WO2024008169A1 - 一种低碳烷烃脱氢催化剂及其制备方法和应用 - Google Patents

一种低碳烷烃脱氢催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2024008169A1
WO2024008169A1 PCT/CN2023/106191 CN2023106191W WO2024008169A1 WO 2024008169 A1 WO2024008169 A1 WO 2024008169A1 CN 2023106191 W CN2023106191 W CN 2023106191W WO 2024008169 A1 WO2024008169 A1 WO 2024008169A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
low
carbon alkane
zinc aluminate
dehydrogenation catalyst
Prior art date
Application number
PCT/CN2023/106191
Other languages
English (en)
French (fr)
Inventor
赵瑞玲
卓润生
孙秋实
刘兵
兰兴玥
张春雪
饶宇森
刘新生
Original Assignee
润和科华催化剂(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 润和科华催化剂(上海)有限公司 filed Critical 润和科华催化剂(上海)有限公司
Publication of WO2024008169A1 publication Critical patent/WO2024008169A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the technical field of petrochemical industry, and specifically relates to a low-carbon alkane dehydrogenation catalyst and its preparation method and application.
  • Propylene as a raw material for the production of polypropylene, acrylonitrile, propylene oxide and other chemical products, is an important organic basic chemical raw material second only to ethylene in output. As of the end of 2019, my country's annual propylene output was 32.88 million tons.
  • the current main sources of propylene supply are naphtha steam cracking and catalytic cracking processes, which are considered oil-to-propylene production routes.
  • traditional propylene production route technology is difficult to meet market demand. Therefore, it is particularly important to develop new directional and efficient propylene production technology.
  • Direct dehydrogenation of propane is one of the industrial directional production processes of propylene. Compared with the traditional oil-to-propylene production route, this process has the advantages of high propylene selectivity, abundant sources of raw materials, simple product composition and easy separation.
  • the propane oxygen-free dehydrogenation process has been successfully industrialized, mainly including Lummus' Catofin process, UOP's Oleflex process, and Uhde's STAR process. Among them, Catofin process and Oleflex process are widely used.
  • the catofin process uses CrO
  • Pt-based catalysts Compared with CrO x /Al 2 O 3 , Pt-based catalysts have the advantages of high reactivity, high propylene selectivity, and low toxicity, and are favored by people. However, Pt particles are easy to sinter at high temperatures. At the same time, the accumulation of carbon deposits on the surface leads to poor stability and easy deactivation, which greatly reduces the production capacity of the equipment. Therefore, it is necessary to develop Pt particles with high stability and strong resistance to carbon deposition. Catalysts are particularly important.
  • Chinese patents CN109746033B uses a molecular sieve with a special structure as a carrier and PtSn as an active component to prepare a dehydrogenation catalyst with a special structure.
  • the patent does not provide the stability data of the catalyst and the anti-carbon deposition ability of the catalyst.
  • Chinese patent CN102247843A discloses a method for improving the stability of Pt-based catalysts for cycloalkane dehydrogenation. The method is to add oxide active components CaO, ZrO 2 , BaO, and La 2 O to the carrier of the Pt/Al 2 O 3 catalyst. 3. CeO 2.
  • the improved catalyst is used for the dehydrogenation of hydrogen storage material cyclohexane.
  • the catalyst stability is improved, but the initial dehydrogenation performance of the catalyst provided by the patent is poor.
  • the zinc aluminate carrier-based dehydrogenation catalyst reported in the existing invention has low catalytic activity, low selective activity, and weak anti-carbon deposition ability, and its vertical and horizontal properties still need to be further improved.
  • the object of the present invention is to provide a low-carbon alkane dehydrogenation catalyst and a preparation method thereof.
  • This catalyst prepared from a modified zinc aluminate carrier has high propane conversion rate, high product propylene selectivity, strong sintering resistance and stability. Good features.
  • the present invention provides a low-carbon alkane dehydrogenation catalyst, which uses at least one of the noble metals Pt, Pd, Ru and Rh as an active component, and uses transition metals Ga, V, In, Sn, Mn, At least one of Ce, Fe and Ni is used as an auxiliary agent, and a modified zinc aluminate carrier is used as a carrier;
  • the chemical composition of the modified zinc aluminate support is the general formula ZnM At least one of Pr, Sm and Er.
  • the mass percentage of the active component is 1-40wt%
  • the mass percentage of the auxiliary is 1-20wt%
  • the remaining The amount is modified zinc aluminate carrier.
  • the modified zinc aluminate carrier has a specific surface area of 10-100 m 2 /g, a pore diameter ranging from 3 nm to 30 nm, and a pore volume ranging from 0.1 to 0.7 g/mL.
  • the precursor of the rare earth element is one or more of nitrates of rare earth elements, rare earth metal oxides, rare earth metal sulfates, and rare earth metal organic acid salts.
  • the precursor of the noble metal element is selected from one or more of metal halides, metal nitrates and metal complexes;
  • the precursor of the transition element is one or more of an oxide, an inorganic salt, and a complex of a metal element.
