JP2004283834A - アルカンの脱水素のための触媒及び方法 - Google Patents

アルカンの脱水素のための触媒及び方法 Download PDF

Info

Publication number
JP2004283834A
JP2004283834A JP2004195909A JP2004195909A JP2004283834A JP 2004283834 A JP2004283834 A JP 2004283834A JP 2004195909 A JP2004195909 A JP 2004195909A JP 2004195909 A JP2004195909 A JP 2004195909A JP 2004283834 A JP2004283834 A JP 2004283834A
Authority
JP
Japan
Prior art keywords
catalyst
dehydrogenation
alkane
oxygen
isobutane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004195909A
Other languages
English (en)
Other versions
JP4185024B2 (ja
Inventor
Stanislaw Edmund Golunski
エドムンド ゴルンスキ スタニスロウ
John William Hayes
ウィリアム ヘイス ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Publication of JP2004283834A publication Critical patent/JP2004283834A/ja
Application granted granted Critical
Publication of JP4185024B2 publication Critical patent/JP4185024B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • C07C11/09Isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/324Catalytic processes with metals
    • C07C5/325Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

【課題】 本発明の目的は、アルカンの、特にイソブタンの脱水素のための触媒及び方法を提供することである。
【解決手段】 本発明に係るアルカンのアルケンへの、特にイソブタンのイソブテンへの脱水素は、支持体上に付着された白金族金属を含む脱水素及び酸化触媒の上を酸素と混合されて及び添加スチームの不存在下で行われる。酸化スズと酸化ジルコニウムとの混合物である支持体上に付着された白金を含む本発明に係る触媒は、特に上記の方法で行われるアルカンの脱水素についての良好な活性を有する。
【選択図】 なし

