第1半導体素子21は、第1電極211、第2電極212および第1ゲート電極213を有する。
 図10および図11に示すように、第1電極211は、第1導電層12の第1主面12Aに対向している。第1電極211には、第1半導体素子21により変換された後の電力に対応する電流が流れる。すなわち、第1電極211は、第1半導体素子21のソース電極に相当する。
 図10および図11に示すように、第2電極212は、第1方向zにおいて第1導電層12の第1主面12Aに対向する側とは反対側に位置する。第2電極212には、第1半導体素子21により変換される前の電力に対応する電流が流れる。すなわち、第2電極212は、第1半導体素子21のドレイン電極に相当する。
 図10および図11に示すように、第1ゲート電極213は、第1導電層12の第1主面12Aに対向している。したがって、第1ゲート電極213は、第1方向zにおいて第1電極211と同じ側に位置する。第1ゲート電極213には、第1半導体素子21を駆動するためのゲート電圧が印加される。図9に示すように、第1方向zに視て、第1ゲート電極213の面積は、第1電極211の面積よりも小さい。
 複数の第2半導体素子22は、図5~図7に示すように、第2導電層13の第2主面13Aに接合されている。複数の第2半導体素子22は、複数の第1半導体素子21と同一の素子である。したがって、複数の第2半導体素子22は、nチャネル型であり、かつ縦型構造のMOSFETである。複数の第2半導体素子22は、第3方向yに沿って配列されている。
 図13に示すように、複数の第2半導体素子22は、第3電極221、第4電極222および第2ゲート電極223を有する。
 図13に示すように、第3電極221は、第1方向zにおいて第2導電層13の第2主面13Aに対向する側とは反対側に位置する。第3電極221には、第2半導体素子22により変換された後の電力に対応する電流が流れる。すなわち、第3電極221は、第2半導体素子22のソース電極に相当する。
 図13に示すように、第4電極222は、第2導電層13の第2主面13Aに対向している。第4電極222には、第2半導体素子22により変換される前の電力に対応する電流が流れる。すなわち、第4電極222は、第2半導体素子22のドレイン電極に相当する。第4電極222は、導電接合層29を介して第2主面13Aに導電接合されている。これにより、複数の第2半導体素子22の第4電極222は、第2導電層13に導通している。導電接合層29は、たとえばハンダである。この他、導電接合層29は、銀(Ag)などを含む焼結金属でもよい。
 図13に示すように、第2ゲート電極223は、第1方向zにおいて第2導電層13の第2主面13Aに対向する側とは反対側に位置する。したがって、第2ゲート電極223は、第1方向zにおいて第3電極221と同じ側に位置する。第2ゲート電極223には、第2半導体素子22を駆動するためのゲート電圧が印加される。図12に示すように、第1方向zに視て、第2ゲート電極223の面積は、第3電極221の面積よりも小さい。
 半導体装置A10においては、複数の第1半導体素子21が上アーム回路の一部を構成し、かつ複数の第2半導体素子22が下アーム回路の一部を構成している。さらに半導体装置A10においては、複数の第1半導体素子21の構成は、第1方向zに対して直交する方向の回りに複数の第2半導体素子22を反転させたときの構成に等しい。したがって、複数の第1半導体素子21の各々の第1電極211の極性と、複数の第2半導体素子22の各々の第4電極222の極性とは、互いに異なっている。あわせて、複数の第1半導体素子21の各々の第2電極212と、複数の第2半導体素子22の各々の第3電極221とは、互いに異なっている。
 複数の第1スペーサ31は、図8に示すように、第1導電層12の第1主面12Aに導電接合されている。図8、図10および図11に示すように、複数の第1半導体素子21の各々の第1電極211は、複数の第1スペーサ31に個別に導電接合されている。したがって、複数の第1スペーサ31の各々は、第1導電層12と、複数の第1半導体素子21のいずれかの第1電極211とを導電接合している。複数の第1半導体素子21の各々の第1電極211は、複数の第1スペーサ31に個別に導通するとともに、複数の第1スペーサ31のいずれかを介して第1導電層12に導電接合されている。複数の第1スペーサ31は、第3方向yに沿って配列されている。複数の第1スペーサ31は、第1主面12Aと複数の第1半導体素子21との間に位置する。図10および図11に示すように、複数の第1スペーサ31は、第1部311および第2部312を含む。図9に示すように、複数の第1スペーサ31は、第1方向zに視て矩形状である。この他、複数の第1スペーサ31は、第1方向zに視て円形状でもよい。複数の第1スペーサ31の組成は、銅を含む。
 図9~図11に示すように、第1部311は、第2面311A、第3面311Bおよび第4面311Cを有する。第2面311Aは、第1導電層12の第1主面12Aに対向している。第2面311Aは、導電接合層29を介して第1主面12Aに導電接合されている。この他、第2面311Aは、固相拡散により第1主面12Aに導電接合される場合でもよい。第3面311Bは、第1方向zにおいて第2面311Aとは反対側を向く。第1方向zに視て、第1半導体素子21は、第3面311Bの周縁に囲まれている。第4面311Cは、第1方向zに対して直交する方向を向く。半導体装置A10においては、第4面311Cは、複数の領域を含む。
 図9~図11に示すように、第1部311には、第3面311Bおよび第4面311Cから凹む第1凹部311Dが設けられている。第1方向zに視て、第1半導体素子21の第1ゲート電極213は、第1凹部311Dに重なっている。
 図10および図11に示すように、第2部312は、第1部311と第1半導体素子21の第1電極211との間に位置する。第2部312は、第3面311Bで第1部311につながっている。図9に示すように、第1方向zに視て、第2部312は、第1半導体素子21の周縁に囲まれている。第1方向zに視て、第2部312は、第1半導体素子21の第1ゲート電極213から離れている。
 第1部311の第1方向zの寸法t1は、第2部312の厚さ方向の寸法t2よりも大きい。寸法t1は、寸法t2の3倍以上30倍以下である。
 図9~図11に示すように、第2部312は、第1面312Aを有する。第1面312Aは、第1半導体素子21に対向している。第1方向zに視て、第1面312Aは、第1半導体素子21の第1ゲート電極213から離れている。第1方向zに視て、第1面312Aは、第1部311の第2面311Aの周縁に囲まれている。半導体装置A10においては、第1面312Aの面積は、第1半導体素子21の第1電極211の面積よりも小さい。複数の第1半導体素子21の各々の第1電極211は、固相拡散により複数の第1スペーサ31の各々の第1面312Aに個別に導電接合されている。この他、複数の第1半導体素子21の各々の第1電極211は、導電接合層29を介して複数の第1スペーサ31の各々の第1面312Aに個別に導電接合される場合でもよい。
