WO2024012225A1 - 银合金及其制备方法、导电薄膜和显示器件 - Google Patents

银合金及其制备方法、导电薄膜和显示器件 Download PDF

Info

Publication number
WO2024012225A1
WO2024012225A1 PCT/CN2023/104069 CN2023104069W WO2024012225A1 WO 2024012225 A1 WO2024012225 A1 WO 2024012225A1 CN 2023104069 W CN2023104069 W CN 2023104069W WO 2024012225 A1 WO2024012225 A1 WO 2024012225A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver alloy
doping
silver
film
alloy
Prior art date
Application number
PCT/CN2023/104069
Other languages
English (en)
French (fr)
Inventor
杨智唤
鄢展圣
刘宇
侯庆龙
陈建平
吴荣桢
张科
陈霖
Original Assignee
华为技术有限公司
福建阿石创新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 福建阿石创新材料股份有限公司 filed Critical 华为技术有限公司
Publication of WO2024012225A1 publication Critical patent/WO2024012225A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes

Definitions

  • the present application relates to the field of optoelectronic devices, specifically to a silver alloy and its preparation method, conductive film and display device.
  • OLED Organic light emitting diode
  • OLED is a light emitting diode based on organic semiconductor materials. OLED can not only be used as a display device due to its advantages of all-solid state, active light emitting, high contrast, ultra-thin, low power consumption, no viewing angle restrictions, fast response, wide operating temperature range, easy implementation of flexibility and large area, low power consumption, etc. , can also be used in the lighting field.
  • the basic structure of OLED is usually a sandwich structure in which an organic semiconductor layer is sandwiched between two electrodes.
  • the positive electrode is often made of thin and transparent indium tin oxide (ITO) with semiconductor properties
  • the negative electrode is usually made of low-carbon indium tin oxide (ITO).
  • ITO indium tin oxide
  • the light-emitting mode of OLED devices can be divided into bottom-emitting and top-emitting. Compared with the bottom-emitting mode, the top-emitting mode is more conducive to improving the luminous brightness.
  • the work function and reflectivity of the anode material need to be improved. Pure silver films have high reflectivity. However, when pure silver films are used as anodes, they are prone to migration after a heating process at about 150°C, leading to problems such as agglomeration, voids, and diffusion into the ITO film. This characteristic will seriously affect the weather resistance of the device. sex and longevity. Therefore, the anode material of existing OLED devices usually uses binary silver-based alloys.
  • elements such as In, Sn, and Ga are mixed into silver-based materials to form Ag alloys.
  • the silver-based alloy is improved. Alloy film reliability.
  • the addition of other elements will cause the reflectivity of the silver alloy film to decrease, especially in the blue light band ( ⁇ 450nm).
  • the reflectivity of the Ag alloy film in the blue light band decreases by more than 5 percentage points, resulting in more than 50% of the power consumption of the display device being caused by blue light emission. Therefore, although the existing binary silver-based alloy has high reliability, its reflectivity is low, especially in the blue light band. Therefore, how to obtain a silver alloy material that has both high reliability and high reflectivity in the blue light band is of great significance for improving the efficiency of display devices.
  • This application provides a silver alloy and its preparation method, conductive film and display device to improve the reflectivity of the display device anode in the blue light band, reduce the energy consumption of the display device, and improve the efficiency of the display device.
  • the application provides a silver alloy, which includes silver, a first doping substance and a second doping substance, the first doping substance being selected from the group consisting of ruthenium, palladium, tin, lithium, sodium, and potassium.
  • the second doping material is zinc; wherein, in terms of atomic percentage, the content of the first doping material is 0.01% to 1.3%, the content of the second doping material is 0.01% to 1.3%, and the content of the first doping material is 0.01% to 1.3%.
  • the total content of impurity substances and second doping substances is 0.02% to 1.6%.
  • the silver alloy of the present application can maintain high reliability and oxidation resistance of the Ag-based alloy by doping the first doping substance in the silver. At the same time, by doping a small amount of the second doping substance, namely zinc element, The unique property of improving the reflectivity of Ag-based alloys in the blue light band can be achieved.
  • the reflectivity of the silver alloy in the 400-500nm blue light band is increased by more than 0.5 percentage points. Therefore, the silver alloy provided by this application not only has the excellent electrical conductivity, thermal conductivity and reflectivity of silver, but also has the enhanced strength, hardness and creep resistance after alloying, so that the silver alloy has better performance under high temperature and high humidity conditions. It has high corrosion resistance and has higher reflectivity in the blue light band than other silver alloys.
  • Using the silver alloy of the present application as a display device can improve device energy consumption.
  • the content of the first doping substance is 0.15% to 1%, preferably 0.15% to 0.5% in terms of atomic number percentage.
  • the content of the second doping substance is 0.15% to 1%, preferably 0.15% to 0.5% in terms of atomic number percentage.
  • the average particle size of the crystal grains in the silver alloy is less than 150 ⁇ m, preferably 1 to 100 ⁇ m, and further preferably 5 to 80 ⁇ m.
  • the doped first doping substance and the second doping substance can cause lattice distortion in the area near the doping point, which can easily lead to the formation of grain boundaries, so that the size of the silver alloy grains becomes smaller and the number becomes smaller. more, and the grain distribution will be more uniform. Therefore, the grain size of silver alloy is smaller than that of pure silver.
  • this silver alloy as a sputtering target for forming thin film devices, the sputtering phenomenon can be suppressed, and the probability of stains on the glass substrate during sputtering can be reduced. Improve the production yield of OLED device panels.
  • this application also provides a method for preparing the above-mentioned silver alloy, which includes the following steps:
  • the ingot is heat treated, forged, cooled, cold rolled and recrystallized in sequence to obtain silver alloy.
  • the preparation method of the silver alloy provided by this application improves the plasticity of the silver alloy through heat treatment, improves the structure of the silver alloy through forging, and improves the mechanical properties and physical properties of the silver alloy; and transforms the grains in the silver alloy into equal size through recrystallization treatment.
  • the axis grains reduce the resistivity of the silver alloy and eliminate the internal stress in the silver alloy.
  • the silver alloy prepared by the preparation method of the present application has high corrosion resistance under high temperature conditions, and can reduce the formation of island structures in the silver alloy under high temperature conditions, thereby improving its durability.
  • the heat treatment temperature is 600 to 850°C, and the heat treatment time is 1 to 2 hours.
  • the forging temperature is 500-600°C, and the total deformation amount of forging is 45-65%.
  • After forging, it can be cooled to room temperature for cold rolling, where the cooling rate can be 200 to 1000°C/min.
  • the temperature of cold rolling is the temperature after cooling.
  • Cold rolling can be multi-pass rolling.
  • the reduction rate of each pass in multi-pass rolling is independently 15 to 30%.
  • the total reduction of multi-pass rolling is The rate can be 50 ⁇ 65%.
  • the temperature of the recrystallization treatment can be 350 to 500°C, and the time can be 1.8 to 2.2 hours.
  • the data in each of the above possible implementations of this application such as the content of the first doping material, the content of the second doping material, the average particle size of the crystal grains in the silver alloy, reflectivity, temperature, time and other data, At the time of measurement, any value within the engineering measurement error range should be understood to be within the range defined by this application.
  • the present application provides a conductive film, which includes a silver alloy layer and transparent conductive films disposed on both sides of the silver alloy layer.
  • the silver alloy layer is formed by using the silver alloy of the first aspect of the present application.
  • the present application provides a display device.
  • the display device includes a cathode layer, an electron injection layer, a light-emitting layer, a hole injection layer, an anode layer and a substrate layer that are stacked in sequence.
  • the anode layer includes the conductive layer of the third aspect. film.
  • the display device of the present application uses the conductive film of the third aspect of the present application as the anode, the display device can have lower energy consumption when the silver alloy of the present application has high reflectivity in the blue light band.
  • Figure 1 is a schematic structural diagram of an OLED device provided by an embodiment of the present application.
  • Figure 2 is a crystal phase diagram of the silver alloy of alloy embodiment 2-1;
  • Figure 3 is a metallographic diagram of silver in Comparative Example 9;
  • Figure 4 is a reflectance comparison chart between film 2-1 and comparison film 9;
  • Figure 5 is a comparison chart of the reflectance of film 2-1 and comparison film 2-1;