Description

本発明は、触媒及び触媒的工程における改良に関する。さらに特に、本発明は、アルカンの脱水素のための触媒及び方法に関する。
低い空間速度(space velocity)(GHSV=100-1000hr-1) における直接的脱水素を使用してイソブタンをイソブテンに脱水素することは、公知である。慣用の工業的工程は、幾つかの固有の欠点をもっている:
(a) それが吸熱反応であり、高い熱インプットが必要とし;
(b) イソブテンの収率が、平衡限定され; そして
(c) イソブテンの高収率にふさわしい温度において、触媒失活速度も高くなる。
慣用方法の改良は、スチーム( 例えば、USP 第4,926,005 号及び第4,788,371 号) 又は水素( 例えば、USP 第4,032,589 号) のいずれかをそのガス供給へ添加することを含む。この水素の働きは、希釈剤としてのもの及びその触媒上の炭素の付着を減少させるためのものである。このスチームは、その触媒床を通しての熱伝導を改善し、そしてその触媒上の炭素の付着を減少させ、そしてこれ故、それが希釈剤としても使用されてきた。工業において使用される触媒は、アルミナ上白金、酸化スズ上白金、及び酸化クロム- ベースの触媒を含む。アルカンの脱水素のための、特に、MTBE( メチル-tert-ブチル- エーテル) 製造のための出発物質であるイソブタンの脱水素のための改良方法についての必要性が在る。慣用方法は、エネルギーの高インプットを必要とし、そして大量の熱を供給するために設計された触媒反応器の投資額は、特に高い。そのうえ、慣用方法は、速い触媒の失活を示し、そのため、高価で且つ複雑な触媒の再生は、その装置及びその工程に設計されなければならない。
本発明は、アルカン脱水素のために改良方法及び新規の触媒を提供する。
したがって、本発明は、アルケンを作るためのアルカンの脱水素方法であって、気相においてそのアルカンを含む供給原料を、酸素と混合されて且つ添加スチームの不存在下で、支持体上に付着された(deposited) 白金族の金属を含んで成る脱水素及び酸化の触媒上に通過させることを含む方法を提供する。
本発明は、また、酸化スズと酸化ジルコニウムとの混合物である支持体上に付着された白金を含むアルカン脱水素触媒を、提供する。また、本発明は、アルケンを作るためのアルカン脱水素方法であって気相においてそのアルカンを含んで成る供給原料をこの触媒上に通過させることを含む方法を、提供する。
本法及び本触媒は、アルケンのより高い収率、より高いアルケンへの選択性、より低い操作温度、より低い熱インプット、より簡単な装置及びより低い触媒失活の如き特徴の中の1 以上の理由により、公知の方法及び触媒を超える利点をもつ。
アルカンのアルケンへの脱水素に対する多くの従来技術が在るが( 但し、アルカンのアルケンへの酸化的脱水素に対するものは稀であるが) 、本改良は、以前には実現されていない。先に述べた米国明細書第4,788,371 号中に説明されるように、炭化水素の脱水素は、吸熱である。脱水素触媒のだけを使用する系においては、その反応の様々な点において過熱スチームを添加し又はその触媒床間の反応スチームを断続的に取り出し且つ再加熱するすることが、典型的に必要である。改良において、脱水素又は選択的酸化触媒の別個の床又は反応器をもつ二触媒系を使用する方法を、開発した。選択的酸化触媒の目的は、その工程内で内部に熱を生じさせるためにその酸化ゾーンに添加された酸素との脱水素の結果として作られた水素を選択的に酸化することであった。生じた熱は、典型的には、その反応混合物を次の脱水素段階に必要な脱水素温度にまで到達させるのに十分なものであろう。上記米国明細書は、その発明において、1 の特定の触媒を脱水素及び酸化の両方の反応を行うために使用することができるということを説明している。それは、酸化的再加熱による脱水素可能な炭化水素のスチーム脱水素方法であって、C 2 -C15パラフィンを含んで成る脱水素可能な炭化水素及びスチームを、0.1:1 から40:1までのスチーム対炭化水素モル比、400 から900 ℃までの温度、そして0.1 から100hr -1までの液体毎時空間速度において、多数の反応ゾーンを含む反応器の第一反応ゾーン内の触媒と接触させ、そして第二の、及びその反応ゾーン内へ導入される酸素含有ガスの全速度がC 2 -C15パラフィン供給当たり0.01から2 モル酸素の範囲にあるような上記多数の反応ゾーンの中の他のそれぞれの反応ゾーン内に酸素含有ガスを導入し、ここで、その触媒が5 から120m2 /gまでの表面積をもつアルミナ支持体上の0.1 から5 重量% までの白金、及び0.01から5 重量% までのカリウム又はセシウム又はそれらの混合物から構成されており、そしてその反応からその生成物を回収することを含む反応について、開示している。
上記明細書は、単一の入口及び出口部分をもつ単一の反応器内の単一の反応ゾーンの可能性について、すなわち、その反応器の入口に入る全て同時の供給並びにその反応器の出口部分を通してのその系を去る生成物及び副生成物について述べているけれども、この概念を説明する実施例が全くない。そのうえ、脱水素及び酸化触媒上に酸素と混合してアルカンを通過させることを含む本発明の広い方法は、スチーム脱水素ではなく; その代わり、それは、添加スチームの非存在中で行われることができる( 但し、いくらかのスチームは、酸素と存在する水素との反応により形られる。) 。本発明のこの態様においては、我々は、添加スチームの不存在下の酸素が、酸素と存在する水素との発熱反応により作られた熱が部分的に又は全体的にその吸熱脱水素に必要な熱を提供するように、アルカンと有利に混合され、そして触媒上を通過することを発見した。酸素との反応に必要な水素は、反応ゾーン内に導入されることができるが、これは、好ましくない。有利には、その水素は、アルケンに味方するようにその平衡をシフトさせるような、アルカンのアルケンへの脱水素により作られる水素である。好ましくは、酸素の量は、熱がその反応から全く供給されない( 又は除去されない) ように、その脱水素が断熱条件下で行われような量である。特に好ましいのは、酸素の量が、吸熱脱水素がその酸素と温度を一定にするように存在する水素との発熱反応により平衡化されるような量である( この状態を、本明細書中で熱的中性条件という。) 。このように、収率、触媒の寿命等についての最適温度を、例えば、アルケンに対する少なくとも95% の選択性を得るように、維持することができる。
酸素の量は、モル基準において、望ましくは、アルカンの量未満であり、そして好ましくはこの基準においてアルカンの量の半分未満である。例えば、アルカンとしてイソブタンを使用すれば、酸素の量が以下の反応式:
C4 H 10 + 0.5 O2 -> C 4 H 8 + H 2 O
の化学量論により示されるもの未満であることが好ましい。
酸素の最適量は、所望の操作温度により変化するであろうし、そして、ガイドとして、我々は、イソブタンの高い選択性の熱的中性な脱水素のための酸素の最大量がイソブタンと酸素とを合わせた容量に基づき、450 ℃において5%、500 ℃において7.5%、そして550 ℃において9%であることを、予言するであろう。
本酸化的脱水素は、普通には、350 から550 ℃までの温度において、例えば、白金族の金属が白金を含み、そしてその支持体がアルミナを含むとき、例えば、350 から480 ℃までの温度において、行われる。
酸化的脱水素は、好ましくは、例えば、アルカンの、比較的高い空間速度、そして特に全体の、例えば、イソブタンについての、1000〜5000hr-1のガス毎時空間速度(gas hourly space velocity)(GHSV))の下で、行われる。
操作圧力は、便利には、大気圧であるが、脱水素を、大気圧の上で又は下で操作することができる。所望により、希釈ガスを使用することができる。但し、水素は先に説明したように推奨されない; さらに、それは、追加の工程のコストとなるであろう。
脱水素されるアルカンが、好ましくは、原材料であり、既に部分的に脱水素されてたアルカンではない。
酸素は、それ自体として使用されることができるが、便利には、それは酸素含有ガス、特に空気の成分として使用される。
白金族金属の脱水素及び酸化触媒は、本分野において知られるような触媒であることができる。白金族の金属( ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金) は、好ましくは、白金である。この触媒は、好ましくは、0.1 〜3 重量% の白金族の金属、例えば、白金を含む。支持体は、例えば、アルミナ、シリカ、マグネシア、チタニア、ジルコニア又はそれらの混合物若しくは結合酸化物( 例えば、アルミナ・シリケート) 、あるいはIIA 又はIIB 族( 例えば、亜鉛) のアルミネート・スピネル(aluminate spinel)であることができる。IIA 又はIIB 族は、CRC Handbook of Chemistry and Physics, 60th edition, CRC Press, 1980の内側のフロント・カバー中に与えられるものと同じである。一般的には、支持体は、アルミナを含む( すなわち、これから成り、又はこれを含む) 。例えば、触媒は、支持体として10-99.9 重量% のアルミナを含む。促進剤を、白金族金属と共に使用することができる。促進剤として好ましいのは、酸化スズである。存在するとき、その促進剤は、普通には、その触媒の0.1 〜5 重量% として使用される。触媒を、慣用法で、例えば、上記白金族金属の前駆体及びいずれかの共同促進剤の前駆体によりその支持体を含浸させ、そして焼く(calcining) ことにより、得ることができる。