  • the modified zinc aluminate carrier is prepared by gel sol method, dipping method, precipitation method, co-precipitation method or hydrothermal synthesis method.
  • the modified zinc aluminate carrier is prepared by a precipitation method or a co-precipitation method, and the precipitant used is ammonia water, sodium hydroxide, potassium hydroxide, sodium carbonate and urea. at least one;
  • the modified zinc aluminate carrier is prepared by a gel-sol method, and the gelling agent used is at least one of citric acid, nitric acid, and hydrochloric acid.
  • the present invention provides a method for preparing the above-mentioned low-carbon alkane dehydrogenation catalyst, including:
  • the solution containing active components and additives is added dropwise to the dispersion containing modified zinc aluminate carrier. After stirring for 1 to 3 hours, the solvent is recovered, dried and then roasted.
  • the temperature during the roasting process is 500-700°C and the time is 3-5 hours.
  • the present invention provides an application of the above-mentioned low-carbon alkane dehydrogenation catalyst.
  • the catalyst is used for propane dehydrogenation, isobutane dehydrogenation or propane/isobutane mixed gas dehydrogenation.
  • the catalyst is used in fixed bed, moving Moving bed or fluidized bed, the reaction temperature is 550-620°C, the reaction pressure is 10-150kPa, and the reaction space velocity is 0.1-2h -1 .
  • the present invention at least has the following technical effects:
  • the catalyst provided by the invention uses a special modified zinc aluminate carrier modified with rare earth as the carrier of the dehydrogenation catalyst, which improves the stability of the carrier and reduces the surface acidity of the carrier, and reduces the risk of traditional carriers due to excessive B acid. Problems causing acidic lysis.
  • Rare earth elements La, Ce, Pr, Sm and Er are used to modify zinc aluminate; compared to using alkali metal or alkaline earth metal elements to modify zinc aluminate, the modified zinc aluminate carrier in this application, Rare earth elements are selected to be introduced into the carrier lattice, which enhances the mechanical strength of the carrier structure. At the same time, rare earth elements have strong ability to store and discharge electrons, which greatly regulates the existence state of active components on the carrier surface and the reaction process. Valence.
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst that can be used for propane dehydrogenation, isobutane dehydrogenation or propane/isobutane mixed gas dehydrogenation.
  • This catalyst is composed of active components, auxiliaries, and carriers. specifically:
  • the catalyst uses at least one of the precious metals Pt, Pd, Ru and Rh as an active component, and mainly plays the role of breaking C-H bonds.
  • any one of the noble metals Pt, Pd, Ru and Rh is used as the active component, and more preferably, Pt is used as the active component.
  • the precursor of the precious metal element is selected from one or more of metal halides, metal nitrates and metal complexes.
  • the mass percentage of the active component is 1-40wt%; preferably, the mass percentage of the active component is 5-35wt%, and more preferably, it is 10-25 %. Controlling the mass percentage of precious metal elements in the catalyst between 1% and 40% will help break the C-H bonds during the propane dehydrogenation reaction. If it exceeds this range, it may have the adverse effect of deep cracking.
  • the catalyst uses at least one of the transition metals Ga, V, In, Sn, Mn, Ce, Fe and Ni as an auxiliary agent, and mainly changes the valence state and electron cloud density of the active components during the reaction to adjust their The existence state of the carrier surface.
  • the auxiliary agent is any one of the transition metals Ga, V, In, Sn, Mn, Fe, and Ni. More preferably, the auxiliary agent is Ce, Fe, Mn, Sn, and Ga.
  • the precursor of the transition element is one or more of the oxides, inorganic salts, and complexes of metal elements.
  • the mass percentage of the additive is 1 to 20 wt%. Preferably, the mass percentage is 5 to 15 wt%, and more preferably, the mass percentage is 8 to 12 wt%. . Controlling the mass percentage of additives in the catalyst between 1 and 20% will help it play a role in regulating active components; exceeding this range may cover the active sites, leading to adverse effects such as a decrease in catalytic activity.
  • the catalyst uses a modified zinc aluminate carrier as a carrier, which mainly plays the role of dispersing and supporting active components.
  • This modified zinc aluminate support is the general formula ZnM At least one of Ce, Pr, Sm and Er.
  • This modified zinc aluminate carrier has a specific surface area of 10-100m2 /g, a pore diameter ranging from 3nm to 30nm, and a pore volume ranging from 0.1 to 0.7g/mL.
  • this modified zinc aluminate carrier has the characteristics of low acidity and high mechanical strength, which helps to improve the stability of the carrier and reduce the surface of the carrier in the subsequent preparation of dehydrogenation catalysts. Acidic, avoid the defects of acidic cleavage caused by too much B acid in traditional carriers.
  • This modified zinc aluminate carrier is prepared by dipping method, precipitation method, co-precipitation method or hydrothermal synthesis method.