 図9~図11に示すように、第2部312には、第1方向zに対して直交する方向に凹む第2凹部312Bが設けられている。第2凹部312Bは、第1方向zにおいて第2部312を貫通し、かつ第1部311の第1凹部311Dにつながっている。第1方向zに視て、第2凹部312Bは、第1凹部311Dと、第1半導体素子21の第1ゲート電極213とに重なっている。
 複数の第2スペーサ32は、図7および図13に示すように、複数の第2半導体素子22の各々の第3電極221に個別に導電接合されている。複数の第2スペーサ32は、第3方向yに沿って配列されている。複数の第2スペーサ32は、複数の第2半導体素子22と導通部材17との間に位置する。図12に示すように、複数の第2スペーサ32の各々は、第1方向zに視て矩形状である。この他、複数の第2スペーサ32の各々は、第1方向zに視て円形状でもよい。第1方向zに視て、複数の第2スペーサ32の各々の面積は、第3電極221の面積よりも小さい。複数の第2スペーサ32の組成は、銅を含む。複数の第2スペーサ32の各々は、固相拡散により複数の第2半導体素子22の各々の第3電極221に個別に導電接合されている。この他、複数の第2スペーサ32の各々は、導電接合層29を介して複数の第2半導体素子22の各々の第3電極221に個別に導電接合される場合でもよい。
 第1ゲート導電層141は、図2、図3、図5および図6に示すように、第1方向zにおいて第1導電層12と同じ側に位置し、かつ第1絶縁層11に接合されている。第1ゲート導電層141は、第2方向xにおいて第2導電層13に対して第1導電層12とは反対側に位置する。第1ゲート導電層141は、第3方向yに沿って延びている。第1ゲート導電層141の組成は、銅を含む。
 第1ゲート端子441は、図2および図3に示すように、第2方向xにおいて第1ゲート導電層141を基準として第1導電層12とは反対側に位置する。第1ゲート端子441は、第1ゲート導電層141に導通している。第1ゲート端子441は、銅または銅合金を含む材料からなる金属リードである。図1および図5に示すように、第1ゲート端子441の一部は封止樹脂60に覆われている。第3方向yに視て、第1ゲート端子441はL字状である。図5に示すように、第1ゲート端子441は、第1方向zに起立した部分を含む。当該部分は、封止樹脂60から露出している。第1ゲート端子441には、複数の第1半導体素子21が駆動するためのゲート電圧が印加される。
 複数の第1ゲート配線51の各々は、図9に示すように、複数の第1半導体素子21のいずれかの第1ゲート電極213と、第1ゲート導電層141とに導電接合されている。これにより、複数の第1半導体素子21の第1ゲート電極213は、第1ゲート導電層141に導通している。複数の第1ゲート配線51は、金属リードである。第1ゲート配線51の組成は、銅を含む。
 第2ゲート導電層142は、図2、図3、図5および図6に示すように、第1方向zにおいて第2導電層13と同じ側に位置し、かつ第1絶縁層11に接合されている。第2ゲート導電層142は、第2方向xにおいて第1導電層12および第2導電層13を基準として第1ゲート導電層141とは反対側に位置する。第2ゲート導電層142は、第3方向yに沿って延びている。第2ゲート導電層142の組成は、銅を含む。
 第2ゲート端子442は、図2および図3に示すように、第2方向xにおいて第2ゲート導電層142を基準として第2導電層13とは反対側に位置する。第2ゲート端子442は、第2ゲート導電層142に導通している。第2ゲート端子442は、銅または銅合金を含む材料からなる金属リードである。図1および図5に示すように、第2ゲート端子442の一部は封止樹脂60に覆われている。第3方向yに視て、第2ゲート端子442はL字状である。図5に示すように、第2ゲート端子442は、第1方向zに起立した部分を含む。当該部分は、封止樹脂60から露出している。第2ゲート端子442には、複数の第2半導体素子22が駆動するためのゲート電圧が印加される。
 複数の第2ゲート配線53の各々は、図12に示すように、複数の第2半導体素子22のいずれかの第2ゲート電極223と、第2ゲート導電層142とに導電接合されている。これにより、複数の第2半導体素子22の第2ゲート電極223は、第2ゲート導電層142に導通している。複数の第2ゲート配線53は、ワイヤである。複数の第2ゲート配線53の組成は、金(Au)を含む。この他、複数の第2ゲート配線53の組成は、銅を含む場合や、アルミニウムを含む場合でもよい。
 図2に示すように、半導体装置A10は、2つの第1ワイヤ55をさらに備える。2つの第1ワイヤ55は、図2および図5に示すように、第1ゲート端子441および第2ゲート端子442と、第1ゲート導電層141および第2ゲート導電層142とに個別に接合されている。これにより、第1ゲート端子441は、第1ゲート導電層141に導通し、かつ第2ゲート端子442は、第2ゲート導電層142に導通している。2つの第1ワイヤ55の各々の組成は、金を含む。この他、2つの第1ワイヤ55の組成は、銅を含む場合や、アルミニウムを含む場合でもよい。
 第1検出導電層151は、図2、図3、図5および図6に示すように、第1方向zにおいて第2導電層13と同じ側に位置し、かつ第1絶縁層11に接合されている。第1検出導電層151は、第2方向xにおいて第1ゲート導電層141の隣に位置する。第1検出導電層151は、第3方向yに沿って延びている。第1検出導電層151の組成は、銅を含む。
 第1検出端子451は、図2および図3に示すように、第2方向xにおいて第1検出導電層151を基準として第1導電層12とは反対側に位置する。第1検出端子451は、第3方向yにおいて第1ゲート端子441の隣に位置する。第1検出端子451は、第1検出導電層151に導通している。第1検出端子451は、銅または銅合金を含む材料からなる金属リードである。図1および図6に示すように、第1検出端子451の一部は封止樹脂60に覆われている。第3方向yに視て、第1検出端子451はL字状である。図6に示すように、第1検出端子451は、第1方向zに起立した部分を含む。当該部分は、封止樹脂60から露出している。第1検出端子451には、複数の第1半導体素子21の第1電極211に印加される電圧と等電位の電圧が印加される。
 複数の第1検出配線52の各々は、図9に示すように、複数の第1スペーサ31のいずれかの第3面311Bと、第1検出導電層151とに導電接合されている。これにより、複数の第1半導体素子21の第1電極211は、第1検出導電層151に導通している。複数の第2ゲート配線53は、ワイヤである。複数の第2ゲート配線53の組成は、金を含む。この他、複数の第2ゲート配線53の組成は、銅を含む場合や、アルミニウムを含む場合でもよい。
 第2検出導電層152は、図2、図3、図5および図6に示すように、第1方向zにおいて第2導電層13と同じ側に位置し、かつ第1絶縁層11に接合されている。第2検出導電層152は、第2方向xにおいて第2ゲート導電層142の隣に位置する。第2検出導電層152は、第3方向yに沿って延びている。第2検出導電層152の組成は、銅を含む。