添加スチームの不存在下でのアルカンの本酸化的脱水素のための特に有利な触媒は、それは添加スチームの存在下での酸化的脱水素のためにそして実際に直接的脱水素のために有利に使用されることができるもできるのであるが、新規の触媒である。アルカン脱水素のためえのこの触媒は、酸化スズと酸化ジルコニウムとの混合物である支持体上に付着された白金を含む。この触媒は、触媒として有効量の白金を含む。普通には、本触媒は、金属として計算した0.1 〜3 重量% の白金を含む。追加の触媒として活性な成分が存在することができる。但し、好ましくはその触媒として活性な成分は、本質的に白金から成る。本触媒は、支持量の酸化スズと酸化ジルコニウムとの混合物を含む。追加の支持成分が存在することができる。しかしながら、一般的な支持成分アルミナは不利であることが見つかっている。それ故、好ましくは、本触媒は、実質的に全くアルミナを含まない。支持体が本質的に酸化スズと酸化ジルコニウムとの混合物から成ることが好ましい。普通には、本触媒は、( 酸化スズとして測定した)6〜60、好ましくは10〜60、特に15〜30重量% の酸化スズを含む。普通には、本触媒は、37〜94.9、好ましくは70〜85重量% の酸化ジルコニウムを含む。酸化スズ対酸化ジルコニウムの重量比は、好ましくは、1:3 〜9 、特に1:3 〜5 である。好ましい態様においては、本触媒は、金属として計算された0.1 〜3 重量% の白金、10〜60重量% の酸化スズ、酸化ジルコニウムである残余を含む。特定の触媒は、約1:4 の重量比においてSnO 2 及びZnO 2 を含む支持体をもつ。本発明の触媒の1 つの好ましい態様は、( 金属として計算され、重量による)1% の白金塩又は化合物を1:4 の重量比におけるSnO 2 及びZnO 2 の共沈物上に含浸させることにより、調製される。
本発明の触媒は、さらに他の成分、例えば、促進剤及び/ 又は安定剤を含むことができる。本触媒は、例えば、ペレタイゼーション又はエクストルージョンにより作られたペレット又は他の形状の形態であることができ、又は高い表面積モノリス、例えば、セラミック又は金属ハニカム・モノリス上に支持されることができる。
SnO 2 及びZnO 2 の混合物は、様々な方法で作られることができ、そして未だ完全に理解されていない成分の間の化学的相互作用又は化合物形成が存在してもよい。沈殿の好ましい方法は、共沈によるものであり; 好適には、NaOHを水溶液中のスズとジルコニウムとの混合物に添加することによる。次に、この混合物を、白金塩の水溶液による含浸の前に、特に、中程度の高い表面積( 典型的には95m 2 g -1) 及び狭い細孔サイズ分布( ほとんどの細孔が約2nm の半径をもつ) をもつ粉末材料を作るために、乾燥させ、そして焼くことができる。この含浸触媒を、再び、好適に乾燥させ、そして焼く。
本発明は、さらに、気相において上記アルカンを含んで成る供給原料を本発明に係る触媒上を通過させることを含むアルケンを形るためのアルカンの脱水素方法を提供する。本触媒及び方法の利点を、以下の実施例中に示す。特に、本発明は、アルカンの酸化的脱水素における触媒の使用を提供し、これにより再生前の延長された耐久性を達成する。
本新規触媒を使用する方法は、酸化的脱水素反応として操作されるとき、特に有利である。すなわち、本発明は、気相において上記アルカンを含む供給原料を本発明に係る触媒上を酸素と混合して通過させることを含むアルケンを形るためのアルカンの酸化的脱水素方法を包含する。この酸素は、それ自体として使用されることができるが、便利には、それは、酸素含有ガス、特に空気の成分として使用される。
新規触媒を使用する酸化的脱水素は、一般的に触媒を使用する添加スチームの不存在下での酸化的脱水素について先に記載したように必要な変更を加えて、行われることができる。例えば、新規の触媒を使用する、添加スチームを伴った又は伴わない、酸化的脱水素は、好ましくは、例えば、アルカンの、比較的高い空間速度、そして好ましくは、全体の、例えば、イソブタンについて、1000〜5000hr-1のGHSVの下で、行われる。
好ましくは、新規の触媒を使用した酸化的脱水素は、断熱条件、特に熱的中性条件下で操作される。供給原料中の酸素の量は、好ましくは、それ故、選ばれた他の操作条件下でこれを達成するように制御される。断熱条件下の操作は、直接的脱水素の欠点の多くを克服する機会を提供する。好ましい態様においては、本発明の方法は:
i) 作られた水素のいくらかと発熱反応させることによりその触媒床内で熱を提供し;
ii) 水素の消費により、所望の生成物を味方してその平衡をシフトさせることができ; そして、
iii) 触媒失活の主要原因、すなわち、触媒の過剰還元及び炭素付着の、2 つを抑制する。
酸素の濃度は、断熱条件において注意して制御されなければならない、そして酸素の量が存在する水素の量に比べて化学量論的に下で維持されなければならない。酸素の量が注意して制御されなければならないということを要求する2 つの主要な理由、第一に、作られる不所望の生成物を部分的又は深い酸化のいずれかから回避すること、そして第二に、大量の発熱により生じた過剰温度暴走を防止すること、が在る。
所望により、新規触媒を使用した酸化的脱水素反応は、350 から550 ℃までの温度において、より好ましくは400 〜530 ℃、特に440 〜510 ℃の範囲内で、行われる。操作圧力は、便利には、大気圧であるが、その圧力は、大気圧を超えて又は下回って操作されることができる。所望により、希釈ガスを使用することができる。但し、水素は、推奨されない。なぜなら、それは、消費されるであろうし、そして追加の工程コストとなるであろうからである。
本発明は新規の触媒を含むか否かにかかわらず、イソブタン酸化的脱水素に特に関連して本明細書中に記載されるけれども、本発明は、それに限定されるものと解釈されるべきではなく、そして一般的にアルカンに適用されることができ、そしてまた、新規の触媒は、直接的脱水素において用途を見つけられることができる。にもかかわらず、酸化的脱水素において最も大きな利益が生じると信じられる。アルカンは、普通には、2 〜15、好ましくは2 〜5 、特に3 又は4 の炭素原子を有する。このアルカンは、直鎖状であることができる。但し、好ましくは、それは、分枝状である。
本発明を、添付の図面により説明する。これは、収率データを示す2 つのグラフであり、そしてこれを以下の実施例中に記載する。
本発明を、これから、以下の実施例を参照しながら記載する。
従来技術においては、Pt及びSnは、普通にはAl2 O 3 上に支持され、Snの重さは、スズとして測定して< 5%である(J C Hayes, US 4003852を参照のこと) 。ZrO 2 の使用に対するいくつかの文献(E Clippinger and B F Mulaskey, US 3864284; G J Antos, US 4003826; J C Hayes, US 4003852) が在るが、その機能は、単に物理的支持のものであると請求されている。
実施例1 及び比較例1
Pt-Sn/Al2 O 3 は、公知の炭化水素変換触媒であり、これは、例えば、C 2 -C20アルカンの改質(T-H Chao et al US 5128300を参照のこと) 及び直接的脱水素(J W Jenkins, US 3511888を参照のこと) のような反応に有効である。
1%Pt-1%Sn/Al2 O 3 の( 質量による) 名目上の組成をもつ触媒を、γ- Al2 O 3 を、水素・ヘキサクロロプラチネート(IV)( クロロ白金酸) と酸性化塩化スズ(II)との水性混合物と、同時含浸させることにいより、(F C Wilhelm, US 3998900により記載されているような方法に従って) 調製した。得られた材料を乾燥(110℃; 空気; 24時間) させ、そして焼いた(500℃; 空気; 2 時間) 。慣用には、少量の酸化スズはSnとして計量され且つ書かれ、そしてより多量の、例えば、10% のものは、SnO 2 として計量され且つ書かれる。
粉末サンプル(<150 μm 粒子直径) の充填床(1cm2 ) を断熱反応器内でテストした。比較例1 において450 ℃における直接的脱水素活性の測定のために、50cm3 min -1の流速(GHSV = 3000hr-1; MHSV = 6dm3 hr-1g cat -1) における、非希釈イソブタンのガス速度を使用した。モル変換( 全生成物に変換されたイソブタンの%)及び選択性( イソブテンに変換されたイソブタンのモル数を全生成物に変換されたイソブタンのモル数で割ったもの) を、選ばれた炉/ ガス入口温度において時間の関数として記録し; モル収率を、以下の関係:
収率/% = 変換/% x 選択性/%
100
から計算した。
酸化的脱水素を、熱的中性操作( すなわち、床温度 = 炉/ ガス入口温度) を確保するようにガス供給するのにちょうど十分な空気を添加することにより、実施例1 中で行った。イソブタンの空間速度は、それ故、直接的脱水素の間のものと同一であった。再び、モル変換及び選択性を時間の関数として記録した。
操作の両方のモード( 直接的脱水素及び酸化的脱水素) において、その触媒は、イソブタン形成に向けての非常に高い選択性( > 95%)を示した。テストの最初の5 分間の間にのみ、不所望のクラッキング生成物( プロペン) のいくつかの兆候が在った。酸化モードにおいて、形成したCO2 の量は、GC分析装置の検出限界のちょうど上にあり; COは、全く検出されなかった。
表1 中に示すように、直接的酸化脱水素活性は、最初の60分間の間、顕著に下降し; その後、失活は、非常にゆるやかであった。活性における最初の損失は、吸熱反応が定常状態に達したときの、新たな安定値に減少する床温度と一致した。
表1
(比較例1)
1%Pt-1%Sn/Al2 O 3 上の直接的脱水素
経過時間/ 分 イソブテン収率/%
450 ℃
2 16.3
25 15.4
55 15.2
120 15.1
300 14.7
1800 ---
---: 記録せず。
触媒を450 ℃及び500 ℃における酸化的モードにおいてテストしたとき、反応は、その酸素濃度が450 ℃において約3 又は4%に、そして500 ℃において約5.5%に達したとき熱的に中性になった。450 ℃における最初の活性は、直接的脱水素のためのものよりも高かった( 表1 と2 を比較のこと) 。このイソブテンの収率は、450 ℃におけるよりも500 ℃においてより高い。
表2
(実施例1)