  • Figure 6 is a reflectance ratio chart of film 2-1 and comparison film 2-1.
  • Display devices taking OLED devices as an example, their basic structure is usually a sandwich structure in which an organic semiconductor layer is sandwiched between two electrodes.
  • Figure 1 is a schematic structural diagram of an OLED device. As shown in Figure 1, the OLED device It may include a stacked cathode 11, an anode 12, an organic semiconductor layer 13 disposed between the cathode 11 and the anode 12, and a substrate layer 14. Among them, the anode 12 and the substrate layer 14 are arranged in close contact.
  • the anode 12 is often made of thin and transparent indium tin oxide with semiconductor characteristics, and the cathode 11 is usually made of a metal with a low work function; when an external force is applied between the anode 12 and the cathode 11 When the voltage is applied, excitons are generated in the organic semiconductor layer 13 and emit light.
  • the organic semiconductor layer 13 usually includes multiple layers, such as a hole injection layer 131, a hole transport layer 132, a light emitting layer 133, an electron transport layer 134 and an electron injection layer 135.
  • Existing anode materials usually use binary silver alloy films as electrodes.
  • the reflectivity of binary silver alloy films in the blue light band is 5 ⁇ lower than the reflectance of green light (550nm) and red light (650nm). 10%, causing the power consumption in the blue light band to account for more than 50% of OLED display devices. Therefore, how to improve the reflectivity of the blue light band is of great significance to reducing the power consumption of OLED display devices.
  • this application provides a silver alloy for electrodes.
  • the silver alloy includes silver, a first doping material and a second doping material.
  • the first doping material and the second doping material The substances are different, therefore, the silver alloy is at least a ternary alloy material.
  • the first doping material includes elements that can form a uniform alloy with silver at a melting temperature of 1400° C. or less, and the first doping material does not include zinc.
  • the first doping substance is selected from the group consisting of ruthenium, palladium, tin, lithium, sodium, potassium, rubidium, cesium, francium, magnesium, calcium, strontium, barium, radium, cadmium, aluminum, gallium, antimony, selenium, tellurium , polonium, astatine, lanthanum, cerium, praseodymium, neodymium, promethium and samarium.
  • the content of the first doping substance in the silver alloy is 0.01% to 1.3% in terms of atomic percentage, preferably 0.1% to 1%, and further preferably 0.15% to 0.5%.
  • the doping amount of the first doping substance in the silver alloy can be, for example, 0.01%, 0.05%, 0.1%, 0.12%, 0.15%, 0.17%, 0.2%, 0.22%, 0.25%, 0.28 %, 0.3%, 0.35%, 0.38%, 0.40%, 0.42%, 0.45%, 0.47%, 0.5%, 0.52%, 0.55%, 0.58%, 0.6%, 0.62%, 0.65%, 0.68%, 0.7%, 0.72%, 0.75%, 0.77%, 0.8%, 0.9%, 1%, 1.2%.
  • the second doping material is zinc.
  • the content of the second doping substance in the silver alloy is 0.01% to 1.3%, preferably 0.15% to 1%, and further preferably 0.15% to 0.5%.
  • the doping amount of Zn in silver alloys can be, for example, 0.01%, 0.05%, 0.1%, 0.12%, 0.15%, 0.17%, 0.2%, 0.22%, 0.25%, 0.28%, 0.3% , 0.35%, 0.38%, 0.40%, 0.42%, 0.45%, 0.47%, 0.5%, 0.52%, 0.55%, 0.58%, 0.6%, 0.62%, 0.65%, 0.68%, 0.7%, 0.72%, 0.75 %, 0.77%, 0.8%, 0.9%, 1%, 1.2%.
  • the zinc element is easily oxidized, and the alloy formed by doping it alone has poor stability. Doping it together with the first doping substance is beneficial to reducing the usage of zinc element and reducing its adverse effects.
  • the total content of the first doping material and the second doping material is 0.02% to 1.6%.
  • the balance may include silver as well as unavoidable impurities.
  • the total content of the first doping material and the second doping material is preferably 0.3% to 1.3%, and more preferably 0.3% to 0.8%.
  • the total doping amount of the first doping substance and the second doping substance may be, for example, 0.02%, 0.05%, 0.1%, 0.12%, 0.15%, 0.17%, 0.2%, 0.22%, 0.25% , 0.28%, 0.3%, 0.35%, 0.38%, 0.40%, 0.42%, 0.45%, 0.47%, 0.5%, 0.52%, 0.55%, 0.58%, 0.6%, 0.62%, 0.65%, 0.68%, 0.7 %, 0.72%, 0.75%, 0.77%, 0.8%, 0.9%, 1%, 1.2%, 1.3%, 1.5% or 1.6%.
  • unavoidable impurities are irremovable impurities introduced into the silver alloy during the preparation process of raw materials and the preparation process of the silver alloy itself.
  • the average particle size of the crystal grains in the silver alloy is less than 150 ⁇ m, preferably 1 to 100 ⁇ m, and further preferably 5 to 80 ⁇ m.
  • the occurrence of ejection phenomena can be suppressed.
  • the silver alloy provided by the embodiments of the present application not only has the excellent electrical conductivity, thermal conductivity and reflectivity of silver, but also has enhanced strength, hardness and creep resistance after alloying, so that the silver alloy has higher performance under high temperature and high humidity conditions. It has excellent corrosion resistance and has higher reflectivity in the blue light band than other silver alloys.
  • the ingot is sequentially subjected to heat treatment, forging, cooling, cold rolling and recrystallization to obtain a silver alloy.
  • the silver source can be silver element
  • the first doping source can be ruthenium element, palladium element, tin element, lithium element, sodium element, potassium element, rubidium element, cesium element, francium element, magnesium element, calcium element, strontium Elemental barium, elemental radium, elemental cadmium, elemental aluminum, elemental gallium, elemental antimony, elemental selenium, elemental tellurium, elemental polonium, elemental astatine, elemental lanthanum, elemental cerium, elemental praseodymium, elemental neodymium, elemental promethium or elemental samarium of at least one.
  • the second doping source may be zinc elemental.
  • the melting may be vacuum melting.
  • the embodiments of the present application have no special requirements for vacuum melting devices.
  • a vacuum induction melting furnace may be used.
  • the vacuum degree of vacuum melting can be 1 ⁇ 10 -4 ⁇ 1 ⁇ 10 -2 Torr, preferably 1 ⁇ 10 -3 ⁇ 8 ⁇ 10 -3 Torr;
  • the temperature of vacuum melting can be 1100 ⁇ 1300°C, preferably 1150 ⁇ 1200°C. It can be understood that the preparation method of the embodiment of the present application has no special limit on the smelting time, as long as the raw materials can be completely melted.
  • the casting may be casting, and the mold used for casting may be cast iron. It can be understood that the embodiment of the present application does not have special requirements on the size and shape of the mold, and it can be set according to the size and shape of the required ingot.
  • the heat treatment temperature is 600-850°C, preferably 700-800°C; the heat treatment time is 1-2h, preferably 1.5-1.8h.
  • the composition of the obtained silver alloy can be made more uniform.
  • the heat treatment temperature is typically but not limited to 600°C, 620°C, 640°C, 660°C, 680°C, 700°C, 720°C, 740°C, 760°C, 780°C, 800°C, 820°C or 850°C ;
  • the time of heat treatment is typically but not limited to 1h, 1.1h, 1.2h, 1.3h, 1.4h, 1.5h, 1.6h, 1.7h, 1.8h, 1.9h or 2.0h.
  • step S12 during the forging process, the total deformation amount is controlled at 45 to 65%, preferably 50 to 60%.
  • the forged piece is cooled to room temperature, such as 20-30°C. Cooling can be quenching, and the quenching medium can be water.
  • the cooling rate during the cooling process may be 200-1000°C/min, preferably 500-800°C/min.
  • the cooled forging can be cold rolled, and the cold rolling temperature can be the temperature of the forging after cooling.
  • the cold rolling can be multi-pass rolling.
  • the reduction rate of each pass is independently 15 to 30%, preferably 20 to 25%; the total reduction of the multi-pass rolling is The rate is preferably 70 to 85%, preferably 75 to 80%.
  • the rolling directions of two adjacent passes of cold rolling can differ by, for example, 45° to 90°, preferably 50° to 80°.
  • the cold rolled parts can be recrystallized, where the recrystallization temperature can be 350-500°C, preferably 400-450°C; the recrystallization time can be 1.8-2.2h, preferably 2h.
  • the conductive film may include a silver alloy layer and transparent conductive films disposed on both sides of the silver alloy layer, wherein the silver alloy layer is formed using the silver alloy preparation method of the embodiment of the present application.
  • the thickness of the silver alloy layer can be 98-102nm, more preferably 100nm;
  • the transparent conductive film can be an indium tin oxide film, and the thickness of the indium tin oxide film can be 9.8-10.2nm, preferably 10nm.
  • the conductive thin film in the embodiment of the present application can be prepared by sputtering coating method.
  • the silver alloy in the embodiment of the present application can be used as a sputtering target.
  • a silver alloy layer can be obtained by sputtering on the surface of the transparent conductive film layer, and then another layer of transparent conductive film can be sputtered on the surface of the silver alloy layer.
  • the gas for sputtering coating can be argon. During the sputtering process, the flow rate of argon can be 15 to 30 sccm.
  • the power of the power supply for sputtering coating can be 152 to 250W.
  • the sputtering chamber for sputtering coating The vacuum degree of the body can be 3 to 8 mTorr. It should be noted that this application has no special limitations on the device and method of sputtering coating, and conventional devices and methods in this field can be used.
  • the conductive film in the embodiment of the present application can be used as an electrode of a display device, such as an OLED device, for example, as an anode of an OLED device.
