WO2019237892A1 - 一种贵金属载体催化剂及其制备方法和应用 - Google Patents

一种贵金属载体催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2019237892A1
WO2019237892A1 PCT/CN2019/087873 CN2019087873W WO2019237892A1 WO 2019237892 A1 WO2019237892 A1 WO 2019237892A1 CN 2019087873 W CN2019087873 W CN 2019087873W WO 2019237892 A1 WO2019237892 A1 WO 2019237892A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
noble metal
precious metal
solution
precursor
Prior art date
Application number
PCT/CN2019/087873
Other languages
English (en)
French (fr)
Inventor
黄翟
Original Assignee
太原氦舶新材料有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原氦舶新材料有限责任公司 filed Critical 太原氦舶新材料有限责任公司
Priority to JP2020570049A priority Critical patent/JP2021526458A/ja
Publication of WO2019237892A1 publication Critical patent/WO2019237892A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air

Definitions

  • the invention belongs to the field of catalysts, and particularly relates to a noble metal-supported catalyst and a preparation method and application thereof.
  • Precious metal supported catalysts are mainly supported heterogeneous catalysts whose catalytic active components are mainly Pt, Pd, Rh, Ru, Ir in platinum group metals.
  • Noble metal-supported catalysts are highly valued for their excellent activity, selectivity, and stability. They are widely used in reactions such as hydrogenation, dehydrogenation, oxidation, isomerization, aromatization, and cracking. The fields of medicine, environmental protection and new energy play a very important role.
  • the object of the present invention is to provide a noble metal-supported catalyst and a preparation method and application thereof.
  • the catalyst provided by the present invention has high catalytic activity.
  • the invention provides a noble metal supported catalyst, comprising a support and noble metal particles supported on the support; the noble metal particles include silver particles and palladium particles, and one or more of platinum particles, gold particles and rhodium particles ;
  • the particle size of the noble metal particles is ⁇ 1 nm.
  • the molar ratio of the silver particles and the palladium particles is 0.02: (0.001 to 0.02).
  • the molar ratio of the silver particles and the platinum particles is 0.02: (0.001 to 0.02).
  • the molar ratio of the silver particles to the gold particles is 0.02: (0.001 to 0.01).
  • the support includes one or more of titanium dioxide, silicon dioxide, manganese oxide, aluminum oxide, iron oxide, and cerium oxide.
  • the invention provides a method for preparing a noble metal-supported catalyst, including the following steps:
  • the precious metal precursor includes a silver precursor and a palladium precursor, and one or more of a platinum precursor, a gold precursor, and a rhodium precursor;
  • the temperature of the reaction is ⁇ 0 ° C.
  • the step a) specifically includes:
  • the concentration of the precious metal precursor in the precious metal precursor solution is 0.01 to 0.06 mol / L;
  • the concentration of the reducing agent in the carrier dispersion is 0.5 to 4 mol / L, and the concentration of the carrier in the carrier dispersion is 0.5 to 5 mg / mL;
  • the volume ratio of the precious metal precursor solution and the carrier dispersion is 1: (5-20).
  • the reducing agent includes one or more of NaBH 4 , KBH 4 , N 2 H 4 , N 2 H 5 OH, formaldehyde, formic acid, ascorbic acid, sodium citrate, glucose, and vitamin C.
  • the invention provides a method for purifying toluene in the air, including the following steps:
  • the present invention provides a noble metal-supported catalyst and a preparation method and application thereof.
  • the noble metal supported catalyst provided by the present invention includes a support and noble metal particles supported on the support; the noble metal particles include silver particles and palladium particles, and one or more of platinum particles, gold particles, and rhodium particles; the The particle size of the noble metal particles is ⁇ 1 nm.
  • the catalyst provided by the present invention supports specific noble metal particles having a particle diameter of ⁇ 1 nm on a support, and exhibits extremely excellent catalytic activity.
  • the experimental results show that 200 mL of the solution (concentration 2 mg / L) prepared by the noble metal support catalyst provided by the present invention is sprayed into a 2 m 3 closed environment. After 24 hours, the toluene concentration in the closed environment can be reduced by more than 50%.
  • the invention provides a noble metal supported catalyst, comprising a support and noble metal particles supported on the support; the noble metal particles include silver particles and palladium particles, and one or more of platinum particles, gold particles and rhodium particles ;
  • the particle size of the noble metal particles is ⁇ 1 nm.
  • the noble metal supported catalyst provided by the present invention includes a support and noble metal particles.
  • the carrier includes, but is not limited to, one or more of titanium dioxide, silicon dioxide, manganese oxide, aluminum oxide, iron oxide, and cerium oxide, preferably silicon dioxide and / or manganese oxide.
  • the noble metal particles are supported on the carrier, and the noble metal particles include silver particles and palladium particles, and one or more of platinum particles, gold particles, and rhodium particles.
  • the molar ratio of the silver particles and the palladium particles is preferably 0.02: (0.001 to 0.02), and specifically may be 0.02: 0.002, 0.02: 0.004, 0.02: 0.006, 0.02: 0.008, 0.02: 0.01, 0.02: 0.012, 0.02: 0.014, 0.02: 0.016, 0.02: 0.018, or 0.02: 0.02.
  • the precious metal particles include silver particles, palladium particles, and platinum particles, and a molar ratio of the silver particles and the platinum particles is preferably 0.02: (0.001 to 0.02), and specifically, 0.02: 0.002 , 0.02: 0.004, 0.02: 0.006, 0.02: 0.008, 0.02: 0.01, 0.02: 0.012, 0.02: 0.014, 0.02: 0.016, 0.02: 0.018, or 0.02: 0.02.
  • the precious metal particles include silver particles, palladium particles, and gold particles
  • the molar ratio of the silver particles and the gold particles is preferably 0.02: (0.001 to 0.01), and specifically, 0.02: 0.001 , 0.02: 0.002, 0.02: 0.003, 0.02: 0.004, 0.02: 0.005, 0.02: 0.006, 0.02: 0.007, 0.02: 0.008, 0.02: 0.009, or 0.02: 0.01.
  • the particle diameter of the noble metal particles is ⁇ 1 nm, and may specifically be 0.1 nm, 0.2 nm, 0.3 nm, 0.4 nm, 0.5 nm, 0.6 nm, 0.7 nm, 0.8 nm, 0.9 nm, or 1 nm.