  • the modified zinc aluminate carrier is prepared by a precipitation method or a co-precipitation method, and the precipitant used is at least one of ammonia water, sodium hydroxide, potassium hydroxide, sodium carbonate and urea; preferably, the modified aluminum
  • the acid zinc carrier is prepared by a gel-sol method, and the gelling agent used is at least one of citric acid, nitric acid, and hydrochloric acid.
  • This catalyst can be further used in fixed bed, moving bed or fluidized bed.
  • the reaction temperature is 550-620°C, preferably 570-610°C, more preferably 580-600°C;
  • the reaction pressure is 10-150kPa, preferably 20 -100kPa, more preferably 30-70kPa;
  • reaction space velocity is 0.1-2h -1 , preferably 0.3-1.5h -1 , more preferably 0.5-1.0h -1 .
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This comparative example provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This comparative example provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This comparative example provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This comparative example provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • This embodiment provides a low-carbon alkane dehydrogenation catalyst, and its preparation method includes:
  • the process flow adopted is an existing process flow, which will not be elaborated in the examples.
  • the control parameters in the process flow are as follows: the propane space velocity is 1h -1 , an appropriate amount of hydrogen is introduced, the propane partial pressure is maintained at 50kPa, and the total pressure of the reaction system is It is normal pressure; the bed temperature is 550-600°C.
  • the carrier preparation and catalyst composition of each example and comparative example are shown in Table 1, and the test results are shown in Table 2.
  • the conversion rate, selectivity, and propylene yield of the catalyst provided in Examples 1-11 of the present application for propane dehydrogenation are all better than those of Comparative Examples 1-4, which illustrates that the improved catalyst provided by the present application Compared with traditional zinc aluminate carriers, alumina carriers and commercial ⁇ -phase alumina carriers, the zinc aluminate carrier has strong stability and low surface acidity of the carrier, thus avoiding the problems caused by excessive B acid in traditional carriers.
  • the problem of acidic cracking has significantly improved the catalytic performance and stability of the catalyst.
  • the catalytic performance of the catalysts provided in Examples 1-11 of the present application is also better than that of Comparative Example 5. This shows that the introduction of auxiliary agents also makes up for some high-energy defective positions on the carrier to a certain extent, and has a great impact on the overall performance of the dehydrogenation catalyst. Guaranteed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