  • the OLED device may include a cathode 11, an electron injection layer 135, a light emitting layer 133, a hole injection layer 131, an anode 12 and a substrate layer 14 that are stacked in sequence.
  • the anode 12 is formed using the conductive film according to the embodiment of the present application.
  • One transparent conductive film layer is located on the surface of the silver alloy layer facing the hole injection layer, and the other transparent conductive film layer is located on the surface of the silver alloy layer facing the substrate. one side of the layer.
  • This embodiment is a silver alloy, which is prepared by the following method:
  • Elemental silver, elemental zinc and elemental ruthenium (the atomic percentages of zinc and ruthenium are 0.41% and 0.17% respectively) are placed in a vacuum induction melting furnace at a vacuum degree of 1 ⁇ 10 -3 and a temperature of 1000 to 1400°C. Carry out vacuum smelting under certain conditions, pour the melt obtained by smelting into a cast iron mold, cool and solidify, and then take it out to obtain an ingot;
  • the obtained ingot is forged at 500-600°C (deformation is 45-60%); the hot-forged product is quenched in water at 500°C/min.
  • the cooling rate is cooled to 25°C; the cooled alloy is subjected to multi-pass cold rolling (the reduction rate of each pass of cold rolling is 20%, the total reduction rate is 78%, and the two adjacent passes of cold rolling are The rolling direction differs by 50°); the cold-rolled alloy was recrystallized at 400°C for 2 hours to obtain a silver alloy, which was recorded as alloy 1-1.
  • the silver alloy was prepared according to the method of Example 1, except that the raw materials were different. See Table 1 for the specific raw material composition. Referring to the above method, the mass percentages of zinc and ruthenium were changed to obtain Comparative Alloy 1-1 and Comparative Alloy 1-2. The specific compositions of Comparative Alloy 1-1 and Comparative Alloy 1-2 are shown in Table 1.
  • a silver alloy was prepared according to the method of Example 1, wherein the raw material composition for forming the alloy is elemental silver, elemental zinc and elemental tin. See Table 1 for the specific raw material composition. Among them, this embodiment corresponds to three alloys with different compositions, and the obtained alloys are respectively designated as alloy 2-1, alloy 2-2 and alloy 2-3.
  • the silver alloy was prepared according to the method of Example 1, except that the raw materials were different. See Table 1 for the specific raw material composition. Refer to the above method, change the mass percentage of zinc and tin, and obtain Comparative Alloy 2-1 and Comparative Alloy 2-2. The specific compositions of Comparative Alloy 2-1 and Comparative Alloy 2-2 are shown in Table 1.
  • a silver alloy was prepared according to the method of Example 1, wherein the raw material composition to form the alloy is elemental silver, elemental zinc and elemental strontium. See Table 1 for the specific raw material composition. Among them, this embodiment corresponds to three alloys with different compositions, and the obtained alloys are respectively recorded as alloy 3-1, alloy 3-2 and alloy 3-3.
  • the silver alloy was prepared according to the method of Example 1, except that the raw materials were different. See Table 1 for the specific raw material composition. Referring to the above method, the mass percentages of zinc and strontium were changed to obtain comparative alloy 3-1 and comparative alloy 3-2. The specific compositions of Comparative Alloy 3-1 and Comparative Alloy 3-2 are shown in Table 1.
  • the silver alloy was prepared according to the method of Example 1, except that the raw materials were different. See Table 1 for the specific raw material composition.
  • the silver alloy was prepared according to the method of Example 1, except that the raw materials were different. See Table 1 for the specific raw material composition.
  • This comparative example is a pure silver material with a grain size of 30.6 ⁇ m.
  • Table 1 Note: In Table 1, the content of each element is mass percentage.
  • Figure 2 is the crystallographic phase diagram of the silver alloy of Alloy Example 2-1.
  • Figure 3 is the metallographic phase diagram of the silver of Comparative Example 9. Comparing Figures 2 and 3, it can be seen that by adding Zn and Sn, grain refinement can be achieved. The effect of particles, thus suppressing the occurrence of sputtering during the sputtering process. In addition, it can be seen from the data in Table 1 that the grain sizes of alloy examples 1 to 8 are significantly smaller than the grain sizes of pure silver materials.
  • a silver alloy thin film was formed by sputtering on an indium tin oxide thin film layer with a thickness of 10 nm.
  • the gas used for sputtering coating is argon with a flow rate of 20 sccm, the power of the power supply is 200W, and the vacuum degree of the sputtering chamber is 5 mTorr; then, sputtering coating technology is used to prepare another layer on the other surface of the silver alloy film.
  • An indium tin oxide film (thickness 10nm) was layered to obtain a silver alloy composite film; wherein the thickness of the silver alloy composite film was 100nm.
  • the films obtained corresponding to Alloy Example 1 are respectively recorded as film 1-1, film 1-2, and film 1-3;
  • the films obtained corresponding to Alloy Example 2 are respectively recorded as film 2-1, film 2-2, and film 2-3;
  • the films obtained corresponding to alloy comparative example 2 are respectively recorded as comparative films 2-1;
  • the films obtained corresponding to Alloy Example 3 are respectively recorded as film 3-1, film 3-2, and film 3-3;
  • Comparative Film 9 The pure silver film formed of the pure silver material corresponding to Comparative Example 9 is designated as Comparative Film 9.
  • high-temperature aging refers to high-temperature and high-humidity aging.
  • the specific conditions are 7 ⁇ 24h at a temperature of 85°C and a humidity of 85%.
  • Figure 4 is a reflectivity comparison chart between film 2-1 and comparison film 9. The ordinate represents the reflectivity ratio before and after high temperature aging.
  • the reflectivity of the embodiment of the present application After high-temperature aging, the decline in reflectivity of the silver alloy film is alleviated, especially the reflectivity in the 400-500nm range is significantly improved. This shows that adding a certain amount of zinc and tin can effectively improve the reflectivity of the silver alloy.
  • the aging resistance enables the silver alloy to maintain good blue light reflectivity after high temperature aging.
  • Figure 5 is a reflectance comparison chart of film 2-1 and comparison film 2-1.
  • Figure 6 is a reflectance ratio chart of film 2-1 and comparison film 2-1. Compared with the silver alloy of comparison film 2-1, this The applied silver alloy can significantly improve the reflectivity of the silver alloy film in the 400-500nm range by adding a certain amount of zinc.
  • the reflectivity of the anode in the blue light band can significantly improve the reflectivity of the anode in the blue light band, thereby significantly improving the luminous efficiency of the display device and reducing the luminous efficiency of the display device. energy consumption.
  • the attenuation ratio of the reflectivity of the film in the blue light band can be further reduced, and thus can be further improved.
  • the weather resistance of the anode reduces the energy consumption of the display device and improves the luminous efficiency of the display device.
  • the reflectivity of each film in the embodiment of the present application in the green light band that is, the ⁇ 550nm band
  • the attenuation amplitude of each film in the embodiment of the present application is limited in the green light band, indicating that the addition of the first doping material and the second doping material in the silver alloy of the embodiment of the present application has a negative impact on the green light.
  • the reflectivity of the band has a small impact, but in the blue light band, the addition of the first doping material and the second doping material can have a greater impact on the reflectivity of the alloy film. Therefore, it can be seen from the above comparison , the addition of the first doping material and the second doping material in the embodiments of the present application can better improve the reflection performance of the silver alloy film in the blue light band.
  • the reflectivity of films 4-8 in Table 2 is also better than that of comparative films 4-8 in each band range, especially the reflectivity in the blue light band has also been greatly improved. It can be seen from the relevant test data of the films of each example and the comparative film of the corresponding system in Table 2 that compared with the films of each example of the present application, the reflectivity of the comparative film without adding Zn in the non-blue light film is the same as that of the corresponding film.
  • the reflectivity of the films of the embodiments is not much different.
  • the reflectivity of Film 4 and Comparative Film 4 in the non-blue light band basically differs by about 0.5%, while the reflectivity in the blue light band differs by more than 1%.
  • the reflectivity of the surface of each embodiment maintained a small attenuation amplitude after the reliability test, showing excellent weather resistance compared to pure silver materials.
  • the silver alloys in the embodiments of the present application can have excellent comprehensive properties and can be used in display devices to reduce the energy consumption of the display devices and improve the luminous efficiency and service life of the display devices.