1%Pt-1%Sn/Al2 O 3 上の酸化的脱水素
経過時間/ 分 イソブテン収率/%
450 ℃ 500℃
2 24.6 27.8
25 18.7 24.6
55 18.0 23.0
100 --- 21.6
180 16.4 19.2
300 15.5 16.5
400 14.9 ---
実施例2
実施例1 及び比較例1 中に記載した触媒を、比較例1 中に記載した条件下で、450 ℃においてイソブタンを脱水素するために使用した。イソブテンの収率は、空気をガス供給に添加する前に、15% に下降した。次に触媒の活性を、ガス供給組成の関数として測定した( 表3)。
表3
(実施例1)
450℃における 1%Pt-1%Sn/Al 2 O 3 上でのイソブタンの酸化的脱水素
ガス供給中の 床温度 イソブタン イソブテン
空気% ℃ 変換% 選択性%
70 498 24.0 70
65 488 21.8 78
55 478 20.0 84
45 468 20.8 85
35 460 19.5 90
20 450 18.0 95
高い空気濃度において、触媒床温度は、炉の温度を超え、そして主生成物は、イソブテン及び二酸化炭素であった。空気の濃度がより低くなったとき、床温度は下降し、そしてイソブテンへの選択性が改善された。最適ガス組成がしだいに達成され、450 ℃において留まる床温度をもたらした。但し、非常に少量の二酸化炭素が形成された。
実施例3
1%Pt-1%Sn/ZrO 2 ( 質量による、名目的組成) を、実施例1 及び比較例1 中に記載した方法により調製した。但し、ジルコニアを、γ-Al 2 O 3 の代わりに置き換えた。触媒を、実施例1 及び比較例1 中に記載したものと同一のテスト( イソブタン-GHSV = 3000hr-1におけるもの) に供した。但し、酸化的及び直接的脱水素を、500 ℃及び450 ℃の両方において行った。
表4
1%Pt-1%Sn/ZrO 2 上の直接的脱水素
経過時間/ 分 イソブテン収率/%
450 ℃ 500℃
2 15.7 29.2
25 15.2 25.7
60 15.1 25.4
240 14.5 23.6
500 --- 22.4
1150 13.4 ---
1380 13.4 19.0
1500 13.4 18.6
500 ℃における顕著な改善を見ることができる。
酸化的モードにおいては、450 ℃における使用に比較して500 ℃において再び顕著な改善が在った。500 ℃において、ジルコニア含有触媒は、1%Pt-1%Sn/Al 2 O 3触媒を超える改善された耐久性を示し( 表2 及び5)、イソブテンの収率は、(Pt-Sn/Al 2 O 3 についての150 分間と比較して) テストの最初の185 分間の間20% を超えた。
表5
1%Pt-1%Sn/ZrO 2 上の酸化的脱水素
経過時間/ 分 イソブテン収率/%
450 ℃ 500℃
2 19.6 31.6
25 18.3 29.0
55 17.8 26.5
120 15.2 23.1
180 14.6 20.0
300 14.0 18.0
実施例4 及び比較例2
1%Pt-1%Sn/10%ZrO 2 -Al 2 O 3 ( 質量による、名目的組成) を、実施例1 及び比較例1 中に記載した方法により調製した。但し、ZrO 2 -Al 2 O 3 を、Al 2 O 3の代わりに置き換えた。この混合酸化物を、乾燥(110℃; 空気; 24時間) 及び焼き(500℃; 空気; 2 時間) の前に、硝酸ジルコニウムの水溶液によりγ-Al 2 O 3 を含浸させることにより、作った。( 実施例3 中の)ZrO 2を使用することにより得られた良好な耐久性は、Al 2 O 3を添加することにより失われた。実施例3 のものと同一の条件下で500 ℃における酸化的テスト( 実施例4)の間、イソブテンの収率は、最初の85分間の経過中に30.0% から15.0% まで降下した。これは、アルミナの有害効果を示しており; この触媒は、本支持量の酸価スズと酸化ジルコニウムとの混合物をもっていない。
実施例5
1%Pt/10%SnO 2 -ZrO 2( 質量による、名目的組成) を、沈殿剤として水性水酸化ナトリウムを使用して、塩化スズ(IV)と水和ジルコニウム・オキシクロライドとの水性混合物からSnO 2 とZrO 2 とを共沈させることにより、調製した。この沈殿物を、乾燥(110℃; 空気; 24時間) 及び焼き(500℃; 空気; 2 時間) の前に、十分に洗浄した。得られた酸化混合物を、先の乾燥及び焼き段階を繰り返す前に、水性ジニトロジアミン白金(II)により含浸させた。この触媒を、実施例3 中に記載した条件下でテストした。
Snの増加重量は、直接的脱水素に有益ではなかったが、( 表5 と6 とを比較のこと) 酸化的脱水素の間の改善された耐久性をもたらした。500 ℃において、イソブテンの収率は、(1%Pt-1%Sn/ZrO 2についての185 分間と比較して) の最初の210 分間の間20% を超えた。
表6
1%Pt/10%SnO 2 -ZrO 2上の酸化的脱水素
経過時間/ 分 イソブテン収率/%
450 ℃ 500℃
2 17.1 28.2
25 18.4 28.7
55 18.2 27.6
120 16.5 24.2
180 14.8 21.3
240 --- 18.7
実施例6
1%Pt/20%SnO 2 -ZrO 2( 質量による、名目的組成) を、実施例5 中に記載した方法により調製し、そして実施例3 中に記載した条件下でテストした。再び、高いスズ重量から生じた最も明瞭な有益性が450 ℃と500 ℃の両方における酸化的モードにおいて、明らかであった。このとき、失活の速度はさらに減少されていた( 表5 、6 及び7 を比較のこと)。特に、( 収率> 15% の経過により測定されるような)450℃における耐久性は、(1%Pt-1%Sn/Al 2 O 3 についての6 時間と比較して)24 時間を超えた; 図1 を参照のこと。
表7
1%Pt/20%SnO 2 -ZrO 2上の酸化的脱水素
経過時間/ 分 イソブテン収率/%
450 ℃ 500℃
2 19.0 38.7
25 18.8 31.4
55 18.6 29.0
180 18.0 24.0
300 17.6 20.8
400 --- 18.8
1260 15.1 ---
1500 14.9 ---
実施例7
( 実施例6 中に記載したような)1%Pt/20%SnO 2 -ZrO 2 の新たなサンプルを、酸化的条件下であるが、実施例1 〜6 及び比較例1 及び2 中で使用した空間速度の半分において、処理した。
このより低い空間速度( イソブタン-GHSV = 1500hr-1) において、触媒の失活は、よりゆっくりになった。図2 が示すように、500 ℃におけるその最初の活性は、実施例6 中で観察されるものと類似であるが、その収率は、( イソブタン-GHSV = 3000hr-1においてその収率が20% を下回るのに要する時間である)5時間後にさえ25% を超えた。
比較例3
1%Pt/SnO2 ( 質量による、名目的な組成) を、乾燥(110℃; 空気; 24時間) 及び焼き(500℃; 空気; 2 時間) の前に、テトラアンミン白金(II)ヒドロキシドの水溶液によりSnO 2 を含浸させることにより調製した。それを、実施例3中に記載した条件下でテストした。この材料は、直接的脱水素(450℃において2.0%の最大収率) 及び酸化的脱水素(450℃において3.2%の最大収率) の両方について非常に弱い触媒であった。
実施例8
( 実施例6 中に記載したような)1%Pt/20%SnO 2 -ZrO 2 が直鎖状アルカンを脱水素する能力を、実施例3 中に与えた手順を追従し、そして正ブタンによりイソブタンを置き換えることにより、テストした。直接的脱水素の間、不飽和生成物の最初の全体の収率は、26% であったが( 生成物の選択性: 32% 1-ブテン、27% cis 2-ブテン、38% trans 2-ブテン、2%ブタジエン) 、3 時間の間に14% に下降した。酸化的モードへのスイッチングの間、いずれかの方法でその触媒を最初に再生することなく、その全体のい収率が回復し、ゆっくりと( さらに2 時間後25% までに) 下降する前に最大29% に達し; その生成物の分布は、直接的脱水素の間に観察されたものと非常に類似していた。
実施例9
実施例8 中に記載したテストのシーケンスを、アルカン反応体としてプロパンを使用して繰り返した。直接的脱水素の間、プロペンの最初の収率は、19% であり;3時間後、それは、12% に降下した。酸化的モードへのスイッチングの間、その収率は、19% に回復した。その後、それは、次の4 時間の間、17% にゆっくりと降下した。
本発明を、添付図1 及び2 中の様々な触媒についてグラフにより与えられた収率データによりさらに説明する。
図1:
(a) 1%Pt/20%SnO 2 -ZrO 2;
(b) 1%Pt-1%Sn/Al 2 O 3
上の、450 ℃におけるイソブタンの酸化的脱水素(GHSV = 3000hr-1) 。
図2:
(a) 1%Pt/20%SnO 2 -ZrO 2;
(b) 1%Pt/20%SnO 2 -ZrO 2;
(c) 1%Pt-1%Sn/ZrO 2 ;
(d) 1%Pt-1%Sn/Al 2 O 3
上の、500 ℃におけるイソブタンの酸化的脱水素。
ここで、(a) について、GHSV = 1500hr -1; (b) 〜(d) について、3000hr -1
本図は、(a) 1%Pt/20%SnO 2 -ZrO 2; (b) 1%Pt-1%Sn/Al 2 O 3上の、450 ℃におけるイソブタンの酸化的脱水素(GHSV = 3000hr-1) を示す。 本図は、(a) 1%Pt/20%SnO 2 -ZrO 2; (b) 1%Pt/20%SnO 2 -ZrO 2; (c) 1%Pt-1%Sn/ZrO 2 ; (d) 1%Pt-1%Sn/Al 2 O 3上の、500 ℃におけるイソブタンの酸化的脱水素を示す。ここで、(a) について、GHSV = 1500hr -1; (b) 〜(d) について、3000hr -1