  • the catalyst provided by the present invention supports specific noble metal particles having a particle diameter of ⁇ 1 nm on a support, and exhibits extremely excellent catalytic activity.
  • the experimental results show that 200 mL of the solution (concentration 2 mg / L) prepared by the noble metal support catalyst provided by the present invention is sprayed into a 2 m 3 closed environment. After 24 hours, the toluene concentration in the closed environment can be reduced by more than 50%.
  • the invention provides a method for preparing a noble metal-supported catalyst, including the following steps:
  • the precious metal precursor includes a silver precursor and a palladium precursor, and one or more of a platinum precursor, a gold precursor, and a rhodium precursor;
  • the temperature of the reaction is ⁇ 0 ° C.
  • the reducing agent includes, but is not limited to, one or more of NaBH 4 , KBH 4 , N 2 H 4 , N 2 H 5 OH, formaldehyde, formic acid, ascorbic acid, sodium citrate, glucose, and vitamin C, preferably Is NaBH 4 and / or N 2 H 5 OH;
  • the noble metal precursor is the precursor corresponding to the noble metal particles introduced above, the silver precursor may specifically select AgNO 3 , and the palladium precursor may specifically select Na 2 PdCl 4 ,
  • the platinum precursor can be selected specifically from HPtCl 6 , and the gold precursor can be specifically selected from HAuCl 4 ; the carrier has been introduced above, and will not be repeated here;
  • the liquid phase is an antifreeze liquid, which can be mixed with water and a low melting point water-soluble organic substance Therefore, the low-melting-point water-soluble
  • the liquid phase includes water and propanol, and the volume ratio of the water and propanol is preferably 2: (4-12), and more preferably 2: 8.
  • the liquid phase includes water and ethylene glycol, and a volume ratio of the water and ethylene glycol is preferably 2.5: (5-15), and more preferably 2.5: 7.5.
  • the temperature of the reaction is ⁇ 0 ° C, specifically, -100 ° C, -90 ° C, -80 ° C, -70 ° C, -60 ° C, -50 ° C, -40 ° C, -30 ° C,- 20 ° C, -10 ° C or 0 ° C.
  • the precious metal precursor, the carrier, and the reducing agent react specifically in the following manner:
  • the precious metal precursor solution is a solution prepared by the precious metal precursor and the antifreeze solution, and the concentration of the precious metal precursor in the precious metal precursor solution is preferably 0.01 to 0.06 mol. / L, specifically 0.01 mol / L, 0.02 mol / L, 0.026 mol / L, 0.03 mol / L, 0.035 mol / L, 0.04 mol / L, 0.05 mol / L or 0.06 mol / L; the carrier is dispersed
  • the solution is a solution prepared by the reducing agent, the carrier, and the antifreeze solution.
  • the concentration of the reducing agent in the carrier dispersion is preferably 0.5 to 4 mol / L, and specifically, 0.5 mol / L, 1 mol / L, 1.5 mol / L, 2 mol / L, 2.5 mol / L, 3 mol / L, 3.5 mol / L, or 4 mol / L.
  • the concentration of the carrier in the carrier dispersion is preferably 0.5 to 5 mg / mL, and specifically 0.5 mg / mL.
  • the volume ratio of the carrier dispersion is preferably 1: (5-20), and specifically 1: 5, 1: 6, 1: 7, 1: 8, 1: 9, 1:10, 1:11, 1: 1.
  • the drop rate is excellent 0.1 to 1 mL / min, specifically 0.1 mL / min, 0.2 mL / min, 0.3 mL / min, 0.33 mL / min, 0.4 mL / min, 0.5 mL / min, 0.6 mL / min, 0.7 mL / min, 0.8 mL / min, 0.9 mL / min, or 1 mL / min; the time for continuing the reaction after the dropwise addition is preferably 1 to 8 hours, and specifically, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, or 8 hours.
  • the precious metal precursor is reduced in situ on the support under the action of a reducing agent to form precious metal particles.
  • the liquid phase is filtered off, and the obtained solid product is washed and dried to obtain a relatively pure noble metal-supported catalyst.
  • the method for preparing a noble metal support catalyst in a low-temperature liquid environment can effectively inhibit the nucleation and agglomeration of the noble metal precursor during the reduction process, thereby significantly reducing the particle size of the noble metal particles formed by in-situ reduction on the support.
  • specific noble metal particles having a particle diameter of ⁇ 1 nm can be supported on the support, so that the prepared catalyst exhibits extremely excellent catalytic activity.
  • the experimental results show that 200 mL of the solution (concentration 2mg / L) prepared by the noble metal support catalyst prepared by the present invention is sprayed into a 2m 3 closed environment. After 24 hours, the toluene concentration in the closed environment can be reduced by more than 50%.
  • the invention provides a method for purifying toluene in the air, including the following steps:
  • the noble metal-supported catalyst is first formulated into a solution.
  • the concentration of the noble metal-supported catalyst in the solution is preferably 0.5 to 5 mg / L, and specifically may be 0.5 mg / L, 1 mg / L, 1.5 mg / L, 2 mg / L, 2.5 mg / L, 3 mg / L, 3.5 mg / L, 4mg / L, 4.5mg / L or 5mg / L.
  • the solution is sprayed into the area to be purified.
  • the injection amount of the solution is preferably 10 to 1000 mL / m 3 , and more preferably 100 mL / m 3 .
  • the noble metal-supported catalyst in the solution degrades the toluene contained in the air to be purified.
  • the degradation is preferably performed under dark conditions; the temperature of the degradation can be selected from room temperature.
  • the purification method provided by the present invention selects the precious metal support catalyst provided by the present invention as an active ingredient for purifying formaldehyde in the air, and can efficiently degrade formaldehyde in the air.
  • a water / propanol mixed solution with a volume ratio of 2: 8 is used as an antifreeze solution; the antifreeze solution and a precious metal precursor are prepared into a reaction solution A, and the reaction solution A contains 0.02mol / L AgNO 3 and 0.01mol / L Na 2 PdCl 4 and 0.01 mol / L HPtCl 6 ; the antifreeze solution, silica support, and NaBH 4 were formulated into a reducing carrier dispersion B (the carrier concentration was 2.5 mg / mL, and the NaBH 4 concentration was 2 mol / L).
  • reaction solution A and the reducing carrier dispersion liquid B were placed in a low-temperature refrigerator, the temperature was lowered to minus 20 ° C, and the temperature was maintained for 30 minutes.
  • a dropping funnel was used to control the dropping rate, and 20 mL of the reaction solution A was dropped into 200 mL of the reducing carrier dispersion B at a rate of 0.33 mL / min.