Abstract

本申请提供了一种银合金及其制备方法、导电薄膜和显示器件。该银合金包括银以及第一掺杂物质和第二掺杂物质,第一掺杂物质选自钌、钯、锡、锂、钠、钾、铷、铯、钫、镁、钙、锶、钡、镭、镉、铝、镓、锑、硒、碲、钋、砹、镧、铈、镨、钕、钷和钐中的至少一种,第二掺杂物质为锌;其中,以原子数百分比计,第一掺杂物质的含量为0.01%~1.3%,第二掺杂物质的含量为0.01%~1.3%,且第一掺杂物质和第二掺杂物质的总含量为0.02%~1.6%。利用该银合金用作显示器件的电极,具有良好的可靠性,同时在蓝光波段具有较高的反射率。

Description

银合金及其制备方法、导电薄膜和显示器件
相关申请的交叉引用
本申请要求在2022年07月12日提交中国专利局、申请号为202210817180.7、申请名称为“银合金及其制备方法、导电薄膜和显示器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电器件领域,具体涉及一种银合金及其制备方法、导电薄膜和显示器件。
背景技术
有机发光二极管(organic light emitting diode,OLED),是基于有机半导体材料的发光二极管。OLED由于具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、工作温度范围宽、易于实现柔性和大面积、功耗低等优点,不但可以作为显示器件,还可应用于照明领域。OLED的基本结构通常是一种有机半导体层夹在两个电极之间的三明治结构,其中正极常采用薄而透明的具有半导体特性的铟锡氧化物(indium tin oxide,ITO),负极通常采用低功函数的金属;当正负极外加电压时,有机半导体层内就会产生激子并发光。
OLED器件的发光方式可分为底部发光和顶部发光,相对于底部发光方式,顶部发光方式更有利于提高发光亮度。为了能进一步提升顶部发光型OLED器件的发光效率,需要提高阳极材料的功函数和反射率。纯银薄膜具有较高的反射率,但是纯银薄膜作为阳极时,经过约150℃的加热工艺后易发生迁移、导致凝聚、空洞以及向ITO薄膜扩散等问题,该特性会严重影响器件的耐候性和寿命。因此,现有的OLED器件的阳极材料通常采用二元银基合金,比如在银基材料中掺入In、Sn、Ga等元素形成Ag合金,通过固溶强化和细晶强化等效应,提高银合金薄膜的可靠性。但是其它元素的加入又会使得银合金薄膜的反射率下降,尤其在蓝光波段(~450nm)反射率的降幅更为明显。相对于绿光波段(~550nm)和红光波段(~650nm),Ag合金薄膜在蓝光波段的反射率下降5个百分点以上,导致了显示器件的50%以上的耗电由蓝光发光引起。因此,现有的二元银基合金,其可靠性虽高,但其反射率较低,尤其在蓝光波段的反射率较低。由此,如何获得同时具有高可靠性、并且在蓝光波段具有高反射率银合金材料,对于提高显示器件效率有重要意义。
发明内容
本申请提供了一种银合金及其制备方法、导电薄膜和显示器件,以提高显示器件阳极在蓝光波段的反射率,降低显示器件的能耗,提高显示器件的效率。
第一方面,本申请提供一种银合金,该银合金包括银以及第一掺杂物质和第二掺杂物质,所述第一掺杂物质选自钌、钯、锡、锂、钠、钾、铷、铯、钫、镁、钙、锶、钡、镭、镉、铝、镓、锑、硒、碲、钋、砹、镧、铈、镨、钕、钷和钐中的至少一种,所述第二掺杂物质为锌;其中,以原子数百分比计,第一掺杂物质的含量为0.01%~1.3%,第二掺杂物质的含量为0.01%~1.3%,且第一掺杂物质和第二掺杂物质的总含量为0.02%~1.6%。
本申请的银合金,通过在银中掺杂第一掺杂物质,可使Ag基合金保持较高的可靠性和抗氧化性,同时,通过掺杂少量第二掺杂物质,即锌元素,可实现提高Ag基合金在蓝光波段反射率的独特性质,该银合金在400~500nm蓝光波段的反射率提高0.5个百分点以上。由此,本申请提供的银合金既具有银优异的导电性、导热性和反射率,又具有合金化后增强的强度、硬度和抗蠕变,从而使银合金在高温高湿条件下具有较高的耐蚀性,同时相较于其他银合金,在蓝光波段具有较高的反射率,利用本申请的银合金作为显示器件,可以改善器件能耗。
在一种可选的实现方式中,以原子数百分比计,第一掺杂物质的含量为0.15%~1%,优选为0.15%~0.5%。
在一种可选的实现方式中,以原子数百分比计,第二掺杂物质的含量为0.15%~1%,优选为0.15%~0.5%。通过优化第二掺杂物质的含量,可进一步提高银合金耐候性能的同时,使银合金保持较 高的反射率和导电率。其中,由于对于经过高温高湿环境后,银合金在蓝光波段的反射率的下降趋势得以缓解。
在一种可选的实现方式中,银合金中的晶粒的平均粒径小于150μm,优选为1~100μm,进一步优选为5~80μm。相比纯银材料,掺入的第一掺杂物质和第二掺杂物质可引起掺杂点位附近区域的晶格畸变,易导致晶界形成,从而银合金晶粒尺寸变小而数量变多,同时晶粒分布会更加均匀。因此,银合金晶粒尺寸相比纯银尺寸减小,利用该银合金作为形成薄膜器件的溅射靶材时,可抑制出现喷溅现象,在溅射时,降低玻璃基板出现污点的概率,提高OLED器件面板的生产良率。
第二方面,本申请还提供一种上述银合金的制备方法,包括以下步骤:
将银源、第一掺杂源和第二掺杂源进行熔炼和浇铸,得到铸锭;其中,第一掺杂源中含有第一掺杂物质,第二掺杂源含有第二掺杂物质;
铸锭依次经热处理、锻造、冷却、冷轧和再结晶处理,得到银合金。
本申请提供的银合金的制备方法,经过热处理提高银合金的塑性,经过锻造改善银合金的组织,提高银合金的力学性能和物理性能;通过再结晶处理使银合金中的晶粒转变为等轴晶粒,降低银合金的电阻率,消除银合金中的内应力。利用本申请的制备方法制备得到的银合金在高温条件下具有较高的耐蚀性,能够减少银合金在高温条件下形成岛状结构,进而提高其耐久性。
其中,热处理的温度为600~850℃,热处理的时间为1~2h。锻造的温度为500~600℃,锻造的总变形量为45~65%。锻造后可冷却至室温进行冷轧,其中,冷却速度可为200~1000℃/min。冷轧的温度为冷却后的温度,冷轧可为多道次轧制,多道次轧制中的每道次的压下率独立为15~30%,多道次轧制的总压下率可为50~65%。再结晶处理的温度可为350~500℃,时间可为1.8~2.2h。
其中,本申请上述各可能实现方式中的数据,例如第一掺杂物质的含量、第二掺杂物质的含量、银合金中的晶粒的平均粒径、反射率、温度、时间等数据,在测量时,工程测量误差范围内的数值均应理解为在本申请所限定的范围内。
第三方面,本申请提供一种导电薄膜,该导电薄膜包括银合金层以及设于银合金层两侧表面的透明导电薄膜,银合金层利用本申请第一方面的银合金制备形成。
该导电薄膜可以达到的技术效果,可以参照上述第一方面中的相应效果描述,这里不再重复赘述。
第四方面,本申请提供一种显示器件,该显示器件包括依次叠层设置的阴极层、电子注入层、发光层、空穴注入层、阳极层以及基板层,阳极层包括第三方面的导电薄膜。
由于本申请的显示器件利用本申请第三方面的导电薄膜作为阳极,在本申请的银合金在蓝光波段具有高反射率的情况下,该显示器件可具有更低的能耗。
附图说明
图1为本申请实施例提供的一种OLED器件的结构示意图;
图2为合金实施例2-1的银合金的晶相图;
图3为对比例9的银的金相图;
图4为薄膜2-1和对比薄膜9之间的反射率对比图;
图5为薄膜2-1和对比薄膜2-1的反射率对比图;
图6为薄膜2-1和对比薄膜2-1的反射率比值图。
附图标记:
11-阴极;12-阳极;13-有机半导体层;131-空穴注入层;132-空穴传输层;133-发光层;
134-电子传输层;135-电子注入层;14-基板层。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一 个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
显示器件,以OLED器件为例,其基本结构通常是一种有机半导体层夹在两个电极之间的三明治结构,图1为一种OLED器件的结构示意图,如图1所示,该OLED器件可包括叠层设置的阴极11、阳极12、设于阴极11与阳极12之间的有机半导体层13、以及基板层14。其中,阳极12与基板层14贴合设置,阳极12常采用薄而透明的具有半导体特性的铟锡氧化物,阴极11通常采用低功函数的金属;当在阳极12和阴极11之间施加外加电压时,有机半导体层13内就会产生激子并发光。为了获得更高性能的OLED,有机半导体层13通常包含多个层,如空穴注入层131、空穴传输层132、发光层133、电子传输层134和电子注入层135。现有阳极材料通常采用二元银合金薄膜作为电极,而二元银合金薄膜,在蓝光波段(450nm附近)的反射率相对于绿光(550nm)、红光(650nm)的反射率降低5~10%,造成蓝光波段的耗电占OLED显示器件的50%以上。因此如何提高蓝光波段的反射率对降低OLED显示器件的耗电有重要意义。
为提高阳极材料在蓝光波段的反射率,本申请提供一种用于电极的银合金,银合金包括银、第一掺杂物质和第二掺杂物质,第一掺杂物质和第二掺杂物质不同,由此,该银合金至少为三元合金材料。
其中,第一掺杂物质包括在小于等于1400℃的熔炼温度下能与银形成均匀合金的元素,且第一掺杂物质不包括锌。示例性地,第一掺杂物质选自钌、钯、锡、锂、钠、钾、铷、铯、钫、镁、钙、锶、钡、镭、镉、铝、镓、锑、硒、碲、钋、砹、镧、铈、镨、钕、钷和钐中的至少一种。