提供了一种低碳烷烃脱氢催化剂及其制备方法和应用,属于石油化工技术技术领域。该催化剂以贵金属Pt、Pd、Ru和Rh中的至少一种为活性组分,以过渡金属Ga、V、In、Sn、Mn、Ce、Fe和Ni中的至少一种为助剂,以改性铝酸锌载体为载体;改性铝酸锌载体的化学组成为通式ZnM xAl yO 4,其中,x为0.01~0.99,y为0.01~1.99,且满足x+y=2;M选自稀土元素La、Ce、Pr、Sm和Er中的至少一种。这种由改性铝酸锌载体制备的催化剂具有丙烷转化率高、产物丙烯选择性高、抗烧结能力强和稳定性好等特点,催化性能和催化剂稳定性远高于现有工业化催化剂性能,具有潜在的工业应用前景。

Description

一种低碳烷烃脱氢催化剂及其制备方法和应用 技术领域
本发明属于石油化工技术技术领域,具体涉及一种低碳烷烃脱氢催化剂及其制备方法和应用。
背景技术
丙烯,作为生产聚丙烯、丙烯腈、环氧丙烷等化工产品的原料,是产量仅次于乙烯的重要有机基础化工原料,截止2019年底,我国全年丙烯产量3288万吨。目前丙烯供应的主要来源是石脑油蒸汽裂解和催化裂化工艺,这两种工艺被认为是油制丙烯生产路线。然而,传统的丙烯生产路线技术难以满足市场的需求。因此,开发新型定向高效的丙烯生产技术显得尤为重要。
丙烷直接脱氢是工业上定向生产丙烯的工艺之一,该工艺相比于传统的油制丙烯生产路线而言,具有丙烯选择性高,原料来源丰富,产物组成简单且易于分离等优势。目前丙烷无氧脱氢工艺已经成功工业化应用,主要有Lummus公司的Catofin工艺、UOP公司的Oleflex工艺、Uhde公司的STAR工艺。其中,Catofin工艺和Oleflex工艺应用较为广泛。catofin工艺以CrOx/Al2O3为催化剂,采用固定床反应器,Oleflex工艺以Pt/Al2O3为催化剂,采用流动床反应器。
相比于CrOx/Al2O3,Pt系催化剂具有反应活性高,丙烯选择性高,毒性低等优点,被人们青睐。然而,Pt粒子在高温下容易烧结,同时也因积碳在表面的累积导致其稳定性差,易失活,大大降低了设备的生产能力,因此,开发高稳定性、抗积碳能力强的Pt系催化剂尤为重要。
目前,国内外学者对于Pt系催化剂的研究有很多,中国专利 CN109746033B以具有特殊结构的分子筛为载体,以PtSn为活性组分,制备了特殊结构的脱氢催化剂,但该专利没有提供催化剂的稳定性数据以及催化剂的抗积碳能力。中国专利CN102247843A公开了一种环烷烃脱氢Pt基催化剂稳定性的改进方法,该方法是向Pt/Al2O3催化剂的载体中添加氧化物活性组分CaO、ZrO2、BaO、La2O3、CeO2,改进后的催化剂用于储氢材料环己烷脱氢,催化剂稳定性有所提高,但该专利提供的催化剂初始脱氢性能较差。
综上,现有发明中报道的铝酸锌载体基脱氢催化剂,由于存在催化活性低、选择活性不高,且抗积碳能力弱,其纵横性能仍需进一步提高。
发明内容
本发明的目的在于提供一种低碳烷烃脱氢催化剂及其制备方法,这种由改性铝酸锌载体制备的催化剂具有丙烷转化率高、产物丙烯选择性高、抗烧结能力强和稳定性好等特点。
本发明通过以下技术方案实现:
第一方面,本发明提供一种低碳烷烃脱氢催化剂,该催化剂以贵金属Pt、Pd、Ru和Rh中的至少一种为活性组分,以过渡金属Ga、V、In、Sn、Mn、Ce、Fe和Ni中的至少一种为助剂,以改性铝酸锌载体为载体;
改性铝酸锌载体的化学组成为通式ZnMxAlyO4,其中,x为0.01~0.99,y为0.01~1.99,且满足x+y=2;M选自稀土元素La、Ce、Pr、Sm和Er中的至少一种。
进一步地,在本发明较佳的实施例中,以催化剂干基总质量为基准,活性组分的质量百分含量为1-40wt%,助剂的质量百分含量为1~20wt%,余量为改性铝酸锌载体。
进一步地,在本发明较佳的实施例中,改性铝酸锌载体的比表面积为10-100m2/g,孔径范围为3nm~30nm,孔容范围为0.1~0.7g/mL。
进一步地,在本发明较佳的实施例中,稀土元素的前驱体为稀土元素的硝酸盐、稀土金属氧化物、稀土金属硫酸盐、稀土金属有机酸盐中的一种或几种。
进一步地,在本发明较佳的实施例中,贵金属元素的前驱体选用金属卤化物、金属硝酸盐和金属络合物中的一种或几种;
优选地,过渡元素的前驱体为金属元素的氧化物、无机盐、配合物中的一种或多种。
进一步地,在本发明较佳的实施例中,改性铝酸锌载体采用凝胶溶胶法、浸渍法、沉淀法、共沉淀法或水热合成法制备得到。
进一步地,在本发明较佳的实施例中,改性铝酸锌载体采用沉淀法或共沉淀法制备得到,所用的沉淀剂为氨水、氢氧化钠、氢氧化钾、碳酸钠和尿素中的至少一种;
优选地,改性铝酸锌载体采用凝胶溶胶法制备得到,所用的凝胶剂为柠檬酸、硝酸、盐酸中的至少一种。
第二方面,本发明提供一种上述低碳烷烃脱氢催化剂的制备方法,包括:
在搅拌的条件下,将含有活性组分和助剂的溶液滴加至含有改性铝酸锌载体的分散液中,搅拌1~3h后,回收溶剂、烘干后焙烧。
进一步地,在本发明较佳的实施例中,焙烧过程中温度为500~700℃,时间为3~5h。
第三方面,本发明提供一种上述低碳烷烃脱氢催化剂的应用,催化剂用于丙烷脱氢、异丁烷脱氢或丙烷/异丁烷混合气脱氢,催化剂应用于固定床、移 动床或流化床,反应温度为550-620℃,反应压力为10-150kPa,反应空速为0.1-2h-1
与现有技术相比,本发明至少具有如下技术效果:
本发明提供的催化剂,选用经稀土改性的特殊改性铝酸锌载体,作为脱氢催化剂的载体,提高了载体的稳定性并降低载体的表面酸性,降低了传统载体由于B酸过多而导致酸性裂解的问题。采用稀土元素La、Ce、Pr、Sm和Er对铝酸锌进行改性;相对于采用碱金属或碱土金属元素对铝酸锌进行改性,本申请中的这种改性铝酸锌载体,选用稀土元素引入载体晶格中,增强了载体结构的机械强度,同时,稀土元素具有较强的储放电子能力,极大程度的调控了活性组分在载体表面的存在状态及反应过程中的价态。
负载贵金属金属作为活性组分,引入助剂金属元素,通过改变反应过程中活性组分的价态、电子云密度以达到调节其在载体表面的存在状态,大幅提升低碳烷烃的转化率,抑制烷烃发生深度脱氢生成积碳物种的反应,提高催化剂热稳定性,有效抑制了积碳的生成,使用本发明所提供的低碳烷烃脱氢催化剂,催化性能和催化剂稳定性远高于现有工业化催化剂性能,具有潜在的工业应用前景。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围,实施例中未注明的具体条件,按照常规条件或者制造商建议的条件进行,所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明的技术方案为:
本实施方式提供一种低碳烷烃脱氢催化剂,可用于丙烷脱氢、异丁烷脱氢或丙烷/异丁烷混合气脱氢,这种催化剂由活性组分、助剂、和载体组成。具体地:
(1)活性组分
该催化剂以贵金属Pt、Pd、Ru和Rh中的至少一种为活性组分,主要发挥断裂C-H键的作用。优选地,以贵金属Pt、Pd、Ru和Rh中的任一种为活性组分,更为优选地,以Pt为活性组分。贵金属元素的前驱体选用金属卤化物、金属硝酸盐和金属络合物中的一种或几种。