 第2検出端子452は、図2および図3に示すように、第2方向xにおいて第2検出導電層152を基準として第2導電層13とは反対側に位置する。第2検出端子452は、第3方向yにおいて第2ゲート端子442の隣に位置する。第2検出端子452は、第2検出導電層152に導通している。第2検出端子452は、銅または銅合金を含む材料からなる金属リードである。図1および図6に示すように、第2検出端子452の一部は封止樹脂60に覆われている。第3方向yに視て、第2検出端子452はL字状である。図6に示すように、第2検出端子452は、第1方向zに起立した部分を含む。当該部分は、封止樹脂60から露出している。第2検出端子452には、複数の第2半導体素子22の第3電極221に印加される電圧と等電位の電圧が印加される。
 複数の第2検出配線54の各々は、図12に示すように、複数の第2半導体素子22のいずれかの第3電極221と、第2検出導電層152とに導電接合されている。これにより、複数の第2半導体素子22の第3電極221は、第2検出導電層152に導通している。複数の第2検出配線54は、ワイヤである。複数の第2検出配線54の組成は、金を含む。この他、複数の第2検出配線54の組成は、銅を含む場合や、アルミニウムを含む場合でもよい。
 図2に示すように、半導体装置A10は、2つの第2ワイヤ56をさらに備える。図2および図6に示すように、2つの第2ワイヤ56は、第1検出端子451および第2検出端子452と、第1検出導電層151および第2検出導電層152とに個別に接合されている。これにより、第1検出端子451は、第1検出導電層151に導通し、かつ第2検出端子452は、第2検出導電層152に導通している。2つの第2ワイヤ56の組成は、金を含む。この他、2つの第2ワイヤ56の各々の組成は、銅を含む場合や、アルミニウムを含む場合でもよい。
 導通部材17は、図5~図8に示すように、第1方向zにおいて第1導電層12の第1主面12Aが向く側に第1絶縁層11から離れている。導通部材17は、複数の第1半導体素子21の各々の第2電極212と、複数の第2半導体素子22の各々の第3電極221とに導電接合されている。導通部材17は、封止樹脂60から露出している。
 図5~図8に示すように、導通部材17は、接合面17Aおよび放熱面17Bを有する。接合面17Aは、導電接合層29を介して複数の第1半導体素子21の各々の第2電極212に導電接合されている。さらに接合面17Aは、導電接合層29、および複数の第2スペーサ32を介して、複数の第2半導体素子22の各々の第3電極221に導電接合されている。放熱面17Bは、第1方向zにおいて接合面17Aとは反対側を向く。放熱面17Bは、封止樹脂60から露出している。第1方向zに視て、接合面17Aは、放熱面17Bの周縁に囲まれている。放熱面17Bの面積は、接合面17Aの面積よりも大きい。
 図5~図8に示すように、導通部材17は、第2絶縁層171、第3導電層172および第2放熱層173を有する。第2絶縁層171の材料は、第1絶縁層11の材料を含む。第3導電層172は、接合面17Aを含み、かつ第2絶縁層171に接合されている。第3導電層172の材料は、第1導電層12および第2導電層13の各々の材料を含む。第2放熱層173は、放熱面17Bを含み、かつ第1絶縁層11に接合されている。第2放熱層173の材料は、第1放熱層16の材料を含む。図1に示すように、第1方向zに視て、第2放熱層173は、第2絶縁層171の周縁に囲まれている。第3導電層172および第2放熱層173の各々の厚さは、第2絶縁層171の厚さよりも大きい。
 図2、図5および図6に示すように、第1方向zに視て、複数の第1ゲート配線51、複数の第1検出配線52、複数の第2ゲート配線53、および複数の第2検出配線54は、第2絶縁層171および第2放熱層173の各々に重なっている。
 複数の電力端子40は、図7および図8に示すように、第1導電層12、第2導電層13、および導通部材17の第3導電層172に個別に導電接合されている。複数の電力端子40は、第1入力端子41、第2入力端子42および出力端子43を含む。
 第1入力端子41は、図1~図3に示すように、第1絶縁層11を基準として第3方向yの一方側に位置する。図8に示すように、第1入力端子41は、第1導電層12に導電接合されている。これにより、第1入力端子41は、第1導電層12、および複数の第1スペーサ31を介して複数の第1半導体素子21の第1電極211に導通している。第1入力端子41は、銅または銅合金を含む材料からなる金属板である。第1入力端子41の一部は、封止樹脂60に覆われている。第1入力端子41は、第1方向zに貫通する第1取付け孔411を有する。第1取付け孔411は、封止樹脂60から離れている。第1入力端子41は、電力変換対象となる直流の電源電圧が印加されるN端子(負極)である。
 第2入力端子42は、図1~図3に示すように、第3方向yにおいて第1絶縁層11を基準として第1入力端子41と同じ側に位置する。第2入力端子42は、第2方向xにおいて第1入力端子41から離れている。図7に示すように、第2入力端子42は、第2導電層13に導電接合されている。これにより、第2入力端子42は、第2導電層13を介して複数の第2半導体素子22の第4電極222に導通している。第2入力端子42は、銅または銅合金を含む材料からなる金属板である。第2入力端子42の一部は、封止樹脂60に覆われている。第2入力端子42は、第1方向zに貫通する第2取付け孔421を有する。第2取付け孔421は、封止樹脂60から離れている。第2入力端子42は、電力変換対象となる直流の電源電圧が印加されるP端子(正極)である。
 出力端子43は、図1および図2に示すように、第3方向yにおいて第1絶縁層11を基準として第1入力端子41および第2入力端子42とは反対側に位置する。図7に示すように、出力端子43は、第1方向zにおいて第1導電層12の第1主面12Aが向く側に第1絶縁層11から離れている。出力端子43は、導通部材17の第3導電層172に導電接合されている。これにより、出力端子43は、複数の第1半導体素子21の第2電極212と、複数の第2半導体素子22の第3電極221とに、導通部材17を介して導通している。出力端子43は、銅または銅合金を含む材料からなる金属板である。出力端子43の一部は、封止樹脂60に覆われている。出力端子43は、第1方向zに貫通する第3取付け孔431を有する。第3取付け孔431は、封止樹脂60から離れている。出力端子43から、複数の第1半導体素子21、および複数の第2半導体素子22により変換された交流電力が出力される。
 封止樹脂60は、図5~図8に示すように、複数の第1半導体素子21、および複数の第2半導体素子22を覆っている。封止樹脂60は、絶縁体である。封止樹脂60は、たとえば黒色のエポキシ樹脂を含む材料からなる。封止樹脂60の一部は、第1方向zにおいて第1絶縁層11と、導通部材17の第3導電層172とに挟まれている。