其中,以原子数百分比计,银合金中第一掺杂物质的含量为0.01%~1.3%,优选为0.1%~1%,进一步优选为0.15%~0.5%。以原子数百分比计,银合金中,第一掺杂物质的掺杂量例如可为0.01%、0.05%、0.1%、0.12%、0.15%、0.17%、0.2%、0.22%、0.25%、0.28%、0.3%、0.35%、0.38%、0.40%、0.42%、0.45%、0.47%、0.5%、0.52%、0.55%、0.58%、0.6%、0.62%、0.65%、0.68%、0.7%、0.72%、0.75%、0.77%、0.8%、0.9%、1%、1.2%。
本申请实施例中,第二掺杂物质为锌。以原子数百分比计,银合金中,第二掺杂物质的含量为0.01%~1.3%,优选为0.15%~1%,进一步优选为0.15%~0.5%。以原子数百分比计,银合金中,Zn的掺杂量例如可为0.01%、0.05%、0.1%、0.12%、0.15%、0.17%、0.2%、0.22%、0.25%、0.28%、0.3%、0.35%、0.38%、0.40%、0.42%、0.45%、0.47%、0.5%、0.52%、0.55%、0.58%、0.6%、0.62%、0.65%、0.68%、0.7%、0.72%、0.75%、0.77%、0.8%、0.9%、1%、1.2%。
其中,锌元素容易氧化,单独掺入形成的合金,其稳定性较差,和第一掺杂物质共同掺入有利于减少锌元素使用量,并降低其不利影响。
其中,第一掺杂物质和第二掺杂物质的总含量为0.02%~1.6%。余量可以包括银以及不可避免的杂质。以原子数百分比计,第一掺杂物质和第二掺杂物质的总含量优选为0.3%~1.3%,进一步优选为0.3%~0.8%。示例性地,第一掺杂物质和第二掺杂物质的总的掺杂量例如可为0.02%、0.05%、0.1%、0.12%、0.15%、0.17%、0.2%、0.22%、0.25%、0.28%、0.3%、0.35%、0.38%、0.40%、0.42%、0.45%、0.47%、0.5%、0.52%、0.55%、0.58%、0.6%、0.62%、0.65%、0.68%、0.7%、0.72%、0.75%、0.77%、0.8%、0.9%、1%、1.2%、1.3%、1.5%或1.6%。
需要说明的是,不可避免的杂质为银合金在原料的制备过程以及银合金自身的制备过高中引入的不可去除的杂质。
在一种可选的实施例中,银合金中的晶粒的平均粒径小于150μm,优选为1~100μm,进一步优选为5~80μm。具有该晶粒尺寸的银合金,作为溅射靶材时,可抑制喷射现象的发生。
本申请实施例提供的银合金既具有银优异的导电性、导热性和反射率,又具有合金化后增强的强度、硬度和抗蠕变,从而使银合金在高温高湿条件下具有较高的耐蚀性,同时相较于其他银合金,在蓝光波段具有较高的反射率。
以上对银合金的具体组成做了说明,以下将对该银合金的制备过程进行详细说明。
本申请实施例银合金的制备方法可包括如下步骤:
S11、将银源、第一掺杂源和第二掺杂源进行熔炼和浇铸,得到铸锭;其中,第一掺杂源中含有第一掺杂物质,第二掺杂源含有第二掺杂物质;
S12、铸锭依次经热处理、锻造、冷却、冷轧和再结晶处理,得到银合金。
其中,银源可为银单质,第一掺杂源可为钌单质、钯单质、锡单质、锂单质、钠单质、钾单质、铷单质、铯单质、钫单质、镁单质、钙单质、锶单质、钡单质、镭单质、镉单质、铝单质、镓单质、锑单质、硒单质、碲单质、钋单质、砹单质、镧单质、铈单质、镨单质、钕单质、钷单质或钐单质中的至少一种。第二掺杂源可为锌单质。
其中,步骤S11中,熔炼可为真空熔炼,本申请实施例对真空熔炼的装置无特殊要求,例如可采用真空感应熔炼炉。真空熔炼的真空度为可为1×10-4~1×10-2托,优选为1×10-3~8×10-3托;真空熔炼的温度可为1100~1300℃,优选为1150~1200℃。可以理解的是,本申请实施例的制备方法对熔炼的时间无特殊限定,只要能够使原料完全熔化即可。
其中,步骤S11中,铸造可为浇铸,浇铸所用的模具可为铸铁。可以理解的是,本申请实施例对模具的尺寸和形成并未特殊要求,可根据所需铸锭的尺寸和形状进行设定即可。
步骤S12中,热处理的温度为600~850℃,优选为700~800℃;热处理的时间为1~2h,优选为1.5~1.8h。利用上述热处理工艺条件,可使所得银合金的组分更均匀。其中,热处理的温度典型但非限制性地为600℃、620℃、640℃、660℃、680℃、700℃、720℃、740℃、760℃、780℃、800℃、820℃或850℃;热处理的时间典型但非限制性地为1h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h或2.0h。
步骤S12中,锻造过程中,总的变形量控制在45~65%,优选为50~60%。锻造后,将锻造件冷却至室温,例如20~30℃。冷却可为淬冷,淬冷的介质可为水。冷却过程中的冷却速率可为200~1000℃/min,优选为500~800℃/min。
冷却结束后,可对冷却后的锻造件进行冷轧处理,冷轧的温度可为锻造件冷却后的温度。其中,冷轧可为多道轧制,多道次轧制中,每道次的压下率各自独立地为15~30%,优选为20~25%;多道次轧制的总压下率优选为70~85%,优选为75~80%。其中,在多道轧制中,相邻两道次冷轧延的轧延方向例如可相差45°~90°,优选为50°~80°。
冷轧后,可对冷轧件进行再结晶处理,其中,再结晶的温度可为350~500℃,优选为400~450℃;再结晶的时间可为1.8~2.2h,优选为2h。
利用上述银合金可制备导电薄膜。在一种实施例中,导电薄膜可包括银合金层和设于银合金层两侧表面的透明导电薄膜,其中,银合金层利用本申请实施例的银合金制备形成。
其中,银合金层的厚度可为98~102nm,更优选为100nm;透明导电薄膜可为氧化铟锡薄膜,氧化铟锡薄膜的厚度可为9.8~10.2nm,优选为10nm。
本申请实施例的导电薄膜可采用溅射镀膜的方法制备。示例性地,可将本申请实施例的银合金作为溅射靶材,在透明导电薄膜层的表面进行溅射可以得到银合金层,然后再在银合金层表面溅射另外一层透明导电薄膜。作为示例性说明,溅射镀膜用气体可为氩气,溅射过程中,氩气的流量可为15~30sccm,溅射镀膜用电源的功率可为152~250W,溅射镀膜的溅镀腔体的真空度可为3~8毫托。需要说明的是,本申请对溅射镀膜的装置和方式无特殊限定,采用本领域常规的装置和方式即可。
本申请实施例的导电薄膜可用作显示器件,如OLED器件的电极,例如可作为OLED器件的阳极。
参照图1,OLED器件可包括依次叠层设置的阴极11、电子注入层135、发光层133、空穴注入层131、阳极12以及基板层14,阳极12利用本申请实施例的导电薄膜形成,该导电薄膜的两侧分别设有透明导电薄膜层,其中一个透明导电薄膜层设于银合金层的面向空穴注入层的一侧表面,另一个透明导电薄膜层设于银合金层的面向基板层的一侧表面。
以下将结合具体实施例和对比例对本申请的银合金做进一步详细说明。
合金实施例1
该实施例为一种银合金,该银合金利用以下方法制备得到:
将单质银、单质锌和单质钌(锌、钌的原子百分含量分别为0.41%、0.17%)置于真空感应熔炼炉中于真空度为1×10-3、温度为1000~1400℃的条件下进行真空熔炼,将熔炼得到的熔液倒入一铸铁模具中冷却固化后取出,得到铸锭;
将所得铸锭在650~850℃热处理1.5h后,在500~600℃下进行锻造处理(变形量为45~60%);将热锻造后的产物在水中进行淬冷,按照500℃/min的冷却速度冷却至25℃;将冷却后的合金进行多道次冷轧(每道次冷轧的压下率为20%,总压下率为78%,相邻两道次冷轧延的轧延方向相差50°);将冷轧后合金在400℃再结晶2h,得到银合金,记为合金1-1。
参照上述方法,更改其中的锌、钌的质量百分含量,获得合金1-2和合金1-3。合金1-2以及合金1-3的具体组成参见表1。
合金对比例1
按照实施例1的方法制备银合金,不同之处在于原料不同,具体原料组成参见表1。参照上述方法,更改其中的锌、钌的质量百分含量,获得对比合金1-1和对比合金1-2。对比合金1-1以及对比合金1-2的具体组成参见表1。
合金实施例2
按照实施例1的方法制备银合金,其中,形成合金的原料组成为单质银、单质锌和单质锡,具体原料组成参见表1。其中,该实施例对应三种不同组成的合金,所得合金分别记为合金2-1、合金2-2和合金2-3。
合金对比例2
按照实施例1的方法制备银合金,不同之处在于原料不同,具体原料组成参见表1。参照上述方法,更改其中的锌、锡的质量百分含量,获得对比合金2-1和对比合金2-2。对比合金2-1以及对比合金2-2的具体组成参见表1。
合金实施例3
按照实施例1的方法制备银合金,其中,形成合金的原料组成为单质银、单质锌和单质锶,具体原料组成参见表1。其中,该实施例对应三种不同组成的合金,所得合金分别记为合金3-1、合金3-2和合金3-3。
合金对比例3
按照实施例1的方法制备银合金,不同之处在于原料不同,具体原料组成参见表1。参照上述方法,更改其中的锌、锶的质量百分含量,获得对比合金3-1和对比合金3-2。对比合金3-1以及对比合金3-2的具体组成参见表1。
合金实施例4~8
按照实施例1的方法制备银合金,不同之处在于原料不同,具体原料组成参见表1。
合金对比例2~8
按照实施例1的方法制备银合金,不同之处在于原料不同,具体原料组成参见表1。
对比例9
该对比例为纯银材料,其晶粒大小为30.6μm。
表1