其中,以催化剂干基总质量为基准,活性组分的质量百分含量为1-40wt%;优选地活性组分的质量百分含量为5-35wt%,更为优选地,为10~25%。将催化剂中贵金属元素的质量百分含量控制在1%~40%,有助于丙烷脱氢反应过程中C-H键的断裂,超过这个范围,可能会产生深度裂解的不利影响。
(2)助剂
该催化剂以过渡金属Ga、V、In、Sn、Mn、Ce、Fe和Ni中的至少一种为助剂,主要发挥改变反应过程中活性组分的价态、电子云密度以达到调节其在载体表面的存在状态。优选地,助剂为过渡金属Ga、V、In、Sn、Mn、Fe和Ni中的任意一种,更为优选地,助剂为Ce、Fe、Mn、Sn、Ga。过渡元素的前驱体为金属元素的氧化物、无机盐、配合物中的一种或多种。
其中以催化剂干基总质量为基准,助剂的质量百分含量为1~20wt%,优选地,质量百分含量为5~15wt%,更为优选地,质量百分含量为8~12wt%。 将催化剂中助剂的质量百分含量控制在1~20%,有助于其发挥调控活性组分的作用;超过这个范围,可能会覆盖活性位点,导致催化活性下降等不利影响。
(3)载体
该催化剂以改性铝酸锌载体为载体,主要发挥分散和支撑活性组分的作用。
这种改性铝酸锌载体的化学组成为通式ZnMxAlyO4,其中,x为0.01~0.99,y为0.01~1.99,且满足x+y=2;M选自稀土元素La、Ce、Pr、Sm和Er中的至少一种。这种改性铝酸锌载体的比表面积为10-100m2/g,孔径范围为3nm~30nm,孔容范围为0.1~0.7g/mL。
这种改性铝酸锌载体,相比于传统的铝酸锌载体,具有酸性低、机械强度高等特性,有助于后续在制备脱氢催化剂中,提高了载体的稳定性并降低载体的表面酸性,避免传统载体由于B酸过多而导致酸性裂解的缺陷。
这种改性铝酸锌载体采用浸渍法、沉淀法、共沉淀法或水热合成法制备得到。优选地,改性铝酸锌载体采用沉淀法或共沉淀法制备得到,所用的沉淀剂为氨水、氢氧化钠、氢氧化钾、碳酸钠和尿素中的至少一种;优选地,改性铝酸锌载体采用凝胶溶胶法制备得到,所用的凝胶剂为柠檬酸、硝酸、盐酸中的至少一种。
这种催化剂可进一步应用于固定床、移动床或流化床,反应温度为550-620℃,优选为570-610℃,更优选为580-600℃;反应压力为10-150kPa,优选为20-100kPa,更优选为30-70kPa;反应空速为0.1-2h-1,优选为0.3-1.5h- 1,更优选为0.5-1.0h-1
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
实施例1
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取377g的硝酸铝、187g的硝酸锌、4.33g硝酸镧溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到ZnLa0.01Al1.99O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pd的前驱体溶液氯钯酸和0.37g的硝酸镓于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例2
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝、181g的醋酸锌、3.26g硝酸铈溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到ZnCe0.01Al1.99O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液氯铂酸和0.37g的硝酸镓于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例3
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取133g的氯化铝、181g的醋酸锌、2.9g草酸镨溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到ZnPr0.1Al1.9O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液氯铂酸和0.37g的硝酸镓于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例4
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝、146g的醋酸锌、86.6g硝酸镧溶于1L的去离子水 中,进行超声溶解。在高速搅拌下,逐滴加入氢氧化钠,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到ZnLa0.2Al1.8O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液氯铂酸和0.56g醋酸锰于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例5
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取133g的氯化铝、181g的醋酸锌、5.48g硝酸铈铵溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到ZnCe0.01Al1.99O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pd的前驱体溶液氯钯酸和0.37g的五氧化二钒于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例6
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝、181g的醋酸锌、4.33g硝酸镧溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氢氧化钠,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到ZnLa0.01Al1.99O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Ru的前驱体溶液氯化铑和0.37g硝酸镓于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例7