 図1、図4、および図5~図8に示すように、封止樹脂60は、頂面61、底面62、2つの第1側面63、および2つの第2側面64を有する。頂面61は、第1方向zにおいて第1導電層12の第1主面12Aと同じ側を向く。頂面61から、導通部材17の放熱面17Bが露出している。底面62は、第1方向zにおいて頂面61とは反対側を向く。底面62から第1放熱層16が露出している。
 図1、および図4~図6に示すように、2つの第1側面63は、第2方向xにおいて互いに離れており、かつ頂面61および底面62につながっている。2つの第1側面63のうち一方の第1側面63から、第1ゲート端子441および第1検出端子451が露出している。2つの第1側面63のうち他方の第1側面63から、第2ゲート端子442および第2検出端子452が露出している。
 図1、図4、図7および図8に示すように、2つの第2側面64は、第3方向yにおいて互いに離れており、かつ頂面61および底面62につながっている。2つの第2側面64のうち一方の第2側面64から、第1入力端子41および第2入力端子42が露出している。2つの第2側面64のうち他方の第2側面64から、出力端子43が露出している。
 次に、半導体装置A10の作用効果について説明する。
 半導体装置A10は、第1絶縁層11、第1導電層12、第2導電層13、第1放熱層16、第1半導体素子21、第2半導体素子22、導通部材17および封止樹脂60を備える。第1半導体素子21は、第1導電層12に導電接合された第1電極211と、導通部材17が導電接合される第2電極212とを有する。第2半導体素子22は、導通部材17が導電接合される第3電極221と、第2導電層13に導電接合される第4電極222とを有する。第2電極212の極性と、第3電極221の極性とは、互いに異なっている。第1放熱層16および導通部材17は、封止樹脂60から露出している。本構成をとることにより、第2電極212から第3電極221に至る導電経路の長さがより短縮される。これにより、半導体装置A10の寄生インダクタンスの低減を図ることができる。さらに本構成をとることにより、第1半導体素子21および第2半導体素子22から発生した熱は、半導体装置A10の第1方向zの両側に位置する第1放熱層16および導通部材17を介して外部に放出される。したがって、本構成によれば、半導体装置A10においては、半導体装置A10の寄生インダクタンスを低減しつつ、半導体装置A10の放熱性の向上を図ることが可能となる。
 導通部材17は、接合面17Aおよび放熱面17Bを有する。接合面17Aは、第1半導体素子21の第2電極212と、第2半導体素子22の第3電極221とに導電接合されている。放熱面17Bは、封止樹脂60から露出している。放熱面17Bの面積は、接合面17Aの面積よりも大きい。第1方向zに視て、接合面17Aは、放熱面17Bの周縁に囲まれている。本構成をとることにより、第1半導体素子21および第2半導体素子22から接合面17Aに伝導した熱が、第1方向zに対して直交する方向に拡散されやすくなる。これにより、導通部材17の第1方向zにおける熱抵抗を低減することができる。
 導通部材17は、第2絶縁層171と、接合面17Aを含み、かつ第2絶縁層171に接合された第3導電層172と、放熱面17Bを含み、かつ第2絶縁層171に接合された第2放熱層173とを有する。本構成をとることにより、導通部材17が封止樹脂60から露出する場合であっても、半導体装置A10の外部に対して導通部材17の電気絶縁がなされる。第1方向zに視て、第2放熱層173は、第2絶縁層171の周縁に囲まれている。本構成をとることにより、導通部材17が封止樹脂60から脱落しようとすると、第1方向zにおいて第2絶縁層171の周縁が封止樹脂60に接触するため、導通部材17の脱落を防止できる。
 第3導電層172および第2放熱層173の各々の厚さは、第2絶縁層171の厚さよりも大きい。本構成をとることにより、第3導電層172および第2放熱層173の各々において、第1方向zに対して直交する方向における熱の拡散効率が向上する。したがって、半導体装置A10の放熱性をより向上させることができる。
 半導体装置A10においては、第1半導体素子21の第1ゲート電極213は、第1方向zにおいて第1半導体素子21の第1電極211と同じ側に位置する。半導体装置A10は、第1導電層12と第1電極211とを導電接合する第1スペーサ31をさらに備える。第1スペーサ31は、第1電極211に対向する第1面312Aを有する。第1方向zに視て、第1面312Aは、第1ゲート電極213から離れている。本構成をとることにより、第1ゲート電極213、および図10に示す第1ゲート配線51と、第1スペーサ31との短絡を防止できる。
 第1スペーサ31は、第1導電層12に対向する第2面311Aを有する。第2面311Aの面積は、第1面312Aの面積よりも大きい。第1方向zに視て、第1面312Aは、第2面311Aの周縁に囲まれている。ここで、第1面312Aの周縁から第2面311Aに向けて延び、かつ第1方向zに対して45°の傾斜角をなす仮想平面を第1スペーサ31に設定した場合、第1スペーサ31に伝導した熱は、当該仮想平面に囲まれた領域において一様に拡散する。そこで本構成をとることにより、第1面312Aから第1スペーサ31に伝導した熱が第1方向zと、第1方向zに対して直交する方向とに一様に拡散されやすくなる。これにより、第1半導体素子21の第1電極211から第1スペーサ31に伝導された熱が、より速やかに第1導電層12に伝導される。
 第1導電層12、第2導電層13および第1放熱層16の各々の厚さは、第1絶縁層11の厚さよりも大きい。本構成をとることにより、第1導電層12、第2導電層13および第1放熱層16の各々において、第1方向zに対して直交する方向における熱の拡散効率が向上する。したがって、半導体装置A10の放熱性をより向上させることができる。
 第2実施形態:
 図14~図34に基づき、本開示の第2実施形態にかかる半導体装置A20について説明する。これらの図において、先述した半導体装置A10と同一、または類似の要素には同一の符号を付して、重複する説明を省略する。ここで、図14は、理解の便宜上、封止樹脂60と、導通部材17の第2絶縁層171および第2放熱層173を透過して示している。図15は、理解の便宜上、図14に対して導通部材17の第3導電層172をさらに透過して示している。図14および図15では、透過した封止樹脂60の外形を想像線で示している。図14および図15では、透過した導通部材17の要素の外形を想像線で示している。図14において、XVI-XVI線、XVII-XVII線、およびXVIII-XVIII線をそれぞれ一点鎖線で示している。
 半導体装置A20においては、複数の第1半導体素子21、および複数の第2半導体素子22の構成と、複数の第1スペーサ31、および複数の第2スペーサ32を具備しないこととが、半導体装置A10の場合と異なる。
 図20~図25に示すように、複数の第1半導体素子21の各々は、第1検出電極214、第1素子本体215、第1再配線216、第2再配線217、第1樹脂218および被覆層219を有する。複数の第1半導体素子21は、樹脂パッケージとされている。