注:表1中,各元素的含量为质量百分含量。
图2为合金实施例2-1的银合金的晶相图,图3为对比例9的银的金相图,由图2和图3对比可知,通过添加Zn以及Sn,可达到细化晶粒的效果,由此,在溅射过程中可抑制喷溅现象的发生。另外,由表1中的数据可以看出,合金实施例1-8的晶粒尺寸均显著小于纯银材料的晶粒。
薄膜实施例
分别以实施例1-8以及对比例1-9对应的各合金以及对比合金为靶材,在厚度为10nm的氧化铟锡薄膜层上溅射镀膜形成银合金薄膜。其中,溅射镀膜用气体为流量为20sccm的氩气,电源的功率为200W,溅镀腔体的真空度为5毫托;然后用溅射镀膜技术在银合金薄膜的另一表面再制备一层氧化铟锡薄膜(厚度10nm),得到银合金复合薄膜;其中,银合金复合薄膜的厚度为100nm。
合金实施例1所对应获得的薄膜分别记为薄膜1-1、薄膜1-2、薄膜1-3;
合金对比例1所对应获得的薄膜分别记为对比薄膜1-1、对比薄膜1-2;
合金实施例2所对应获得的薄膜分别记为薄膜2-1、薄膜2-2、薄膜2-3;
合金对比例2所对应获得的薄膜分别记为对比薄膜2-1;
合金实施例3所对应获得的薄膜分别记为薄膜3-1、薄膜3-2、薄膜3-3;
合金对比例3所对应获得的薄膜分别记为对比薄膜3-1、对比薄膜3-2;
合金实施例4至合金实施例8所对应获得的薄膜分别记为薄膜4、薄膜5、薄膜6、薄膜7、薄膜8;
合金对比例4至合金对比例8所对应获得的薄膜分别记为对比薄膜4、对比薄膜5、对比薄膜6、对比薄膜7、对比薄膜8。
对比例9所对应的纯银材料形成的纯银薄膜记为对比薄膜9。
银合金薄膜测试1
分别测试对应的银合金薄膜的高温老化前后的反射率及薄膜对比例9的纯银薄膜的高温老化前后的反射率。其中,高温老化为高温高湿老化,具体条件为85℃温度、85%湿度条件下放置7╳24h。
图4为薄膜2-1和对比薄膜9之间的反射率对比图,其中,纵坐标表示高温老化前后的反射率比值,如图4所示,相比于纯银薄膜,本申请实施例的银合金薄膜在经过高温老化后,反射率下降的趋势得以缓解,尤其在400-500nm范围内的反射率得到明显的改善,这说明,通过添加一定量的锌和锡,可有效改善银合金的耐老化性能,使银合金在经过高温老化后,仍能保持较好的蓝光反射率。
图5为薄膜2-1和对比薄膜2-1的反射率对比图,图6为薄膜2-1和对比薄膜2-1的反射率比值图,相对于对比薄膜2-1的银合金,本申请的银合金通过添加一定量的锌,可显著提升银合金薄膜在400-500nm范围内的反射率。
按照上述方法分别测试不同薄膜和对比薄膜在不同波长范围内的反射率,以及可靠性实验(高温高湿实验)后的反射率,测试结果列于表2。
表2