Claims (13)

  1. 支持体上に付着された白金を含むアルカン脱水素触媒であって、その支持体が酸化スズと酸化ジルコニウムとの混合物であることを特徴とする触媒。
  2. 10〜60重量% の酸化スズを含有することを特徴とする、請求項1 に記載の触媒。
  3. 支持体が実質的にアルミナを全く含有しないことを特徴とする、請求項1 又は2 に記載の触媒。
  4. 金属として計算された0.1 から3 重量% までの白金、10〜60重量% の酸化スズ、並びに安定剤及び/ 又は促進剤を除くその残余であって酸化ジルコニウムであるものを含むことを特徴とする、請求項1 〜3 のいずれか1 項に記載の触媒。
  5. 支持体が約1:4 の重量比においてSnO 2 及びZnO 2 を含んで成ることを特徴とする、請求項1 〜4 のいずれか1 項に記載の触媒。
  6. 約1:4 の重量比においてSnO 2 及びZnO 2 の共沈物上に含浸された約1 重量% の白金を含む、請求項5 に記載の触媒。
  7. アルケンを作るためのアルカンの脱水素方法であって、ガス相においてそのアルカンを含んで成る供給原料を触媒上に通過させることを含み、その触媒が請求項1 〜6 のいずれか1 項に記載されるものであることを特徴とする方法。
  8. 前記方法が、気相においてアルカンを含む供給原料を酸素と混合して触媒上に通過させることを含む酸化的脱水素であることを特徴とする、請求項7 に記載の方法。
  9. 酸素の量が、吸熱脱水素がその酸素と温度を一定にするように存在する水素との発熱反応により平衡化されるような量であることを特徴とする、請求項8 に記載の方法。
  10. 添加スチームの不存在中で脱水素を行う、請求項7 〜9 のいずれか1 項に記載の方法。
  11. アルカンがイソブタンであることを特徴とする、請求項7 〜10のいずれか1 項に記載の方法。
  12. 1000〜5000 hr -1の全ガス毎時空間速度において脱水素を行う、請求項7 〜11のいずれか1 項に記載の方法。
  13. 350 から550 ℃までの温度において脱水素を行う、請求項7 〜12のいずれか1 項に記載の方法。
JP2004195909A 1993-08-14 2004-07-01 アルカンの脱水素のための触媒及び方法 Expired - Fee Related JP4185024B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB939316955A GB9316955D0 (en) 1993-08-14 1993-08-14 Improvements in catalysts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19137394A Division JP3609456B2 (ja) 1993-08-14 1994-08-15 アルカンの脱水素のための触媒及び方法

