WO2024008164A1 - 改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用 - Google Patents

改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2024008164A1
WO2024008164A1 PCT/CN2023/106173 CN2023106173W WO2024008164A1 WO 2024008164 A1 WO2024008164 A1 WO 2024008164A1 CN 2023106173 W CN2023106173 W CN 2023106173W WO 2024008164 A1 WO2024008164 A1 WO 2024008164A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc aluminate
modified zinc
carrier
low
dehydrogenation catalyst
Prior art date
Application number
PCT/CN2023/106173
Other languages
English (en)
French (fr)
Inventor
赵瑞玲
卓润生
孙秋实
刘兵
兰兴玥
张春雪
饶宇森
刘新生
Original Assignee
润和科华催化剂(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 润和科华催化剂(上海)有限公司 filed Critical 润和科华催化剂(上海)有限公司
Publication of WO2024008164A1 publication Critical patent/WO2024008164A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8953Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • C07C5/415Catalytic processes with metals
    • C07C5/417Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the technical field of petrochemical industry, and specifically relates to a modified zinc aluminate carrier and a low-carbon alkane dehydrogenation catalyst and a preparation method thereof.
  • Propylene is an important organic basic chemical raw material whose output is second only to ethylene. It is widely used in the production of chemical products such as polypropylene, acrylonitrile, and propylene oxide. It is the basic raw material of the three major synthetic materials (plastics, rubber, and fibers). In recent years, with the continuous development of the global economy, the demand for propylene downstream products has continued to increase. As of the end of 2019, my country's propylene production capacity was 40.61 million tons per year, and the annual propylene output was approximately 32.88 million tons. Currently, the main sources of propylene supply are naphtha steam cracking and catalytic cracking processes, which are considered oil-to-propylene production routes.
  • the PDH process has been successfully industrialized, mainly including the Catofin process of ABB Lummus, the Oleflex process of UOP, the STAR process of Uhde, the FBD process of Yarsintez, and the PDH process jointly developed by Linde and BASF.
  • Catofin and The Oleflex process is the most widely used.
  • the Catofin process uses CrOx/Al 2 O 3 as the catalyst and uses an adiabatic fixed-bed reactor.
  • one part of the reactor performs dehydrogenation reaction, and the other part of the reactor performs catalyst regeneration reaction, in an alternating cycle (a complete cycle takes 15 to 30 minutes) to ensure continuous production of propylene.
  • the Oleflex process uses Pt-Sn/Al 2 O 3 catalyst.
  • the entire device uses an adiabatic radial flow bed reactor.
  • An intermediate series preheater provides heat for the reaction system.
  • the last reactor is connected to the catalyst regeneration device.
  • the catalyst flows throughout the entire device, and the regenerated catalyst re-enters the first reactor (a complete cycle takes 5 to 10 days).
  • the entire device operates continuously to obtain reaction products without interruption.
  • Pt-based catalysts Compared with CrOx/Al 2 O 3 catalysts, Pt-based catalysts have high reactivity, high propylene selectivity and low toxicity. However, Pt particles are easy to sinter and grow under high temperature conditions, and are also prone to carbon deposition and deactivation, resulting in poor stability, which greatly reduces the production capacity of the equipment.
  • the surface properties of the catalyst support have an important influence on the catalytic performance of the heterogeneous catalyst.
  • the strong acid sites on the catalyst will promote coke deposition on the catalyst.
  • the Lewis acid (L acid) sites on the Al 2 O 3 surface can not only trigger coke deposition, but also potentially convert aliphatic cokes into aromatic cokes.
  • Chinese patent (CN105363472A) discloses a platinum-based catalyst using a zinc aluminate composite oxide synthesized by a precipitation method as a carrier. The catalyst has high initial activity, but its stability is poor, and the conversion rate decreases after ten hours.
  • the zinc aluminate carrier-based dehydrogenation catalyst reported in the existing invention has low catalytic activity, low selective activity, and weak resistance to carbon deposition. Its vertical and horizontal properties still need to be further improved, and there are currently no reports of its use. Transition metal elements are used as additives to modify the zinc aluminate carrier-based dehydrogenation catalyst.
  • the purpose of the present invention is to solve the problems of low sintering resistance and poor selectivity of catalysts in existing alkane dehydrogenation technology.
  • a modified zinc aluminate carrier and a low-carbon alkane dehydrogenation catalyst and a preparation method thereof are disclosed.
  • the catalyst prepared with zinc aluminate carrier has the characteristics of high propane conversion rate, high selectivity of product propylene, strong anti-sintering ability and good stability.
  • the present invention provides a modified zinc aluminate carrier.
  • the chemical composition of this modified zinc aluminate carrier is the general formula Zn x M y Al 2 O 4 , where x is 0.01 to 0.99 and y is 0.01 ⁇ 0.99, and satisfies The range is 3nm ⁇ 30nm, and the pore volume range is 0.1 ⁇ 0.7g/mL.
  • the precursor of the Zn element in the above general formula Zn x My Al 2 O 4 includes at least one of zinc chloride, zinc nitrate, zinc acetate and organic zinc salts .
  • the precursors of the Al element in the above general formula Zn x My Al 2 O 4 include aluminum chloride, aluminum nitrate, aluminum acetate, alumina, aluminite and organic aluminum salts at least one of them.