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝、181g的醋酸锌、4.33g硝酸镧溶于1L的去离子水中,进行超声溶解。将溶解后的金属溶液和氨水利用进料泵共同滴加到沉淀槽中,控制溶液pH=5~8后,将混合液高速搅拌,使其沉淀均匀,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到ZnLa0.01Al1.99O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合 液A。称取含有0.1g的Pt的前驱体溶液氯铂酸和0.37g硝酸铟于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例8
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝、183g的醋酸锌、4.33g硝酸镧溶于1L的去离子水中,进行超声溶解。称取480g柠檬酸,在高速搅拌下,加入上述溶液中,混合液高速搅拌2h,升温至80℃,将混合液中溶剂蒸发,得到凝胶后在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到ZnLa0.01Al1.99O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液氯铂酸和0.37g的硝酸镓于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例9
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝、183g的醋酸锌、4.33g硝酸镧溶于1L的去离子水中,进行超声溶解。称取90g硝酸,在高速搅拌下,逐滴加入上述溶液中,混合液高速搅拌2h,升温至80℃,将混合液中溶剂蒸发,得到凝胶后在80℃烘 箱中烘干,1000℃马弗炉中焙烧,即得到ZnLa0.01Al1.99O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液氯铂酸和0.37g的硝酸镓于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例10
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝、183g的醋酸锌、4.33g硝酸镧溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氢氧化钠,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到ZnLa0.01Al1.99O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液氯铂酸和0.16g的氯化亚锡于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
实施例11
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝、181g的醋酸锌、4.33g硝酸镧溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到ZnLa0.01Al1.99O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液硝酸铂和0.16g的氯化亚锡于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
对比例1
本对比例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取商业α相氧化铝,10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液氯铂酸加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
对比例2
本对比例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝溶于1L的去离子水中,进行超声溶解。在高速搅拌 下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到Al2O3载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液硝酸铂和0.37g的硝酸镓于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
对比例3
本对比例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝、溶于1L的去离子水中,进行超声溶解。称取40g硝酸,在高速搅拌下,逐滴加入上述溶液中,混合液高速搅拌2h,升温至80℃,将混合液中溶剂蒸发,得到凝胶后在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到Al2O3载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液氯铂酸和0.37硝酸镓于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
对比例4
本对比例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取102g氧化铝和65g氧化锌于烧杯中,并加入100g去离子水,在高速搅拌高速搅拌30min。称取含有0.1g的Pt的前驱体溶液氯铂酸于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
对比例5
本实施例提供一种低碳烷烃脱氢催化剂,其制备方法包括:
称取373g的硝酸铝、181g的醋酸锌、4.33g硝酸镧溶于1L的去离子水中,进行超声溶解。在高速搅拌下,逐滴加入氨水,调节pH=5~8后,将混合液高速搅拌,使其沉淀完全,后进行静置陈化。将陈化后的产物进行过滤洗涤,得到的滤饼在80℃烘箱中烘干,1000℃马弗炉中焙烧,即得到ZnLa0.01Al1.99O4载体。
称取上述载体10g分散在50ml去离子水中,高速搅拌30min,得到混合液A。称取含有0.1g的Pt的前驱体溶液硝酸铂于烧杯中,加入20ml去离子水进行超声溶解,得到溶液B。在高速搅拌混合液A的条件下,逐滴加入B溶液,混合均匀,室温下搅拌2h后,利用旋蒸将溶剂蒸干。将得到的干品放入80℃烘箱烘干,600℃焙烧4h。
对各实施例及对比例载体中的反应条件进行汇总,如表1所示:
表1.

为了进一步说明本发明提供的催化剂的性能,特进行以下实验:
一、丙烷脱氢试验
采用的工艺流程为现有的工艺流程,实施例中不作详细阐述,工艺流程中的控制参数如下:丙烷空速为1h-1,通入适量氢气,保持丙烷分压为50kPa,反应体系总压力为常压;床层温度为550-600℃。其中,各实施例和对比例载体制备及催化剂组成如表1所示,试验结果如表2所示。
表2.