  • the mixed liquid was stirred and reacted at minus 20 ° C for 3 hours, and then recovered and washed by vacuum filtration at low temperature, and dried naturally at room temperature. A precious metal supported catalyst is obtained.
  • the obtained noble metal-supported catalyst was observed with a transmission electron microscope, and it was observed that a large number of particles were supported on the support, and the particle diameter was about 0.5 nm.
  • the obtained noble metal-supported catalyst was mixed with water to obtain a catalyst solution having a concentration of 2 mg / L.
  • the obtained catalyst solution can efficiently degrade formaldehyde under the conditions of room temperature and no light.
  • 200 mL of the catalyst solution was sprayed into a 2 m 3 closed environment containing formaldehyde. After 24 hours, the toluene concentration in the closed environment decreased from 1.5 g / m 3 to 0.7 g / m 3 .
  • a water / glycol mixed solution with a volume ratio of 2.5: 7.5 is used as the antifreeze solution; the antifreeze solution and the precious metal precursor are prepared into a reaction solution A, and the reaction solution A contains 0.02mol / L AgNO 3 and 0.004mol / L Na 2 PdCl 4 and 0.002mol / L HPtCl 6 ; the antifreeze solution, manganese oxide support and N 2 H 5 OH were formulated into a reducing carrier dispersion B (the carrier concentration was 1 mg / mL, and the N 2 H 5 OH concentration was 2 mol / L).
  • reaction solution A and the reducing carrier dispersion liquid B were placed in a low-temperature refrigerator, and the temperature was lowered to minus 30 ° C. and the temperature was maintained for 30 minutes.
  • a dropping funnel was used to control the dropping rate, and 20 mL of the reaction solution A was dropped into 200 mL of the reducing carrier dispersion B at a rate of 0.33 mL / min.
  • the mixed liquid was stirred and reacted at minus 30 ° C for 4 hours, and then recovered and washed by vacuum filtration at low temperature, and dried naturally at room temperature. A precious metal supported catalyst is obtained.
  • the obtained noble metal-supported catalyst was observed by a transmission electron microscope, and a large number of particles were supported on the support, and the particle diameter was about 0.6 nm.
  • the obtained noble metal-supported catalyst was mixed with water to obtain a catalyst solution having a concentration of 2 mg / L.
  • the obtained catalyst solution can efficiently degrade toluene at room temperature and in the absence of light.
  • 200 mL of the catalyst solution was sprayed into a 2 m 3 closed environment containing toluene, and after 24 hours, the toluene concentration in the closed environment was reduced from 1.4 g / m 3 to 0.5 g / m 3 .
  • a water / glycol mixed solution with a volume ratio of 2.5: 7.5 is used as an antifreeze solution; the antifreeze solution and a precious metal precursor are prepared into a reaction solution A, and the reaction solution A contains 0.02mol / L AgNO 3 and 0.01mol / L Na 2 PdCl 4 and 0.005mol / L HAuCl 4 ; the antifreeze solution, manganese oxide support, and N 2 H 5 OH were formulated into a reducing carrier dispersion B (the carrier concentration was 1 mg / mL, and the N 2 H 5 OH concentration was 2 mol / L).
  • reaction solution A and the reducing carrier dispersion liquid B were placed in a low-temperature refrigerator, and the temperature was lowered to minus 30 ° C. and the temperature was maintained for 30 minutes.
  • a dropping funnel was used to control the dropping rate, and 20 mL of the reaction solution A was dropped into 200 mL of the reducing carrier dispersion B at a rate of 0.33 mL / min.
  • the mixed liquid was stirred and reacted at minus 30 ° C for 4 hours, and then recovered and washed by vacuum filtration at low temperature, and dried naturally at room temperature. A precious metal supported catalyst is obtained.
  • the obtained noble metal-supported catalyst was observed with a transmission electron microscope, and it was observed that a large number of particles were supported on the support, and the particle diameter was about 0.4 nm.
  • the obtained noble metal-supported catalyst was mixed with water to obtain a catalyst solution having a concentration of 2 mg / L.
  • the obtained catalyst solution can efficiently degrade toluene at room temperature and in the absence of light.
  • 200 mL of the catalyst solution was sprayed into a 2 m 3 closed environment containing toluene, and after 24 hours, the toluene concentration in the closed environment was reduced from 1.6 g / m 3 to 0.3 g / m 3 .
  • a water / acetone mixed solution with a volume ratio of 1.5: 8.5 is used as an antifreeze solution; the antifreeze solution and a precious metal precursor are prepared into a reaction solution A, and the reaction solution A contains 0.01mol / L of Na 2 PdCl 4 ; Solution, titanium oxide support, and KBH 4 were formulated into a reducing carrier dispersion B (support concentration was 2 mg / mL, KBH 4 concentration was 2 mol / L). Next, the reaction solution A and the reducing carrier dispersion B were placed in a low-temperature refrigerator, the temperature was lowered to minus 40 ° C, and the temperature was maintained for 30 minutes.
  • a dropping funnel was used to control the dropping rate, and 20 mL of the reaction solution A was dropped into 200 mL of the reducing carrier dispersion B at a rate of 0.33 mL / min.
  • the mixed liquid was stirred and reacted at minus 40 ° C for 3 hours, and then recovered and washed by vacuum filtration at low temperature, and dried naturally at room temperature.
  • a Pd / titanium oxide catalyst is obtained.
  • the obtained Pd / titanium oxide catalyst was observed by a transmission electron microscope, and it was observed that a large number of particles were supported on the carrier, and the particle diameter was about 0.7 nm.
  • the obtained Pd / titanium oxide catalyst was mixed with water to obtain a catalyst solution having a concentration of 2 mg / L.
  • the obtained catalyst solution can efficiently degrade toluene at room temperature and in the absence of light.
  • 200 mL of the catalyst solution was sprayed into a 2 m 3 sealed environment containing toluene. After 24 hours, the toluene concentration in the sealed environment was reduced from 1.0 g / m 3 to 0.83 g / m 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种贵金属载体催化剂及其制备方法和应用。贵金属载体催化剂包括载体和负载在载体上的贵金属颗粒;贵金属颗粒包括银颗粒和钯颗粒,以及铂颗粒、金颗粒和铑颗粒中的一种或多种;贵金属颗粒的粒径≤1nm。催化剂在载体上负载有粒径≤1nm的特定贵金属颗粒,表现出极为优异的催化活性。实验结果表明,将200mL本发明提供的贵金属载体催化剂配制成的溶液(浓度2mg/L)喷入2m 3的密闭环境中,24h后,密闭环境中的甲苯浓度可降低50%以上。