 第1素子本体215は、半導体装置A10の複数の第1半導体素子21のいずれかに相当する要素である。第1素子本体215は、第1パッド215Aおよび第1ゲートパッド215Bを含む。図27に示すように、第1パッド215Aおよび第1ゲートパッド215Bは、第1方向zにおいて第1導電層12に対向する側に位置する。第1パッド215Aは、半導体装置A10の第1半導体素子21の第1電極211に相当する。第1ゲートパッド215Bは、半導体装置A10の第1半導体素子21の第1ゲート電極213に相当する。第1素子本体215は、第2電極212を含む。
 図22~図25に示すように、第1樹脂218は、第1素子本体215の一部と、第1再配線216および第2再配線217の各々の少なくとも一部とを覆っている。第1樹脂218から第1電極211、第2電極212、第1ゲート電極213および第1検出電極214が露出している。
 図22~図24に示すように、第1電極211は、第1素子本体215の第1パッド215Aに導通しており、かつ第1パッド215Aに接触している。図21に示すように、第1方向zに視て、第1電極211は、第2電極212よりも外方にはみ出した部分を含む。第1方向zに視て、第1電極211の面積は、第1パッド215Aの面積よりも大きい。
 図20、図22および図23に示すように、第1ゲート電極213および第1検出電極214は、第1方向zにおいて第2電極212と同じ側に位置する。第1検出電極214は、第3方向yにおいて第1ゲート電極213から離れている。
 図20~図22に示すように、第1再配線216は、第1素子本体215の第1ゲートパッド215Bと、第1ゲート電極213とを導通している。第1再配線216の一部は、第1樹脂218に覆われている。
 図20、図21および図23に示すように、第2再配線217は、第1素子本体215の第1パッド215Aと、第1検出電極214とを導通している。第2再配線217の一部は、第1樹脂218に覆われている。第2再配線217は、第1電極211につながっている。
 第1再配線216、第2再配線217および第1樹脂218は、たとえば米国特許出願公開第2010/0019370号明細書に開示されているLDS(Laser Direct Structuring)工法によって形成することができる。この場合において、第1樹脂218の材料は、金属元素が含有された添加材を含む。第1再配線216および第2再配線217の各々は、当該金属元素を含む。
 図21~図23に示すように、被覆層219は、第1樹脂218から露出した第1再配線216および第2再配線217の各々の部分を覆っている。被覆層219は、絶縁体である。被覆層219は、第1再配線216、第2再配線217および第1樹脂218に接している。被覆層219は、たとえばソルダーレジストである。
 図27に示すように、導通部材17の第3導電層172の接合面17Aは、導電接合層29を介して複数の第1半導体素子21の各々の第2電極212に導電接合されている。
 図15および図26に示すように、複数の第1検出配線52の各々は、複数の第1半導体素子21のいずれかの第1検出電極214と、第1検出導電層151とに導電接合されている。複数の第1検出配線52は、金属リードである。複数の第1検出配線52の組成は、銅を含む。
 図28~図32に示すように、複数の第2半導体素子22の各々は、第2検出電極224、第2素子本体225、第3再配線226、第4再配線227および第2樹脂228を有する。複数の第2半導体素子22は、樹脂パッケージとされている。
 第2素子本体225は、半導体装置A10の複数の第2半導体素子22のいずれかに相当する要素である。第2素子本体225は、第2パッド225Aおよび第2ゲートパッド225Bを含む。図34に示すように、第2パッド225Aおよび第2ゲートパッド225Bは、第1方向zにおいて第2導電層13に対向する側とは反対側に位置する。第2パッド225Aは、半導体装置A10の第2半導体素子22の第3電極221に相当する。第2ゲートパッド225Bは、半導体装置A10の第2半導体素子22の第2ゲート電極223に相当する。第1素子本体215は、第4電極222を含む。
 図30~図32に示すように、第2樹脂228は、第2素子本体225の一部と、第3再配線226および第4再配線227の各々の少なくとも一部とを覆っている。第2樹脂228から第3電極221、第4電極222、第2ゲート電極223および第2検出電極224が露出している。
 図30~図32に示すように、第3電極221は、第2素子本体225の第2パッド225Aに導通しており、かつ第2パッド225Aに接触している。図28に示すように、第1方向zに視て、第3電極221は、第4電極222よりも外方にはみ出した部分を含む。第1方向zに視て、第3電極221の面積は、第2パッド225Aの面積よりも大きい。
 図28、図30および図31に示すように、第2ゲート電極223および第2検出電極224は、第1方向zにおいて第3電極221と同じ側に位置する。第2検出電極224は、第3方向yにおいて第2ゲート電極223から離れている。
 図28~図30に示すように、第3再配線226は、第2素子本体225の第2ゲートパッド225Bと、第2ゲート電極223とを導通している。第3再配線226の一部は、第2樹脂228に覆われている。
 図28、図29および図31に示すように、第4再配線227は、第2素子本体225の第2パッド225Aと、第2検出電極224とを導通している。第4再配線227の一部は、第2樹脂228に覆われている。第4再配線227は、第3電極221につながっている。
 第3再配線226、第4再配線227および第2樹脂228は、先述のLDS工法によって形成することができる。この場合において、第2樹脂228の材料は、金属元素が含有された添加材を含む。第3再配線226および第4再配線227の各々は、当該金属元素を含む。
 図34に示すように、導通部材17の第3導電層172の接合面17Aは、導電接合層29を介して複数の第2半導体素子22の各々の第3電極221に導電接合されている。
 図15および図33に示すように、複数の第2検出配線54の各々は、複数の第2半導体素子22のいずれかの第2検出電極224と、第2検出導電層152とに導電接合されている。複数の第2ゲート配線53、および複数の第2検出配線54の各々は、金属リードである。複数の第2ゲート配線53、および複数の第2検出配線54の各々の組成は、銅を含む。
 次に、半導体装置A20の作用効果について説明する。
 半導体装置A20は、第1絶縁層11、第1導電層12、第2導電層13、第1放熱層16、第1半導体素子21、第2半導体素子22、導通部材17および封止樹脂60を備える。第1半導体素子21は、第1導電層12に導電接合された第1電極211と、導通部材17が導電接合される第2電極212とを有する。第2半導体素子22は、導通部材17が導電接合される第3電極221と、第2導電層13に導電接合される第4電極222とを有する。第2電極212の極性と、第3電極221の極性とは、互いに異なっている。第1放熱層16および導通部材17は、封止樹脂60から露出している。したがって、本構成によれば、半導体装置A20においても、半導体装置A20の寄生インダクタンスを低減しつつ、半導体装置A20の放熱性の向上を図ることが可能となる。さらに半導体装置A20においては、半導体装置A10と共通する構成を具備することにより、半導体装置A10と同等の作用効果を奏する。