由表2可见,本申请实施例1-11提供的催化剂对丙烷脱氢的转化率、选择性、以及丙烯产率均优于对比例1-4,由此说明本申请提供的这种以改性铝酸锌载体,相比于传统的铝酸锌载体、氧化铝载体以及商业α相氧化铝载体,稳定性强且载体的表面酸性低,由此避免了传统载体由于B酸过多而导致酸性裂解的问题,使得催化剂的催化性能和稳定性均有显著提高。本申请实施例1-11提供的催化剂的催化性能也优于对比例5,由此说明,助剂的引入也在一定程度上弥补了载体上的一些高能量缺陷位置,对脱氢催化剂综合性能进行了保障。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种低碳烷烃脱氢催化剂,其特征在于,所述催化剂以贵金属Pt、Pd、Ru和Rh中的至少一种为活性组分,以过渡金属Ga、V、In、Sn、Mn、Fe和Ni中的至少一种为助剂,以改性铝酸锌为载体;
    所述改性铝酸锌载体的化学组成为通式ZnMxAlyO4,其中,x为0.01~0.99,y为0.01~1.99,且满足x+y=2;M选自稀土元素La、Ce、Pr、Sm和Er中的至少一种。
  2. 根据权利要求1所述的低碳烷烃脱氢催化剂,其特征在于,以所述催化剂干基总质量为基准,所述活性组分的质量百分含量为1-40wt%,所述助剂的质量百分含量为1~20wt%,余量为所述改性铝酸锌载体。
  3. 根据权利要求1或2所述的低碳烷烃脱氢催化剂,其特征在于,所述改性铝酸锌载体的比表面积为10-100m2/g,孔径范围为3nm~30nm,孔容范围为0.1~0.7g/mL。
  4. 根据权利要求1或2所述的低碳烷烃脱氢催化剂,其特征在于,所述稀土元素的前驱体为稀土元素的硝酸盐、稀土金属氧化物、稀土金属硫酸盐、稀土金属有机酸盐中的一种或几种。
  5. 根据权利要求1或2所述的低碳烷烃脱氢催化剂,其特征在于,所述贵金属的前驱体选用金属卤化物、金属硝酸盐和金属络合物中的一种或几种;
    优选地,所述过渡金属的前驱体为金属元素的氧化物、无机盐、配合物中的一种或多种。
  6. 根据权利要求1或2所述的低碳烷烃脱氢催化剂,其特征在于,所述改性铝酸锌载体采用凝胶溶胶法、浸渍法、沉淀法、共沉淀法或水热合成法制备得到。
  7. 根据权利要求6所述的低碳烷烃脱氢催化剂,其特征在于,所述改性铝酸锌载体采用沉淀法或共沉淀法制备得到,所用的沉淀剂为氨水、氢氧化钠、氢氧化钾、碳酸钠和尿素中的至少一种;
    优选地,所述改性铝酸锌载体采用凝胶溶胶法制备得到,所用的凝胶剂为柠檬酸、硝酸、盐酸中的至少一种。
  8. 一种根据权利要求1~7任一项所述的低碳烷烃脱氢催化剂的制备方法,其特征在于,包括:
    在搅拌的条件下,将含有所述活性组分和所述助剂的溶液滴加至含有所述改性铝酸锌载体的分散液中,搅拌1~3h后,回收溶剂、烘干后焙烧。
  9. 根据权利要求8所述的低碳烷烃脱氢催化剂的制备方法,其特征在于,所述焙烧过程中温度为500~700℃,时间为3~5h。
  10. 一种根据权利要求1~7任一项所述的低碳烷烃脱氢催化剂的应用,其特征在于,所述催化剂用于丙烷脱氢、异丁烷脱氢或丙烷/异丁烷混合气脱氢,所述催化剂应用于固定床、移动床或流化床,反应温度为550-620℃,反应压力为10-150kPa,反应空速为0.1-2h-1
PCT/CN2023/106191 2022-07-07 2023-07-06 一种低碳烷烃脱氢催化剂及其制备方法和应用 WO2024008169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210804288.2A CN114984951A (zh) 2022-07-07 2022-07-07 一种低碳烷烃脱氢催化剂及其制备方法和应用
CN202210804288.2 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024008169A1 true WO2024008169A1 (zh) 2024-01-11

Family

ID=83020524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106191 WO2024008169A1 (zh) 2022-07-07 2023-07-06 一种低碳烷烃脱氢催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114984951A (zh)
WO (1) WO2024008169A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114984951A (zh) * 2022-07-07 2022-09-02 润和科华催化剂(上海)有限公司 一种低碳烷烃脱氢催化剂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766266A (en) * 1985-11-13 1988-08-23 Arco Chemical Company Dehydrogenation of isobutane
EP0486993A1 (en) * 1990-11-19 1992-05-27 Phillips Petroleum Company Preparation of a zinc aluminate supported dehydrogenation catalyst
US5344805A (en) * 1993-05-03 1994-09-06 Phillips Petroleum Company Platinum and tin-containing catalyst and use thereof in alkane dehydrogenation
CN105363447A (zh) * 2014-08-27 2016-03-02 中国石油化工股份有限公司 用于低碳烷烃脱氢制备低碳烯烃的催化剂及其使用方法
CN105363455A (zh) * 2014-08-27 2016-03-02 中国石油化工股份有限公司 低碳烷烃脱氢制低碳烯烃催化剂及其应用
CN105363473A (zh) * 2014-08-27 2016-03-02 中国石油化工股份有限公司 低碳烷烃脱氢制低碳烯烃铂催化剂
CN105582923A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 低碳烷烃脱氢制烯烃的催化剂
CN107537486A (zh) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 用于低碳烷烃脱氢制备低碳烯烃的催化剂及其使用方法
CN108786798A (zh) * 2017-05-02 2018-11-13 中国石油化工股份有限公司 一种低碳烷烃脱氢催化剂的制备方法
CN114984951A (zh) * 2022-07-07 2022-09-02 润和科华催化剂(上海)有限公司 一种低碳烷烃脱氢催化剂及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766266A (en) * 1985-11-13 1988-08-23 Arco Chemical Company Dehydrogenation of isobutane
EP0486993A1 (en) * 1990-11-19 1992-05-27 Phillips Petroleum Company Preparation of a zinc aluminate supported dehydrogenation catalyst