Description

一种贵金属载体催化剂及其制备方法和应用
本申请要求于2018年06月11日提交中国专利局、申请号为201810595113.9、发明名称为“一种贵金属载体催化剂及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于催化剂领域,尤其涉及一种贵金属载体催化剂及其制备方法和应用。
背景技术
贵金属载体催化剂主要是催化活性组分以铂族金属中Pt、Pd、Rh、Ru、Ir为主的负载型非均相催化剂。贵金属载体催化剂以优良的活性、选择性及稳定性而备受重视,广泛用于加氢、脱氢、氧化、异构化、芳构化、裂解等反应,在化工、石油精制、精细化工、医药、环保及新能源等领域起着非常重要的作用。
随着贵金属载体催化剂应用普及度和领域的不断扩大,人们对于贵金属载体催化剂的性能也提出了更高的要求,如果进一步提高贵金属载体催化剂的催化活性,是目前本领域技术人员的研究热点。
发明内容
有鉴于此,本发明的目的在于提供一种贵金属载体催化剂及其制备方法和应用,本发明提供的催化剂具有较高的催化活性。
本发明提供了一种贵金属载体催化剂,包括载体和负载在所述载体上的贵金属颗粒;所述贵金属颗粒包括银颗粒和钯颗粒,以及铂颗粒、金颗粒和铑颗粒中的一种或多种;
所述贵金属颗粒的粒径≤1nm。
优选的,所述银颗粒和钯颗粒的摩尔比为0.02:(0.001~0.02)。
优选的,所述银颗粒和铂颗粒的摩尔比为0.02:(0.001~0.02)。
优选的,所述银颗粒和金颗粒的摩尔比为0.02:(0.001~0.01)。
优选的,所述载体包括二氧化钛、二氧化硅、氧化锰、氧化铝、氧化铁和氧化铈中的一种或多种。
本发明提供了一种贵金属载体催化剂的制备方法,包括以下步骤:
a)贵金属前驱体、载体和还原剂在液相中混合反应,得到贵金属载体催化剂;
所述贵金属前驱体包括银前驱体和钯前驱体,以及铂前驱体、金前驱体和铑前驱体中的一种或多种;
所述反应的温度≤0℃。
优选的,所述步骤a)具体包括:
a1)提供贵金属前驱体溶液和含还原剂的载体分散液;
a2)将所述贵金属前驱体溶液和所述载体分散液降温至反应温度,之后将所述贵金属前驱体溶液滴加到所述载体分散液中进行反应,得到贵金属载体催化剂。
优选的,所述贵金属前驱体溶液中贵金属前驱体的浓度为0.01~0.06mol/L;
所述载体分散液中还原剂的浓度为0.5~4mol/L,所述载体分散液中载体的浓度为0.5~5mg/mL;
所述贵金属前驱体溶液和所述载体分散液的体积比为1:(5~20)。
优选的,所述还原剂包括NaBH 4、KBH 4、N 2H 4、N 2H 5OH、甲醛、甲酸、抗坏血酸、柠檬酸钠、葡萄糖和维生素C中的一种或多种。
本发明提供了一种净化空气中甲苯的方法,包括以下步骤:
i)将上述技术方案所述的贵金属载体催化剂或上述技术方案所述方法制备的贵金属载体催化剂配制成溶液;
ii)将所述溶液喷入到待净化区域。
与现有技术相比,本发明提供了一种贵金属载体催化剂及其制备方法和应用。本发明提供的贵金属载体催化剂包括载体和负载在所述载体上的贵金属颗粒;所述贵金属颗粒包括银颗粒和钯颗粒,以及铂颗粒、金颗粒和铑颗粒中的一种或多种;所述贵金属颗粒的粒径≤1nm。本发明提供的催化剂在载体上负载有粒径≤1nm的特定贵金属颗粒,表现出极为优异的催化活性。实验结果表明,将200mL本发明提供的贵金属载体催化剂 配制成的溶液(浓度2mg/L)喷入2m 3的密闭环境中,24h后,密闭环境中的甲苯浓度可降低50%以上。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种贵金属载体催化剂,包括载体和负载在所述载体上的贵金属颗粒;所述贵金属颗粒包括银颗粒和钯颗粒,以及铂颗粒、金颗粒和铑颗粒中的一种或多种;
所述贵金属颗粒的粒径≤1nm。
本发明提供的贵金属载体催化剂包括载体和贵金属颗粒。其中,所述载体包括但不限于二氧化钛、二氧化硅、氧化锰、氧化铝、氧化铁和氧化铈中的一种或多种,优选为二氧化硅和/或氧化锰。
在本发明中,所述贵金属颗粒负载在所述载体上,所述贵金属颗粒包括银颗粒和钯颗粒,以及铂颗粒、金颗粒和铑颗粒中的一种或多种。在本发明中,所述银颗粒和钯颗粒的摩尔比优选为0.02:(0.001~0.02),具体可为0.02:0.002、0.02:0.004、0.02:0.006、0.02:0.008、0.02:0.01、0.02:0.012、0.02:0.014、0.02:0.016、0.02:0.018或0.02:0.02。在本发明提供的一个实施例中,所述贵金属颗粒包括银颗粒、钯颗粒和铂颗粒,所述银颗粒和铂颗粒的摩尔比优选为0.02:(0.001~0.02),具体可为0.02:0.002、0.02:0.004、0.02:0.006、0.02:0.008、0.02:0.01、0.02:0.012、0.02:0.014、0.02:0.016、0.02:0.018或0.02:0.02。在本发明提供的一个实施例中,所述贵金属颗粒包括银颗粒、钯颗粒和金颗粒,所述银颗粒和金颗粒的摩尔比优选为0.02:(0.001~0.01),具体可为0.02:0.001、0.02:0.002、0.02:0.003、0.02:0.004、0.02:0.005、0.02:0.006、0.02:0.007、0.02:0.008、0.02:0.009或0.02:0.01。在本发明中,所述贵金属颗粒的粒径≤1nm,具体可为0.1nm、0.2nm、0.3nm、0.4nm、0.5nm、0.6nm、0.7nm、0.8nm、0.9nm或1nm。