 半導体装置A20においては、第1半導体素子21は、第2電極212、第1パッド215Aおよび第1ゲートパッド215Bを含む第1素子本体215と、第1ゲートパッド215Bと第1ゲート電極213とを導通する第1再配線216とを有する。第1ゲート電極213は、第1方向zにおいて第2電極212と同じ側に位置する。第1電極211は、第1パッド215Aに導通している。本構成をとることにより、第1スペーサ31を介さずに第1電極211を第1導電層12に導電接合をした場合であっても、第1ゲート電極213と第1導電層12との短絡を防止できる。これにより、第1スペーサ31および第2スペーサ32が不要となるため、半導体装置A20の第1方向zの寸法が縮小されるとともに、半導体装置A20の寄生インダクタンスをさらに低減することができる。
 上記の場合に伴って、第2半導体素子22は、第4電極222、第2パッド225Aおよび第2ゲートパッド225Bを含む第1素子本体215と、第2ゲートパッド225Bと第2ゲート電極223とを導通する第3再配線226とを有する。第2ゲート電極223は、第1方向zにおいて第3電極221と同じ側に位置する。第3電極221は、第2パッド225Aに接触している。本構成をとることにより、第2半導体素子22の第1方向zの寸法を、第1半導体素子21の第1方向zの寸法と一致させることができる。
 第3実施形態:
 図35~図37に基づき、本開示の第3実施形態にかかる半導体装置A30について説明する。これらの図において、先述した半導体装置A10および半導体装置A20と同一、または類似の要素には同一の符号を付して、重複する説明を省略する。ここで、図35は、理解の便宜上、封止樹脂60および後述する被覆層18を透過して示している。図35では、透過した封止樹脂60の外形を想像線で示している。図35において、XXXVI-XXXVI線、およびXXXVII-XXXVII線をそれぞれ一点鎖線で示している。
 半導体装置A30においては、導通部材17の構成と、被覆層18をさらに具備することとが、半導体装置A20の場合と異なる。
 図36および図37に示すように、導通部材17は、半導体装置A20が具備する導通部材17のような絶縁体および導体を含む複合部材とは異なり、金属からなる単一部材である。当該金属は、たとえば銅を含有する。導通部材17の第1方向zに対して直交する方向における端部には、段差が設けられている。
 被覆層18は、図36および図37に示すように、導通部材17の放熱面17Bを覆い、かつ外部に露出している。被覆層18は、絶縁体である。封止樹脂60は、被覆層18に接している。
 半導体装置A30が具備する導通部材17および被覆層18は、半導体装置A20のみならず、半導体装置A10においても適用することができる。
 次に、半導体装置A30の作用効果について説明する。
 半導体装置A30は、第1絶縁層11、第1導電層12、第2導電層13、第1放熱層16、第1半導体素子21、第2半導体素子22、導通部材17および封止樹脂60を備える。第1半導体素子21は、第1導電層12に導電接合された第1電極211と、導通部材17が導電接合される第2電極212とを有する。第2半導体素子22は、導通部材17が導電接合される第3電極221と、第2導電層13に導電接合される第4電極222とを有する。第2電極212の極性と、第3電極221の極性とは、互いに異なっている。第1放熱層16および導通部材17は、封止樹脂60から露出している。したがって、本構成によれば、半導体装置A30においても、半導体装置A30の寄生インダクタンスを低減しつつ、半導体装置A30の放熱性の向上を図ることが可能となる。さらに半導体装置A30においては、半導体装置A10と共通する構成を具備することにより、半導体装置A10と同等の作用効果を奏する。
 半導体装置A30においては、導通部材17は、金属からなる単一部材である。本構成をとることにより、半導体装置A20が具備する導通部材17の場合よりも、導通部材17の接合面17Aから放熱面17Bにかけて熱がより伝導しやすくなる。したがって、半導体装置A30の放熱性をさらに向上させることが可能となる。この場合において、半導体装置A30が被覆層18を具備することにより、外部に対する導通部材17の電気絶縁を図ることができる。
 本開示は、先述した実施形態に限定されるものではない。本開示の各部の具体的な構成は、種々に設計変更自在である。
 本開示は、以下の付記に記載した実施形態を含む。
 付記1.
 第1絶縁層と、
 前記第1絶縁層の第1方向の一方側に接合された第1導電層と、
 前記第1方向において前記第1導電層と同じ側に位置し、かつ前記第1絶縁層に接合された第2導電層と、
 前記第1絶縁層を基準として前記第1導電層および前記第2導電層とは反対側に位置し、かつ前記第1絶縁層に接合された第1放熱層と、
 前記第1方向において互いに反対側に位置する第1電極および第2電極を有するとともに、前記第1電極が前記第1導電層に導電接合された第1半導体素子と、
 前記第1方向において互いに反対側に位置する第3電極および第4電極を有するとともに、前記第4電極が前記第2導電層に導電接合された第2半導体素子と、
 前記第2電極および前記第3電極に導電接合された導通部材と、
 前記第1半導体素子および前記第2半導体素子を覆う封止樹脂と、を備え、
 前記第2電極の極性と、前記第3電極の極性とは、互いに異なっており、
 前記第1放熱層および前記導通部材が、前記封止樹脂から露出している、半導体装置。
 付記2.
 前記導通部材は、前記第2電極および前記第3電極に導電接合された接合面と、前記第1方向において前記接合面とは反対側を向き、かつ前記封止樹脂から露出する放熱面と、を有し、
 前記放熱面の面積は、前記接合面の面積よりも大きい、付記1に記載の半導体装置。
 付記3.
 前記第1方向に視て、前記接合面は、前記放熱面の周縁に囲まれている、付記2に記載の半導体装置。
 付記4.
 前記導通部材は、第2絶縁層と、前記接合面を含み、かつ前記第2絶縁層に接合された第3導電層と、前記放熱面を含み、かつ前記第2絶縁層に接合された第2放熱層と、を有し、
 前記第1方向に視て、前記第2放熱層は、前記第2絶縁層の周縁に囲まれている、付記2または3に記載の半導体装置。
 付記5.
 前記第3導電層および前記第2放熱層の各々の厚さは、前記第2絶縁層の厚さよりも大きい、付記4に記載の半導体装置。
 付記6.
 絶縁体である被覆層をさらに備え、
 前記被覆層は、前記放熱面を覆い、かつ外部に露出しており、
 前記封止樹脂は、前記被覆層に接している、付記2または3に記載の半導体装置。
 付記7.