US5344805A (en) * 1993-05-03 1994-09-06 Phillips Petroleum Company Platinum and tin-containing catalyst and use thereof in alkane dehydrogenation
CN105363447A (zh) * 2014-08-27 2016-03-02 中国石油化工股份有限公司 用于低碳烷烃脱氢制备低碳烯烃的催化剂及其使用方法
CN105363455A (zh) * 2014-08-27 2016-03-02 中国石油化工股份有限公司 低碳烷烃脱氢制低碳烯烃催化剂及其应用
CN105363473A (zh) * 2014-08-27 2016-03-02 中国石油化工股份有限公司 低碳烷烃脱氢制低碳烯烃铂催化剂
CN105582923A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 低碳烷烃脱氢制烯烃的催化剂
CN107537486A (zh) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 用于低碳烷烃脱氢制备低碳烯烃的催化剂及其使用方法
CN108786798A (zh) * 2017-05-02 2018-11-13 中国石油化工股份有限公司 一种低碳烷烃脱氢催化剂的制备方法
CN114984951A (zh) * 2022-07-07 2022-09-02 润和科华催化剂(上海)有限公司 一种低碳烷烃脱氢催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU JIANFENG, ZHOU WEI, JIANG DONGYU, WU WENHAI, MIAO CHANGXI, WANG YUE, MA XINBIN: "Isobutane Dehydrogenation over InPtSn/ZnAl 2 O 4 Catalysts: Effect of Indium Promoter", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, AMERICAN CHEMICAL SOCIETY, vol. 57, no. 33, 22 August 2018 (2018-08-22), pages 11265 - 11270, XP093124694, ISSN: 0888-5885, DOI: 10.1021/acs.iecr.8b01728 *
LIU, JIANFENG ET AL: "Insights into the doping effect of rare-earth metal on ZnAl2O4 supported PtSn catalyzed isobutane dehydrogenation", CATALYSIS TODAY, vol. 368, 15 April 2020 (2020-04-15), XP086527849, DOI: 10.1016/j.cattod.2020.04.016 *

Also Published As

Publication number Publication date
CN114984951A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US5219816A (en) Dehydrogenation catalysts and process for preparing the catalysts
CN114570360B (zh) 一种Ru基催化剂及其制备方法、应用
EP1533031B1 (en) Catalyst for clarifying exhaust gas
JP4970634B2 (ja) 有機化合物の変換反応において使用可能な担持触媒
WO2024008169A1 (zh) 一种低碳烷烃脱氢催化剂及其制备方法和应用
US4552861A (en) Process for manufacturing catalysts containing copper, zinc, aluminum and at least one metal from the group formed of rare earths and zirconium and the resultant catalysts for reactions involving a synthesis gas
CN102941093B (zh) 萘加氢制备十氢萘的催化剂及制备方法和应用
WO2024008164A1 (zh) 改性铝酸锌载体、低碳烷烃脱氢催化剂及其制备方法和应用
US20020068843A1 (en) Selective hydrogenation catalyst for selectively hydrogenating of unsaturated olefin, process for preparing the same and its use
US20200282388A1 (en) Catalyst For Preparing a-Phenylethanol By Hydrogenation Of Acetophenone, Preparation Method Thereof And Application Thereof
WO2019237892A1 (zh) 一种贵金属载体催化剂及其制备方法和应用
JP4708943B2 (ja) ペロブスカイト型複合酸化物粒子とその製造方法
CN114700084B (zh) 用于有机储氢液体加氢与脱氢的催化剂及其制备方法和有机储氢液体加氢与脱氢的方法
CN102381976B (zh) 一种制备1,4-环己烷二甲酸二甲酯的方法
CN104148059A (zh) 一种高分散稳定的重整催化剂及其制备方法
US5214227A (en) Low pressure dehydrogenation of light paraffins
AU2019323492B2 (en) Catalyst used for producing methyl glycolate and preparation method and application thereof
CN114602495A (zh) 一种丙烷脱氢Pt催化剂的制备方法
TW592810B (en) Catalyst for dehydrogenation of cyclohexanol and method for preparation thereof
CN102380374A (zh) 一种钯基加氢催化剂的制备方法
CN116099549B (zh) 一种三元合金脱氢催化剂、制备方法及其用途
CN116809078A (zh) 有机液体储氢材料脱氢催化剂及其制备方法和应用
US20180345255A1 (en) Steam reforming catalyst for hydrocarbons
CN108380219B (zh) 一种醋酸乙酯加氢制乙醇的催化剂及其制备方法和应用
WO1993012879A1 (en) Dehydrogenation catalysts and process for using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834935

Country of ref document: EP

Kind code of ref document: A1