Publications (2)

Publication Number Publication Date
JP2004283834A true JP2004283834A (ja) 2004-10-14
JP4185024B2 JP4185024B2 (ja) 2008-11-19

Family

ID=10740520

Family Applications (2)

Application Number Title Priority Date Filing Date
JP19137394A Expired - Fee Related JP3609456B2 (ja) 1993-08-14 1994-08-15 アルカンの脱水素のための触媒及び方法
JP2004195909A Expired - Fee Related JP4185024B2 (ja) 1993-08-14 2004-07-01 アルカンの脱水素のための触媒及び方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP19137394A Expired - Fee Related JP3609456B2 (ja) 1993-08-14 1994-08-15 アルカンの脱水素のための触媒及び方法

Country Status (10)

Country Link
US (2) US5593935A (ja)
EP (2) EP0937697B1 (ja)
JP (2) JP3609456B2 (ja)
KR (2) KR100333002B1 (ja)
CA (1) CA2129379C (ja)
DE (2) DE69420799T2 (ja)
GB (1) GB9316955D0 (ja)
MY (1) MY112878A (ja)
NO (2) NO312237B1 (ja)
TW (1) TW272143B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512015A (ja) * 2008-12-18 2012-05-31 ティッセンクルップ ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング アルカン脱水素化用触媒のスズ含浸の変形

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3734695A (en) * 1994-10-27 1996-05-23 Regents Of The University Of Minnesota Catalytic oxidative dehydrogenation process
US5994606A (en) * 1995-03-08 1999-11-30 Mitsubishi Chemical Corporation Method for dehydrogenation of hydrocarbon
US5905180A (en) * 1996-01-22 1999-05-18 Regents Of The University Of Minnesota Catalytic oxidative dehydrogenation process and catalyst
US6254807B1 (en) 1998-01-12 2001-07-03 Regents Of The University Of Minnesota Control of H2 and CO produced in partial oxidation process
MY123470A (en) 1998-09-03 2006-05-31 Dow Global Technologies Inc On-line synthesis and regenerating of a catalyst used in autothermal oxidation
ID27736A (id) 1998-09-03 2001-04-26 Dow Chemical Co Proses autothermal untuk produksi olefin-olefin
EP1153005A1 (en) * 1999-02-22 2001-11-14 Symyx Technologies Compositions comprising nickel and their use as catalyst in oxidative dehydrogenation of alkanes
US6436871B1 (en) 1999-02-22 2002-08-20 Symyx Technologies, Inc. Catalysts for oxidative dehydrogenation
US6355854B1 (en) 1999-02-22 2002-03-12 Symyx Technologies, Inc. Processes for oxidative dehydrogenation
DE19937107A1 (de) * 1999-08-06 2001-02-08 Basf Ag Katalysator mit bimodaler Porenradienverteilung
DE19937106A1 (de) * 1999-08-06 2001-02-08 Basf Ag Multikomponenten-Katalysatoren
AU7839300A (en) * 1999-09-29 2001-04-30 Corning Incorporated Coated furnace component and catalyst
US6677497B2 (en) 2001-03-22 2004-01-13 Symyx Technologies, Inc. Ni catalysts and methods for alkane dehydrogenation
DE10211275A1 (de) * 2002-03-13 2003-09-25 Basf Ag Verfahren der kontinuierlichen heterogen katalysierten partiellen Dehydrierung
GB0119327D0 (en) 2001-08-08 2001-10-03 Johnson Matthey Plc Catalyst
DE10150811A1 (de) * 2001-10-15 2003-04-24 Basf Ag Verfahren zur Dehydrierung von C2-C30-Alkanen
US7390768B2 (en) * 2002-01-22 2008-06-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Stabilized tin-oxide-based oxidation/reduction catalysts
US20030208095A1 (en) * 2002-05-06 2003-11-06 Budin Lisa M. Particulate supports for oxidative dehydrogenation
US7402719B2 (en) * 2002-06-13 2008-07-22 Velocys Catalytic oxidative dehydrogenation, and microchannel reactors for catalytic oxidative dehydrogenation
US7255848B2 (en) * 2002-10-01 2007-08-14 Regents Of The Univeristy Of Minnesota Production of hydrogen from alcohols
US20040068153A1 (en) * 2002-10-08 2004-04-08 Conoco Inc. Rare earth metals as oxidative dehydrogenation catalysts
US20040068148A1 (en) * 2002-10-08 2004-04-08 Conoco Inc. Oxidative dehydrogenation of hydrocarbons using catalysts with trace promoter metal loading
US7262334B2 (en) * 2002-11-13 2007-08-28 Regents Of The University Of Minnesota Catalytic partial oxidation of hydrocarbons
US20040192546A1 (en) * 2003-03-27 2004-09-30 Zhongyuan Dang Catalyst for the low temperature oxidation of methane
US7294734B2 (en) * 2003-05-02 2007-11-13 Velocys, Inc. Process for converting a hydrocarbon to an oxygenate or a nitrile
JP2005144432A (ja) * 2003-11-18 2005-06-09 Rohm & Haas Co アルカンをアルケン、およびそれらの対応する酸素化生成物に転化するための触媒系
US8378163B2 (en) * 2004-03-23 2013-02-19 Velocys Corp. Catalysts having catalytic material applied directly to thermally-grown alumina and catalytic methods using same, improved methods of oxidative dehydrogenation
US7683232B2 (en) 2004-05-25 2010-03-23 Regents Of The University Of Minnesota Production of olefins having a functional group
WO2006020709A1 (en) * 2004-08-12 2006-02-23 Velocys Inc. Process for converting ethylene to ethylene oxide using microchannel process technology
US7371358B2 (en) * 2004-10-25 2008-05-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Catalyst for treatment and control of post-combustion emissions
US20060094026A1 (en) * 2004-11-03 2006-05-04 Yi Lu Nucleic acid enzyme light-up sensor utilizing invasive DNA
JP2006159021A (ja) * 2004-12-03 2006-06-22 Toyota Motor Corp 排ガス浄化用触媒
CN2831711Y (zh) 2005-08-18 2006-10-25 富准精密工业(深圳)有限公司 散热装置
DE102005057696A1 (de) * 2005-12-02 2007-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Katalysator, Verfahren zu dessen Herstellung und dessen Verwendung
WO2007137021A2 (en) * 2006-05-16 2007-11-29 Shell Oil Company Catalysts comprising a combination of oxidized metals and a method for cleaving phenylalkyl hydroperoxides using the catalysts
US7999144B2 (en) 2006-09-01 2011-08-16 Velocys Microchannel apparatus and methods of conducting catalyzed oxidative dehydrogenation
US20080063842A1 (en) * 2006-09-12 2008-03-13 3M Innovative Properties Company Repositionable privacy note
DE102010039735A1 (de) * 2010-08-25 2012-03-01 Bayer Materialscience Aktiengesellschaft Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
DE102010039734A1 (de) * 2010-08-25 2012-03-01 Bayer Materialscience Aktiengesellschaft Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
KR101306814B1 (ko) * 2011-06-01 2013-09-10 금호석유화학 주식회사 직접 탈수소화 반응용 지르코니아계 촉매, 이의 제조방법, 및 이를 이용한 부텐의 제조방법
KR101270162B1 (ko) * 2011-09-20 2013-05-31 한국과학기술연구원 노르말-부탄의 직접 탈수소화 반응용 담지촉매 및 이를 이용한 부텐의 제조방법
EP2712674A1 (en) 2012-09-27 2014-04-02 Saudi Basic Industries Corporation Catalyst composition for the dehydrogenation of alkanes
JP6217442B2 (ja) * 2013-03-29 2017-10-25 日本ゼオン株式会社 イソプレンの製造方法
EP3262141B1 (en) 2015-02-27 2020-05-27 SABIC Global Technologies B.V. Minimizing coke formation in a reactor stripper
WO2018034050A1 (ja) * 2016-08-17 2018-02-22 三井金属鉱業株式会社 メタン酸化触媒
WO2018087777A1 (en) 2016-11-08 2018-05-17 Council Of Scientific And Industrial Research An improved process for conversion of alkanes to alkenes
EP3335793B1 (en) * 2016-12-13 2020-03-18 SMH Co., Ltd. Catalyst for the conversion of a hydrocarbon feed comprising a saturated hydrocarbon compound to olefin products
JP2019156758A (ja) * 2018-03-13 2019-09-19 Jxtgエネルギー株式会社 インデンの製造方法