由表2中的薄膜1-1至薄膜1-3以及对比薄膜1-1至对比薄膜1-2的相关测试数据可以看出,在Ag-Zn-Ru体系中,薄膜1-1至薄膜1-3在400~500nm反射率,比对比薄膜1-1的反射率高0.5%百分点以上,显示领域,银合金材料反射率数值变化0.5%,已是很大程度的改善;同时,相对于只掺杂Zn的Ag-Zn体系的对比薄膜1-2,薄膜1-1至薄膜1-3的耐候性显著提升,反射率在可靠性实验后的衰减比例从-1.13%缩小至-0.23%~-0.52%,反射率衰减比例减少0.5%以上。由此,利用本申请实施例的银合金作为显示器件的阳极,具有很好的耐候性,同时,可显著提高阳极在蓝光波段的反射率,进而可显著提升显示器件发光效率,降低显示器件的能耗。另外,从该组对比数据中可以看出,当第一掺杂物质和第二掺杂物质分别在其优选范围内时,可进一步降低薄膜在蓝光波段的反射率的衰减比例,进而可进一步提高阳极的耐候性,降低显示器件的能耗,提高显示器件的发光效率。此外,从该组对比数据中还可以看出,相对于各对比薄膜,本申请实施例的各薄膜在绿光波段,即~550nm波段的反射率也有相对应的提升,但是在耐候性方面,本申请实施例的各薄膜,在经过可靠性实验后,其在绿光波段衰减幅度有限,说明本申请实施例的银合金中第一掺杂物质和第二掺杂物质的加入,对绿光波段的反射率的影响较小,而在蓝光波段,第一掺杂物质和第二掺杂物质的加入,可对合金的薄膜的反射率产生较大的影响,因此,从上述对比可以看出,本申请实施例中第一掺杂物质和第二掺杂物质的加入可以更好地改善银合金薄膜在蓝光波段的反射性能。
由表2,在Ag-Zn-Sn体系中,即薄膜2-1至薄膜2-3以及对比薄膜2-1至对比薄膜1-2的相关测试数据,可得到与Ag-Zn-Ru体系相同的结论;另外,从在Ag-Zn-Sr体系中,即薄膜3-1至薄膜3-3以及对比薄膜3-1至对比薄膜1-2的相关测试数据,可得到与Ag-Zn-Ru体系相同的结论。
另外,由表2中薄膜4-8在各波段范围内的反射率也要优于对比薄膜4-8,尤其蓝光波段的反射率也有较大幅度的提升。由表2中的各实施例薄膜和与其相对应体系的对比薄膜的相关测试数据可知,相对于本申请各实施例的薄膜,未添加Zn的对比薄膜,其在非蓝光薄膜的反射率与相应实施例的薄膜的反射率相差不大,例如薄膜4与对比薄膜4在非蓝光波段的反射率,基本相差在0.5%左右,而在蓝光波段的反射率要相差1%以上,薄膜5与对比薄膜5、薄膜6与对比薄膜6、薄膜7与对比薄膜7、以及薄膜8与对比薄膜8之间的测试数据亦如此,这说明,通过优化锌的添加量可有效提高银合金的反射率,尤其是蓝光波段的反射率提升幅度更大。
同时,各实施例表面的反射率在可靠性实验后均保持了较小的衰减幅度,相对于纯银材料,展现出了优异的耐候性能。总体来讲,本申请实施例的各银合金可具有优异的综合性能,可用于显示器件中,以降低显示器件的能耗,提升显示器件的发光效率,以及使用寿命。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种银合金,其特征在于,所述银合金包括银以及第一掺杂物质和第二掺杂物质,所述第一掺杂物质选自钌、钯、锡、锂、钠、钾、铷、铯、钫、镁、钙、锶、钡、镭、镉、铝、镓、锑、硒、碲、钋、砹、镧、铈、镨、钕、钷和钐中的至少一种,所述第二掺杂物质为锌;
    其中,以原子数百分比计,所述第一掺杂物质的含量为0.01%~1.3%,所述第二掺杂物质的含量为0.01%~1.3%,且所述第一掺杂物质和所述第二掺杂物质的总含量为0.02%~1.6%。
  2. 根据权利要求1所述的银合金,其特征在于,以原子数百分比计,所述第一掺杂物质的含量为0.15%~1%。
  3. 根据权利要求2所述的银合金,其特征在于,以原子数百分比计,所述第一掺杂物质的含量为0.15%~0.5%。
  4. 根据权利要求1-3任一项所述的银合金,其特征在于,以原子数百分比计,所述第二掺杂物质的含量为0.15%~1%。
  5. 根据权利要求4所述的银合金,其特征在于,以原子数百分比计,所述第二掺杂物质的含量为0.15%~0.5%。
  6. 根据权利要求1-5任一项所述的银合金,其特征在于,所述银合金中的晶粒的平均粒径小于150μm。
  7. 一种如权利要求1-6任一项所述的银合金的制备方法,其特征在于,包括以下步骤:
    将银源、第一掺杂源和第二掺杂源进行熔炼和浇铸,得到铸锭;其中,所述第一掺杂源中含有所述第一掺杂物质,所述第二掺杂源含有所述第二掺杂物质;
    所述铸锭依次经热处理、锻造、冷却、冷轧和再结晶处理,得到所述银合金。
  8. 根据权利要求7所述的制备方法,其特征在于,所述热处理的温度为600~850℃,热处理的时间为1~2h。
  9. 一种导电薄膜,其特征在于,包括银合金层以及设于所述银合金层两侧表面的透明导电薄膜,所述银合金层利用如权利要求1-6任一项所述的银合金制备形成。
  10. 一种显示器件,其特征在于,包括依次叠层设置的阴极层、电子注入层、发光层、空穴注入层、阳极层以及基板层,所述阳极层包括如权利要求9所述的导电薄膜。
PCT/CN2023/104069 2022-07-12 2023-06-29 银合金及其制备方法、导电薄膜和显示器件 WO2024012225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210817180.7 2022-07-12
CN202210817180.7A CN117431430A (zh) 2022-07-12 2022-07-12 银合金及其制备方法、导电薄膜和显示器件