 前記第1半導体素子は、第1ゲート電極を有し、
 前記第1ゲート電極に導電接合された第1ゲート配線をさらに備え、
 前記第1方向に視て、前記第1ゲート配線は、前記第2絶縁層に重なっている、付記4または5に記載の半導体装置。
 付記8.
 前記第1方向に視て、前記第1ゲート配線は、前記第2放熱層に重なっている、付記7に記載の半導体装置。
 付記9.
 前記第1ゲート電極は、前記第1方向において前記第1電極と同じ側に位置しており、
 前記第1導電層と前記第1電極とを導電接合する第1スペーサをさらに備え、
 前記第1スペーサは、前記第1電極に対向する第1面を有し、
 前記第1方向に視て、前記第1面は、前記第1ゲート電極から離れている、付記7または8に記載の半導体装置。
 付記10.
 前記第1スペーサは、前記第1導電層に対向する第2面を有し、
 前記第2面の面積は、前記第1面の面積よりも大きく、
 前記第1方向に視て、前記第1面は、前記第2面の周縁に囲まれている、付記9に記載の半導体装置。
 付記11.
 前記第1半導体素子は、前記第1方向において前記第1導電層に対向する側に位置する第1パッドおよび第1ゲートパッドを含む第1素子本体と、前記第1ゲートパッドと前記第1ゲート電極とを導通する第1再配線と、を有し、
 前記第1素子本体は、前記第2電極を含み、
 前記第1ゲート電極は、前記第1方向において前記第2電極と同じ側に位置しており、
 前記第1電極は、前記第1パッドに導通している、付記7または8に記載の半導体装置。
 付記12.
 前記第1電極は、前記第1パッドに接触している、付記11に記載の半導体装置。
 付記13.
 前記第1半導体素子は、前記第1素子本体の一部と、前記第1再配線の少なくとも一部と、を覆う第1樹脂を有し、
 前記第1電極、前記第2電極および前記第1ゲート電極は、前記第1樹脂から露出している、付記12に記載の半導体装置。
 付記14.
 前記第1半導体素子は、前記第1方向において前記第1ゲート電極と同じ側に位置する第1検出電極と、前記第1パッドと前記第1検出電極とを導通する第2再配線と、を有し、
 前記第2再配線の少なくとも一部は、前記第1樹脂に覆われており、
 前記第1検出電極は、前記第1樹脂から露出している、付記13に記載の半導体装置。
 付記15.
 前記第2半導体素子は、前記第1方向において前記第2導電層に対向する側とは反対側に位置する第2パッドおよび第2ゲートパッドを含む第2素子本体と、前記第2ゲートパッドに導通する第2ゲート電極と、を有し、
 前記第2素子本体は、前記第4電極を含み、
 前記第2ゲート電極は、前記第1方向において前記第3電極と同じ側に位置しており、
 前記第3電極は、前記第2パッドに接触している、付記13または14に記載の半導体装置。
 付記16.
 前記第1導電層、前記第2導電層および前記第1放熱層の各々の厚さは、前記第1絶縁層の厚さよりも大きい、付記1ないし15のいずれかに記載の半導体装置。
 付記17.
 複数の電力端子をさらに備え、
 前記複数の電力端子は、前記第1導電層、前記第2導電層および前記導通部材に個別に導通している、付記1ないし16のいずれか記載の半導体装置。
A10,A20,A30:半導体装置    11:第1絶縁層
12:第1導電層    12A:第1主面
13:第2導電層    13A:第2主面
141:第1ゲート導電層    142:第2ゲート導電層
151:第1検出導電層    152:第2検出導電層
16:第1放熱層    17:導通部材
17A:接合面    17B:放熱面
171:第2絶縁層    172:第3導電層
173:第2放熱層    18:被覆層
21:第1半導体素子    211:第1電極
212:第2電極    213:第1ゲート電極
214:第1検出電極    215:第1素子本体
215A:第1パッド    215B:第1ゲートパッド
216:第1再配線2    217:第2再配線
218:第1樹脂    219:被覆層
22:第2半導体素子    221:第3電極
222:第4電極    223:第2ゲート電極
224:第2検出電極    225:第2素子本体
225A:第2パッド    225B:第2ゲートパッド
226:第3再配線    227:第4再配線
228:第2樹脂    29:導電接合層
31:第1スペーサ    311:第1部
311A:第2面    312A:第3面
313A:第4面    314A:第1凹部
312:第2部    312A:第1面
312B:第2凹部    32:第2スペーサ
40:電力端子    41:第1入力端子
411:第1取付け孔    42:第2入力端子
421:第2取付け孔    43:出力端子
431:第3取付け孔    441:第1ゲート端子
442:第2ゲート端子    451:第1検出端子
452:第2検出端子    51:第1ゲート配線
52:第1検出配線    53:第2ゲート配線
54:第2検出配線    55:第1ワイヤ
56:第2ワイヤ    60:封止樹脂
61:頂面    62:底面
63:第1側面    64:第2側面
z:第1方向    x:第2方向
y:第3方向

Claims (17)

  1.  第1絶縁層と、
     前記第1絶縁層の第1方向の一方側に接合された第1導電層と、
     前記第1方向において前記第1導電層と同じ側に位置し、かつ前記第1絶縁層に接合された第2導電層と、
     前記第1絶縁層を基準として前記第1導電層および前記第2導電層とは反対側に位置し、かつ前記第1絶縁層に接合された第1放熱層と、
     前記第1方向において互いに反対側に位置する第1電極および第2電極を有するとともに、前記第1電極が前記第1導電層に導電接合された第1半導体素子と、
     前記第1方向において互いに反対側に位置する第3電極および第4電極を有するとともに、前記第4電極が前記第2導電層に導電接合された第2半導体素子と、
     前記第2電極および前記第3電極に導電接合された導通部材と、
     前記第1半導体素子および前記第2半導体素子を覆う封止樹脂と、を備え、
     前記第2電極の極性と、前記第3電極の極性とは、互いに異なっており、
     前記第1放熱層および前記導通部材が、前記封止樹脂から露出している、半導体装置。
  2.  前記導通部材は、前記第2電極および前記第3電極に導電接合された接合面と、前記第1方向において前記接合面とは反対側を向き、かつ前記封止樹脂から露出する放熱面と、を有し、
     前記放熱面の面積は、前記接合面の面積よりも大きい、請求項1に記載の半導体装置。
  3.  前記第1方向に視て、前記接合面は、前記放熱面の周縁に囲まれている、請求項2に記載の半導体装置。
  4.  前記導通部材は、第2絶縁層と、前記接合面を含み、かつ前記第2絶縁層に接合された第3導電層と、前記放熱面を含み、かつ前記第2絶縁層に接合された第2放熱層と、を有し、
     前記第1方向に視て、前記第2放熱層は、前記第2絶縁層の周縁に囲まれている、請求項2または3に記載の半導体装置。
  5.  前記第3導電層および前記第2放熱層の各々の厚さは、前記第2絶縁層の厚さよりも大きい、請求項4に記載の半導体装置。
  6.  絶縁体である被覆層をさらに備え、
     前記被覆層は、前記放熱面を覆い、かつ外部に露出しており、
     前記封止樹脂は、前記被覆層に接している、請求項2または3に記載の半導体装置。
  7.  前記第1半導体素子は、第1ゲート電極を有し、
     前記第1ゲート電極に導電接合された第1ゲート配線をさらに備え、
     前記第1方向に視て、前記第1ゲート配線は、前記第2絶縁層に重なっている、請求項4または5に記載の半導体装置。