  • the above-mentioned modified zinc aluminate carrier is prepared by gel sol method, dipping method, precipitation method, co-precipitation method or hydrothermal synthesis method.
  • the above-mentioned modified zinc aluminate carrier is prepared by a precipitation method or a co-precipitation method, and the precipitating agent used is ammonia water, sodium hydroxide, potassium hydroxide, sodium carbonate and urea. at least one of;
  • the modified zinc aluminate carrier is prepared by a gel-sol method, and the gelling agent used is one or more of citric acid, oxalic acid, and polyvinyl alcohol;
  • the present invention provides a low-carbon alkane dehydrogenation catalyst.
  • This catalyst uses at least one of the noble metals Pt, Pd, Ru and Rh as an active component, and uses the transition metals Ga, V, In, Sn, Mn At least one of Ce, Co, Fe and Ni is used as an auxiliary agent, and the above-mentioned modified zinc aluminate carrier is used as a carrier.
  • the mass percentage of the active component is 1-40wt%
  • the content of the additive is 1-20wt%
  • the balance is Zinc aluminate carrier.
  • the precursor of the noble metal element is selected from one or more of metal halides, metal nitrates and metal complexes;
  • the precursor of the transition element is one or more of an oxide, an inorganic salt, and a complex of a metal element.
  • the present invention also provides a method for preparing a low-carbon alkane dehydrogenation catalyst, including:
  • the solution containing active components and additives is added dropwise to the dispersion containing modified zinc aluminate carrier. After stirring for 1 to 3 hours, the solvent is recovered, dried and then roasted.
  • the temperature during the roasting process is 500-700°C and the time is 3-5 hours.
  • the present invention also provides an application of the above-mentioned low-carbon alkane dehydrogenation catalyst, which is applied to a fixed bed, a moving bed or a fluidized bed, the reaction temperature is 550-620°C, the reaction pressure is 10-150kPa, and the reaction space velocity is is 0.1-2h -1 .
  • the catalyst is used in propane dehydrogenation, isobutane dehydrogenation or propane/isobutane mixed gas dehydrogenation reaction.
  • the present invention at least has the following technical effects:
  • the present invention discloses a modified zinc aluminate carrier for preparing low-carbon alkanes.
  • the hydrogen catalyst uses porous zinc aluminate material with low acidity and special structure.
  • As the carrier of the dehydrogenation catalyst it improves the stability of the carrier and reduces the surface acidity of the carrier, reducing the risk of traditional carriers caused by too much B acid. Acidic lysis problem.
  • This low-carbon alkane dehydrogenation catalyst uses a special carrier modified by transition metal elements to support precious metals as active components.
  • transition metal element additives Through the action of transition metal element additives, the active center in the catalyst - the existence state of the precious metal elements is modulated and maintained. Its highly dispersed spatial structure.
  • the introduction of additives also makes up for some high-energy defective positions on the carrier to a certain extent, ensuring the overall performance of the dehydrogenation catalyst. It greatly improves the conversion rate of low-carbon alkanes and inhibits the reactions of alkanes from deep dehydrogenation, acidic cracking, and carbon deposits.
  • the low-carbon alkane dehydrogenation catalyst provided by the invention has better catalytic performance and catalyst stability than existing dehydrogenation catalysts, and has potential industrial application prospects.
  • This embodiment first provides a modified zinc aluminate carrier.
  • this modified zinc aluminate carrier has the characteristics of low acidity, large specific surface area, and high mechanical strength, which helps to improve the stability of the carrier and improve the stability of the carrier in the subsequent preparation of dehydrogenation catalysts. Reduce the surface acidity of the carrier and avoid the defects of acidic cleavage of traditional carriers due to excessive B acid.
  • This modified zinc aluminate carrier is prepared by gel sol method, dipping method, precipitation method, co-precipitation method or hydrothermal synthesis method.
  • the following is one of our methods for preparing this modified zinc aluminate carrier:
  • the ratio of aluminum source to zinc source By controlling the ratio of aluminum source to zinc source, the amount of citric acid added, stirring time, roasting temperature, roasting time and other parameters, the specific surface area, mechanical strength, surface acidity and other properties of zinc aluminate can be controlled.
  • This embodiment secondly provides a low-carbon alkane dehydrogenation catalyst, which uses the above-mentioned modified zinc aluminate carrier as a carrier.
  • This dehydrogenation catalyst can be applied to propane dehydrogenation, isobutane dehydrogenation or propane/isobutane mixture dehydrogenation.
  • the catalyst uses at least one of the noble metals Pt, Pd, Ru and Rh as an active component. Preferably, it uses any one of the noble metals Pt, Pd, Ru and Rh as an active component. More preferably, it uses Pt. is the active ingredient.
  • the precursor of the precious metal element is selected from one or more of metal halides, metal nitrates and metal complexes.
  • the mass percentage of the active component is 1-40wt%; preferably, the mass percentage of the active component is 5-35wt%, and more preferably, it is 10-25 %. Controlling the mass percentage of precious metal elements in the catalyst between 1% and 40% is helpful for the propane dehydrogenation reaction; beyond this range, adverse effects such as deep cracking reactions and polymerization reactions of propane may occur.