Publications (1)

Publication Number Publication Date
WO2024012225A1 true WO2024012225A1 (zh) 2024-01-18

Family

ID=89535509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104069 WO2024012225A1 (zh) 2022-07-12 2023-06-29 银合金及其制备方法、导电薄膜和显示器件

Country Status (2)

Country Link
CN (1) CN117431430A (zh)
WO (1) WO2024012225A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829451B1 (zh) * 1968-11-19 1973-09-10
CN1665678A (zh) * 2002-05-08 2005-09-07 目标技术有限公司 银合金薄膜反射器和透明导电体
TW200530411A (en) * 2003-12-10 2005-09-16 Tanaka Precious Metal Ind Silver alloy for reflective film
WO2006132414A1 (ja) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. 反射率・透過率維持特性に優れた銀合金
TW201508071A (zh) * 2013-08-23 2015-03-01 Solar Applied Mat Tech Corp 銀合金材料
CN105132760A (zh) * 2015-10-10 2015-12-09 上海交通大学 一种抗变色银合金及其制备方法
CN113444914A (zh) * 2021-07-19 2021-09-28 福建阿石创新材料股份有限公司 一种银基合金及其制备方法、银合金复合薄膜及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829451B1 (zh) * 1968-11-19 1973-09-10
CN1665678A (zh) * 2002-05-08 2005-09-07 目标技术有限公司 银合金薄膜反射器和透明导电体
TW200530411A (en) * 2003-12-10 2005-09-16 Tanaka Precious Metal Ind Silver alloy for reflective film
WO2006132414A1 (ja) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. 反射率・透過率維持特性に優れた銀合金
TW201508071A (zh) * 2013-08-23 2015-03-01 Solar Applied Mat Tech Corp 銀合金材料
CN105132760A (zh) * 2015-10-10 2015-12-09 上海交通大学 一种抗变色银合金及其制备方法
CN113444914A (zh) * 2021-07-19 2021-09-28 福建阿石创新材料股份有限公司 一种银基合金及其制备方法、银合金复合薄膜及其应用

Also Published As

Publication number Publication date
CN117431430A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
TWI417905B (zh) A transparent conductive film and a method for manufacturing the same, and a transparent conductive substrate and a light-emitting device
JP4826066B2 (ja) 非晶質の透明導電性薄膜およびその製造方法、並びに、該非晶質の透明導電性薄膜を得るためのスパッタリングターゲットおよびその製造方法
JP3797317B2 (ja) 透明導電性薄膜用ターゲット、透明導電性薄膜およびその製造方法、ディスプレイ用電極材料、有機エレクトロルミネッセンス素子
WO2023001137A1 (zh) 一种银基合金及其制备方法、银合金复合薄膜及其应用
JP5488849B2 (ja) 導電性膜およびその製造方法並びにこれに用いるスパッタリングターゲット
TW200307757A (en) Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
JPH10308284A (ja) 有機エレクトロルミネッセンス素子
TW201131001A (en) Silver alloy target for forming reflecting electrode film of organic el element, and its manufacturing method
JP5339830B2 (ja) 密着性に優れた薄膜トランジスター用配線膜およびこの配線膜を形成するためのスパッタリングターゲット
JP3945395B2 (ja) 透明導電性薄膜、その形成方法、それを用いた表示パネル用透明導電性基材及び有機エレクトロルミネッセンス素子
JP5522599B1 (ja) Ag合金スパッタリングターゲット
JP4269986B2 (ja) 透明導電性薄膜製造用酸化物焼結体ターゲット、透明導電性薄膜、透明導電性基板、表示デバイスおよび有機エレクトロルミネッセンス素子
JP3918721B2 (ja) 透明導電性薄膜、その製造方法と製造用焼結体ターゲット、及び有機エレクトロルミネッセンス素子とその製造方法
WO2024012225A1 (zh) 银合金及其制备方法、导电薄膜和显示器件
CN115976478B (zh) 一种抗硫化银合金靶材及其制备方法
CN108777265A (zh) 一种电极及其制备方法和有机电致发光器件
CN115341187B (zh) 一种银合金靶材及其制备方法和应用
JP5720816B2 (ja) 導電性膜
JP2014196562A (ja) Ag合金スパッタリングターゲット
JP2013077547A (ja) 導電性膜及びその製造方法並びに導電性膜形成用銀合金スパッタリングターゲット及びその製造方法
CN114122272A (zh) 复合材料及电致发光器件
WO2015037582A1 (ja) 有機el用反射電極膜、積層反射電極膜、及び、反射電極膜形成用スパッタリングターゲット
TWI650230B (zh) 反射電極及鋁合金濺鍍靶
CN220753459U (zh) 用于led芯片的透明导电层及led芯片
WO2021025040A1 (ja) 積層膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838718

Country of ref document: EP

Kind code of ref document: A1