  8.  前記第1方向に視て、前記第1ゲート配線は、前記第2放熱層に重なっている、請求項7に記載の半導体装置。
  9.  前記第1ゲート電極は、前記第1方向において前記第1電極と同じ側に位置しており、
     前記第1導電層と前記第1電極とを導電接合する第1スペーサをさらに備え、
     前記第1スペーサは、前記第1電極に対向する第1面を有し、
     前記第1方向に視て、前記第1面は、前記第1ゲート電極から離れている、請求項7または8に記載の半導体装置。
  10.  前記第1スペーサは、前記第1導電層に対向する第2面を有し、
     前記第2面の面積は、前記第1面の面積よりも大きく、
     前記第1方向に視て、前記第1面は、前記第2面の周縁に囲まれている、請求項9に記載の半導体装置。
  11.  前記第1半導体素子は、前記第1方向において前記第1導電層に対向する側に位置する第1パッドおよび第1ゲートパッドを含む第1素子本体と、前記第1ゲートパッドと前記第1ゲート電極とを導通する第1再配線と、を有し、
     前記第1素子本体は、前記第2電極を含み、
     前記第1ゲート電極は、前記第1方向において前記第2電極と同じ側に位置しており、
     前記第1電極は、前記第1パッドに導通している、請求項7または8に記載の半導体装置。
  12.  前記第1電極は、前記第1パッドに接触している、請求項11に記載の半導体装置。
  13.  前記第1半導体素子は、前記第1素子本体の一部と、前記第1再配線の少なくとも一部と、覆う第1樹脂を有し、
     前記第1電極、前記第2電極および前記第1ゲート電極は、前記第1樹脂から露出している、請求項12に記載の半導体装置。
  14.  前記第1半導体素子は、前記第1方向において前記第1ゲート電極と同じ側に位置する第1検出電極と、前記第1パッドと前記第1検出電極とを導通する第2再配線と、を有し、
     前記第2再配線の少なくとも一部は、前記第1樹脂に覆われており、
     前記第1検出電極は、前記第1樹脂から露出している、請求項13に記載の半導体装置。
  15.  前記第2半導体素子は、前記第1方向において前記第2導電層に対向する側とは反対側に位置する第2パッドおよび第2ゲートパッドを含む第2素子本体と、前記第2ゲートパッドに導通する第2ゲート電極と、を有し、
     前記第2素子本体は、前記第4電極を含み、
     前記第2ゲート電極は、前記第1方向において前記第3電極と同じ側に位置しており、
     前記第3電極は、前記第2パッドに接触している、請求項13または14に記載の半導体装置。
  16.  前記第1導電層、前記第2導電層および前記第1放熱層の各々の厚さは、前記第1絶縁層の厚さよりも大きい、請求項1ないし15のいずれかに記載の半導体装置。
  17.  複数の電力端子をさらに備え、
     前記複数の電力端子は、前記第1導電層、前記第2導電層および前記第3導電層に個別に導通している、請求項1ないし16のいずれかに記載の半導体装置。
PCT/JP2023/023728 2022-07-22 2023-06-27 半導体装置 WO2024018851A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-117163 2022-07-22
JP2022117163 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024018851A1 true WO2024018851A1 (ja) 2024-01-25

Family

ID=89617663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023728 WO2024018851A1 (ja) 2022-07-22 2023-06-27 半導体装置

Country Status (1)

Country Link
WO (1) WO2024018851A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021254A (ja) * 2011-07-14 2013-01-31 Mitsubishi Electric Corp 半導体装置および半導体装置の製造方法
JP2017054877A (ja) * 2015-09-08 2017-03-16 株式会社村田製作所 半導体モジュール
JP2019207922A (ja) * 2018-05-28 2019-12-05 株式会社デンソー 半導体装置
WO2020241472A1 (ja) * 2019-05-31 2020-12-03 日立オートモティブシステムズ株式会社 半導体装置、および半導体装置の製造方法
WO2022118633A1 (ja) * 2020-12-03 2022-06-09 ローム株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021254A (ja) * 2011-07-14 2013-01-31 Mitsubishi Electric Corp 半導体装置および半導体装置の製造方法
JP2017054877A (ja) * 2015-09-08 2017-03-16 株式会社村田製作所 半導体モジュール
JP2019207922A (ja) * 2018-05-28 2019-12-05 株式会社デンソー 半導体装置
WO2020241472A1 (ja) * 2019-05-31 2020-12-03 日立オートモティブシステムズ株式会社 半導体装置、および半導体装置の製造方法
WO2022118633A1 (ja) * 2020-12-03 2022-06-09 ローム株式会社 半導体装置

Similar Documents

Publication Publication Date Title
WO2019235146A1 (ja) 半導体モジュール
WO2022118633A1 (ja) 半導体装置
JP7163583B2 (ja) 半導体装置
WO2024018790A1 (ja) 半導体装置
JP7365368B2 (ja) 半導体装置
CN113748509A (zh) 半导体装置
WO2024018851A1 (ja) 半導体装置
WO2022153902A1 (ja) 半導体装置
WO2024029336A1 (ja) 半導体装置
WO2024106219A1 (ja) 半導体装置
WO2024111367A1 (ja) 半導体装置
WO2023112662A1 (ja) 半導体モジュールおよび半導体装置
WO2023199808A1 (ja) 半導体装置
WO2023120353A1 (ja) 半導体装置
WO2023162722A1 (ja) 半導体装置および半導体モジュール
WO2024116873A1 (ja) 半導体モジュール
WO2023218943A1 (ja) 半導体装置
WO2023149257A1 (ja) 半導体装置
WO2024116743A1 (ja) 半導体装置
WO2023243278A1 (ja) 半導体装置
WO2023120185A1 (ja) 半導体装置
JP2023088628A (ja) 半導体装置
WO2023162700A1 (ja) 半導体装置
WO2022259825A1 (ja) 半導体装置
WO2023053874A1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842782

Country of ref document: EP

Kind code of ref document: A1