  • the auxiliary agent is any one of the transition metals Ga, V, In, Sn, Mn, Ce, Fe and Ni. More preferably, the auxiliary agent is Ce, Fe, Mn, Sn, Ga.
  • the precursor of the transition element is one or more of the oxides, inorganic salts, and complexes of metal elements.
  • the mass percentage of the additive is 1 to 20 wt%. Preferably, the mass percentage is 5 to 15 wt%, and more preferably, the mass percentage is 8 to 12 wt%. . Controlling the mass percentage of additives in the catalyst between 1 and 20% will help control the chemical state of the active metal; exceeding this range will cover the active sites and reduce the reaction conversion rate.
  • the catalyst is used in a fixed bed, a moving bed or a fluidized bed
  • the reaction temperature is 550-620°C, preferably 570-610°C, more preferably 580-600°C
  • the reaction pressure is 10-150kPa, preferably 20- 100kPa, more preferably 30-70kPa
  • reaction space velocity is 0.1-2h -1 , preferably 0.3-1.5h -1 , more preferably 0.5-1.0h -1 .
  • This embodiment provides a modified zinc aluminate carrier, and its preparation method includes:
  • the specific surface area of the carrier is 50-100m 2 /g
  • the pore diameter ranges from 20nm to 30nm
  • the pore volume ranges from 0.5 to 0.7g/mL.
  • This embodiment also provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a modified zinc aluminate carrier, and its preparation method includes:
  • the specific surface area of the carrier is 50-100m 2 /g
  • the pore diameter ranges from 20nm to 30nm
  • the pore volume ranges from 0.5 to 0.7g/mL.
  • This embodiment also provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a modified zinc aluminate carrier, and its preparation method includes:
  • This embodiment also provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a modified zinc aluminate carrier, and its preparation method includes:
  • This embodiment also provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a modified zinc aluminate carrier, and its preparation method includes:
  • This embodiment also provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a modified zinc aluminate carrier, and its preparation method includes:
  • This embodiment also provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a modified zinc aluminate carrier, and its preparation method includes:
  • This embodiment also provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a modified zinc aluminate carrier, and its preparation method includes:
  • This embodiment also provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a modified zinc aluminate carrier, and its preparation method includes:
  • This embodiment also provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This comparative example provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This comparative example provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This comparative example provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • the process flow adopted is an existing process flow, which will not be elaborated in the examples.