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2408140A (en) 1944-09-18 1946-09-24 Shell Dev Dehydrogenation catalyst
US3437703A (en) 1966-05-05 1969-04-08 Foster Grant Co Inc Catalytic dehydrogenation process and compositions
IT859097A (ja) 1967-11-28
US3511888A (en) * 1968-02-08 1970-05-12 Shell Oil Co Paraffin conversion catalyst and process
US3790473A (en) * 1969-03-17 1974-02-05 Universal Oil Prod Co Tetrametallic hydrocarbon conversion catalyst and uses thereof
US3670044A (en) * 1969-07-18 1972-06-13 Phillips Petroleum Co Catalytic dehydrogenation process
US3637527A (en) 1969-07-23 1972-01-25 Chevron Res Preparation of multicomponent catalysts
US3864284A (en) * 1971-04-26 1975-02-04 Chevron Res Platinum-tin catalyst on an alumina carrier
US3745112A (en) * 1971-11-23 1973-07-10 Universal Oil Prod Co Platinum-tin uniformly dispersed hydro-carbon conversion catalyst and process
US3972184A (en) 1972-04-20 1976-08-03 Ethyl Corporation Catalytic treatment of exhaust gas responsive to engine temperature
US3939220A (en) * 1972-11-06 1976-02-17 Universal Oil Products Company Dehydrogenation method and multimetallic catalytic composite for use therein
US3998900A (en) * 1973-03-05 1976-12-21 Universal Oil Products Company Dehydrogenation of hydrocarbons with a multimetallic catalytic composite
US3957688A (en) 1973-11-15 1976-05-18 Phillips Petroleum Company Catalytic dehydrogenation process
US4152246A (en) * 1973-11-23 1979-05-01 Compagnie Francaise De Raffinage Catalyzed processes for the hydrotreatment of hydrocarbons
US4003826A (en) * 1973-12-06 1977-01-18 Uop Inc. Hydrocarbon conversion with an acidic multimetallic catalytic composite
US3911039A (en) 1974-01-23 1975-10-07 Standard Oil Co Ohio Process for the preparation of botadiene from N-butene
US4003852A (en) * 1974-04-08 1977-01-18 Uop Inc. Nonacidic multimetallic dehydrogenation catalyst
US4152365A (en) 1975-03-17 1979-05-01 Phillips Petroleum Company Selective hydrogenation of polyenes
US4032589A (en) * 1975-03-17 1977-06-28 Chevron Research Company Dehydrogenation catalyst and process
GB1550274A (en) 1976-03-19 1979-08-15 Riken Keiki Kk Process for the production of an oxidation catalyst
US4149998A (en) 1976-04-05 1979-04-17 Exxon Research & Engineering Co. Supported metal interaction catalysts
US4070413A (en) 1976-10-28 1978-01-24 Uop Inc. Dehydrogenation of saturated hydrocarbons
GB2013901A (en) 1977-12-16 1979-08-15 Sieger Ltd J & S Catalytic gas sensor
US4193964A (en) 1977-12-21 1980-03-18 A-T-O Inc. Microminiature palladium oxide gas detector and method of making same
FR2424061A1 (fr) 1978-04-25 1979-11-23 Lyon Applic Catalytiques Nouvelle masse de contact pour catalyse heterogene
FR2427844A1 (fr) * 1978-06-05 1980-01-04 Raffinage Cie Francaise Procede pour deposer du zirconium et/ou du titane sur un support de catalyseur
US4423407A (en) 1981-02-27 1983-12-27 Dart Industries Inc. Apparatus and method for measuring the concentration of gases
US4418237A (en) 1981-03-30 1983-11-29 Uop Inc. Dehydrogenation of dehydrogenatable hydrocarbons
US4486547A (en) * 1981-11-05 1984-12-04 Uop Inc. Indium-containing dehydrogenation catalyst
US4431750A (en) * 1982-05-19 1984-02-14 Phillips Petroleum Company Platinum group metal catalyst on the surface of a support and a process for preparing same
FR2530489B1 (fr) 1982-07-26 1987-02-27 Pro Catalyse Procede de fabrication de catalyseurs pour le traitement des gaz d'echappement des moteurs a combustion interne
EP0102067B1 (en) 1982-08-27 1988-08-17 Kabushiki Kaisha Toshiba Co gas detecting device and circuit for driving the same
US4469816A (en) 1982-12-14 1984-09-04 Allied Corporation Palladium on alumina aerogel catalyst composition and process for making same
JPS59204164A (ja) 1983-05-06 1984-11-19 Asahi Chem Ind Co Ltd 不飽和ニトリルの製法
US4727216A (en) 1983-09-12 1988-02-23 Chevron Research Company Dehydrogenation of isobutane over a zeolitic catalyst
JPS60259740A (ja) 1984-06-06 1985-12-21 Toyota Central Res & Dev Lab Inc 内燃機関の排気浄化方法
US4708946A (en) 1985-05-23 1987-11-24 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas
US4613715A (en) 1985-07-12 1986-09-23 Phillips Petroleum Company Oxygen addition to a steam-active dehydrogenation reactor
US4717779A (en) 1985-09-11 1988-01-05 Uop Inc. Dehydrogenation of dehydrogenatable hydrocarbons
US4766266A (en) * 1985-11-13 1988-08-23 Arco Chemical Company Dehydrogenation of isobutane
US5306522A (en) 1986-03-24 1994-04-26 Ensci, Inc. Process for coating a substrate with zinc oxide and uses for coated substrates
US4786625A (en) 1987-02-25 1988-11-22 Uop Inc. Dehydrogenation catalyst compositon
DE3778645D1 (de) 1986-09-10 1992-06-04 Hitachi Ltd Methode der katalytischen verbrennung mit waermebestaendigem katalysator.
US4808394A (en) 1987-09-08 1989-02-28 Phillips Petroleum Company Catalytic oxidation of carbon monoxide
US4788371A (en) * 1987-12-30 1988-11-29 Uop Inc. Catalytic oxidative steam dehydrogenation process
GB8805447D0 (en) 1988-03-08 1988-04-07 British Petroleum Co Plc Chemical process
JP2768946B2 (ja) 1988-04-13 1998-06-25 東洋シーシーアイ株式会社 耐熱性貴金属触媒及びその製造方法
US4902848A (en) * 1988-07-01 1990-02-20 Uop Process for the dehydrogenation of hydrocarbons
JPH0724774B2 (ja) * 1988-11-25 1995-03-22 株式会社日本触媒 排ガス処理触媒用担体、その製造方法ならびに該担体を含有してなる排ガス処理用触媒
US4914075A (en) * 1988-12-05 1990-04-03 Uop Dehydrogenation catalyst composition
US4902849A (en) 1989-02-06 1990-02-20 Phillips Petroleum Company Dehydrogenation process
US4926005A (en) * 1989-05-17 1990-05-15 Phillips Petroleum Company Dehydrogenation process
US5128300A (en) * 1989-06-30 1992-07-07 Uop Reforming catalyst with homogeneous metals dispersion
ATE149250T1 (de) 1989-10-17 1997-03-15 Itvi Inttech Venture Investa Gas-sensor-anordnung
US5113023A (en) * 1990-07-16 1992-05-12 Phillips Petroleum Company Removal of linear internal olefins from steam active dehydrogenation recycle stream
DE4109502A1 (de) 1991-03-22 1992-09-24 Degussa Katalysator zur haertung von fettsaeuren und verfahren zu seiner herstellung
CA2064977C (en) 1991-04-05 1998-09-22 Eiichi Shiraishi Catalyst for purifying exhaust gas
US5220091A (en) * 1992-02-26 1993-06-15 Phillips Petroleum Company Alkane dehydrogenation
US5439859A (en) 1992-04-27 1995-08-08 Sun Company, Inc. (R&M) Process and catalyst for dehydrogenation of organic compounds
US5283041A (en) * 1992-08-13 1994-02-01 Engelhard Corporation Catalytic incineration of organic compounds
US5302350A (en) 1993-01-26 1994-04-12 Fci - Fiberchem, Inc. Specific and reversible carbon monoxide sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512015A (ja) * 2008-12-18 2012-05-31 ティッセンクルップ ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング アルカン脱水素化用触媒のスズ含浸の変形