本发明提供的催化剂在载体上负载有粒径≤1nm的特定贵金属颗粒, 表现出极为优异的催化活性。实验结果表明,将200mL本发明提供的贵金属载体催化剂配制成的溶液(浓度2mg/L)喷入2m 3的密闭环境中,24h后,密闭环境中的甲苯浓度可降低50%以上。
本发明提供了一种贵金属载体催化剂的制备方法,包括以下步骤:
a)贵金属前驱体、载体和还原剂在液相中混合反应,得到贵金属载体催化剂;
所述贵金属前驱体包括银前驱体和钯前驱体,以及铂前驱体、金前驱体和铑前驱体中的一种或多种;
所述反应的温度≤0℃。
在本发明提供的制备方法中,首先将贵金属前驱体、载体和还原剂在液相中混合反应。其中,所述还原剂包括但不限于NaBH 4、KBH 4、N 2H 4、N 2H 5OH、甲醛、甲酸、抗坏血酸、柠檬酸钠、葡萄糖和维生素C中的一种或多种,优选为NaBH 4和/或N 2H 5OH;所述贵金属前驱体为上文介绍的贵金属颗粒所对应的前驱体,银前驱体具体可选择AgNO 3,钯前驱体具体可选择Na 2PdCl 4,铂前驱体具体可选择HPtCl 6,金前驱体具体可选择HAuCl 4;所述载体在上文中已经介绍,在此不再赘述;所述液相为防冻液,可由水与低熔点水溶性有机物混合而成,所述低熔点水溶性有机物包括但不限于乙醇、乙二醇、丙酮、氯仿、乙醚、四氟氢喃和二甲基甲酰胺中的一种或多种。在本发明提供的一个实施例中,所述液相包括水和丙醇,所述水和丙醇的体积比优选为2:(4~12),更优选为2:8。在本发明提供的一个实施例中,所述液相包括水和乙二醇,所述水和乙二醇的体积比优选为2.5:(5~15),更优选为2.5:7.5。在本发明中,所述反应的温度≤0℃,具体可为-100℃、-90℃、-80℃、-70℃、-60℃、-50℃、-40℃、-30℃、-20℃、-10℃或0℃。
在本发明提供的一个实施例中,所述贵金属前驱体、载体和还原剂具体按照以下方式进行反应:
a1)提供贵金属前驱体溶液和含还原剂的载体分散液;
a2)将所述贵金属前驱体溶液和所述载体分散液降温至反应温度,之后将所述贵金属前驱体溶液滴加到所述载体分散液中进行反应。
在本发明提供的上述反应过程中,所述贵金属前驱体溶液是所述贵金 属前驱体和所述防冻液配制成的溶液,所述贵金属前驱体溶液中贵金属前驱体的浓度优选为0.01~0.06mol/L,具体可为0.01mol/L、0.02mol/L、0.026mol/L、0.03mol/L、0.035mol/L、0.04mol/L、0.05mol/L或0.06mol/L;所述载体分散液是所述还原剂、所述载体和所述防冻液配制成的溶液,所述载体分散液中还原剂的浓度优选为0.5~4mol/L,具体可为0.5mol/L、1mol/L、1.5mol/L、2mol/L、2.5mol/L、3mol/L、3.5mol/L或4mol/L,所述载体分散液中载体的浓度优选为0.5~5mg/mL,具体可为0.5mg/mL、1mg/mL、1.5mg/mL、2mg/mL、2.5mg/mL、3mg/mL、3.5mg/mL、4mg/mL、4.5mg/mL或5mg/mL;所述贵金属前驱体溶液和所述载体分散液的体积比优选为1:(5~20),具体可为1:5、1:6、1:7、1:8、1:9、1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、1:19或1:20;所述滴加的速率优选为0.1~1mL/min,具体可为0.1mL/min、0.2mL/min、0.3mL/min、0.33mL/min、0.4mL/min、0.5mL/min、0.6mL/min、0.7mL/min、0.8mL/min、0.9mL/min或1mL/min;滴加完毕后继续进行反应的时间优选为1~8h,具体可为1h、2h、3h、4h、5h、6h、7h或8h。
反应过程中,贵金属前驱体在还原剂的作用下在载体上原位还原,形成贵金属颗粒。反应结束后,滤除液相,对得到的固态产物进行洗涤和干燥,即可得到较为纯净的贵金属载体催化剂。
本发明在低温液相环境中制备贵金属载体催化剂,能有效抑制贵金属前驱体在还原过程中成核团聚,从而显著降低在载体上原位还原形成的贵金属颗粒的粒径。采用本发明提供的制备方法能在载体上负载粒径≤1nm的特定贵金属颗粒,从而使制得的催化剂表现出极为优异的催化活性。实验结果表明,将200mL本发明制备的贵金属载体催化剂配制成的溶液(浓度2mg/L)喷入2m 3的密闭环境中,24h后,密闭环境中的甲苯浓度可降低50%以上。
本发明提供了一种净化空气中甲苯的方法,包括以下步骤:
i)将上述技术方案所述的贵金属载体催化剂或上述技术方案所述方法制备的贵金属载体催化剂配制成溶液;
ii)将所述溶液喷入到待净化区域。
在本发明提供的净化方法中,首先将所述贵金属载体催化剂配制成溶 液。其中,所述溶液中贵金属载体催化剂的浓度优选为0.5~5mg/L,具体可为0.5mg/L、1mg/L、1.5mg/L、2mg/L、2.5mg/L、3mg/L、3.5mg/L、4mg/L、4.5mg/L或5mg/L。
之后,将所述溶液喷入到待净化区域。其中,所述溶液的喷入量优选为10~1000mL/m 3,更优选为100mL/m 3。喷入溶液中,溶液中的所述贵金属载体催化剂对待净化区域空气中含有的甲苯进行降解。在本发明中,所述降解优选在避光条件下进行;所述降解的温度可选择室温。
本发明提供的净化方法选择本发明提供的贵金属载体催化剂作为净化空气中甲醛的活性成分,能够高效降解空气中的甲醛。
为了进一步理解本发明,下面通过以下实施例对本发明提供的技术方案进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
以体积比2:8的水/丙醇混和溶液为防冻液;将所述防冻液和贵金属前驱体配制成反应溶液A,反应液A中含有0.02mol/L AgNO 3、0.01mol/L Na 2PdCl 4和0.01mol/L HPtCl 6;将所述防冻液、二氧化硅载体和NaBH 4配制成还原性载体分散液B(载体浓度为2.5mg/mL,NaBH 4浓度为2mol/L)。接着,将上述反应溶液A和还原性载体分散液B置于低温冰箱中,降温至零下20℃并保温30分钟。用分液漏斗控制滴速,将20mL反应溶液A以0.33mL/min的速率滴加至200mL的还原性载体分散液B中。混和液体在零下20℃条件下继续搅拌反应3h后,利用低温真空抽滤进行回收并清洗,并在室温自然干燥。即可获得贵金属载体催化剂。
对获得的贵金属载体催化剂进行透射电镜观察,观察到在载体上负载有大量的颗粒,颗粒粒径约为0.5nm。
将获得的贵金属载体催化剂加水混合,获得催化剂溶液,浓度为2mg/L。获得的催化剂溶液可以在室温,无光照的条件下,高效降解甲醛。将200mL催化剂溶液,喷入到2m 3密闭的含有甲醛的环境中,24小时后,密闭环境中甲苯浓度从1.5g/m 3降到0.7g/m 3
实施例2
以体积比2.5:7.5的水/乙二醇混和溶液为防冻液;将所述防冻液和贵 金属前驱体配制成反应溶液A,反应液A中含有0.02mol/L AgNO 3、0.004mol/L Na 2PdCl 4和0.002mol/L HPtCl 6;将所述防冻液、氧化锰载体和N 2H 5OH配制成还原性载体分散液B(载体浓度为1mg/mL,N 2H 5OH浓度为2mol/L)。接着,将上述反应溶液A和还原性载体分散液B置于低温冰箱中,降温至零下30℃并保温30分钟。用分液漏斗控制滴速,将20mL反应溶液A以0.33mL/min的速率滴加至200mL的还原性载体分散液B中。混和液体在零下30℃条件下继续搅拌反应4h后,利用低温真空抽滤进行回收并清洗,并在室温自然干燥。即可获得贵金属载体催化剂。
对获得的贵金属载体催化剂进行透射电镜观察,观察到在载体上负载有大量的颗粒,颗粒粒径约为0.6nm。
将获得的贵金属载体催化剂加水混合,获得催化剂溶液,浓度为2mg/L。获得的催化剂溶液可以在室温,无光照的条件下,高效降解甲苯。将200mL催化剂溶液,喷入到2m 3密闭的含有甲苯的环境中,24小时后,密闭环境中甲苯浓度从1.4g/m 3降到0.5g/m 3
实施例3
以体积比2.5:7.5的水/乙二醇混和溶液为防冻液;将所述防冻液和贵金属前驱体配制成反应溶液A,反应液A中含有0.02mol/L AgNO 3、0.01mol/L Na 2PdCl 4和0.005mol/L HAuCl 4;将所述防冻液、氧化锰载体和N 2H 5OH配制成还原性载体分散液B(载体浓度为1mg/mL,N 2H 5OH浓度为2mol/L)。接着,将上述反应溶液A和还原性载体分散液B置于低温冰箱中,降温至零下30℃并保温30分钟。用分液漏斗控制滴速,将20mL反应溶液A以0.33mL/min的速率滴加至200mL的还原性载体分散液B中。混和液体在零下30℃条件下继续搅拌反应4h后,利用低温真空抽滤进行回收并清洗,并在室温自然干燥。即可获得贵金属载体催化剂。
对获得的贵金属载体催化剂进行透射电镜观察,观察到在载体上负载有大量的颗粒,颗粒粒径约为0.4nm。
将获得的贵金属载体催化剂加水混合,获得催化剂溶液,浓度为2mg/L。获得的催化剂溶液可以在室温,无光照的条件下,高效降解甲苯。将200mL催化剂溶液,喷入到2m 3密闭的含有甲苯的环境中,24小时后, 密闭环境中甲苯浓度从1.6g/m 3降到0.3g/m 3
对比例1
以体积比1.5:8.5的水/丙酮混和溶液为防冻液;将所述防冻液和贵金属前驱体配制成反应溶液A,反应液A中含有0.01mol/L的Na 2PdCl 4;将所述防冻液、氧化钛载体和KBH 4配制成还原性载体分散液B(载体浓度为2mg/mL,KBH 4浓度为2mol/L)。接着,将上述反应溶液A和还原性载体分散液B置于低温冰箱中,降温至零下40℃并保温30分钟。用分液漏斗控制滴速,将20mL反应溶液A以0.33mL/min的速率滴加至200mL的还原性载体分散液B中。混和液体在零下40℃条件下继续搅拌反应3h后,利用低温真空抽滤进行回收并清洗,并在室温自然干燥。即可获得Pd/氧化钛催化剂。
对获得的Pd/氧化钛催化剂进行透射电镜观察,观察到在载体上负载有大量的颗粒,颗粒粒径约为0.7nm。
将获得的Pd/氧化钛催化剂加水混合,获得催化剂溶液,浓度为2mg/L。获得的催化剂溶液可以在室温,无光照的条件下,高效降解甲苯。将200mL催化剂溶液,喷入到2m 3密闭的含有甲苯的环境中,24小时后,密闭环境中甲苯浓度从1.0g/m 3降到0.83g/m 3
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对所公开的实施例的上述说明,使本领域专技术人员能够实现或使用本发明,对这些实施例的多种修改对本领域专业技术人员来说将是显而易见的。本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖性特点相一致的最宽的范围。

Claims (10)

  1. 一种贵金属载体催化剂,包括载体和负载在所述载体上的贵金属颗粒;所述贵金属颗粒包括银颗粒和钯颗粒,以及铂颗粒、金颗粒和铑颗粒中的一种或多种;
    所述贵金属颗粒的粒径≤1nm。
  2. 根据权利要求1所述的催化剂,其特征在于,所述银颗粒和钯颗粒的摩尔比为0.02:(0.001~0.02)。
  3. 根据权利要求1所述的催化剂,其特征在于,所述银颗粒和铂颗粒的摩尔比为0.02:(0.001~0.02)。
  4. 根据权利要求1所述的催化剂,其特征在于,所述银颗粒和金颗粒的摩尔比为0.02:(0.001~0.01)。
  5. 根据权利要求1所述的催化剂,其特征在于,所述载体包括二氧化钛、二氧化硅、氧化锰、氧化铝、氧化铁和氧化铈中的一种或多种。
  6. 一种贵金属载体催化剂的制备方法,包括以下步骤:
    a)贵金属前驱体、载体和还原剂在液相中混合反应,得到贵金属载体催化剂;
    所述贵金属前驱体包括银前驱体和钯前驱体,以及铂前驱体、金前驱体和铑前驱体中的一种或多种;
    所述反应的温度≤0℃。
  7. 根据权利要求6所述的制备方法,其特征在于,所述步骤a)具体包括:
    a1)提供贵金属前驱体溶液和含还原剂的载体分散液;
    a2)将所述贵金属前驱体溶液和所述载体分散液降温至反应温度,之后将所述贵金属前驱体溶液滴加到所述载体分散液中进行反应,得到贵金属载体催化剂。
  8. 根据权利要求7所述的制备方法,其特征在于,所述贵金属前驱体溶液中贵金属前驱体的浓度为0.01~0.06mol/L;
    所述载体分散液中还原剂的浓度为0.5~4mol/L,所述载体分散液中载 体的浓度为0.5~5mg/mL;
    所述贵金属前驱体溶液和所述载体分散液的体积比为1:(5~20)。
  9. 根据权利要求6所述的制备方法,其特征在于,所述还原剂包括NaBH 4、KBH 4、N 2H 4、N 2H 5OH、甲醛、甲酸、抗坏血酸、柠檬酸钠、葡萄糖和维生素C中的一种或多种。
  10. 一种净化空气中甲苯的方法,包括以下步骤:
    i)将权利要求1~5任一项所述的贵金属载体催化剂或权利要求6~9任一项所述方法制备的贵金属载体催化剂配制成溶液;
    ii)将所述溶液喷入到待净化区域。
PCT/CN2019/087873 2018-06-11 2019-05-22 一种贵金属载体催化剂及其制备方法和应用 WO2019237892A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020570049A JP2021526458A (ja) 2018-06-11 2019-05-22 貴金属担持触媒及びその製造方法、並びに応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810595113.9 2018-06-11
CN201810595113.9A CN109499566B (zh) 2018-06-11 2018-06-11 一种贵金属载体催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019237892A1 true WO2019237892A1 (zh) 2019-12-19

Family

ID=65745490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087873 WO2019237892A1 (zh) 2018-06-11 2019-05-22 一种贵金属载体催化剂及其制备方法和应用

Country Status (3)

Country Link
JP (1) JP2021526458A (zh)
CN (1) CN109499566B (zh)
WO (1) WO2019237892A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113908830A (zh) * 2021-09-23 2022-01-11 西安交通大学 一种负载型贵金属催化剂及制备方法和应用
CN114308029A (zh) * 2020-09-30 2022-04-12 中国科学院大连化学物理研究所 采用双金属催化剂进行肼还原六价铀制备四价铀的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109499566B (zh) * 2018-06-11 2020-06-09 太原氦舶新材料有限责任公司 一种贵金属载体催化剂及其制备方法和应用
CN110026186A (zh) * 2019-04-30 2019-07-19 太原氦舶新材料有限责任公司 一种生物质活性炭负载的金属单原子催化剂及其制备和应用
CN110280243A (zh) * 2019-04-30 2019-09-27 北京氦舶科技有限责任公司 一种单原子贵金属催化剂及其制备和在室温催化氧化甲醛中的应用
CN110404531A (zh) * 2019-08-30 2019-11-05 北京邮电大学 一种一步还原负载得到原子级分散的贵金属催化剂的方法
CN114887620B (zh) * 2022-04-11 2023-06-09 北京邮电大学 一种通过淬火策略快速液相制备金属化合物团簇的方法
CN115109940B (zh) * 2022-05-17 2024-05-28 华东理工大学 一种溶剂热法合成贵金属材料的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1600212A1 (en) * 2004-05-24 2005-11-30 Tanaka Kikinzoku Kogyo K.K. Catalyst and process for preparing the same
CN1968746A (zh) * 2004-06-10 2007-05-23 住友电气工业株式会社 金属催化剂及其制造方法
CN101925407A (zh) * 2008-01-28 2010-12-22 巴斯夫催化剂有限公司 制备水性胶体贵金属悬液的方法
US20120046164A1 (en) * 2010-08-17 2012-02-23 Sony Corporation Fine particles of core-shell structure and functional device incorporated therewith
CN105056944A (zh) * 2015-08-07 2015-11-18 北京神雾环境能源科技集团股份有限公司 一种高分散催化体系及其制备方法和应用
CN106140153A (zh) * 2015-04-09 2016-11-23 龙游天禾生态农业有限公司 一种促进光触媒净化空气的混合溶液制备方法
CN109499566A (zh) * 2018-06-11 2019-03-22 太原氦舶新材料有限责任公司 一种贵金属载体催化剂及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760717B2 (ja) * 2000-02-29 2006-03-29 株式会社豊田中央研究所 低温有害ガス浄化触媒
JP2003225568A (ja) * 2002-02-05 2003-08-12 Matsushita Electric Ind Co Ltd 揮発性有機化合物浄化触媒とその製造方法
CN101905159B (zh) * 2010-08-13 2011-12-21 北京工业大学 Au和Ag负载介孔β-MnO2催化剂的制备方法和应用
CN103084172A (zh) * 2011-10-28 2013-05-08 中国石油化工股份有限公司 一种碳二馏分选择加氢催化剂及其制备方法和应用
CN102389983B (zh) * 2011-11-09 2014-04-23 西北大学 一种贵金属纳米颗粒的合成方法
CN102895969A (zh) * 2012-10-15 2013-01-30 武汉理工大学 一种甲醛室温氧化催化剂的制备方法
CN107096527A (zh) * 2017-05-22 2017-08-29 西安石油大学 一种常温高效催化氧化甲醛催化剂、制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1600212A1 (en) * 2004-05-24 2005-11-30 Tanaka Kikinzoku Kogyo K.K. Catalyst and process for preparing the same
CN1968746A (zh) * 2004-06-10 2007-05-23 住友电气工业株式会社 金属催化剂及其制造方法
CN101925407A (zh) * 2008-01-28 2010-12-22 巴斯夫催化剂有限公司 制备水性胶体贵金属悬液的方法
US20120046164A1 (en) * 2010-08-17 2012-02-23 Sony Corporation Fine particles of core-shell structure and functional device incorporated therewith
CN106140153A (zh) * 2015-04-09 2016-11-23 龙游天禾生态农业有限公司 一种促进光触媒净化空气的混合溶液制备方法
CN105056944A (zh) * 2015-08-07 2015-11-18 北京神雾环境能源科技集团股份有限公司 一种高分散催化体系及其制备方法和应用
CN109499566A (zh) * 2018-06-11 2019-03-22 太原氦舶新材料有限责任公司 一种贵金属载体催化剂及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114308029A (zh) * 2020-09-30 2022-04-12 中国科学院大连化学物理研究所 采用双金属催化剂进行肼还原六价铀制备四价铀的方法
CN114308029B (zh) * 2020-09-30 2023-01-13 中国科学院大连化学物理研究所 采用双金属催化剂进行肼还原六价铀制备四价铀的方法
CN113908830A (zh) * 2021-09-23 2022-01-11 西安交通大学 一种负载型贵金属催化剂及制备方法和应用

Also Published As

Publication number Publication date
CN109499566B (zh) 2020-06-09
JP2021526458A (ja) 2021-10-07
CN109499566A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2019237892A1 (zh) 一种贵金属载体催化剂及其制备方法和应用
CN108579758B (zh) 一种可控的双金属核壳纳米结构、催化剂、其制法与应用
EP0796147B1 (en) Process for producing surfactant-stabilized colloids of mono- and bimetals of the group viii and ib of the periodic system in the form of precursors for catalysts which are isolable and water soluble at high concentration
US7947191B2 (en) Composite material composed of nanoparticles of transition metal and magnetic ferric oxide, a methode of preparing the same, and uses of the same
CN106914255B (zh) 一种非合金金属复合物及其制备方法和应用
JPH0560981B2 (zh)
CN112354567B (zh) 一种金银双金属纳米团簇的制备方法及其在污水降解中的应用
CN109092326B (zh) 一种核壳状钨酸镍微球负载钯催化剂及其制备方法和应用
CN113522279A (zh) 一种用于十二氢乙基咔唑放氢的金钯催化剂及其制备方法
CN113083294A (zh) 一种催化加氢催化剂及其制备方法和应用
CN114471540A (zh) 一种亚纳米Pt选择性加氢催化剂、制备方法及其应用
JPH09225317A (ja) ニッケル/貴金属二元金属クラスター、それよりなる触媒およびその製法
JP5548548B2 (ja) 金属粒子担持触媒の製造方法、金属粒子担持触媒及び反応方法。
CN111068669B (zh) 一种用于喹啉类化合物选择性加氢反应的多相催化剂及其应用
CN111389398B (zh) 分级中空二氧化硅限域氧化亚铜可见光催化剂的制备方法
CN112774676B (zh) 稀土氧化物负载钌催化剂及其制法和用途
CN109107583B (zh) 一种丁炔二醇半加氢双金属催化剂及其制备方法与应用
CN110681397A (zh) 一种银钯/三氧化二铁催化剂及其制备方法与应用
CN111229315A (zh) 一种用于3-(3,5-二叔丁基-4-羟基苯基)丙醇合成的催化剂及其制备和应用
CN113457722B (zh) 一种甲烷二氧化碳干重整催化剂及其制备方法和应用
JP6821151B2 (ja) アルカリ性担体に担持された金−セリウム酸化物担持複合体触媒およびその製造方法
JP3834621B2 (ja) 水性ガスシフト反応用触媒
KR101571319B1 (ko) 소결 억제 수성가스전환반응용 촉매, 이의 제조방법 및 이를 이용한 수성가스전환반응방법
JP6570030B2 (ja) コア−シェル触媒およびこれを利用したアルケンの製造方法
JPH0884930A (ja) 白金担持触媒の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020570049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820460

Country of ref document: EP

Kind code of ref document: A1