  • the control parameters in the process flow are as follows: the propane space velocity is 1h -1 , an appropriate amount of hydrogen is introduced, the propane partial pressure is maintained at 50kPa, and the total pressure of the reaction system is It is normal pressure; the bed temperature is 550-600°C.
  • the carrier preparation and catalyst composition of each example and comparative example are shown in Table 1, and the test results are shown in Table 2.
  • the conversion rate, selectivity, and propylene yield of the catalysts provided in Examples 1-9 of the present application for propane dehydrogenation are all better than those of Comparative Examples 1-3, which illustrates that the improved catalyst provided by the present application Compared with traditional zinc aluminate carriers, alumina carriers and commercial ⁇ -phase alumina carriers, the zinc aluminate carrier has strong stability and low surface acidity of the carrier, thus avoiding the problems caused by excessive B acid in traditional carriers.
  • the problem of acidic cracking has significantly improved the catalytic performance and stability of the catalyst.
  • the catalytic performance of the catalysts provided in Examples 1-7 of the present application is also better than that of Comparative Example 4. This shows that the introduction of the auxiliary agent also makes up for some high-energy defective positions on the carrier to a certain extent, and has a great impact on the overall performance of the dehydrogenation catalyst. Guaranteed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用,属于石油化工技术领域。这种改性铝酸锌载体的化学组成为通式ZnxMyAl2O4;M选自碱金属元素、碱土金属元素中的一种或几种;改性铝酸锌载体具有多孔结构。本申请提供的这种催化剂以贵金属Pt、Pd、Ru和Rh中的至少一种为活性组分,以过渡金属Ga、V、In、Sn、Mn、Ce、Fe和Ni中的至少一种为助剂,以上述改性铝酸锌载体为载体。这种改性铝酸锌载体制备的催化剂具有丙烷转化率高、产物丙烯选择性高、抗烧结能力强和稳定性好等特点。

Description

改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用 技术领域
本发明属于石油化工技术领域,具体涉及一种改性铝酸锌载体和低碳烷烃脱氢催化剂及其制备方法。
背景技术
丙烯是产量仅次于乙烯的重要有机基础化工原料,广泛地用于生产聚丙烯、丙烯腈、环氧丙烷等化工产品,是三大合成材料(塑料、橡胶、纤维)的基本原料。近年来,随着全球经济的不断发展,丙烯下游产品的需求量不断增加。截至2019年底,我国丙烯产能为4061万吨/年,全年丙烯产量约3288万吨。目前,丙烯供应的来源主要是石脑油蒸汽裂解和催化裂化工艺,这两种工艺被认为是油制丙烯生产路线。然而,传统的油制丙烯生产路线技术难以满足市场对丙烯的需求。因此,开发新型定向高效的丙烯生产技术显得尤为重要。丙烷无氧脱氢(PDH)是工业上定向生产丙烯的工艺之一,该工艺相比于传统的油制丙烯生产路线而言,具有丙烯选择性高、原料来源丰富、产物组成简单且易于分离等优势[Chemical Reviews,2014,114(20):10613-10653.]。尤其是近年来页岩气的成功开发,使得丙烷产量持续上升,PDH工艺引起人们的广泛关注。
PDH反应(C3H8→C3H6+H2,ΔH=124.3kJ·mol-1)是一个正向分子数增加的强吸热反应,往往需要在低压高温下才能实现较高的转化率。目前PDH工艺已经成功地工业化应用,主要有ABB Lummus公司的Catofin工艺、UOP公司的Oleflex工艺、Uhde公司的STAR工艺、Yarsintez公司的FBD工艺以及Linde和BASF公司合作开发的PDH工艺。其中,Catofin和 Oleflex工艺应用最为广泛。Catofin工艺以CrOx/Al2O3作为催化剂,采用绝热固定床反应器。反应过程中,一部分反应器进行脱氢反应,另一部分反应器进行催化剂再生反应,交替循环进行(一个完整的循环需要15~30分钟)以保证丙烯的连续生产。Oleflex工艺使用Pt-Sn/Al2O3催化剂,整个装置采用绝热径向流动床反应器,中间串联预热器为反应体系提供热量,最后一个反应器与催化剂再生装置相连。催化剂在整个装置中流动,再生后的催化剂重新进入第一个反应器(一个完整得循环需要5~10天),整个装置是连续运行,不间断地获得反应产物。
相比于CrOx/Al2O3催化剂,Pt基催化剂的反应活性高,丙烯选择性高且毒性低。然而,Pt粒子在高温条件下容易烧结长大,同时也容易积炭失活,稳定性差,大大降低了设备的生产能力。
催化剂载体的表面性质对非均相催化剂的催化性能有着重要影响,特别是催化剂上的强酸位点会促进催化剂上的焦炭沉积。姜发现高温下催化剂失活主要有两个原因,分别是金属烧结和焦炭沉积[Applied Catalysis A:General,2019,572:1-8]。Al2O3表面的Lewis酸(L酸)位点不仅可以引发焦炭沉积,而且可能将脂肪族类焦炭转化为芳香族类焦炭。中国专利(CN105363472A)公开了利用沉淀法合成的铝酸锌复合氧化物为载体的铂系催化剂,该催化剂初始活性较高,但其稳定性较差,十小时后转化率下降
综上,现有发明中报道的铝酸锌载体基脱氢催化剂,由于存在催化活性低、选择活性不高,且抗积碳能力弱,其纵横性能仍需进一步提高,且目前尚无报道使用过渡金属元素为助剂对铝酸锌载体基的脱氢催化剂进行改性。
发明内容
本发明的目的在于解决现有烷烃脱氢技术中催化剂的抗烧结能力低、选择性差的问题,公开了改性铝酸锌载体和低碳烷烃脱氢催化剂及其制备方法,由这种改性铝酸锌载体制备的催化剂具有丙烷转化率高、产物丙烯选择性高、抗烧结能力强和稳定性好等特点。
本发明通过以下技术方案实现:
第一方面,本发明提供一种改性铝酸锌载体,这种改性铝酸锌载体的化学组成为通式ZnxMyAl2O4,其中,x为0.01~0.99,y为0.01~0.99,且满足x+y=1;M选自碱金属元素、碱土金属元素中的一种或几种;改性铝酸锌载体具有多孔结构,比表面积为10-100m2/g,孔径范围为3nm~30nm,孔容范围为0.1~0.7g/mL。
进一步地,在本发明较佳的实施例中,上述通式ZnxMyAl2O4中的Zn元素的前驱体包括氯化锌、硝酸锌、醋酸锌和有机锌盐中的至少一种。
进一步地,在本发明较佳的实施例中,上述通式ZnxMyAl2O4中的Al元素的前驱体包括氯化铝、硝酸铝、醋酸铝、氧化铝、铝石和有机铝盐中的至少一种。
进一步地,在本发明较佳的实施例中,上述改性铝酸锌载体采用凝胶溶胶法、浸渍法、沉淀法、共沉淀法或水热合成法制备得到。
进一步地,在本发明较佳的实施例中,上述改性铝酸锌载体采用沉淀法或共沉淀法制备得到,所用的沉淀剂为氨水、氢氧化钠、氢氧化钾、碳酸钠和尿素中的至少一种;
优选地,所述改性铝酸锌载体采用凝胶溶胶法制备得到,所用凝胶剂为柠檬酸、草酸、聚乙烯醇中的一种或几种;
第二方面,本发明提供一种低碳烷烃脱氢催化剂,这种催化剂以贵金属Pt、Pd、Ru和Rh中的至少一种为活性组分,以过渡金属Ga、V、In、Sn、Mn、Ce、Co、Fe和Ni中的至少一种为助剂,以上述改性铝酸锌载体为载体。
进一步地,在本发明较佳的实施例中,以催化剂干基总质量为基准,活性组分的质量百分含量为1-40wt%,助剂的含量为1~20wt%,余量为改性铝酸锌载体。
优选地,贵金属元素的前驱体选用金属卤化物、金属硝酸盐和金属络合物中的一种或几种;
优选地,过渡元素的前驱体为金属元素的氧化物、无机盐、配合物中的一种或多种。
第三方面,本发明还提供一种低碳烷烃脱氢催化剂的制备方法,包括:
在搅拌的条件下,将含有活性组分和助剂的溶液滴加至含有改性铝酸锌载体的分散液中,搅拌1~3h后,回收溶剂、烘干后焙烧。
进一步地,在本发明较佳的实施例中,焙烧过程中温度为500~700℃,时间为3~5h。
第四方面,本发明还提供一种上述低碳烷烃脱氢催化剂的应用,应用于固定床、移动床或流化床,反应温度为550-620℃,反应压力为10-150kPa,反应空速为0.1-2h-1
进一步地,在本发明较佳的实施例中,该催化剂用于丙烷脱氢、异丁烷脱氢或丙烷/异丁烷混合气脱氢反应中。
与现有技术相比,本发明至少具有如下技术效果:
相对于现有技术,本发明公开了一种改性铝酸锌载体用于制备低碳烷烃脱 氢催化剂,为使用酸性较低的具有特殊结构的多孔铝酸锌材料,作为脱氢催化剂的载体,提高了载体的稳定性并降低载体的表面酸性,降低了传统载体由于B酸过多而导致酸性裂解的问题。
该低碳烷烃脱氢催化剂,选用经过渡金属元素改性的特殊载体负载贵金属作为活性组分,通过过渡金属元素助剂的作用,调变了催化剂中活性中心——贵金属元素的存在状态并保持了其高度分散空间结构。同时,助剂的引入也在一定程度上弥补了载体上的一些高能量缺陷位置,对脱氢催化剂综合性能进行了保障。大幅提升低碳烷烃的转化率,抑制烷烃发生深度脱氢,酸性裂解,以及生成积碳的反应。提高催化剂稳定性,选择性等重要性能,使用本发明所提供的低碳烷烃脱氢催化剂,催化性能和催化剂稳定性优于现有脱氢催化剂,具有潜在的工业应用前景。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围,实施例中未注明的具体条件,按照常规条件或者制造商建议的条件进行,所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明的技术方案为:
本实施方式首先提供一种改性铝酸锌载体,这种改性铝酸锌载体的化学组成为通式ZnxMyAl2O4,其中,x为0.01~0.99,y为0.01~0.99,且满足x+y=1;M选自碱金属元素、碱土金属元素中的一种或几种;改性铝酸锌载体具有多孔结构,比表面积为10-100m2/g,孔径范围为3nm~30nm,孔容范围为0.1~0.7g/mL。
这种改性铝酸锌载体,相比于传统的铝酸锌载体,具有酸性低、比表面积大、机械强度高等特性,有助于后续在制备脱氢催化剂中,提高了载体的稳定性并降低载体的表面酸性,避免传统载体由于B酸过多而导致酸性裂解的缺陷。
这种改性铝酸锌载体采用凝胶溶胶法、浸渍法、沉淀法、共沉淀法或水热合成法制备得到。如下,是我们制备这种改性铝酸锌载体方法之一:
首先,称取铝源、锌源于烧杯中,加入去离子水溶解,搅拌30min后,加入柠檬酸进行溶解,继续搅拌30min,升温至80℃,搅拌至形成凝胶,放入100℃烘箱中烘干,马弗炉中焙烧。通过控制铝源与锌源的比例、柠檬酸的添加量、搅拌时间、焙烧温度、焙烧时间等参数,以控制铝酸锌的比表面积、机械强度、表面酸性等性能。
本实施方式其次提供一种低碳烷烃脱氢催化剂,其采用上述改性铝酸锌载体为载体。这种脱氢催化剂可应用于丙烷脱氢、异丁烷脱氢或丙烷/异丁烷混合气脱氢。
该催化剂以贵金属Pt、Pd、Ru和Rh中的至少一种为活性组分,优选地,以贵金属Pt、Pd、Ru和Rh中的任一种为活性组分,更为优选地,以Pt为活性组分。贵金属元素的前驱体选用金属卤化物、金属硝酸盐和金属络合物中的一种或几种。
其中,以催化剂干基总质量为基准,活性组分的质量百分含量为1-40wt%;优选地活性组分的质量百分含量为5-35wt%,更为优选地,为10~25%。将催化剂中贵金属元素的质量百分含量控制在1%~40%,有助于丙烷脱氢反应;超过这个范围,可能会产生丙烷的深度裂解反应及聚合反应等不利影响。
以过渡金属Ga、V、In、Sn、Mn、Ce、Fe和Ni中的至少一种为助剂,优 选地,助剂为过渡金属Ga、V、In、Sn、Mn、Ce、Fe和Ni中的任意一种,更为优选地,助剂为Ce、Fe、Mn、Sn、Ga。过渡元素的前驱体为金属元素的氧化物、无机盐、配合物中的一种或多种。
其中以催化剂干基总质量为基准,助剂的质量百分含量为1~20wt%,优选地,质量百分含量为5~15wt%,更为优选地,质量百分含量为8~12wt%。将催化剂中助剂的质量百分含量控制在1~20%,有助于对活性金属化学状态的调控;超过这个范围,会覆盖活性位点,降低反应转化率。
进一步地,催化剂应用于固定床、移动床或流化床,反应温度为550-620℃,优选为570-610℃,更优选为580-600℃;反应压力为10-150kPa,优选为20-100kPa,更优选为30-70kPa;反应空速为0.1-2h-1,优选为0.3-1.5h-1,更优选为0.5-1.0h-1
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
实施例1
本实施例提供一种改性铝酸锌载体,其制备方法包括:
称取754g的硝酸铝、187g的硝酸锌、1.48g硝酸镁溶于1L的去离子水中,进行超声溶解。在高速搅拌下,加入576g柠檬酸,将混合液高速搅拌,使其溶解完全,后进行升温至80℃,得到凝胶。得到的凝胶在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到Zn0.99Mg0.01Al2O4载体。
经检测,该载体的比表面积为50-100m2/g,孔径范围为20nm~30nm,孔容范围为0.5~0.7g/mL。
本实施例还提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液氯钯酸和0.1g的Ni的前驱体硝酸镍溶液,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例2
本实施例提供一种改性铝酸锌载体,其制备方法包括:
称取754g的硝酸铝、187g的硝酸锌、1.48g硝酸镁溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到Zn0.99Mg0.01Al2O4载体。
经检测,该载体的比表面积为50-100m2/g,孔径范围为20nm~30nm,孔容范围为0.5~0.7g/mL。
本实施例还提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.01g的Pt的前驱体溶液氯铂酸和0.1g的Ce的前驱体硝酸铈溶液,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例3
本实施例提供一种改性铝酸锌载体,其制备方法包括:
称取754g的硝酸铝、183g的醋酸锌、1.01g硝酸钾溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到Zn0.99K0.01Al2O4载体。
本实施例还提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.01g的Pt的前驱体溶液氯铂酸和0.1g的Co的前驱体硝酸钴溶液,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例4
本实施例提供一种改性铝酸锌载体,其制备方法包括:
称取750g硝酸铝、183g的醋酸锌、1.58醋酸钙溶于1L的去离子水中,进行超声溶解。在高速搅拌下,加入292g乙二胺四乙酸,将混合液高速搅拌,使其溶解完全,后进行升温至70℃,得到凝胶。得到的凝胶在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到Zn0.99Ca0.01Al2O4载体。
本实施例还提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.01g的Pt的前驱体溶液氯铂酸和0.1g的Fe的前驱体氯化铁溶液, 加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例5
本实施例提供一种改性铝酸锌载体,其制备方法包括:
称取183g的醋酸锌、0.08g氧化镁溶于1L的去离子水中,并称取固含量为60%的铝石200g、进行超声分散。在高速搅拌下,加入200g聚乙二醇,将混合液高速搅拌,使其溶解完全,后进行升温至70℃,得到凝胶,将凝胶在80℃下静置20h,1000℃马弗炉中焙烧,即得到Zn0.98Mg0.02Al2O4载体。
本实施例还提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.01g的Pt的前驱体溶液氯铂酸和0.1g的Mn的前驱体醋酸锰溶液,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例6
本实施例提供一种改性铝酸锌载体,其制备方法包括:
称取95g氯化镁、1.83g醋酸锌溶于1L的去离子水中,进行超声溶解,并称取固含量为60%的铝石200g分散其中。称取定量尿素,倒入上述混合液中,并高速搅拌2h,后将水浴锅升温至80℃,使尿素进行分解,使金属沉淀完全, 后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到Zn0.02Mg0.98Al2O4载体。
本实施例还提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.01g的Pt的前驱体溶液氯铂酸和0.01g的Sn的前驱体氯化亚锡溶液,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例7
本实施例提供一种改性铝酸锌载体,其制备方法包括:
称取754g的硝酸铝、183g的醋酸锌、0.4g氯化钠溶于1L的去离子水中,进行超声溶解。在高速搅拌下,加入576g柠檬酸,将混合液高速搅拌,使其溶解完全,后进行升温至70℃,得到凝胶100℃烘箱中烘干20h,1000℃马弗炉中焙烧,即得到Zn0.99Na0.01Al2O4载体。
本实施例还提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.01g的Pt的前驱体溶液氯铂酸和0.1g的Ga的前驱体硝酸镓溶液,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例8
本实施例提供一种改性铝酸锌载体,其制备方法包括:
称取754g的硝酸铝、183g的醋酸锌、0.4g氯化钠溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到Zn0.99Na0.01Al2O4载体。
本实施例还提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.01g的Pt的前驱体溶液氯铂酸和0.1g的In的前驱体硝酸铟溶液,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例9
本实施例提供一种改性铝酸锌载体,其制备方法包括:
称取754g的硝酸铝、183g的醋酸锌、0.4g氯化钠溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到Zn0.99Na0.01Al2O4载体。
本实施例还提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.01g的Ru的前驱体溶液氯铂酸和0.1g的In的前驱体硝酸铟溶液,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
对比例1
本对比例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取商业载体α-氧化铝10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液氯铂酸加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
对比例2
本对比例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到Al2O3载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液 A。称取含有0.1g的Pt的前驱体溶液硝酸铂于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
对比例3
称取102g的氧化铝和81g的氧化锌于烧杯中,加入500g去离子水搅拌分散,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液硝酸铂于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
对比例4
本对比例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取实施例1制备的载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液氯铂酸,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
为了进一步说明本发明提供的催化剂的性能,特进行以下实验:
一、丙烷脱氢试验
采用的工艺流程为现有的工艺流程,实施例中不作详细阐述,工艺流程中的控制参数如下:丙烷空速为1h-1,通入适量氢气,保持丙烷分压为50kPa,反应体系总压力为常压;床层温度为550-600℃。其中,各实施例和对比例载体制备及催化剂组成如表1所示,试验结果如表2所示。
表1.各实施例和对比例载体制备及催化剂组成
表2.各催化剂的催化性能评价

由表2可见,本申请实施例1-9提供的催化剂对丙烷脱氢的转化率、选择性、以及丙烯产率均优于对比例1-3,由此说明本申请提供的这种以改性铝酸锌载体,相比于传统的铝酸锌载体、氧化铝载体以及商业α相氧化铝载体,稳定性强且载体的表面酸性低,由此避免了传统载体由于B酸过多而导致酸性裂解的问题,使得催化剂的催化性能和稳定性均有显著提高。本申请实施例1-7提供的催化剂的催化性能也优于对比例4,由此说明,助剂的引入也在一定程度上弥补了载体上的一些高能量缺陷位置,对脱氢催化剂综合性能进行了保障。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种改性铝酸锌载体,其特征在于,所述改性铝酸锌载体的化学组成为通式ZnxMyAl2O4,其中,x为0.01~0.99,y为0.01~0.99,且满足x+y=1;M选自碱金属元素、碱土金属元素中的一种或几种;所述改性铝酸锌载体具有多孔结构,比表面积为10-100m2/g,孔径范围为3nm~30nm,孔容范围为0.1~0.7g/mL。
  2. 根据权利要求1所述的改性铝酸锌载体,其特征在于,所述通式ZnxMyAl2O4中的Zn元素的前驱体包括氯化锌、硝酸锌、醋酸锌和有机锌盐中的至少一种。
  3. 根据权利要求1所述的改性铝酸锌载体,其特征在于,所述通式ZnxMyAl2O4中的Al元素的前驱体包括氯化铝、硝酸铝、醋酸铝、氧化铝、铝石和有机铝盐中的至少一种。
  4. 根据权利要求1所述的改性铝酸锌载体,其特征在于,所述改性铝酸锌载体采用凝胶溶胶法、浸渍法、沉淀法、共沉淀法或水热合成法制备得到。
  5. 根据权利要求4所述的改性铝酸锌载体,其特征在于,所述改性铝酸锌载体采用沉淀法或共沉淀法制备得到,所用的沉淀剂为氨水、氢氧化钠、氢氧化钾、碳酸钠和尿素中的至少一种;
    优选地,所述改性铝酸锌载体采用凝胶溶胶法制备得到,所用凝胶剂为柠檬酸、草酸、聚乙烯醇中的一种或几种。
  6. 一种低碳烷烃脱氢催化剂,其特征在于,所述催化剂以贵金属Pt、Pd、Ru和Rh中的至少一种为活性组分,以过渡金属Ga、V、In、Sn、Mn、Ce、Co、Fe和Ni中的至少一种为助剂,以如权利要求1~5任一项所述的改性铝酸锌载体为载体。
  7. 根据权利要求6的低碳烷烃脱氢催化剂,其特征在于,以所述催化剂干 基总质量为基准,所述活性组分的质量百分含量为1-40wt%,所述助剂的质量百分含量为1~20wt%,余量为所述改性铝酸锌载体。
    优选地,所述贵金属元素的前驱体选用金属卤化物、金属硝酸盐和金属络合物中的一种或几种;
    优选地,所述过渡元素的前驱体为金属元素的氧化物、无机盐、配合物中的一种或多种。
  8. 一种根据权利要求6或7所述的低碳烷烃脱氢催化剂的制备方法,其特征在于,包括:
    在搅拌的条件下,将含有所述活性组分和所述助剂的溶液滴加至含有所述改性铝酸锌载体的分散液中,搅拌1~3h后,回收溶剂、烘干后焙烧。
  9. 根据权利要求8所述的低碳烷烃脱氢催化剂的制备方法,其特征在于,所述焙烧过程中温度为500~700℃,时间为3~5h。
  10. 一种根据权利要求6或7所述的低碳烷烃脱氢催化剂的应用,其特征在于,所述催化剂应用于固定床、移动床或流化床,反应温度为550-620℃,反应压力为10-150kPa,反应空速为0.1-2h-1
PCT/CN2023/106173 2022-07-07 2023-07-06 改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用 WO2024008164A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210804223.8A CN114950401A (zh) 2022-07-07 2022-07-07 改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用
CN202210804223.8 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024008164A1 true WO2024008164A1 (zh) 2024-01-11

Family

ID=82967418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106173 WO2024008164A1 (zh) 2022-07-07 2023-07-06 改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114950401A (zh)
WO (1) WO2024008164A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950401A (zh) * 2022-07-07 2022-08-30 润和科华催化剂(上海)有限公司 改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用
CN115646509B (zh) * 2022-10-21 2024-04-05 西南化工研究设计院有限公司 一种用于烷烃脱氢制烯烃催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105921148A (zh) * 2016-05-09 2016-09-07 青岛神飞化工科技有限公司 一种用于饱和烷烃脱氢制烯烃的催化剂及其制备方法和应用
CN108786798A (zh) * 2017-05-02 2018-11-13 中国石油化工股份有限公司 一种低碳烷烃脱氢催化剂的制备方法
CN109876808A (zh) * 2019-02-27 2019-06-14 中国石油大学(北京) 一种丙烷脱氢制丙烯的催化剂及其制备与应用
CN112705199A (zh) * 2019-10-25 2021-04-27 中国科学院大连化学物理研究所 一种丙烷脱氢制丙烯的催化剂及其制备方法
CN114950401A (zh) * 2022-07-07 2022-08-30 润和科华催化剂(上海)有限公司 改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635598B2 (en) * 2000-04-20 2003-10-21 Indian Petrochemicals Corporation Limited Stable and selective dehydrogenation catalyst and a process for the preparation thereof
EP2794093B1 (en) * 2011-12-22 2019-11-06 Saudi Basic Industries Corporation Zinc and manganese aluminate catalyst useful for alkane dehydrogenation
EP2689843A1 (en) * 2012-07-26 2014-01-29 Saudi Basic Industries Corporation Alkane dehydrogenation catalyst and process for its preparation
CN105363455B (zh) * 2014-08-27 2018-10-23 中国石油化工股份有限公司 低碳烷烃脱氢制低碳烯烃催化剂及其应用
US10307737B2 (en) * 2015-11-03 2019-06-04 Sk Innovation Co., Ltd. Transition metal-noble metal complex oxide catalyst for dehydrogenation prepared by one-pot synthesis and use thereof
US11040338B2 (en) * 2016-12-06 2021-06-22 Sabic Global Technologies B.V. Process of preparing catalyst; platinum-tin on zinc aluminate-calcium aluminate-zeolite catalyst for selective light alkane dehydrogenation
CN114602495A (zh) * 2020-12-09 2022-06-10 中国石油天然气股份有限公司 一种丙烷脱氢Pt催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105921148A (zh) * 2016-05-09 2016-09-07 青岛神飞化工科技有限公司 一种用于饱和烷烃脱氢制烯烃的催化剂及其制备方法和应用
CN108786798A (zh) * 2017-05-02 2018-11-13 中国石油化工股份有限公司 一种低碳烷烃脱氢催化剂的制备方法
CN109876808A (zh) * 2019-02-27 2019-06-14 中国石油大学(北京) 一种丙烷脱氢制丙烯的催化剂及其制备与应用
CN112705199A (zh) * 2019-10-25 2021-04-27 中国科学院大连化学物理研究所 一种丙烷脱氢制丙烯的催化剂及其制备方法
CN114950401A (zh) * 2022-07-07 2022-08-30 润和科华催化剂(上海)有限公司 改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.A. VALENZUELA ET AL.: "The influence of the preparation method on the surface structure of ZnAl2O4", APPLIED CATALYSIS A: GENERAL, vol. 148, 2 January 1997 (1997-01-02), XP000997885, ISSN: 0926-860X, DOI: 10.1016/S0926-860X(96)00235-9 *

Also Published As

Publication number Publication date
CN114950401A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2024008164A1 (zh) 改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用
US11167280B2 (en) Catalyst for preparing α-phenylethanol by hydrogenation of acetophenone, preparation method thereof and application thereof
US5219816A (en) Dehydrogenation catalysts and process for preparing the catalysts
CN103212411B (zh) 低碳烷烃脱氢制取烯烃的高效催化剂及其制备方法
US7375049B2 (en) Catalyst
US6482997B2 (en) Conversion reactions for organic compounds
CN102941093B (zh) 萘加氢制备十氢萘的催化剂及制备方法和应用
CN108435221B (zh) 一种低碳烷烃脱氢催化剂及其制备方法和应用
JP2004283834A (ja) アルカンの脱水素のための触媒及び方法
CN114570360B (zh) 一种Ru基催化剂及其制备方法、应用
CN108927173B (zh) 一种炔烃选择性加氢催化剂及其制备方法和应用
CN105289622A (zh) 饱和烷烃脱氢制备单烯烃的催化剂
CN110801861B (zh) 一种环境友好型丙烷直接脱氢制丙烯催化剂及其制备方法
CN102485331A (zh) 一种介孔碳负载的复合金属氧化物催化剂及其制备方法
CN114700084B (zh) 用于有机储氢液体加氢与脱氢的催化剂及其制备方法和有机储氢液体加氢与脱氢的方法
US20220088573A1 (en) SUPPORTED CORE-SHELL STRUCTURED ZnO CATALYST, AND PREPARATION METHOD AND USE THEREOF
CN105582929A (zh) 低碳烷烃脱氢催化剂、制备方法及其用途
WO2024008171A1 (zh) 过渡金属基低碳烷烃脱氢催化剂及其制备方法和应用
US5214227A (en) Low pressure dehydrogenation of light paraffins
CN107537485B (zh) 异戊烷脱氢制异戊烯的催化剂及其制备方法
WO2024008169A1 (zh) 一种低碳烷烃脱氢催化剂及其制备方法和应用
CN107649125B (zh) 丙烷脱氢Ptx-Sny二元合金纳米催化剂及其制备方法
CN103028421A (zh) 低水比乙苯脱氢催化剂
CN107983328B (zh) 一种醇醇缩合反应的催化剂及其制备方法和应用
WO1993012879A1 (en) Dehydrogenation catalysts and process for using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834930

Country of ref document: EP

Kind code of ref document: A1