Also Published As

Publication number Publication date
USRE37663E1 (en) 2002-04-16
DE69420799T2 (de) 2000-02-10
TW272143B (ja) 1996-03-11
KR100333002B1 (ko) 2002-11-29
NO20004389D0 (no) 2000-09-04
CA2129379C (en) 2006-06-06
DE69420799D1 (de) 1999-10-28
GB9316955D0 (en) 1993-09-29
JPH07145086A (ja) 1995-06-06
NO20004389L (no) 1995-02-15
NO318620B1 (no) 2005-04-18
JP3609456B2 (ja) 2005-01-12
EP0937697B1 (en) 2003-06-11
DE69432823T2 (de) 2004-05-19
NO942998L (no) 1995-02-15
MY112878A (en) 2001-10-31
US5593935A (en) 1997-01-14
JP4185024B2 (ja) 2008-11-19
NO312237B1 (no) 2002-04-15
EP0638534B1 (en) 1999-09-22
EP0937697A2 (en) 1999-08-25
EP0937697A3 (en) 2001-03-28
KR950005372A (ko) 1995-03-20
EP0638534A1 (en) 1995-02-15
KR100347231B1 (ko) 2002-08-03
DE69432823D1 (de) 2003-07-17
CA2129379A1 (en) 1995-02-15
NO942998D0 (no) 1994-08-12

Similar Documents

Publication Publication Date Title
JP4185024B2 (ja) アルカンの脱水素のための触媒及び方法
US4788371A (en) Catalytic oxidative steam dehydrogenation process
CA2479957C (en) Dehydrogenation catalyst composition
US4914075A (en) Dehydrogenation catalyst composition
US5439859A (en) Process and catalyst for dehydrogenation of organic compounds
US6916756B2 (en) Regeneration of a dehydrogenation catalyst
KR100934437B1 (ko) 알칸을 알켄으로 변환시키기 위한 통합된 촉매성 방법 및이에 유용한 촉매
EP0196758B1 (en) Dehydrogenation of hydrocarbons with selective oxidation of hydrogen thereby generated
JP2001519771A (ja) 脱水素によるオレフィン、特にプロピレンの製造方法
US6498280B1 (en) Catalyst comprising an element from groups 8, 9 or 10 with good accessibility, and its use in a paraffin dehydrogenation process
US5233118A (en) Steam dehydrogenation process
US4812597A (en) Dehydrogenation of dehydrogenatable hydrocarbons
EP1240121B1 (en) Process for the production of olefins
KR20230005230A (ko) 탈수소화 촉매 시스템 및 이를 사용하기 위한 방법
JPH03288548A (ja) 炭化水素脱水素触媒

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees