WO2024002374A1 - 一种可升降的旋转拖布结构以及清洁机 - Google Patents

一种可升降的旋转拖布结构以及清洁机 Download PDF

Info

Publication number
WO2024002374A1
WO2024002374A1 PCT/CN2023/105421 CN2023105421W WO2024002374A1 WO 2024002374 A1 WO2024002374 A1 WO 2024002374A1 CN 2023105421 W CN2023105421 W CN 2023105421W WO 2024002374 A1 WO2024002374 A1 WO 2024002374A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
rotating shaft
mop
liftable
structure according
Prior art date
Application number
PCT/CN2023/105421
Other languages
English (en)
French (fr)
Inventor
王跃旦
方剑强
汪旭
Original Assignee
宁波富佳实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波富佳实业股份有限公司 filed Critical 宁波富佳实业股份有限公司
Publication of WO2024002374A1 publication Critical patent/WO2024002374A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • A47L11/282Floor-scrubbing machines, motor-driven having rotary tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • A47L11/282Floor-scrubbing machines, motor-driven having rotary tools
    • A47L11/283Floor-scrubbing machines, motor-driven having rotary tools the tools being disc brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4052Movement of the tools or the like perpendicular to the cleaning surface
    • A47L11/4058Movement of the tools or the like perpendicular to the cleaning surface for adjusting the height of the tool
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4069Driving or transmission means for the cleaning tools

Definitions

  • the invention relates to the technical field of cleaning equipment, specifically a liftable rotating mop structure and a cleaning machine.
  • the small sweeping robot has become very popular and has become an important cleaning product in the consumer market such as household cleaning.
  • the small sweeping robot has In the direction of integrated suction and mopping, there is a technical solution for integrated suction and mopping, which is achieved by adding a rotating mop structure on top of vacuuming. That is, when the small sweeping robot is walking, it also uses a rotating mop while vacuuming. The structure drives the mop to rotate and wipe the surface to be cleaned. Therefore, the design requirements for the rotating mop structure to be applied to small sweeping robots are proposed.
  • the applicant has previously proposed a liftable rotating mop structure suitable for small sweeping robots (for details, please refer to the Chinese invention patent application with publication number CN113926743A for a liftable rotating mop structure and cleaning machine)
  • the aforementioned solution greatly reduces the weight of the lifting part of the mop unit, facilitates the design of the center of gravity of the whole machine, and overcomes the problem of heavy weight in the lifting part.
  • the maximum lifting height can be made larger (that is, the lifting height value is less limited by the structure itself, and the main limiting factor is the height of the small sweeping robot itself).
  • the previous patent document proposed a technical solution for lifting through threads.
  • the characteristic of this technical solution is that the purpose of axial lifting is achieved by two rotating parts with threaded structures meshing with each other.
  • the first rotating member is driven by an electric motor, and the rotating shaft serves as the second rotating member.
  • the threads of the first rotating member engage with the threads of the second rotating member.
  • the threaded engagement is used to lift and lower the second rotating member.
  • Two rotating parts, the aforementioned structure is such as the structure of a screw nut.
  • the screw serves as the rotating shaft, and the nut serves as the first rotating member.
  • the axial position of the screw is fixed relative to the screw and can rotate.
  • the screw shaft 12 By relative rotation with the screw shaft 12, the screw shaft 12 can be moved in the vertical direction. Moving up and down, further, the thread on the screw shaft 12 is concave, and there are no threads on the screws at both ends. Therefore, if the rotating nut 13 moves to a certain end of the thread on the screw shaft 12 through rotation, it will be consistent with the end of the thread on the screw shaft 12.
  • the second technical difficulty to be overcome since the second technical difficulty to be overcome is based on the first technical difficulty to be overcome, if the first technical difficulty to be overcome is not solved, then switching cannot be achieved. , the second technical difficulty to be overcome cannot be solved.
  • the first technical difficulty to be overcome has been solved, then the first technical difficulty to be overcome is solved in two ways in the prior patent documents (such as the Chinese patent application with publication number CN103417164A). There are two technical difficulties to be overcome. The first way is that "the thread on the screw shaft 12 is concave, and there are no threads on the screws at both ends.
  • the embodiment of the present invention further proposes an improvement plan.
  • the two sides of the concave threads on the screw shaft 12 are Ends are respectively provided with stop bars 17 to limit the rotating nut 13, and are used to intercept the rotating nut 13 before the rotating nut 13 rotates to either end of the female thread on the screw shaft 12, so that when the rotating nut 13 can be When the rotating nut 13 and the screw shaft 12 rotate together, the internal thread of the rotating nut 13 will not closely mesh with the female thread at either end of the screw shaft 12, thus avoiding thread loss and thread separation during the steering switching process. Difficult.
  • Such a blocking rod 17 is only a preferred embodiment, and whether it is included or not will not affect the protection scope of the present invention.”
  • the second method requires avoiding end-point matching, although it is helpful to Improvement, but the main structure that transmits rotational force is the thread meshing surface. From a mechanical principle, the thread meshing surface can be simplified to two inclined plane contacts. Therefore, when the transmission is used for a long time, there may still be the possibility of seizure, and in During the normal service life of the product referred to in this disclosure, it will be lifted and lowered frequently, resulting in that the thread engagement surface is still prone to wear.
  • the applicant's prior technical solution adopts a design solution in which the lifting part directly lifts and lowers the rotating shaft in the axial direction, it is necessary to consider the installation of the lifting part and related structures, resulting in a slightly complicated structure.
  • the above design solution has many Advantages, such as high lifting efficiency, easy control of lifting, large lifting height, lifting and mopping rotation can exist at the same time, etc., but it is not conducive to further simplifying the structure and reducing weight, and the structural form of the screw nut can eliminate the need for lifting parts and The related structure, therefore, is conducive to further simplifying the structure and reducing weight, but it is necessary to overcome at least the first and second technical difficulties.
  • the technical problem to be solved by the present invention is to overcome the defects of the existing technology and propose a liftable rotating mop structure that can solve the first and second technical difficulties.
  • the structure is relatively simple and is conducive to solving the third problem.
  • Technical difficulties so that it can be applied to cleaning machines (such as small sweeping robots); a cleaning machine is also proposed that adopts the aforementioned liftable rotating mop structure, which is conducive to miniaturization of the cleaning machine.
  • the present invention proposes a liftable rotating mop structure, which includes a rotating member, a rotating shaft and a mopping cloth.
  • the rotating member is connected with the rotating shaft through a spiral transmission.
  • the rotating member is fixed in axial position relative to the rotating shaft and can rotate.
  • the shaft has two positions: the upper lifting limit and the lower lifting limit.
  • the rotating part drives the rotating shaft to rise and fall through the spiral transmission connection between the upper lifting limit and the lower lifting limit.
  • the rotating part continues to maintain the When rotating in one direction, the position between the rotating member and the rotating shaft is limited by the first limiting structure so that the rotating member and the rotating shaft stop relative rotation, so that the rotating shaft can be driven by the rotating member to rotate together.
  • the first direction refers to the rotating member.
  • Relative rotation allows the rotating shaft to be driven by the rotating member to rotate together.
  • the second direction refers to the rotating direction in which the rotating member drives the rotating shaft downward.
  • the first direction is opposite to the second direction.
  • the rotating shaft is connected to the mop.
  • the rotating shaft is connected with the mop. In order to drive the mop to rotate and lift, it also includes at least one friction piece arranged along the circumferential direction of the rotating shaft. The friction piece is frictionally connected with the rotating shaft.
  • the friction force between the friction piece and the rotating shaft is recorded as the first friction force.
  • the friction force is used to limit the rotation of the rotating shaft so that the rotating member and the rotating shaft rotate relative to each other to lift the rotating shaft.
  • the force is used to make the rotating shaft rotate together, and when the lifting and lowering limit is reached, if the rotating member continues to rotate in the second direction, it will drive the rotating shaft to overcome the first friction force to make the rotating shaft rotate together.
  • the friction member adopts a friction sleeve, and the friction sleeve is sleeved with the rotating shaft.
  • the structure is relatively simple, which is convenient for production and assembly.
  • the friction sleeve and the rotating shaft are sleeved to obtain a larger friction connection part, the aforementioned structure is conducive to making the first The friction force is maintained at a high level and is not prone to decay.
  • a machine base is also included.
  • a mop is provided on the lower side of the machine base.
  • a through hole is provided on the machine base for the lifting and lowering of the rotating shaft. The lower end of the rotating shaft is exposed outside the through hole and is connected to the mop.
  • the through hole is provided with a seal.
  • the seal also serves as a friction part. After this design, on the one hand, the sealing requirement is achieved to avoid the entry of foreign matter. On the other hand, the seal also serves as a friction part, which greatly simplifies the structure and facilitates production and assembly. On the other hand, the seal is used to obtain a certain degree of sealing.
  • annular groove is provided on the side of the machine base on one side of the mop, and a seal is fixed to the annular groove.
  • the seal is provided with a sealing portion extending circumferentially toward the rotating shaft, and the sealing portion is connected to the mop.
  • the rotating shaft is rotatably connected, and a first friction force is formed between the sealing part and the rotating shaft.
  • the friction member is provided with a circumferential elastic portion, and the circumferential elastic portion is connected with the rotation axis through elastic friction to generate the first frictional force.
  • This design will, on the one hand, avoid hard contact and help reduce losses to maintain the first friction force. On the other hand, it will help reduce noise and avoid the generation of loud noise.
  • the circumferential elastic portion is arranged obliquely relative to the rotation axis.
  • the tilted structural setting is used as one of the technical means to ensure the elastic contact force (that is, the technical means to ensure the elastic contact force does not completely rely on elastic materials), so that the third level can still be maintained during frequent use.
  • the structure is simple and compact.
  • the circumferential elastic portion includes two upper and lower annular portions, and the two annular portions form a V-shaped portion opening to one side of the rotation axis. While achieving the purpose of the present invention, this design is based on the targeted design of the rotating shaft having the characteristics of lifting movement. Specifically, the first friction force of the aforementioned design will include the friction force formed by the contact between the upper and lower annular parts and the rotating shaft.
  • the upper annular part is pushed upward, that is, the part of the upper annular part in contact with the rotating shaft has an upward swinging motion, and the elasticity between the upper annular part and the rotating shaft
  • the countervailing force may be reduced to a certain extent and/or the contact area may also be smaller, so the friction force will be reduced, but the opposite is true for the lower annular part.
  • the elasticity between the lower annular part and the rotation axis The countervailing force may increase to a certain extent and/or the contact area may also increase, so the friction force will increase. When the rotating shaft drops, it will be an opposite state change. Therefore, the design of this technical solution is adopted.
  • a driving gear that is fixed in axial position relative to the rotating shaft and is rotatable is also included.
  • the driving gear is sleeve-connected with the rotating shaft, and the driving gear is coaxially connected with the rotating member to drive the rotating member to rotate together.
  • the driving gear and the rotating part are coaxially connected.
  • the driving gear is sleeve-connected with the rotating shaft. It is helpful to reduce the height of the lifting structure.
  • the driving gear is provided with a guide portion, and the guide portion is axially guide-connected to the rotation shaft.
  • the driving gear is provided with a guide part, which is very conducive to improving the compactness of the structure and is conducive to miniaturization.
  • the guide part is conducive to better movement of the rotating shaft.
  • due to The driving gear and the rotating part are coaxially connected, so the guide part is helpful to maintain a relatively stable fit between the rotating shaft and the rotating part during movement, thus helping to improve the structural reliability.
  • the guide part adopts a guide sleeve.
  • the lower limit is raised and lowered, the lower end of the external spiral of the rotating shaft is still located in the guide part, and at least part of the non-helical area of the rotating shaft is located on the lower side of the external spiral.
  • the outer peripheral wall is sleeve-fitted with the guide portion, and the sleeve-fit is used to prevent foreign matter from entering the screw transmission connection from the lower end of the outer screw.
  • the guide sleeve has better guiding performance; on the other hand, a simple and compact structure is designed to prevent foreign objects, which is conducive to miniaturization; on the other hand, this technical solution is specific for the guide sleeve and the rotating shaft.
  • the matching design can prevent foreign matter from entering the spiral transmission connection from the lower end of the outer spiral, thus helping to improve structural reliability.
  • the driving gear includes a transmission tooth portion located on the outer circumference and a guide portion located on the inner circumference.
  • a first rotation support structure is provided between the transmission teeth portion and the guide portion. The first rotation support structure is used to rotationally support the driving gear. .
  • This design is conducive to the flattening of the drive gear design, thereby freeing up more height space to install other structures, which is conducive to miniaturization.
  • the first rotation support structure includes a mounting base extending in a direction away from one side of the mop.
  • the mounting base is inserted and fitted in an annular space between the transmission tooth portion and the guide portion, and the driving gear is connected to the mounting base. Rotating connection between them.
  • the transmission tooth part, the guide part, and the mounting seat have a large overlap in the height direction (ie, the axial direction), which is more conducive to the realization of a flat design of the drive gear, and the height can also be further reduced, that is, there is Conducive to miniaturization.
  • the mounting base is provided at the bottom of the machine base, the lower side of the bottom is the side where the mop is located, and the mounting base is provided on the upper side of the bottom of the machine base.
  • an annular groove is provided on the lower side of the bottom corresponding to the position occupied by the mounting base, and the annular groove is sleeved and fixed with a friction member.
  • the design of this technical solution will, on the one hand, further simplify the structure and facilitate installation and replacement.
  • the mounting base since the mounting base is provided on the upper side of the bottom of the machine base, the mounting base will occupy a certain area of the bottom of the machine base. area, then after the design of this technical solution, the lower side of the bottom corresponding to the position occupied by the mounting base is fully utilized in terms of height.
  • the annular groove can be opened upward into the mounting base, so the mounting base itself is Make full use of it, this setting is conducive to flat design, that is, conducive to miniaturization.
  • the rotating member and the guide part are distributed up and down along the axis of the driving gear, and the lower end of the rotating member is disposed adjacent to the upper end of the guide part.
  • This design is beneficial to reducing the height on the one hand.
  • the fitting accuracy of the spiral transmission connection cannot reach the same level as that of metal parts.
  • there is mineral content or gap in the spiral transmission connection and the consistency during mass production is also lower than that of metal parts. Therefore, the lower end of the rotating part and the upper end of the guide part are arranged adjacent to each other, which is beneficial to the guide part to assist the rotating part, that is, when lifting This makes the spiral transmission connection more stable.
  • the driving gear is provided with a mounting post located on the upper side of the guide portion, the mounting post is provided with a mounting hole, and the rotating member is installed in the mounting hole.
  • the rotating part is installed in the mounting hole, that is, the rotating part is equivalent to being located in the driving gear. Therefore, it is beneficial to lower the center of gravity of the rotating part and the driving gear after they are connected. It is conducive to stable rotation.
  • the rotating parts are installed in the mounting holes, which is conducive to reducing the overall height and achieving flattening.
  • the driving gear has a transmission tooth portion located on the outer periphery, the transmission tooth portion is located on the underside of the mounting column, and the transmission tooth portion and the rotating member are distributed up and down along the axis of the driving gear. This design helps the center of gravity move downward, which helps the drive gear rotate smoothly.
  • a rotation support structure is provided on the outer periphery of the mounting column. Because the rotating parts are force-bearing parts during operation, and the mounting posts are equipped with mounting holes, and the rotating parts are installed in the mounting holes, a rotating support structure is specially provided on the outer periphery of the mounting posts, which is conducive to the smooth and reliable rotation of the rotating parts. Therefore, it is beneficial for the rotating parts to be in good working condition for a long time.
  • a cover is provided on the upper side of the driving gear, and the cover is rotatably connected to the driving gear.
  • the cover is used to prevent foreign matter from entering the spiral transmission connection from the upper end of the outer helix of the rotating shaft. This design will help prevent foreign matter from entering, thereby improving structural reliability.
  • a second rotation support structure is provided on the upper circumference of the driving gear.
  • the second rotation support structure and the first rotation support structure are distributed up and down to form up and down rotation support for the driving gear. This is more conducive to the smooth rotation of the drive gear.
  • the second rotation support structure has an upper limit end, and the upper limit end axially offsets the drive gear to axially limit the drive gear.
  • the first rotation support structure has a lower limit end, and the lower limit end is with the drive gear.
  • the gears offset each other axially to limit the driving gear axially downward.
  • a cover is provided on the upper side of the drive gear, and a second rotation support structure is provided between the cover and the drive gear.
  • the drive gear is rotatably connected to the cover through the second rotation support structure, and the second rotation support structure
  • the support structure simultaneously serves as a blocker that blocks foreign matter from reaching the upper end of the outer helix of the rotating shaft from between the cover and the drive gear and then entering the channel in the helical transmission connection.
  • an electric motor and a plurality of mops are included.
  • Each mop is provided with a rotating shaft, and each rotating shaft is provided with a driving gear.
  • the electric motor is transmission connected to each driving gear through a transmission structure.
  • the electric motor serves as both a The rotating shaft drives the electric motor to lift and lower the mop, and also serves as the rotating shaft to drive the electric motor to rotate the mop. Since the cooperation of the drive gear and other structures can realize both lifting and lowering of the mop and rotation of the mop, further adoption of this design will help simplify the structure to a greater extent and achieve miniaturization. In addition, the number of electric motors will also be reduced. to one, which helps reduce costs.
  • the upper side of the rotating shaft is provided with a protective cover that accommodates the lifting and lowering of the rotating shaft.
  • a protective cover that accommodates the lifting and lowering of the rotating shaft. This design, on the one hand, helps protect the lifting of the rotating shaft, avoids interference with other structures, and improves structural reliability. On the other hand, it prevents foreign matter from entering the spiral transmission connection from the upper side of the rotating shaft.
  • the protective cover also serves as a guide cover for guiding the lifting and lowering of the rotating shaft. This design helps the rotating shaft move more stably.
  • a limiting top is provided on the upper side of the rotating shaft.
  • the upper end of the rotating shaft and the limiting top are rotatably connected to each other.
  • the limiting top forms an upper limit for lifting of the rotating shaft.
  • This design provides a structure that forms an upper limit for lifting of the rotating shaft. The structure is relatively simple. In addition, the space on the upper side of the rotating shaft for lifting is fully utilized, so it is conducive to miniaturization.
  • a protective cover is provided on the upper side of the rotating shaft to accommodate the lifting and lowering of the rotating shaft, and the inner top surface of the protective cover serves as a limiting top. Designed in this way, the structure is very simple while protecting the lifting of the rotating shaft and forming an upper limit for the lifting of the rotating shaft.
  • the lower end of the outer helical spiral groove of the rotating shaft is of a closed design, and the lower end is provided with a first opposing end surface.
  • the rotating shaft rises to the point where the lower end surface of the inner helical spiral protrusion of the rotating member is in contact with the first opposing end surface, When the end faces are in contact, the position of the rotating shaft at this time is the upper limit position of the rotating shaft. If the rotating member continues to rotate in the first direction, the lower end face of the spiral protrusion can be connected by the offset with the first opposing end face. to promote the rotation of the rotating shaft; and/or, the upper end of the outer spiral spiral groove of the rotating shaft is of a closed design, and the upper end is provided with a second opposing end surface.
  • the spiral protrusion has a first opposing end surface and/or a second opposing end surface, and the lower end surface and the upper end surface of the spiral protrusion are matched accordingly.
  • the two positions of the upper lifting limit and the lower lifting limit of the rotating shaft are realized.
  • the structure is relatively simple.
  • the lower end face of the spiral protrusion can push the rotation of the rotating shaft through the offset connection with the first offset end face, and/or the upper end face of the spiral protrusion can offset with the second offset end face.
  • connection drives the rotating shaft to rotate, thus avoiding to a certain extent the disadvantage of the spiral fitting surface between the spiral protrusion and the spiral groove getting tighter and tighter, and also helping to reduce the deformation and wear of the spiral fitting surface.
  • this technical solution is specially designed to provide a spiral groove on the rotating shaft, and a spiral protrusion on the rotating member to cooperate with the spiral groove, which is conducive to reducing the height of the rotating member. At the same time, although the height is reduced, the above technical purpose can still be achieved.
  • the first opposing end surface and the lower end surface of the spiral protrusion are both configured as radial matching surfaces, and/or the second opposing end surface and the upper end surface of the spiral protruding are both configured as radial matching surfaces. After this design, the circumferential rotational force can be better transmitted.
  • the rotating member is divided into multiple parts along the circumferential direction, and the multiple parts are spliced around the rotating shaft to achieve a spiral transmission connection between the rotating member and the rotating shaft.
  • the spiral groove is closed at both the upper and lower ends, a technical solution is provided to facilitate the installation of the rotating part, especially when the rotating part has a circumferential closed hole, and the circumferential closed hole is provided with the above-mentioned
  • the spiral protrusion is in the form of a nut, for example, the spiral groove cannot be directly screwed into the rotating part when both the upper and lower ends are closed. Therefore, the rotating part is divided into multiple parts along the circumferential direction, and the rotating part can be easily connected. Multiple parts are spliced around the rotating shaft to realize the spiral transmission connection between the rotating part and the rotating shaft.
  • the multiple parts are, for example, divided into two halves, that is, divided into two parts.
  • the rotating shaft is divided into multiple parts along the axial direction, and at least one part opens the spiral groove of the outer helix for spiral transmission connection of the rotating member.
  • This design provides another technical solution for spiral transmission to connect rotating parts.
  • the assembly process can be referred to as follows. First, disassemble the rotating shaft in the axial direction to open the spiral groove, then screw in the rotating part through the opening, and then axially connect the rotating shaft. The connection is restored to realize the spiral transmission connection between the rotating part and the rotating shaft.
  • the mop and the rotating shaft can have a floating connection.
  • the floating connection means that the mop can move axially relative to the rotating shaft when passing through surfaces to be cleaned at different heights to achieve adaptive height changes of the mop.
  • the rotation The height of the axis itself remains unchanged.
  • the mop The cleaning material on the surface is generally a soft material. This soft material has a certain amount of deformation, but it still cannot adapt to the large undulations of the surface to be cleaned. In severe cases, it may be pushed to death, so this design is conducive to Solving the aforementioned problems will not only enable the mop to better fit the surface to be cleaned, but also make the overall mechanism work more stable and reliable.
  • an axially movable elastic motion structure is provided between the rotation axis and the mop.
  • the elastic motion structure is used to drive the mop to perform axial elastic motion relative to the rotation axis to achieve adaptive height changes of the mop.
  • the elastic motion structure includes an insertion hole provided on the rotation shaft and an elastic connector located in the insertion hole and capable of axial movement.
  • a connecting rod is provided on the upper side of the mop, and the lower end opening of the rotation shaft serves as the insertion hole.
  • the lower end of the elastic connector and the upper end of the connecting rod are connected through magnetic connection to achieve a quick-release connection. This design greatly facilitates the disassembly and assembly between the mop and the rotating shaft.
  • a sealing part is also included.
  • the friction part and the sealing part are arranged in sequence up and down along the axis of the rotation shaft.
  • the friction part and the sealing part are rotatably sleeve-fitted with the rotation shaft.
  • the sealing part seals the friction part inside.
  • the friction parts and the sealing part are set integrally or separately.
  • the sealing part is mainly responsible for the sealing function, and the friction part mainly provides the first friction force.
  • the sealing part provides certain sealing protection for the friction part.
  • the sealing part also generates friction with the rotating shaft, the friction can be smaller. Then the loss will be smaller. Therefore, during the designed service life, the sealing part will not easily fail, which will help improve the service life of the sealing part.
  • a first sealing ring is used to realize the integral arrangement of the friction part and the sealing part.
  • the first sealing ring includes an upper and a lower part, namely a first part and a second part respectively.
  • the first part serves as the friction part and the second part serves as the seal. part.
  • one part of the first sealing ring can achieve the two purposes of providing the first friction force and achieving sealing, and the structure is simpler.
  • the first part is circumferentially sleeved with at least one clamp ring, and the clamp ring is used to make the first part closely contact the outer peripheral wall of the rotating shaft.
  • the first sealing ring is preferably made of one material, the processing is simple and the cost is low. However, it is difficult for one material to achieve both the purpose of providing the first friction and achieving sealing.
  • the first sealing ring uses a rubber sealing ring. Therefore, after the first part of the circumferential sleeve is improved with at least one clamp ring, the first part is strengthened, which is beneficial to achieving the two purposes of providing the first friction force and achieving sealing when using one material.
  • the first part is circumferentially provided with at least one swing section that can swing to one side of the rotation shaft, and the collar presses the fitting portion of the swing section against the outer peripheral wall of the rotation shaft. This can better provide the first friction force and extend the service life.
  • a machine base is also included.
  • a matching base plate is provided on the lower side of the bottom of the machine base, and the first sealing ring is matched between the bottom and the base plate;
  • a mop is provided on the lower side of the base plate, and both the machine base and the base plate are provided with a rotating shaft.
  • the lifting through hole has the lower end of the rotating shaft exposed outside the through hole. In this way, the first sealing ring is protected between the bottom and the bottom plate, and the installation of the first sealing ring is facilitated.
  • a circumferential limiting structure is provided between the bottom and the first part, and the circumferential limiting structure is used to circumferentially limit the first part. This is conducive to strengthening the circumferential limit of the first part and preventing the first part from being driven by the rotating shaft to rotate together after a long period of use, resulting in failure. Therefore, this improvement is conducive to improving reliability and stability.
  • the circumferential limiting structure includes an axial protrusion and an axial notch.
  • the axial protrusion and the axial notch axially Cooperate with the first part of circumferential limiting. This facilitates assembly.
  • axial protrusions are provided on the first portion and axial recesses are provided on the base. In this way, the axial protrusion is provided on the first part, which helps the first part to be stronger.
  • the base plate is provided with a sealing annular surface in which the second portion sealingly fits. In this way, better sealing is achieved, and the structure is simple and easy to assemble.
  • the present invention After adopting the above structure, compared with the prior art, the present invention has the following advantages:
  • the first technical difficulty is solved, that is, the first friction force is used to limit the rotation of the rotating shaft so that the rotating part and the rotating shaft rotate relative to each other to lift the rotating shaft.
  • the structure is very simple, and when the upper limit of lifting is reached, at the first limit Under the limiting effect of the positioning structure, if the rotating member continues to rotate in the first direction at this time, it will drive the rotating shaft to overcome the first friction force so that the rotating shaft rotates together, and when the lower limit is raised or lowered, the second limiting structure will Under the action of the position, if the rotating member continues to rotate in the second direction at this time, it will drive the rotating shaft to overcome the first friction force so that the rotating shaft rotates together.
  • the second technical difficulty can be solved on the basis of solving the first technical difficulty.
  • Technical difficulties that is to say, only when the lifting of the rotating shaft is realized, can the upper lifting limit and the lower lifting limit be reached, and the first limiting structure and the second limiting structure can play a role, so as to cooperate with the rotating parts to drive the rotating shaft to overcome the first Friction rotates.
  • the basic technical solution of friction parts combined with other structures can solve the first and second technical difficulties, and the structure is very simple, which provides a structural foundation advantage for further miniaturization.
  • the basic technical solution itself is relatively complex, so since the basic technical solution needs to be implemented first, the complexity cannot be significantly reduced, so miniaturization will be very difficult.
  • the basic technical solution of the present disclosure is very simple, so it is conducive to miniaturization, that is It is said that it will help solve the third technical difficulty, so that it can be applied to cleaning machines (such as small sweeping robots).
  • the present invention also provides a cleaning machine provided with the aforementioned liftable rotating mop structure.
  • the beneficial effect of the above technical solution is that it not only realizes the direct lifting and lowering of the mop, overcoming the problem of heavy weight in the lifting part, but also simplifies the structure, which is conducive to the miniaturization of the cleaning machine.
  • Figure 1 is a three-dimensional schematic diagram of a cleaning machine from a downward perspective.
  • Figure 2 is a schematic perspective view from above of a liftable rotating mop structure.
  • Figure 3 is a three-dimensional schematic diagram of a liftable rotating mop structure from a downward perspective (one mop has been removed, and the annular groove is exposed after removing the friction parts).
  • Figure 4 is a schematic three-dimensional view of Figure 3 after the friction parts are installed.
  • Figure 5 is a three-dimensional schematic diagram of a liftable rotating mop structure from a downward perspective (with the base and a mop removed).
  • Figure 6 is a top view of a liftable rotating mop structure.
  • Figure 7 is a cross-sectional view along A-A.
  • Figure 8 is an enlarged schematic diagram of A.
  • Figure 9 is a schematic three-dimensional view of a liftable rotating mop structure with the cover removed.
  • Figure 10 is a schematic perspective view with the rotation axis further removed.
  • Figure 11 is a schematic three-dimensional view of another liftable rotating mop structure.
  • Figure 12 is a schematic three-dimensional view mainly showing the first opposing end surfaces.
  • Figure 13 is a schematic three-dimensional view mainly showing the second opposing end surface.
  • Figure 14 is a schematic perspective view of a rotating member from a downward perspective.
  • Figure 15 is a schematic perspective view of a rotating member from a top view.
  • Figure 16 is a schematic three-dimensional view of a rotating member.
  • Figure 17 is a top view of a friction piece.
  • Figure 18 is a B-B cross-sectional view.
  • Figure 19 is a schematic cross-sectional view of a liftable rotating mop structure with a limiting top.
  • Figure 20 is a schematic perspective view of a rotating shaft being divided into two sections along the axial direction to open the opening of the spiral groove.
  • Figure 21 is a schematic perspective view of the portion of the base where the mounting seat is located, viewed from above.
  • Figure 22 is a schematic perspective view of the portion of the base where the mounting seat is located, from a downward perspective.
  • Figure 23 is a schematic perspective view of the cover from a downward perspective.
  • Figure 24 is a three-dimensional schematic diagram of the cooperation between the machine base and the base plate.
  • Figure 25 is a schematic three-dimensional view with the machine base removed.
  • Figure 26 is a three-dimensional schematic view of the first sealing ring and the rotating shaft.
  • Figure 27 is a perspective view of the first sealing ring.
  • Figure 28 is a schematic perspective view of the bottom of the machine base.
  • Figure 29 is a schematic three-dimensional view of the base plate.
  • Figures 1 to 20 show a liftable rotating mop structure and a cleaning machine.
  • a liftable rotating mop structure includes a rotating member 1, a rotating shaft 2 and a mop 3.
  • the rotating member 1 and the rotating mop The shaft 2 is connected by a spiral transmission.
  • the rotating member 1 is fixed in the axial position relative to the rotating shaft 2 and can rotate.
  • the rotating shaft 2 has two positions: an upper lifting limit and a lower lifting limit.
  • the rotating member 1 passes between the upper lifting limit and the lower lifting limit.
  • the spiral transmission connection between the rotating shaft 2 drives the rotating shaft 2 to rise and fall, and when the upper limit of the lifting and lowering is reached, if the rotating member 1 continues to rotate in the first direction, then the rotating member 1 and the rotating shaft 2 are limited by the first limiting structure to allow the rotating member 1 to rotate in the first direction.
  • the rotating member 1 and the rotating shaft 2 stop relative rotation, so that the rotating shaft 2 can be driven by the rotating member 1 to rotate together.
  • the first direction refers to the rotation direction in which the rotating member 1 drives the rotating shaft 2 to rise, and when the lower limit is lifted, If the rotating member 1 continues to rotate in the second direction, the position between the rotating member 1 and the rotating shaft 2 is limited by the second limiting structure so that the rotating member 1 and the rotating shaft 2 stop relative rotation, thereby allowing the rotating shaft 2 to be rotated. Part 1 is driven to rotate together.
  • the second direction refers to the rotation direction in which the rotating part 1 drives the rotating shaft 2 to descend.
  • the first direction is opposite to the second direction.
  • the rotating shaft 2 is connected to the mop 3.
  • the rotating shaft 2 is used to drive the mop 3.
  • Rotation and lifting also include at least one friction piece 4 arranged along the circumferential direction of the rotation shaft 2.
  • the friction piece 4 is frictionally connected with the rotation shaft 2.
  • the friction force between the friction piece 4 and the rotation shaft 2 is recorded as the first friction force.
  • the first friction force is used to limit the rotation of the rotating shaft 2 so that the rotating member 1 and the rotating shaft 2 rotate relative to each other to lift the rotating shaft 2, and when the lifting limit is reached, if the rotating member 1 continues to rotate in the first direction, then The rotating shaft 2 will be driven to overcome the first frictional force so that the rotating shaft 2 can rotate together, and when the lower limit is raised or lowered, if the rotating member 1 continues to rotate in the second direction, the rotating shaft 2 will be driven to overcome the first frictional force to rotate.
  • the rotating shaft 2 is rotated together; a cleaning machine adopts the aforementioned liftable rotating mop structure.
  • the first friction force is used to limit the rotation of the rotating shaft 2 so that the rotating member 1 and the rotating shaft 2 rotate relative to lift the rotating shaft 2.
  • the rotating shaft 2 can be completely stationary, or the rotating shaft 2 can be completely stationary. There is still a certain amount of rotation, but there is still relative rotation between the rotating member 1 and the rotating shaft 2. In short, as long as there is a speed difference between the rotating member 1 and the rotating shaft 2.
  • a cleaning machine i.e., sweeping robot
  • a body 46 which is used to install or serve as a shell to cover various components.
  • Components such as the first driving wheel 47, the second driving wheel 48, the middle sweep 49, the liftable rotating mop structure, etc.
  • the middle sweep 49 has a rolling brush and a main suction port.
  • the middle sweep 49 is used to roll the surface to be cleaned first. and vacuum cleaning, and then use the liftable rotating mop structure connected to the mop 3 for rotation cleaning.
  • the preferred technical solution is to set one on the left and one on the left.
  • two mops 3 are arranged substantially symmetrically on the left and right along the direction of travel of the cleaning machine. This means that the liftable rotating mop structure of the present disclosure has two substantially symmetrical arrangements on the left and right.
  • the driving gear 10 can not only drive the mop 3 to lift and rotate, but also provides a structural basis for further simplifying the structure. Therefore, although two mops 3 need to be operated , but only one electric motor 23 can be used.
  • the specific structure can be referred to as follows: it includes an electric motor 23 and multiple mops 3. Each mop 3 is provided with a rotating shaft 2, and each rotating shaft 2 is provided with a driving gear 10.
  • the motor 23 is transmission connected to each driving gear 10 through a transmission structure.
  • the electric motor 23 serves as an electric motor 23 for the rotating shaft 2 to drive the mop 3 to rise and fall, and as an electric motor 23 for the rotating shaft 2 to drive the mop 3 to rotate.
  • the transmission structure is such as a worm gear transmission structure.
  • the electric motor 23 can adopt a double-output shaft structure.
  • the double-output shaft structure has two symmetrical output shafts.
  • the two output shafts are respectively connected to a worm 25, and each worm 25 is provided with a corresponding worm gear. 24.
  • the worm gear 24 is provided with a transmission gear 26 coaxially, and the transmission gear 26 is meshed and transmission connected with the transmission tooth portion 12 of the driving gear 10.
  • the worm gear 24 and the transmission gear 26 adopt a coaxial upper and lower position.
  • Distributed structure The aforementioned structure may be referred to Figures 5 and 8.
  • this disclosure recommends using a friction member 4 to realize the purpose of lifting the rotating shaft 2. Please refer to the accompanying drawings 4, 6 and 7. In order to facilitate the stability of the movement of the rotating shaft 2, this disclosure recommends that the friction member 4 be arranged on the side close to the mop 3. Please refer to the accompanying drawings 4, 6 and 7.
  • this disclosure recommends that the rotating member 1, the guide part 11, and the friction member 4 be arranged adjacently from top to bottom, and
  • the rotating part 1, the guide part 11, and the friction part 4 are all circumferentially closed annular parts, which provide better support for the rotating shaft 2 in the circumferential direction. Please refer to the accompanying drawings 4, 6, 7, 9, 16, and 17.
  • the liftable rotating mop structure is configured as a modular structure, that is, the liftable rotating mop structure is set as a separate module, and the liftable rotating mop structure is first After the assembly of the mop structure is completed, the module is then installed into the body 46, and then the mop 3 is connected.
  • This design has the benefits of modularity. As long as the body 46 reserves space for module installation, the module can be obtained after the mop structure is assembled. Afterwards, the module can be easily installed to add the liftable mop 3 function to the body 46, which is suitable for large-scale mass production.
  • the volume of the modular liftable rotating mop structure is reduced or sufficient installation space is reserved for the body 46, even if the shape of the body 46 is changed or adjusted, it is beneficial to directly adopt the module, that is to say, the module can be directly used.
  • the shape of has nothing to do with the shape of the body 46.
  • the machine base includes a base 5 and a cover 20.
  • the liftable rotating mop structure except the mop 3, is installed between the base 5 and the cover 20. In order to facilitate assembly, it is also conducive to the center of gravity. Lower, as shown in Figures 2 to 5 and Figures 8 to 10, the liftable rotating mop structure is basically installed on the base 5.
  • the height of the rotating shaft 2 It is relatively high, so a protective cover 27 protruding upward from the upper side of the cover 20 is provided. The space around the protective cover 27 can be used for the installation of other components of the cleaning machine, so it is conducive to miniaturization.
  • the protective cover 27 also serves as a guide cover and can be used to guide the lifting and lowering of the rotating shaft 2 .
  • the electrical connection plug 50 serves as a general interface for internal and external electrical connections, and provides power supply and signal contact through the electrical connection plug 50, so that the modular liftable rotating mop structure can be installed in the body 46 At the same time, the assembly work is further simplified, and the modular liftable rotating mop structure is conveniently electrically connected to the power supply module and control module of the cleaning machine.
  • the friction member 4 uses a friction sleeve, and the friction sleeve is sleeved with the rotating shaft 2.
  • a mop 3 is provided on the lower side of the base 5.
  • the base 5 is provided with a through hole 6 for lifting the rotating shaft 2, and the lower end of the rotating shaft 2 is exposed in the through hole 6.
  • a seal is provided through the hole 6, which serves as the friction member 4 at the same time.
  • the side of the base 5 located on one side of the mop 3 is provided with an annular groove 7, and the annular groove 7 is sleeved and fixed with a seal.
  • the sealing member is provided with a sealing portion extending in the circumferential direction of the rotating shaft 2 .
  • the sealing portion is rotatably connected to the rotating shaft 2 , and a first friction force is formed between the sealing portion and the rotating shaft 2 .
  • the friction member 4 is provided with a circumferential elastic portion, and the circumferential elastic portion is connected with the rotating shaft 2 through elastic friction to generate the first friction force.
  • the circumferential elastic portion is arranged obliquely relative to the rotation axis 2 .
  • the circumferential elastic portion includes two upper and lower annular portions, respectively designated as the upper annular portion 8 and the lower annular portion 9 . These two annular portions form a V-shaped portion that opens to one side of the rotation shaft 2 .
  • a driving gear 10 that is fixed in axial position relative to the rotating shaft 2 and is rotatable is also included.
  • the driving gear 10 is sleeve-connected with the rotating shaft 2.
  • the driving gear 10 is sleeve-connected with the rotating shaft 2.
  • 10 is coaxially connected with the rotating member 1 to drive the rotating member 1 to rotate together.
  • the driving gear 10 is provided with a guide portion 11 , and the guide portion 11 is connected to the rotation shaft 2 for axial guidance.
  • the guide part 11 adopts a guide sleeve.
  • the rotating shaft 2 is in the lower limit position of the lifting.
  • the lower end of the outer helix of the rotating shaft 2 has exceeded The end surface of the lower end of the guide part 11, but in order to better prevent foreign matter from entering the screw transmission connection from the lower end of the outer screw, the guide part 11 can continue to be extended downward, so that the lower end of the outer screw of the rotating shaft 2 is still located in the guide part 11, that is, the lower end of the spiral groove 30 is still located in the guide portion 11, and at least part of the peripheral wall of the non-spiral area of the rotating shaft 2 located on the lower side of the outer spiral is sleeve-fitted with the guide portion 11, and the sleeve fit It is used to prevent foreign matter from entering the spiral transmission connection from the lower end of the outer spiral.
  • the driving gear 10 includes a transmission tooth portion 12 located on the outer circumference and a guide portion 11 located on the inner circumference, and a first rotation is provided between the transmission tooth portion 12 and the guide portion 11.
  • Support structure the first rotation support structure is used to rotationally support the driving gear 10 .
  • the first rotating support structure generally uses bearings or bushings.
  • the first rotation support structure includes a mounting base 13 extending in a direction away from the side of the mop 3, and the mounting base 13 is inserted into the transmission tooth portion 12 and the guide portion 11 , and the driving gear 10 and the mounting base 13 are rotatably connected.
  • the guide part 11 is internally connected to the mounting base 13
  • a first sleeve 18 is provided between the guide part 11 and the mounting base 13 .
  • the first sleeve 18 can also be replaced with a ball bearing or other rotating support structure.
  • the first sleeve 18 does not have rollers or other structures, it is smaller in thickness than a ball bearing or other rotating support structure, so it is more suitable. To meet the requirement of miniaturization of the present disclosure.
  • the mounting base 13 is provided at the bottom 14 of the machine base, that is, the bottom 14 of the base 5.
  • the lower side of the bottom 14 is the side where the mop 3 is located.
  • the mounting base 13 is provided on the upper side of the bottom 14 .
  • annular groove 7 is provided on the lower side of the bottom 14 corresponding to the position occupied by the mounting base 13, and a friction member is fixed to the annular groove 7. 4.
  • the rotating member 1 and the guide portion 11 are distributed up and down along the axis of the driving gear 10 , and the lower end of the rotating member 1 is adjacent to the upper end of the guide portion 11 .
  • the lower end of the rotating member 1 is arranged in contact with the upper end of the guide portion 11 .
  • the driving gear 10 is provided with a mounting post 15 located on the upper side of the guide portion 11.
  • the mounting post 15 is provided with a mounting hole 16, and the rotating member 1 is installed in the mounting hole 16. middle.
  • a plurality of screw posts 17 are provided in the mounting hole 16. The figure shows four circumferentially distributed posts. After the rotating member 1 is installed in the mounting hole 16, then Use screws 53 to fix the rotating member 1 to the screw post 17, so that it can withstand greater torque and meet the transmission requirements.
  • the driving gear 10 has a transmission tooth portion 12 located on the outer periphery.
  • the transmission tooth portion 12 is located on the underside of the mounting column 15.
  • the transmission tooth portion 12 is aligned with the rotating member 1.
  • the axis of the drive gear 10 is distributed up and down.
  • the outer periphery of the mounting post 15 is provided with a rotational support structure.
  • the second rotation support structure serves as the aforementioned rotation support structure, which is beneficial to simplifying the structure.
  • a cover 20 is provided on the upper side of the drive gear 10.
  • the cover 20 is rotatably connected to the drive gear 10.
  • the cover 20 is used to prevent foreign matter from ejecting from the rotating shaft.
  • the upper end of the outer spiral of 2 enters the spiral transmission connection.
  • a sealing ring can be provided between the cover 20 and the driving gear 10 .
  • other structures can be used, and any suitable structure can be applied to the present disclosure.
  • a cover 20 is provided on the upper side of the drive gear 10 , and a second rotation support structure is provided between the cover 20 and the drive gear 10 .
  • the drive gear 10 is supported by the second rotation.
  • the structure is rotatably connected to the cover 20.
  • the second rotation support structure also blocks the passage of foreign matter from reaching the upper end of the outer spiral of the rotating shaft 2 from between the cover 20 and the drive gear 10 and then entering the spiral transmission connection. That is to say, using The second rotating support structure prevents foreign matter from entering.
  • the cover 20 is provided with a socket post 51, which extends toward the driving gear 10 side.
  • the socket post 51 is internally and externally connected to the mounting post 15 of the drive gear 10.
  • a second sleeve 19 is provided between the sleeve column 51 and the drive gear 10.
  • the sleeve column 51 is sleeved externally and internally with the mounting column 15 of the drive gear 10, and the second sleeve 19 can be used to block foreign matter.
  • the second sleeve 19 can also be replaced with a ball bearing or other rotating support structure.
  • the second sleeve 19 does not have rollers or other structures, it is smaller in thickness than a ball bearing or other rotating support structure, so it is more suitable. To meet the requirement of miniaturization of the present disclosure.
  • a second rotation support structure is provided on the upper circumference of the drive gear 10 .
  • the second rotation support structure and the first rotation support structure are distributed up and down to form up and down rotation support for the drive gear 10 .
  • the upper part of the driving gear 10 is part or all of the mounting post 15 .
  • the second rotation support structure has an upper limit end 21 , and the upper limit end 21 axially offsets the drive gear 10 to axially limit the drive gear 10 , and the first rotation support structure It has a lower limiting end 22 , and the lower limiting end 22 axially offsets the driving gear 10 to limit the driving gear 10 axially downward.
  • the second rotation support structure and the first rotation support structure can simultaneously serve as axial limiting structures for the drive gear 10, which is beneficial to structural simplification.
  • a first annular support surface is provided on the inner periphery of the mounting base 13 as the lower limit end 22 of the first rotation support structure.
  • the lower end of the first sleeve 18 and the lower limit end 22 The first sleeve 18 is axially limited by the lower limiting end 22 . Since the first sleeve 18 is limited between the guide portion 11 and the mounting base 13 , it ultimately forms an axial limit for the driving gear 10 . Bit.
  • the top surface of the cover serves as the upper limit end 21 of the second rotation support structure, and the upper end of the second sleeve 19 fits closely with the upper limit end 21, thereby passing the upper limit The bit end 21 axially limits the second bushing 19 . Since the second bushing 19 is limited between the housing and the driving gear 10 , it ultimately limits the driving gear 10 in the axial direction.
  • the structure shown in Figure 7 is a relatively compact and simple design solution, and the axial limiting solution can also be other solutions, such as limiting the upper and lower end surfaces of the driving gear 10.
  • the top surface of the cover and the upper end surface 35 of the driving gear 10 can be rotatably connected to each other, and the upper side of the bottom 14 of the base 5 and the lower end surface 34 of the driving gear 10 can be rotatably connected to each other.
  • the first bushing 18 and/or the second bushing 19 are replaced with bearings capable of axial limiting.
  • the axial limiting of the driving gear 10 is achieved through the axial limiting of the bearing itself. Any method suitable for axial limiting of the driving gear 10 Any scheme for axial limiting can be used in this disclosure.
  • a limiting top 29 is provided on the upper side of the rotating shaft 2.
  • the upper end of the rotating shaft 2 and the limiting top 29 are rotatably connected to each other.
  • the limiting top 29 constitutes the first limiting structure.
  • a sphere 28 is provided between the upper end of the rotating shaft 2 and the limiting top 29.
  • a sphere 28 is provided at the upper end of the rotating shaft 2.
  • the limiting top 29 forms an upper limit for lifting of the rotating shaft 2. . Therefore, it is different from the lifting upper limit scheme described below, which is composed of the lower end surface 34 of the inner helical spiral protrusion 33 and the first opposing end surface 31 .
  • the upper and lower ends of the spiral are matched, that is, the solution of locking at the end of the spiral is used to form the first limiting structure and the second limiting structure respectively.
  • upper and lower blocking rods are provided on the rotating shaft 2. The blocking rods prevent the rotating member 1 and the rotating shaft 2 from continuing to move relative to each other, while avoiding locking at the end of the spiral. The blocking rods prevent the rotating member 1 and the rotating shaft 2 from continuing to move relative to each other.
  • the solution respectively constitutes a first limiting structure and a second limiting structure. Any solution suitable for forming an upper lifting limiter and a lower lifting limiter for the rotating shaft 2 can be used in this disclosure.
  • a protective cover 27 is provided on the upper side of the rotating shaft 2 to accommodate the lifting and lowering of the rotating shaft 2 , and the inner top surface of the protective cover 27 serves as the limiting top 29 .
  • the lower end of the external helical spiral groove 30 of the rotating shaft 2 is of a closed design, and the lower end is provided with a first opposing end surface 31.
  • the rotating shaft 2 rises to the rotating member
  • the lower end surface 34 of the inner spiral spiral protrusion 33 of 1 is in contact with the first opposing end surface 31, the position of the rotating shaft 2 at this time is the lifting upper limit position of the rotating shaft 2, and the first opposing end surface 31 constitutes the first limit.
  • the lower end surface 34 of the spiral protrusion 33 can push the rotating shaft 2 to rotate through the offset connection with the first opposing end surface 31; and/or, the rotating shaft 2
  • the upper end of the outer helical spiral groove 30 is of closed design, and the upper end is provided with a second resisting end surface 32.
  • the rotating shaft 2 descends to the upper end surface 35 of the inner helical spiral protrusion 33 of the rotating member 1, the upper end surface 35 and the second resisting end surface 32
  • the position of the rotating shaft 2 at this time is used as the lower limit position of the rotating shaft 2, and the second opposing end surface 32 constitutes the second limiting structure.
  • the upper end of the spiral protrusion 33 can push the rotation shaft 2 to rotate by being connected with the second opposing end surface 32 .
  • This constitutes both The solution of forming an upper lifting limit and a lower lifting limit for the rotating shaft 2 also achieves the purpose of the rotating member 1 to better drive the rotating shaft 2 to rotate, which is conducive to simplifying the structure and achieving miniaturization.
  • the spiral length of the spiral protrusion 33 can be short and does not need to be very long.
  • the first opposing end surface 31 and the lower end surface 34 of the spiral protrusion 33 are both configured as radial mating surfaces, and/or the second opposing end surface 32, the spiral protrusion
  • the upper end surfaces 35 of 33 are all set as radial mating surfaces.
  • the first opposing end surface 31, the lower end surface 34 of the spiral protrusion 33, the second opposing end surface 32, and the upper end surface 35 of the spiral protrusion 33 are all configured as radial matching surfaces.
  • the rotating member 1 is divided into multiple parts along the circumferential direction, and the multiple parts are spliced around the rotating shaft 2 to achieve a spiral transmission connection between the rotating member 1 and the rotating shaft 2 .
  • the rotating member 1 is divided into two parts, namely the left half 36 and the right half 37 .
  • the rotating shaft 2 is divided into multiple parts along the axial direction, at least one of which opens the outer helical spiral groove 30 for spiral transmission connection of the rotating member 1 .
  • the rotating shaft 2 is divided into an upper section 38 and a lower section 39.
  • the main body of the spiral groove 30 is located in the upper section 38, and the first opposing end surface 31 is located in the lower section 39. Therefore, the spiral groove 30 is opened, and the rotating member 1 can pass through the upper section.
  • the lower end of 38 is screwed into the upper section 38, and then the upper section 38 and the lower section 39 are spliced together, thereby completing the spiral transmission connection between the rotating member 1 and the rotating shaft 2.
  • the mop 3 and the rotating shaft 2 can have a floating connection.
  • the floating connection means that the mop 3 can move axially relative to the rotating shaft 2 when passing through surfaces to be cleaned at different heights to achieve the adaptive adaptation of the mop 3 The height changes, but the height of the rotation axis 2 itself remains unchanged.
  • An elastic motion structure capable of axial movement is provided.
  • the elastic motion structure is used to drive the mop 3 to perform axial elastic movement relative to the rotating shaft 2 to achieve adaptive height changes of the mop 3. .
  • the elastic motion structure includes an insertion hole 40 provided on the rotating shaft 2 and an elastic connecting piece 41 located in the insertion hole 40 and capable of axial movement.
  • the upper side of the mop 3 is provided with a connecting rod 43, which rotates
  • the lower end opening of the shaft 2 serves as an insertion opening of the insertion hole 40 for the connecting rod 43 to be inserted and connected with the elastic connector 41 .
  • the mop 3 Under the action of the elastic connector 41, the mop 3 is elastically attached to the surface to be cleaned. As the unevenness of the surface to be cleaned changes, the mop 3 will naturally rise and fall under the action of the elastic connector 41, thus making the mop 3 better. Clean the surface to be cleaned thoroughly.
  • the elasticity of the elastic connector 41 can be made of elastic material.
  • an elastic member 42 is provided on the elastic connector 41, and the upper end of the elastic member 42 is connected to the bottom surface of the insertion hole 40.
  • the lower end of the elastic member 42 is sleeved and connected with the elastic connecting member 41.
  • the elastic connecting member 41 can be inserted into the guide hole 52 provided in the rotating shaft 2 and located on the upper side of the aforementioned bottom surface.
  • the lower end of the elastic connector 41 and the upper end of the connecting rod 43 are magnetically connected to achieve a quick-release connection.
  • the lower end of the elastic connector 41 is provided with
  • the magnet 45 and the upper end of the connecting rod 43 are provided with an iron core 44 .
  • the insertion hole 40 is set as an internal hexagonal fitting hole, and the connecting rod 43 is provided with an external hexagonal peripheral wall.
  • the outer hexagonal peripheral wall and the inner hexagonal matching hole form a rotation transmission sleeve between the connecting rod 43 and the insertion hole 40. Since the outer hexagonal peripheral wall and the inner hexagonal matching hole have a large contact surface, they can provide large torque transmission, which is beneficial to the rotation of the mop 3 stability.
  • a sealing portion 56 is also included.
  • the friction member 4 and the sealing portion 56 are arranged in sequence up and down along the axis of the rotating shaft 2, and the friction member 4 and the sealing portion 56 are rotatably sleeve-fitted with the rotating shaft 2.
  • the sealing The portion 56 seals the friction member 4 inside, and the friction member 4 and the sealing portion 56 are provided integrally or separately.
  • the friction part 4 and the sealing part 56 are integrally arranged, for example, as shown in Figure 26; the separate arrangement can be that one or more sealing rings are separately provided on the lower side of the friction part 4, and the friction part 4 and the sealing ring are separated in the axial direction. , but the structure will be relatively complex, and the assembly will be more troublesome.
  • the friction member 4 can focus more on providing the first friction force, while the sealing portion 56 can focus more on sealing, and can achieve sealing at the same time by using materials with low friction. Has less friction, thereby reducing friction losses.
  • a first sealing ring 55 is used to realize the integral arrangement of the friction member 4 and the sealing part 56.
  • the first sealing ring 55 includes an upper and lower parts, namely the first part and the second part.
  • the first part serves as the friction part 4 and the second part serves as the sealing part 56.
  • the first part is circumferentially sleeved with at least one clamp ring 57 , and the clamp ring 57 is used to make the first part closely adhere to the outer peripheral wall of the rotating shaft 2 .
  • a clamping ring 57 is used.
  • the clamping ring 57 can be an elastic plastic ring, a metal ring, or the like.
  • the first part is circumferentially provided with at least one swing section 58 that can swing to one side of the rotation shaft 2, and the collar 57 presses the fitting portion 59 of the swing section 58 Fitted on the outer peripheral wall of the rotating shaft 2.
  • the fitting portion 59 is preferably designed to be thick, so that it is more durable.
  • the machine base also includes a machine base.
  • the bottom 14 of the machine base is provided with a matching bottom plate 54, and the first sealing ring 55 is matched between the bottom 14 and the bottom plate 54.
  • the mop 3 is provided on the lower side of the bottom plate 54.
  • the machine base and the bottom plate 54 are provided with a through hole 6 for the lifting and lowering of the rotating shaft 2, and the lower end of the rotating shaft 2 is exposed outside the through hole 6.
  • a circumferential limiting structure is provided between the bottom 14 and the first part, and the circumferential limiting structure is used to circumferentially limit the first part.
  • the circumferential limiting structure includes an axial protrusion 60 and an axial notch 61.
  • the first sealing ring 55 is sleeved on the rotating shaft 2 from bottom to top, the axial protrusion 60 and the axial notch 61 The first part is used to circumferentially limit the circumferential position.
  • the axial protrusion 60 is provided on the first part, and the axial recess 61 is provided on the bottom 14.
  • the bottom plate 54 is provided with a sealing annular surface 62 in which the second portion sealingly fits.

Landscapes

  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)
  • Electric Suction Cleaners (AREA)

Abstract

一种可升降的旋转拖布结构,包括沿转动轴(2)的周向设置的至少一个摩擦件(4),摩擦件(4)与转动轴(2)之间的摩擦力记为第一摩擦力,第一摩擦力用于限制转动轴(2)转动从而使转动件(1)与转动轴(2)发生相对转动以升降转动轴(2),并且在升降上限位时,此时转动件(1)带动转动轴(2)一起转动,以及,在升降下限位时,此时转动件(1)带动转动轴(2)一起转动;可升降的旋转拖布结构能够解决第一个和第二个技术难点,同时结构较为简单,并且有利于解决第三个技术难点,从而能够适用于清洁机;还提出一种清洁机,包括可升降的旋转拖布结构。

Description

一种可升降的旋转拖布结构以及清洁机 技术领域
本发明涉及清洁设备技术领域,具体讲是一种可升降的旋转拖布结构以及清洁机。
背景技术
有一种清洁机,例如小型扫地机器人(也称为家用扫地机器人),小型扫地机器人从诞生至现在,已具有较高的普及程度,成为家用清扫等消费市场的重要清洁产品,目前小型扫地机器人已经向吸拖一体化方向发展,其中,有一种吸拖一体的技术方案是采用在吸尘基础上增加旋转拖布结构来实现,即小型扫地机器人在行走过程中,吸尘的同时,还通过旋转拖布结构带动拖布旋转擦拭被清洁表面。因此提出了旋转拖布结构应用于小型扫地机器人的设计要求,由于小型扫地机器人自身体积较小,而且一般设置两个拖布,体积较小能使其灵活地在室内更好地清扫,而两个拖布则使得清扫更高效率又不至于导致小型扫地机器人体积太大,所以现有的旋转拖布结构需要小型化设计或者完全重新设计才能够应用于小型扫地机器人,这就给设计工作带来了很多困难,需要付出创造性劳动才能够加以实现。
而为了能够更好地进行清洁工作,又进一步提出了更高的要求,即提出拖布不仅要能够旋转,而且需要能够升降,这样就极大地增加了结构的复杂程度,使得小型化更加困难。
本申请人经过大量研究,已在先提出一种适用于小型扫地机器人的可升降的旋转拖布结构(详情可参见公开号为CN113926743A的中国发明专利申请一种可升降的旋转拖布结构以及清洁机),前述方案极大地降低了拖布单元升降部位的重量,便于整机重心的设计,克服了升降部位重量较重的问题,另外,如果是多个拖布的情况,采用前述方案有利于实现各个拖布独立升降,另外,前述方案只要小型扫地机器人高度足够,那么上升高度的最大值可以做的较大(即升降高度值受结构自身的限制较小,主要限制因素为小型扫地机器人自身的高度)。
不同于本申请人的上述结构,在先专利文件中提出了一种通过螺纹升降的技术方案, 该技术方案的特点是通过两个具有螺纹结构的旋转件相互啮合来实现轴向升降目的,具体来说,由电动马达驱动的第一旋转件,转动轴作为第二旋转件,第一旋转件的螺纹与第二旋转件的螺纹啮合,第一旋转件在转动时,通过螺纹啮合来升降第二旋转件,前述结构例如丝杠螺母的结构形式,丝杠作为转动轴,螺母作为第一旋转件相对丝杠轴向位置固定并可转动,螺母在转动时,丝杠被螺母带动升降,此时要求丝杠与螺母之间必须有相对转动运动,否则丝杠与螺母一起同步转动将无法实现螺母转动带动丝杠升降的目的,因此,在将丝杠螺母的结构形式应用于可升降的旋转拖布结构时,就成为第一个要克服的技术难点,另外,对于可升降的旋转拖布结构而言,既要能够实现升降,又要能够实现旋转拖布进行清洁,那么如何实现这两种运动状态的切换,则成为第二个要克服的技术难点,另外,本公开所指的这类产品需要小型化设计,则成为第三个要克服的技术难点。
对于第一个要克服的技术难点,在先专利文件(例如公布号CN103417164A的中国专利申请)中仅做了简单的描述,具体来说“[0075]为了使擦拭转盘11进行旋转,擦拭转盘11上固定连接了螺丝轴12,螺丝轴12通过旋转螺帽13和固定套14进行径向固定,其中,固定套14固定在保洁机器人的底盘上,实现对螺丝轴的位置固定,螺丝轴12的中段布有内凹的螺纹,其与旋转螺帽13的内螺纹进行咬合,旋转螺帽13在竖直方向上固定,通过与螺丝轴12的相对旋转,可以使螺丝轴12进行竖直方向上的上下移动,进一步的,螺丝轴12上的螺纹是内凹的,其两端的螺杆上没有螺纹,因此,如果旋转螺帽13通过旋转运动到螺丝轴12上螺纹的某一端,则与该端的螺纹端点相楔合,两者一起转动,且在转向不变的情况下,螺丝轴12不会再继续上下移动。”,因此,该在先专利文件公开了需要相对旋转才能进行升降,但是不知道是如何实现相对旋转(未公开能够实现相对旋转的结构方案),而丝杠螺母的结构形式需要相对旋转才能实现相对移动(即升降)是公知技术(也就是说在先专利文件只是公开了公知技术),因此在先专利文件实际上还是未解决第一个要克服的技术难点。
对于第二个要克服的技术难点,由于第二个要克服的技术难点是以第一个要克服的技术难点为基础,如果不解决第一个要克服的技术难点,那么也就无法实现切换,第二个要克服的技术难点也就无法解决,我们假设已解决第一个要克服的技术难点,那么在先专利文件(例如公布号CN103417164A的中国专利申请)中通过两种方式来解决第二个要克服的技术难点,第一种方式“螺丝轴12上的螺纹是内凹的,其两端的螺杆上没有螺纹,因此,如果旋转螺帽13通过旋转运动到螺丝轴12上螺纹的某一端,则与该端的螺纹端点相楔合,两者一起转动,且在转向不变的情况下,螺丝轴12不会再继续上下移动。”,即螺纹在端点楔合(也可以说是咬合),这样会导致不容易松开的问题,并且带来磨损问题,因此公布了第二种形式“[0081]需要进一步指出的是,上文中给出的旋转螺帽13与螺丝轴12相楔合的方式,实际上是旋转螺帽13的内螺纹与螺丝轴12某一端内凹螺纹的咬合来实现的,但是,这样的方案一方面会造成螺纹磨损,另一方面,由于楔合后旋转螺帽13与螺丝轴12会继续一起转动,两者的螺纹之间不断受力,咬合会越来越紧,当旋转螺帽13反向旋转时,两者的螺纹由于摩擦力,可能会出现难以脱离的情况,导致螺丝轴12不能征程的升降。为了克服这样的问题,本发明实施例进一步提出了一种改进方案,具体如图6所示,在螺丝轴12上的内凹螺纹的两端,分别设置有挡杆17,对旋转螺帽13进行限位,用于在旋转螺帽13旋转到螺丝轴12上的内凹螺纹的任一端之前,拦截旋转螺帽13,从而,在能够达到旋转螺帽13和螺丝轴12一同转动的情况下,使旋转螺帽13的内螺纹不会与螺丝轴12任一端的内凹螺纹紧密咬合,避免了螺纹损耗和转向切换过程中的螺纹分离困难。当然,这样的挡杆17只是一种优选实施方案,是否包含该挡杆17,并不会影响本发明的保护范围。”,第二种方式要求避免到端点相契合,虽然有助于改善,但是传递转动力量的主要结构还是螺纹啮合面,从机械原理来讲,螺纹啮合面可以简化为两个斜面接触,因此在长时间传动使用时,仍然可能存在咬死的可能性,而且在本公开所指产品的正常使用寿命中,将频繁的升降,从而导致螺纹啮合面仍然容易发生磨损。
对于第三个要克服的技术难点,本申请人还未在在先技术中看到有人提出或给出启示。
由于本申请人的在先技术方案采用的是升降件沿轴向直接升降转动轴的设计方案,所以需要考虑设置升降件及相关结构,导致结构稍显复杂,虽然所述的设计方案具有较多的优点,例如升降效率高、易于控制升降、升降高度较大、升降和拖布旋转可以同时存在等,但是不利于进一步简化结构和降低重量,而丝杠螺母的结构形式则可以省掉升降件及相关结构,因此,有利于进一步简化结构和降低重量,但是需要克服至少第一个和第二个技术难点,然而,由上述可知,将丝杠螺母的结构形式应用于可升降的旋转拖布结构,由于应用场景变化很大(即技术要求不同),早就脱离了丝杠螺母的结构形式的一般应用场景(即常用于工业中,例如机床、电动丝杆等,通常都是丝杆转动,螺母沿丝杆轴向运动),所以存在很大困难。虽然困难很大,但是本申请人经过深入研究已经得到了一定的解决方案,从而提出一种可升降的旋转拖布结构以及清洁机,能够解决第一个和第二个技术难点,同时结构较为简单,并且有利于解决第三个技术难点。
技术问题
本发明所要解决的技术问题是,克服现有技术的缺陷,提出一种可升降的旋转拖布结构,能够解决第一个和第二个技术难点,同时结构较为简单,并且有利于解决第三个技术难点,从而能够适用于清洁机(例如小型扫地机器人);还提出一种清洁机,采用前述的可升降的旋转拖布结构,有利于清洁机的小型化。
技术解决方案
相比现有技术,本发明提出一种可升降的旋转拖布结构,包括转动件、转动轴和拖布,转动件与转动轴螺旋传动连接,转动件相对转动轴轴向位置固定并可转动,转动轴具有升降上限位和升降下限位这两个位置,转动件通过位于升降上限位和升降下限位之间的螺旋传动连接来带动转动轴升降,并且在升降上限位时,转动件若继续维持第一方向转动,那么转动件与转动轴之间通过第一限位结构限位以使转动件与转动轴停止相对转动,进而使转动轴可被转动件带动一起转动,第一方向是指转动件带动转动轴上升的转动方向,以及,在升降下限位时,转动件若继续维持第二方向转动,那么转动件与转动轴之间通过第二限位结构限位以使转动件与转动轴停止相对转动,进而使转动轴可被转动件带动一起转动,第二方向是指转动件带动转动轴下降的转动方向,第一方向与第二方向转动方向相反,转动轴与拖布连接,转动轴用于带动拖布旋转和升降,还包括沿转动轴的周向设置的至少一个摩擦件,该摩擦件与转动轴摩擦连接,摩擦件与转动轴之间的摩擦力记为第一摩擦力,第一摩擦力用于限制转动轴转动从而使转动件与转动轴发生相对转动以升降转动轴,并且在升降上限位时,此时转动件若继续维持第一方向转动则将带动转动轴克服第一摩擦力以使转动轴一起转动,以及,在升降下限位时,此时转动件若继续维持第二方向转动则将带动转动轴克服第一摩擦力以使转动轴一起转动。
在一些实施例中,摩擦件采用摩擦套,该摩擦套与转动轴套接。这样设计后,一方面结构较为简单,方便生产装配,另一方面,在长期使用过程中,由于摩擦套与转动轴套接有利于获得较大的摩擦连接部分,所以前述结构有利于使第一摩擦力维持在一个较高的水平,不容易发生衰减。
在一些实施例中,还包括机座,机座下侧设置拖布,机座设置供转动轴升降的穿过孔,转动轴下端露出在穿过孔外并与拖布连接,穿过孔设有密封件,该密封件同时作为摩擦件。这样设计后,一方面实现了密封需求,避免异物进入,另一方面密封件同时作为摩擦件,很大程度上简化了结构,方便了生产装配,再一方面,利用密封件为了获得一定的密封效果而势必需要维持与转动轴的外周壁套接贴合程度,这样可有利于第一摩擦力维持在一个较高的水平,在长期使用过程中不容易发生衰减,由上述可见,本条技术方案改进具有一举多得的优势。
在一些实施例中,机座的位于拖布的一侧的侧面上设有环形槽,环形槽套接固定有密封件,该密封件设有向转动轴周向延伸设置的密封部,密封部与转动轴可转动连接,并且密封部与转动轴之间形成第一摩擦力。这样设计后,从外侧进行套接安装,使得生产制造非常方便,而密封部即视为摩擦件,当有更换的需求时,也方便对摩擦件的更换。
在一些实施例中,摩擦件设有周向弹性部,该周向弹性部与转动轴通过弹性相抵摩擦连接来产生第一摩擦力。这样设计后,一方面避免硬接触,有利于降低损耗以维持第一摩擦力,另一方面有利于降噪,避免产生较大的噪音。
在一些实施例中,周向弹性部相对转动轴倾斜设置。这样设计后,一方面,通过倾斜设置这样的结构设置来作为保障弹性接触力的技术手段之一(即保障弹性接触力的技术手段并非完全依赖弹性材料),从而在频繁使用中仍然能够维持第一摩擦力,另一方面,结构简单紧凑。
在一些实施例中,周向弹性部包括上下两个环形部分,这两个环形部分构成向转动轴一侧开口的V形部。该设计是在实现本发明目的的同时,基于对转动轴具有升降运动的特点的针对性设计,具体来说,前述设计第一摩擦力将包括上下两个环形部分与转动轴接触形成的摩擦力,那么,当转动轴上升时,上侧的环形部分被向上推开,即上侧的环形部的与转动轴接触的部分具有向上摆动的运动,上侧的环形部与转动轴之间的弹性相抵的力量可能有一定减小和/或接触面积也可能有变小的变化,因此摩擦力将减小,但是下侧的环形部分却恰好相反,下侧的环形部与转动轴之间的弹性相抵的力量可能有一定增大和/或接触面积也可能有变大的变化,因此摩擦力将增大,而当转动轴下降时,则又是一个相反的状态变化,因此采用本条技术方案的设计,有利于克服转动轴具有升降运动的特点带来的可能不利影响,从而有利于维持第一摩擦力,另外,采用本条技术方案设计,也有利于阻止异物进入,还有利于将转动轴上携带的异物刮下来,从而很大程度上降低了异物通过上侧的环形部进一步进入的可能性。
在一些实施例中,还包括相对转动轴轴向位置固定并可转动的驱动齿轮,驱动齿轮与转动轴套接连接,驱动齿轮与转动件同轴连接以带动转动件一起转动。这样设计后,驱动齿轮与转动件同轴连接,一方面有利于减小结构直径,即有利于小型化,另一方面有利于转动稳定性,再一方面,驱动齿轮与转动轴套接连接,有利于降低升降结构的高度。
在一些实施例中,驱动齿轮设有导向部,所述的导向部与转动轴轴向导向连接。这样设计后,一方面,在驱动齿轮设有导向部,非常有利于提高结构紧凑度,,有利于小型化,另一方面,导向部设置有利于转动轴更好地运动,再一方面,由于驱动齿轮与转动件同轴连接,所以导向部设置有利于转动轴在运动时与转动件维持一个较为稳定的配合,因此有利于提升结构可靠性。
在一些实施例中,导向部采用导向套,在升降下限位时,转动轴的外螺旋的下端仍然位于导向部中,转动轴的位于所述的外螺旋的下侧的非螺旋区的至少局部外周壁与导向部套接配合,该套接配合用于防异物从外螺旋的下端进入螺旋传动连接中。这样设计后,一方面,导向套具有更好的导向性能,另一方面,设计了简单紧凑的结构来考虑防异物,有利于小型化,再一方面,本条技术方案对于导向套与转动轴特定配合设计能够防异物从外螺旋的下端进入螺旋传动连接中,从而有利于提升结构可靠性。
在一些实施例中,驱动齿轮包括位于外周的传动齿部和位于内周的导向部,传动齿部与导向部之间设置第一转动支撑结构,该第一转动支撑结构用于转动支撑驱动齿轮。这样设计后,有利于驱动齿轮设计扁平化,从而腾出更多的高度空间来设置其它结构,即有利于小型化。
在一些实施例中,第一转动支撑结构包括沿远离拖布一侧的方向延伸设置的安装座,该安装座插入配合在传动齿部与导向部之间的环形间隔中,并且驱动齿轮与安装座之间可转动连接。这样设计后,传动齿部、导向部、安装座三者在高度方向(即轴向)具有较大的重叠度,从而更有利于驱动齿轮设计扁平化的实现,高度也可以进一步降低,即有利于小型化。
在一些实施例中,安装座设于机座的底部,该底部的下侧为拖布的所在侧,该机座底部的上侧设置所述的安装座。这样设计后,可实现驱动齿轮、安装座靠近拖布设置,因此有利于降低拖布相对于驱动齿轮的摆动幅度,这样,驱动齿轮的导向部无需维持较高的高度来径向稳定转动轴,因此有利于降低驱动齿轮的整体高度,即有利于小型化。
在一些实施例中,该底部的与安装座所占位置对应的下侧面设有环形槽,环形槽套接固定有摩擦件。本条技术方案这样设计后,一方面有利于进一步简化结构,方便安装,也方便更换,另一方面,由于机座底部的上侧设置所述的安装座,安装座将占据机座底部的一定的面积,那么本条技术方案设计后,在高度上充分利用了底部的与安装座所占位置对应的下侧面,在开环形槽时,环形槽可向上开设到安装座中,因此安装座自身得到了充分利用,这样设置有利于扁平化设计,即有利于小型化。
在一些实施例中,转动件与导向部沿驱动齿轮的轴向上下分布,转动件的下端与导向部的上端相邻设置。这样设计后,一方面有利于降低高度,另一方面,因为本公开所指的产品基于成本和生产效率考虑而大多采用塑料件,导致螺旋传动连接的配合精度无法达到向金属零件那样的配合程度,螺旋传动连接存在矿量或间隙、大批量量产时的一致性也相对金属零件较低,所以转动件的下端与导向部的上端相邻设置有利于导向部辅助转动件工作,即在升降时使螺旋传动连接更为稳定。
在一些实施例中,驱动齿轮设有位于导向部的上侧的安装柱,安装柱设有安装孔,转动件安装于安装孔中。前述设计解决了转动件如何设置的问题,并且,一方面转动件安装于安装孔中,即转动件相当于设于驱动齿轮中,因此有利于转动件与驱动齿轮在连接后重心的降低,有利于转动平稳,另一方面转动件安装于安装孔中,有利于降低整体高度,实现扁平化。
在一些实施例中,驱动齿轮具有位于外周的传动齿部,该传动齿部位于安装柱的下侧,传动齿部与转动件沿驱动齿轮的轴向上下分布。这样设计后,有利于重心下移,从而有利于驱动齿轮转动平稳。
在一些实施例中,安装柱的外周设有转动支撑结构。因为转动件在工作时为受力部件,而安装柱设有安装孔、转动件安装于安装孔中,所以特地在安装柱的外周设有转动支撑结构,有利于转动件的转动平稳和可靠,因此有利于转动件能够长期处于良好的工作状态。
在一些实施例中,驱动齿轮的上侧设有罩盖,该罩盖与驱动齿轮可转动连接,罩盖用于防异物从转动轴的外螺旋的上端进入螺旋传动连接中。这样设计后,有利于防异物进入,从而有利于提升结构可靠性。
在一些实施例中,驱动齿轮的上部周向设有第二转动支撑结构,第二转动支撑结构、第一转动支撑结构上下分布形成对驱动齿轮的上下转动支撑。这样更有利于驱动齿轮转动平稳。
在一些实施例中,第二转动支撑结构具有上限位端,上限位端与驱动齿轮轴向相抵以对驱动齿轮进行轴向上限位,第一转动支撑结构具有下限位端,下限位端与驱动齿轮轴向相抵以对驱动齿轮进行轴向下限位。这样设计后,一方面,实现对驱动齿轮的轴向限位,从而在转动件运动中提供轴向力的支撑,另一方面利用第二转动支撑结构、第一转动支撑结构构成轴向限位,结构得以简化。
在一些实施例中,驱动齿轮的上侧设有罩盖,该罩盖与驱动齿轮之间设有第二转动支撑结构,驱动齿轮通过第二转动支撑结构与罩盖可转动连接,第二转动支撑结构同时作为堵塞异物从罩盖与驱动齿轮之间到达转动轴的外螺旋的上端进而进入螺旋传动连接中的通道的堵塞物。这样设计后,在实现相应技术性能的同时进一步简化结构,从而有利于小型化。
在一些实施例中,包括一个电动马达和多个拖布,每个拖布设置一个转动轴,每个转动轴设置一个驱动齿轮,该电动马达通过传动结构与各个驱动齿轮传动连接,该电动马达既作为转动轴带动拖布升降的电动马达,又作为转动轴带动拖布旋转的电动马达。由于驱动齿轮等结构的配合既能够实现拖布升降、又能够实现拖布旋转,所以进一步采用本条设计后,有利于实现更大程度地简化结构,有利于实现小型化,另外,电动马达的数量也减至一个,有利于降低成本。
在一些实施例中,转动轴的上侧设有容纳转动轴升降的保护罩。这样设计,一方面有利于保护转动轴的升降,避免与其它结构干涉,提高结构可靠性,另一方面避免异物从转动轴上侧进入螺旋传动连接中。
在一些实施例中,保护罩同时作为导向罩,用于导向转动轴升降。这样设计,有利于转动轴更稳定地运动。
在一些实施例中,转动轴的上侧设有限位顶部,转动轴的上端与限位顶部可转动相抵连接,该限位顶部对转动轴构成升降上限位。这样设计提供了一种对转动轴构成升降上限位的结构,该结构较为简单,另外,充分利用了转动轴上侧用于升降的空间,因此有利于小型化。
在一些实施例中,转动轴的上侧设有容纳转动轴升降的保护罩,保护罩的内顶面作为限位顶部。这样设计,在实现对转动轴升降的保护和对转动轴构成升降上限位的同时,结构非常简单。
在一些实施例中,转动轴的外螺旋的螺旋槽的下端为封闭设计,该下端设有第一相抵端面,当转动轴上升至转动件的内螺旋的螺旋凸起的下端面与第一相抵端面相抵时,此时转动轴所处的位置为转动轴的升降上限位位置,此时转动件若继续维持第一方向转动,则螺旋凸起的下端面可通过与第一相抵端面的相抵连接来推动转动轴转动;和/或,转动轴的外螺旋的螺旋槽的上端为封闭设计,该上端设有第二相抵端面,当转动轴下降至转动件的内螺旋的螺旋凸起的上端面与第二相抵端面相抵时的位置,此时转动轴所处的位置作为转动轴的升降下限位位置,此时转动件若继续维持第二方向转动,则螺旋凸起的上端可通过与第二相抵端面的相抵连接来推动转动轴转动。本条技术方案针对第二个技术难点做了特别改进,在升降切换到带动转动轴一起转动并持续带动转动轴一起转动时,本条技术方案特别提出螺旋槽进行封闭设计并提供相应的相抵端面,具体来说,具有第一相抵端面和/或第二相抵端面,而螺旋凸起的下端面、上端面进行对应配合,这样,一方面实现了转动轴的升降上限位和升降下限位这两个位置,同时结构较为简单,另一方面,螺旋凸起的下端面可通过与第一相抵端面的相抵连接来推动转动轴转动,和/或螺旋凸起的上端面可通过与第二相抵端面的相抵连接来推动转动轴转动,因此一定程度上避免了螺旋凸起与螺旋槽之间的螺旋贴合面越压越紧的弊端,也有利于降低螺旋贴合面变形、磨损的情况。另外,本条技术方案特别设计为转动轴设置螺旋槽,转动件设置螺旋凸起与螺旋槽配合,有利于转动件的高度做小,同时虽然高度做小,但是还能够实现上述的技术目的。
在一些实施例中,第一相抵端面、螺旋凸起的下端面均设置为径向配合面,和/或第二相抵端面、螺旋凸起的上端面均设置为径向配合面。这样设计后,能够更好地传递周向转动力。
在一些实施例中,转动件沿周向被分为多个部分,该多个部分围绕转动轴拼接以实现转动件与转动轴的螺旋传动连接。这样设计后,当螺旋槽为上下两端都封闭的情况下,提供了一种方便安装转动件的技术方案,尤其是当转动件具有周向闭合孔、并且周向闭合孔内设有所述的螺旋凸起时,例如螺母形式时,那么螺旋槽在上下两端都封闭的情况下是无法直接旋入转动件,因此将转动件沿周向被分为多个部分,就可以方便地将多个部分围绕转动轴拼接以实现转动件与转动轴的螺旋传动连接,多个部分例如分成两半,即分成两个部分。
在一些实施例中,转动轴沿轴向被分为多个部分,其中至少一个部分打开外螺旋的螺旋槽以供转动件螺旋传动连接。该设计提供了另一种螺旋传动连接转动件的技术方案,装配过程可参考如下,先将转动轴沿轴向拆开以打开螺旋槽,然后通过开口旋入转动件,再将转动轴轴向连接复原,从而实现转动件与转动轴的螺旋传动连接。
在一些实施例中,拖布与转动轴之间可浮动连接,该可浮动连接是指拖布在经过不同高度的被清洁表面时可相对转动轴轴向运动以实现拖布的自适应高度变化,但是转动轴本身高度不变。这样设计后,由于本公开是在升降上限位和升降下限位才能够继续转动带动转动轴一起转动,所以转动轴的升降高度是固定的,不会根据被清洁表面的高度变化而改变,虽然拖布表面的清洁材质一般为柔软的材质,该柔软的材质具有一定的形变量,但是遇到被清洁表面较大的起伏时,还是无法适应,严重时可能存在顶死的情况,因此本条设计有利于解决前述问题,不仅能够使拖布更好地贴合被清洁表面,而且能够使整体机构工作更为稳定和可靠。
在一些实施例中,转动轴与拖布之间设有可轴向运动的弹性运动结构,该弹性运动结构用于带动拖布相对转动轴进行轴向弹性运动以实现拖布的自适应高度变化。
在一些实施例中,弹性运动结构包括设于转动轴的插入孔和位于插入孔中并可轴向运动的弹性连接件,拖布的上侧设有连接杆,转动轴的下端开口作为插入孔的供连接杆插入并与弹性连接件连接的插入开口。这样设计有利于结构紧凑,另外对拖布的连接较为可靠,插入孔也可对连接杆起到一定的升降导向作用。
在一些实施例中,弹性连接件的下端与连接杆的上端通过磁性连接实现快拆式连接。这样设计,极大便利了拖布与转动轴之间的拆装。
在一些实施例中,还包括密封部分,摩擦件与密封部分沿转动轴轴向上下依序设置,并且摩擦件、密封部分均与转动轴可转动套接配合,密封部分将摩擦件密封在内侧,摩擦件与密封部分一体设置或分体设置。这样密封部分主要承担密封功能,而摩擦件主要提供第一摩擦力,密封部分对摩擦件提供一定的密封保护,而密封部分虽然也与转动轴之间产生摩擦力,但是摩擦力可以较小,那么损耗就较小,因此,在设计使用寿命中,密封部分不容易失效,有利于提升密封部分使用寿命。
在一些实施例中,采用第一密封圈实现摩擦件与密封部分一体设置,该第一密封圈包括上下两部分,分别为第一部分和第二部分,第一部分作为摩擦件,第二部分作为密封部分。这样第一密封圈一个零件即实现提供第一摩擦力和实现密封两个目的,结构更为简单。
在一些实施例中,第一部分周向套接有至少一个卡圈,该卡圈用于使第一部分紧贴在转动轴外周壁上。由于第一密封圈最好是一种材料制作,这样加工简单、成本低,但是一种材料较难兼顾实现提供第一摩擦力和实现密封两个目的,例如第一密封圈采用橡胶密封圈,所以在第一部分周向套接有至少一个卡圈这样改进后,增强了第一部分,从而有利于在使用一种材料时较好地兼顾实现提供第一摩擦力和实现密封两个目的。
在一些实施例中,第一部分沿周向设置有至少一个可向转动轴一侧摆动的摆动段,卡圈将摆动段的贴合部压紧贴合在转动轴外周壁上。这样能够更好地提供第一摩擦力,提升使用寿命。
在一些实施例中,还包括机座,机座的底部下侧设有配合的底板,第一密封圈配合在底部与底板之间;底板下侧设置拖布,机座、底板均设置供转动轴升降的穿过孔,转动轴下端露出在穿过孔外。这样,第一密封圈保护在底部与底板之间,另外方便地实现第一密封圈的安装。
在一些实施例中,底部与第一部分之间设有周向限位结构,该周向限位结构用于周向限位第一部分。这样有利于增强对第一部分的周向限位,避免使用时间长以后第一部分被转动轴带动一起转动,导致失效,因此该改进有利于提升可靠性和稳定性。
在一些实施例中,该周向限位结构包括轴向凸起和轴向凹口,在第一密封圈自下而上套接在转动轴时,轴向凸起和轴向凹口轴向配合以周向限位第一部分。这样,有利于方便装配。
在一些实施例中,轴向凸起设于第一部分,轴向凹口设置在底部上。这样,轴向凸起设于第一部分,有利于第一部分更为强壮。
在一些实施例中,底板设有密封环面,第二部分密封配合在密封环面中。这样,具有更好的密封,另外,结构简单,装配方便。
有益效果
采用上述结构后,与现有技术相比,本发明具有以下优点:
首先解决了第一个技术难点,即通过第一摩擦力来限制转动轴转动从而使转动件与转动轴发生相对转动以升降转动轴,结构非常简单,而在升降上限位时,在第一限位结构限位作用下,此时转动件若继续维持第一方向转动则将带动转动轴克服第一摩擦力以使转动轴一起转动,以及,在升降下限位时,在第二限位结构限位作用下,此时转动件若继续维持第二方向转动则将带动转动轴克服第一摩擦力以使转动轴一起转动,因此在解决第一个技术难点的基础上才能够得以解决第二个技术难点,也就是说只有实现了转动轴的升降,那么才能到达升降上限位和升降下限位,第一限位结构、第二限位结构才能发挥作用,从而配合转动件带动转动轴克服第一摩擦力转动。
由上述可知,以摩擦件并结合其它结构的基础技术方案能够解决第一个和第二个技术难点,并且结构非常简单,那么为进一步小型化设置提供了结构基础优势,反过来说,如果基础技术方案本身就较为复杂,那么由于需要首先实现基础技术方案,复杂度无法较为明显降低,所以小型化将会非常困难,而本公开的基础技术方案则非常简单,因此有利于小型化,也就是说有利于解决第三个技术难点,从而能够适用于清洁机(例如小型扫地机器人)。
本发明还提出了一种清洁机,设有前述的可升降的旋转拖布结构。
上述技术方案的有益效果在于:不仅实现了拖布为直接升降,克服了升降部位重量较重的问题,而且,结构更加简化,有利于清洁机的小型化。
附图说明
图1为一种清洁机的下视视角立体示意图。
图2为一种可升降的旋转拖布结构的上视视角立体示意图。
图3为一种可升降的旋转拖布结构的下视视角(已拿掉一个拖布,并去掉摩擦件后露出环形槽)立体示意图。
图4为图3安装好摩擦件后的立体示意图。
图5为一种可升降的旋转拖布结构的下视视角(已拿掉底座以及一个拖布)立体示意图。
图6为一种可升降的旋转拖布结构的俯视图。
图7为A-A向剖视图。
图8为A放大示意图。
图9为一种可升降的旋转拖布结构的去掉罩盖后的立体示意图。
图10为进一步去掉转动轴的立体示意图。
图11为另一种可升降的旋转拖布结构的立体示意图。
图12为主要展示第一相抵端面的立体示意图。
图13为主要展示第二相抵端面的立体示意图。
图14为一种转动件的下视视角的立体示意图。
图15为一种转动件的上视视角的立体示意图。
图16为一种转动件的立体示意图。
图17为一种摩擦件的俯视图。
图18为B-B向剖视图。
图19为一种可升降的旋转拖布结构的具有限位顶部的剖视示意图。
图20为一种将转动轴沿轴向分开两段以打开螺旋槽的开口的立体示意图。
图21为底座的安装座所在部分的上视视角的立体示意图。
图22为底座的安装座所在部分的下视视角的立体示意图。
图23为罩壳的下视视角立体示意图。
图24为机座与底板配合的立体示意图。
图25为去掉机座后的立体示意图。
图26为第一密封圈与转动轴配合的立体示意图。
图27为第一密封圈的立体示意图。
图28为机座的底面立体示意图。
图29为底板的立体示意图。
附图标记说明,1-转动件、2-转动轴、3-拖布、4-摩擦件、5-底座、6-穿过孔、7-环形槽、8-上环形部分、9-下环形部分、10-驱动齿轮、11-导向部、12-传动齿部、13-安装座、14-底部、15-安装柱、16-安装孔、17-螺接柱、18-第一轴套、19-第二轴套、20-罩盖、21-上限位端、22-下限位端、23-电动马达、24-蜗轮、25-蜗杆、26-传动齿轮、27-保护罩、28-球体、29-限位顶部、30-螺旋槽、31-第一相抵端面、32-第二相抵端面、33-螺旋凸起、34-下端面、35-上端面、36-左半边、37-右半边、38-上段、39-下段、40-插入孔、41-弹性连接件、42-弹性件、43-连接杆、44-铁芯、45-磁体、46-机体、47-第一驱动轮、48-第二驱动轮、49-中扫、50-电连接插头、51-套接柱、52-导向孔、53-螺钉、54-底板、55-第一密封圈、56-密封部分、57-卡圈、58-摆动段、59-贴合部、60-轴向凸起、61-轴向凹口、62-密封环面。
本发明的实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的实施例只作为举例,本领域技术人员可以想到其它显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其它实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其它技术方案。  
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底” “内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
如图1至20所示为一种可升降的旋转拖布结构以及清洁机,具体来说,一种可升降的旋转拖布结构,包括转动件1、转动轴2和拖布3,转动件1与转动轴2螺旋传动连接,转动件1相对转动轴2轴向位置固定并可转动,转动轴2具有升降上限位和升降下限位这两个位置,转动件1通过位于升降上限位和升降下限位之间的螺旋传动连接来带动转动轴2升降,并且在升降上限位时,转动件1若继续维持第一方向转动,那么转动件1与转动轴2之间通过第一限位结构限位以使转动件1与转动轴2停止相对转动,进而使转动轴2可被转动件1带动一起转动,第一方向是指转动件1带动转动轴2上升的转动方向,以及,在升降下限位时,转动件1若继续维持第二方向转动,那么转动件1与转动轴2之间通过第二限位结构限位以使转动件1与转动轴2停止相对转动,进而使转动轴2可被转动件1带动一起转动,第二方向是指转动件1带动转动轴2下降的转动方向,第一方向与第二方向转动方向相反,转动轴2与拖布3连接,转动轴2用于带动拖布3旋转和升降,还包括沿转动轴2的周向设置的至少一个摩擦件4,该摩擦件4与转动轴2摩擦连接,摩擦件4与转动轴2之间的摩擦力记为第一摩擦力,第一摩擦力用于限制转动轴2转动从而使转动件1与转动轴2发生相对转动以升降转动轴2,并且在升降上限位时,此时转动件1若继续维持第一方向转动则将带动转动轴2克服第一摩擦力以使转动轴2一起转动,以及,在升降下限位时,此时转动件1若继续维持第二方向转动则将带动转动轴2克服第一摩擦力以使转动轴2一起转动;一种清洁机,采用前述的可升降的旋转拖布结构。
需要注意的是,第一摩擦力用于限制转动轴2转动从而使转动件1与转动轴2发生相对转动以升降转动轴2是指,可以是转动轴2完全静止,也可以是转动轴2还有一定的转动,但是转动件1与转动轴2之间仍然具有相对转动,总之,转动件1与转动轴2之间只要有转速差即可。
在一些实施例中,如图1所示为一种采用本公开的可升降的旋转拖布结构的清洁机(即扫地机器人),包括:机体46,机体46用于安装或作为壳体包覆各个组件,组件例如第一驱动轮47、第二驱动轮48、中扫49、可升降的旋转拖布结构等,中扫49具有滚刷和主吸口,利用中扫49先对被清洁表面进行滚刷及吸尘清洁,然后利用连接有拖布3的可升降的旋转拖布结构,用于旋转清洁,基于控制清洁机体积和保障清洁效率这两个角度来说,较为优选的技术方案为左右各设置一个拖布3,例如将两个拖布3沿清洁机行进方向的左右基本对称设置,这样也就意味着本公开的可升降的旋转拖布结构具有左右基本对称设置的两个。
由于本公开的技术方案所具有的优势,即驱动齿轮10既可以带动拖布3升降、又可以带动拖布3转动,所以为进一步简化结构提供了结构基础,因此,虽然需要对两个拖布3进行操作,但是可以仅用一个电动马达23,具体结构可参考如下:包括一个电动马达23和多个拖布3,每个拖布3设置一个转动轴2,每个转动轴2设置一个驱动齿轮10,该电动马达23通过传动结构与各个驱动齿轮10传动连接,该电动马达23既作为转动轴2带动拖布3升降的电动马达23,又作为转动轴2带动拖布3旋转的电动马达23。传动结构例如蜗轮蜗杆传动结构,电动马达23可采用双出轴结构,双出轴结构具有左右对称的两个输出轴,该两个输出轴分别连接一个蜗杆25,每个蜗杆25对应设置一个蜗轮24,该蜗轮24同轴设置一个传动齿轮26,该传动齿轮26与驱动齿轮10的传动齿部12啮合传动连接,为了使驱动齿轮10重心靠下,因此蜗轮24与传动齿轮26采用同轴上下分布的结构。前述结构可参考附图5和8。
为了尽量简化结构,实现小型化目的,本公开推荐采用一个摩擦件4来实现升降转动轴2的目的,可参考附图4、6、7。而为了有利于实现转动轴2运动的稳定性,本公开推荐将摩擦件4设置在靠近拖布3这一侧,可参考附图4、6、7。而为了更进一步实现转动轴2运动的稳定性,另外有利于进一步降低高度,从而有利于小型化,本公开推荐将转动件1、导向部11、摩擦件4自上而下相邻设置,并且转动件1、导向部11、摩擦件4均为周向闭环的环状零件,这样对转动轴2周向具有更好的支撑,可参考附图4、6、7、9、16、17。
在一些实施例中,如图2至5以及图8至10所示,可升降的旋转拖布结构设置成模块化结构,即将可升降的旋转拖布结构设置为单独的模块,先将可升降的旋转拖布结构装配完成后,然后再将该模块装入机体46内,然后连接上拖布3,这样设计具有模块化带来的好处,只要机体46预留了模块安装的空间,则在拿到该模块后,就能够方便地装入模块来为机体46增加可升降的拖布3的功能,适合大规模量产。尤其是将模块化的可升降的旋转拖布结构体积做小或者机体46预留有足够的安装空间,那么即使机体46的外形有变换或调整,也有利于直接采用该模块,也就是说将模块的形状与机体46的外形无关。
模块化的具体结构例如:机座包括底座5和罩盖20,可升降的旋转拖布结构除了拖布3外的部分均安装在底座5和罩盖20之间,为了更加方便装配,另外有利于重心更低,如图2至5以及图8至10所示,可升降的旋转拖布结构基本都安装在底座5上,另外,在一些实施例中,由于升降高度要求较高,导致转动轴2高度较高,所以设置有向上凸出于罩盖20上侧面的保护罩27,保护罩27周围的空间则可用于清洁机其它部件安装使用,因此,有利于小型化。而在一些实施例中,保护罩27同时作为导向罩,可用于导向转动轴2升降。另外,通过进一步设置电连接插头50,该电连接插头50作为内外电连接的总接口,通过电连接插头50提供供电及信号联系,从而使得模块化的可升降的旋转拖布结构在装入机体46中时,进一步简化装配工作,方便模块化的可升降的旋转拖布结构与清洁机的供电模块和控制模块进行电连接。
在一些实施例中,如图7、16、17所示,摩擦件4采用摩擦套,该摩擦套与转动轴2套接。
在一些实施例中,如图2、3、4、6所示,底座5下侧设置拖布3,底座5设置供转动轴2升降的穿过孔6,转动轴2下端露出在穿过孔6外并与拖布3连接,穿过孔6设有密封件,该密封件同时作为摩擦件4。
在一些实施例中,如图2、3、4、6、17、18所示,底座5的位于拖布3的一侧的侧面上设有环形槽7,环形槽7套接固定有密封件,该密封件设有向转动轴2周向延伸设置的密封部,密封部与转动轴2可转动连接,并且密封部与转动轴2之间形成第一摩擦力。
在一些实施例中,如图6、17、18所示,摩擦件4设有周向弹性部,该周向弹性部与转动轴2通过弹性相抵摩擦连接来产生第一摩擦力。
在一些实施例中,如图6、18所示,周向弹性部相对转动轴2倾斜设置。特别的,在一些实施例中,周向弹性部包括上下两个环形部分,分别记为上环形部分8和下环形部分9,这两个环形部分构成向转动轴2一侧开口的V形部。
在一些实施例中,如图6至10以及图14、15所示,还包括相对转动轴2轴向位置固定并可转动的驱动齿轮10,驱动齿轮10与转动轴2套接连接,驱动齿轮10与转动件1同轴连接以带动转动件1一起转动。
在一些实施例中,如图7、14、15所示,驱动齿轮10设有导向部11,所述的导向部11与转动轴2轴向导向连接。
在一些实施例中,如图7、14、15所示,导向部11采用导向套,如图7所示转动轴2处于升降下限位的位置,此时转动轴2的外螺旋的下端已经超出导向部11的下端的端面,但是为了更好地防异物从外螺旋的下端进入螺旋传动连接中,可以将导向部11继续向下延伸,从而使转动轴2的外螺旋的下端仍然位于导向部11中,即螺旋槽30的下端仍然位于导向部11中,转动轴2的位于所述的外螺旋的下侧的非螺旋区的至少局部外周壁与导向部11套接配合,该套接配合用于防异物从外螺旋的下端进入螺旋传动连接中。
在一些实施例中,如图7、14、15所示,驱动齿轮10包括位于外周的传动齿部12和位于内周的导向部11,传动齿部12与导向部11之间设置第一转动支撑结构,该第一转动支撑结构用于转动支撑驱动齿轮10。第一转动支撑结构一般采用轴承或轴套。
在一些实施例中,如图7、14、15、23所示,第一转动支撑结构包括沿远离拖布3一侧的方向延伸设置的安装座13,该安装座13插入配合在传动齿部12与导向部11之间的环形间隔中,并且驱动齿轮10与安装座13之间可转动连接。本例中,导向部11与安装座13内外套接,导向部11与安装座13之间设置第一轴套18。当然也可以将第一轴套18用球轴承等转动支撑结构来替换,但是由于第一轴套18没有滚子等结构,所以相比球轴承等转动支撑结构来说厚度较小,所以更适用于本公开小型化的需求。
在一些实施例中,如图7、21、22所示,安装座13设于机座的底部14,即设于底座5的底部14,该底部14的下侧为拖布3的所在侧,该底部14的上侧设置所述的安装座13。
在一些实施例中,如图3、4、7、21、22所示,该底部14的与安装座13所占位置对应的下侧面设有环形槽7,环形槽7套接固定有摩擦件4。
在一些实施例中,如图7、9所示,转动件1与导向部11沿驱动齿轮10的轴向上下分布,转动件1的下端与导向部11的上端相邻设置。本例中,转动件1的下端与导向部11的上端相贴设置。
在一些实施例中,如图7、14、15所示,驱动齿轮10设有位于导向部11的上侧的安装柱15,安装柱15设有安装孔16,转动件1安装于安装孔16中。为了更方便安装及更可靠地固定转动件1,安装孔16内设有多个螺接柱17,图中所示为周向分布的4个,转动件1安装于安装孔16中后,再用螺钉53将转动件1固定再螺接柱17上,这样可承受更大的扭矩,满足传动需求。
在一些实施例中,如图7、14、15所示,驱动齿轮10具有位于外周的传动齿部12,该传动齿部12位于安装柱15的下侧,传动齿部12与转动件1沿驱动齿轮10的轴向上下分布。
在一些实施例中,安装柱15的外周设有转动支撑结构。如图7所示,第二转动支撑结构作为前述的转动支撑结构,有利于结构更为简化。
在一些实施例中,如图7、14、15所示,驱动齿轮10的上侧设有罩盖20,该罩盖20与驱动齿轮10可转动连接,罩盖20用于防异物从转动轴2的外螺旋的上端进入螺旋传动连接中。例如,可在该罩盖20与驱动齿轮10之间设置密封圈,当然除了密封圈,还可以是其它结构,凡是适用的结构均可应用于本公开中。
在一些实施例中,如图7所示,驱动齿轮10的上侧设有罩盖20,该罩盖20与驱动齿轮10之间设有第二转动支撑结构,驱动齿轮10通过第二转动支撑结构与罩盖20可转动连接,第二转动支撑结构同时堵塞了异物从罩盖20与驱动齿轮10之间到达转动轴2的外螺旋的上端进而进入螺旋传动连接中的通道,也就是说利用第二转动支撑结构来实现防异物进入。本例中,如图7、23所示,罩盖20设有套接柱51,该套接柱51向驱动齿轮10一侧延伸,套接柱51与驱动齿轮10的安装柱15外内套接,套接柱51与驱动齿轮10之间设置第二轴套19,套接柱51与驱动齿轮10的安装柱15外内套接以及第二轴套19的设置可以用来阻挡异物。当然也可以将第二轴套19用球轴承等转动支撑结构来替换,但是由于第二轴套19没有滚子等结构,所以相比球轴承等转动支撑结构来说厚度较小,所以更适用于本公开小型化的需求。
在一些实施例中,如图7所示,驱动齿轮10的上部周向设有第二转动支撑结构,第二转动支撑结构、第一转动支撑结构上下分布形成对驱动齿轮10的上下转动支撑。本例中,所述的驱动齿轮10的上部即安装柱15的局部或全部。
在一些实施例中,如图7所示,第二转动支撑结构具有上限位端21,上限位端21与驱动齿轮10轴向相抵以对驱动齿轮10进行轴向上限位,第一转动支撑结构具有下限位端22,下限位端22与驱动齿轮10轴向相抵以对驱动齿轮10进行轴向下限位。这样第二转动支撑结构、第一转动支撑结构可以同时作为对驱动齿轮10进行轴向限位结构,因此有利于结构简化。
在一些实施例中,如图7、21所示,安装座13内周设有第一环形支撑面作为第一转动支撑结构的下限位端22,第一轴套18的下端与下限位端22相贴配合,从而通过下限位端22轴向下限位第一轴套18,由于第一轴套18限位在导向部11与安装座13之间,所以最终构成对驱动齿轮10的轴向下限位。
在一些实施例中,如图7、23所示,罩壳的顶面作为第二转动支撑结构的上限位端21,第二轴套19的上端与上限位端21相贴配合,从而通过上限位端21轴向上限位第二轴套19,由于第二轴套19限位在罩壳与驱动齿轮10之间,所以最终构成对驱动齿轮10的轴向上限位。
关于对驱动齿轮10的轴向限位方案,如图7所示的结构是较为紧凑和简单的设计方案,而轴向限位方案还可以是其它方案,例如对驱动齿轮10的上下端面进行限位,具体来说,可以是罩壳的顶面与驱动齿轮10的上端面35可转动相贴连接,底座5的底部14上侧面与驱动齿轮10的下端面34可转动相贴连接,又例如将第一轴套18和/或第二轴套19更换成可进行轴向限位的轴承,通过轴承自身轴向限位实现对驱动齿轮10的轴向限位,凡是适用于对驱动齿轮10进行轴向限位的方案均可用于本公开中。
在一些实施例中,如图19所示,转动轴2的上侧设有限位顶部29,转动轴2的上端与限位顶部29可转动相抵连接,限位顶部29构成第一限位结构,为了减小摩擦力,在转动轴2的上端与限位顶部29之间设置球体28,本例中,在转动轴2的上端设置球体28,该限位顶部29对转动轴2构成升降上限位。因此,不同于下述的由内螺旋的螺旋凸起33的下端面34与第一相抵端面31相抵构成的升降上限位方案。当然对转动轴2构成升降上限位和升降下限位的方案还有其它,例如螺旋的上下端相契合,即利用在螺旋末端锁死的方案分别构成第一限位结构和第二限位结构,又例如在转动轴2上设置上下挡杆,通过挡杆阻止转动件1与转动轴2继续相对运动,同时避免在螺旋末端锁死,通过挡杆阻止转动件1与转动轴2继续相对运动的方案分别构成第一限位结构和第二限位结构。凡是适用于对转动轴2构成升降上限位和升降下限位的限位结构的方案均可用于本公开中。
在一些实施例中,如图19所示,转动轴2的上侧设有容纳转动轴2升降的保护罩27,保护罩27的内顶面作为限位顶部29。
在一些实施例中,如图12、13、16所示,转动轴2的外螺旋的螺旋槽30的下端为封闭设计,该下端设有第一相抵端面31,当转动轴2上升至转动件1的内螺旋的螺旋凸起33的下端面34与第一相抵端面31相抵时,此时转动轴2所处的位置为转动轴2的升降上限位位置,第一相抵端面31构成第一限位结构,此时转动件1若继续维持第一方向转动,则螺旋凸起33的下端面34可通过与第一相抵端面31的相抵连接来推动转动轴2转动;和/或,转动轴2的外螺旋的螺旋槽30的上端为封闭设计,该上端设有第二相抵端面32,当转动轴2下降至转动件1的内螺旋的螺旋凸起33的上端面35与第二相抵端面32相抵时的位置,此时转动轴2所处的位置作为转动轴2的升降下限位位置,第二相抵端面32构成第二限位结构,此时转动件1若继续维持第二方向转动,则螺旋凸起33的上端可通过与第二相抵端面32的相抵连接来推动转动轴2转动。本例中,既有内螺旋的螺旋凸起33的下端面34与第一相抵端面31相抵的结构,又有螺旋凸起33的上端面35与第二相抵端面32相抵的结构,这样既构成对转动轴2构成升降上限位和升降下限位的方案,又实现转动件1更好地带动转动轴2转动的目的,从而有利于简化结构,实现小型化。由于上述结构的设置,所以,螺旋凸起33的螺旋长度可以简短,不用很长,例如如图10所示,可以仅有一小段,该一小段的螺旋凸起33全部位于转动件1的左半边36上。
在一些实施例中,如图12、13、16所示,第一相抵端面31、螺旋凸起33的下端面34均设置为径向配合面,和/或第二相抵端面32、螺旋凸起33的上端面35均设置为径向配合面。本例中,第一相抵端面31、螺旋凸起33的下端面34、第二相抵端面32、螺旋凸起33的上端面35均设置为径向配合面。
在一些实施例中,如图9、10所示,转动件1沿周向被分为多个部分,该多个部分围绕转动轴2拼接以实现转动件1与转动轴2的螺旋传动连接。本例中,转动件1被分为两部分,分别为左半边36和右半边37。
在一些实施例中,如图11所示,由于螺旋凸起33的螺旋长度可以不用很长,所以可以仅有左半边36,螺旋凸起33全部位于左半边36上,但是如果转动件1为周向闭合零件,则有利于带动转动轴2运动。
在一些实施例中,转动轴2沿轴向被分为多个部分,其中至少一个部分打开外螺旋的螺旋槽30以供转动件1螺旋传动连接。如图20所示,转动轴2被分为上段38和下段39,螺旋槽30主体位于上段38,而第一相抵端面31则位于下段39,因此螺旋槽30被打开,转动件1可从而上段38的下端旋入上段38,接着再将上段38和下段39拼接,从而完成转动件1与转动轴2的螺旋传动连接。
在一些实施例中,拖布3与转动轴2之间可浮动连接,该可浮动连接是指拖布3在经过不同高度的被清洁表面时可相对转动轴2轴向运动以实现拖布3的自适应高度变化,但是转动轴2本身高度不变。可浮动连接例如转动轴2与拖布3之间设有可轴向运动的弹性运动结构,该弹性运动结构用于带动拖布3相对转动轴2进行轴向弹性运动以实现拖布3的自适应高度变化。如图7、8所示,弹性运动结构包括设于转动轴2的插入孔40和位于插入孔40中并可轴向运动的弹性连接件41,拖布3的上侧设有连接杆43,转动轴2的下端开口作为插入孔40的供连接杆43插入并与弹性连接件41连接的插入开口。在弹性连接件41作用下,使拖布3弹性贴住被清洁表面,随着被清洁表面的凹凸不平的变化,在弹性连接件41作用下,拖布3也会自然升降,从而使拖布3更好地清洁被清洁表面。
在弹性连接件41的弹性可以利用弹性材料制成弹性连接件41,当然还可以是其它方案,例如弹性连接件41上设置弹性件42,该弹性件42的上端与插入孔40的底面相抵连接,该弹性件42的下端与弹性连接件41套接并相抵连接,弹性连接件41可插入导向配合在转动轴2中设置的位于前述的底面的上侧的导向孔52中。
在一些实施例中如图7、8所示,弹性连接件41的下端与连接杆43的上端通过磁性连接实现快拆式连接,本例中,具体来说,弹性连接件41的下端设有磁体45,连接杆43的上端设有铁芯44。
在一些实施例中,如图5所示,由于在清洁被清洁表面时,拖布3转动所需的扭力较大,所以插入孔40设置为内六角配合孔,连接杆43设有外六角周壁,外六角周壁与内六角配合孔形成连接杆43与插入孔40的转动传动套接,由于外六角周壁与内六角配合孔的具有较大接触面,所以能够提供大扭力传动,有利于拖布3转动的稳定性。
在一些实施例中,还包括密封部分56,摩擦件4与密封部分56沿转动轴2轴向上下依序设置,并且摩擦件4、密封部分56均与转动轴2可转动套接配合,密封部分56将摩擦件4密封在内侧,摩擦件4与密封部分56一体设置或分体设置。摩擦件4与密封部分56一体设置例如图26所示;分体设置可以是,在摩擦件4下侧单独设置一个或多个密封圈,摩擦件4和密封圈这两者在轴向上分开,但是结构上就会相对复杂,另外装配也较为麻烦。这样设计后,相比图8所示的结构方案,摩擦件4可以更加侧重考虑提供第一摩擦力,而密封部分56则更侧重于密封,并且可以通过使用摩擦力小的材料来实现密封同时具有较小的摩擦力,从而减少摩擦损耗。
对于一体设置的情形,如图26、27所示,例如采用第一密封圈55实现摩擦件4与密封部分56一体设置,该第一密封圈55包括上下两部分,分别为第一部分和第二部分,第一部分作为摩擦件4,第二部分作为密封部分56。
在一些实施例中,如图26、27所示,第一部分周向套接有至少一个卡圈57,该卡圈57用于使第一部分紧贴在转动轴2外周壁上。本例中采用一个卡圈57,卡圈57可以是具有弹性的塑料圈、金属圈等等。
在一些实施例中,如图26、27所示,第一部分沿周向设置有至少一个可向转动轴2一侧摆动的摆动段58,卡圈57将摆动段58的贴合部59压紧贴合在转动轴2外周壁上。本例中,摆动段58为三个,均为弧形,沿周向依序设置。另外,贴合部59优选为厚实设计,这样更加耐用。
在一些实施例中,如图24、25、28、29所示,还包括机座,机座的底部14下侧设有配合的底板54,第一密封圈55配合在底部14与底板54之间;底板54下侧设置拖布3,机座、底板54均设置供转动轴2升降的穿过孔6,转动轴2下端露出在穿过孔6外。
在一些实施例中,底部14与第一部分之间设有周向限位结构,该周向限位结构用于周向限位第一部分。例如该周向限位结构包括轴向凸起60和轴向凹口61,在第一密封圈55自下而上套接在转动轴2时,轴向凸起60和轴向凹口61轴向配合以周向限位第一部分。
如图26、27、28所示,轴向凸起60设于第一部分,轴向凹口61设置在底部14上。
如图29所示,底板54设有密封环面62,第二部分密封配合在密封环面62中。
在理解本公开时,若有需要,上述结构可参考其它实施例/附图一并理解,这里不加赘述。
以上所述仅是本发明的用于举例说明的实施方式,故凡依本发明专利保护范围所述的构造、特征及原理所做的等效变化或修饰,均包括于本发明专利保护范围内。

Claims (45)

  1. 一种可升降的旋转拖布结构,包括转动件(1)、转动轴(2)和拖布(3),转动件(1)与转动轴(2)螺旋传动连接,转动件(1)相对转动轴(2)轴向位置固定并可转动,转动轴(2)具有升降上限位和升降下限位这两个位置,转动件(1)通过位于升降上限位和升降下限位之间的螺旋传动连接来带动转动轴(2)升降,并且在升降上限位时,转动件(1)若继续维持第一方向转动,那么转动件(1)与转动轴(2)之间通过第一限位结构限位以使转动件(1)与转动轴(2)停止相对转动,进而使转动轴(2)可被转动件(1)带动一起转动,第一方向是指转动件(1)带动转动轴(2)上升的转动方向,以及,在升降下限位时,转动件(1)若继续维持第二方向转动,那么转动件(1)与转动轴(2)之间通过第二限位结构限位以使转动件(1)与转动轴(2)停止相对转动,进而使转动轴(2)可被转动件(1)带动一起转动,第二方向是指转动件(1)带动转动轴(2)下降的转动方向,第一方向与第二方向转动方向相反,转动轴(2)与拖布(3)连接,转动轴(2)用于带动拖布(3)旋转和升降,其特征在于,还包括沿转动轴(2)的周向设置的至少一个摩擦件(4),该摩擦件(4)与转动轴(2)摩擦连接,摩擦件(4)与转动轴(2)之间的摩擦力记为第一摩擦力,第一摩擦力用于限制转动轴(2)转动从而使转动件(1)与转动轴(2)发生相对转动以升降转动轴(2),并且在升降上限位时,此时转动件(1)若继续维持第一方向转动则将带动转动轴(2)克服第一摩擦力以使转动轴(2)一起转动,以及,在升降下限位时,此时转动件(1)若继续维持第二方向转动则将带动转动轴(2)克服第一摩擦力以使转动轴(2)一起转动。
  2. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,摩擦件(4)采用摩擦套,该摩擦套与转动轴(2)套接。
  3. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,还包括机座,机座下侧设置拖布(3),机座设置供转动轴(2)升降的穿过孔(6),转动轴(2)下端露出在穿过孔(6)外并与拖布(3)连接,穿过孔(6)设有密封件,该密封件同时作为摩擦件(4)。
  4. 如权利要求3所述的可升降的旋转拖布结构,其特征在于,机座的位于拖布(3)的一侧的侧面上设有环形槽(7),环形槽(7)套接固定有密封件,该密封件设有向转动轴(2)周向延伸设置的密封部,密封部与转动轴(2)可转动连接,并且密封部与转动轴(2)之间形成第一摩擦力。
  5. 如权利要求1或2或3或4所述的可升降的旋转拖布结构,其特征在于,摩擦件(4)设有周向弹性部,该周向弹性部与转动轴(2)通过弹性相抵摩擦连接来产生第一摩擦力。
  6. 如权利要求5所述的可升降的旋转拖布结构,其特征在于,周向弹性部相对转动轴(2)倾斜设置。
  7. 如权利要求6所述的可升降的旋转拖布结构,其特征在于,周向弹性部包括上下两个环形部分,这两个环形部分构成向转动轴(2)一侧开口的V形部。
  8. 如权利要求1或2或3所述的可升降的旋转拖布结构,其特征在于,还包括相对转动轴(2)轴向位置固定并可转动的驱动齿轮(10),驱动齿轮(10)与转动轴(2)套接连接,驱动齿轮(10)与转动件(1)同轴连接以带动转动件(1)一起转动。
  9. 如权利要求8所述的可升降的旋转拖布结构,其特征在于,驱动齿轮(10)设有导向部(11),所述的导向部(11)与转动轴(2)轴向导向连接。
  10. 如权利要求9所述的可升降的旋转拖布结构,其特征在于,导向部(11)采用导向套,在升降下限位时,转动轴(2)的外螺旋的下端仍然位于导向部(11)中,转动轴(2)的位于所述的外螺旋的下侧的非螺旋区的至少局部外周壁与导向部(11)套接配合,该套接配合用于防异物从外螺旋的下端进入螺旋传动连接中。
  11. 如权利要求9所述的可升降的旋转拖布结构,其特征在于,驱动齿轮(10)包括位于外周的传动齿部(12)和位于内周的导向部(11)。
  12. 如权利要求11所述的可升降的旋转拖布结构,其特征在于,传动齿部(12)与导向部(11)之间设置第一转动支撑结构,该第一转动支撑结构用于转动支撑驱动齿轮(10),第一转动支撑结构包括沿远离拖布(3)一侧的方向延伸设置的安装座(13),该安装座(13)插入配合在传动齿部(12)与导向部(11)之间的环形间隔中,并且驱动齿轮(10)与安装座(13)之间可转动连接。
  13. 如权利要求12所述的可升降的旋转拖布结构,其特征在于,安装座(13)设于机座的底部(14),该底部(14)的下侧为拖布(3)的所在侧,该机座底部(14)的上侧设置所述的安装座(13)。
  14. 如权利要求13所述的可升降的旋转拖布结构,其特征在于,该底部(14)的与安装座(13)所占位置对应的下侧面设有环形槽(7),环形槽(7)套接固定有摩擦件(4)。
  15. 如权利要求9所述的可升降的旋转拖布结构,其特征在于,转动件(1)与导向部(11)沿驱动齿轮(10)的轴向上下分布。
  16. 如权利要求15所述的可升降的旋转拖布结构,其特征在于,驱动齿轮(10)设有位于导向部(11)的上侧的安装柱(15),安装柱(15)设有安装孔(16),转动件(1)安装于安装孔(16)中。
  17. 如权利要求16所述的可升降的旋转拖布结构,其特征在于,驱动齿轮(10)具有位于外周的传动齿部(12),该传动齿部(12)位于安装柱(15)的下侧,传动齿部(12)与转动件(1)沿驱动齿轮(10)的轴向上下分布。
  18. 如权利要求16所述的可升降的旋转拖布结构,其特征在于,安装柱(15)的外周设有转动支撑结构。
  19. 如权利要求8所述的可升降的旋转拖布结构,其特征在于,驱动齿轮(10)的上侧设有罩盖(20),罩盖(20)用于防异物从转动轴(2)的外螺旋的上端进入螺旋传动连接中。
  20. 如权利要求11所述的可升降的旋转拖布结构,其特征在于,驱动齿轮(10)的上部周向设有第二转动支撑结构,第二转动支撑结构、第一转动支撑结构上下分布形成对驱动齿轮(10)的上下转动支撑。
  21. 如权利要求20所述的可升降的旋转拖布结构,其特征在于,第二转动支撑结构具有上限位端(21),上限位端(21)与驱动齿轮(10)轴向相抵以对驱动齿轮(10)进行轴向上限位,第一转动支撑结构具有下限位端(22),下限位端(22)与驱动齿轮(10)轴向相抵以对驱动齿轮(10)进行轴向下限位。
  22. 如权利要求20所述的可升降的旋转拖布结构,其特征在于,驱动齿轮(10)的上侧设有罩盖(20),该罩盖(20)与驱动齿轮(10)之间设有第二转动支撑结构,驱动齿轮(10)通过第二转动支撑结构与罩盖(20)可转动连接,第二转动支撑结构同时作为堵塞异物从罩盖(20)与驱动齿轮(10)之间到达转动轴(2)的外螺旋的上端进而进入螺旋传动连接中的通道的堵塞物。
  23. 如权利要求8所述的可升降的旋转拖布结构,其特征在于,包括一个电动马达(23)和多个拖布(3),每个拖布(3)设置一个转动轴(2),每个转动轴(2)设置一个驱动齿轮(10),该电动马达(23)通过传动结构与各个驱动齿轮(10)传动连接,该电动马达(23)既作为转动轴(2)带动拖布(3)升降的电动马达(23),又作为转动轴(2)带动拖布(3)旋转的电动马达(23)。
  24. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,转动轴(2)的上侧设有容纳转动轴(2)升降的保护罩(27)。
  25. 如权利要求24所述的可升降的旋转拖布结构,其特征在于,保护罩(27)同时作为导向罩,用于导向转动轴(2)升降。
  26. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,转动轴(2)的上侧设有限位顶部(29),转动轴(2)的上端与限位顶部(29)可转动相抵连接,该限位顶部(29)对转动轴(2)构成升降上限位。
  27. 如权利要求26所述的可升降的旋转拖布结构,其特征在于,转动轴(2)的上侧设有容纳转动轴(2)升降的保护罩(27),保护罩(27)的内顶面作为限位顶部(29)。
  28. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,转动轴(2)的外螺旋的螺旋槽(30)的下端为封闭设计,该下端设有第一相抵端面(31),当转动轴(2)上升至转动件(1)的内螺旋的螺旋凸起(33)的下端面(34)与第一相抵端面(31)相抵时,此时转动轴(2)所处的位置为转动轴(2)的升降上限位位置,此时转动件(1)若继续维持第一方向转动,则螺旋凸起(33)的下端面(34)可通过与第一相抵端面(31)的相抵连接来推动转动轴(2)转动;和/或,转动轴(2)的外螺旋的螺旋槽(30)的上端为封闭设计,该上端设有第二相抵端面(32),当转动轴(2)下降至转动件(1)的内螺旋的螺旋凸起(33)的上端面(35)与第二相抵端面(32)相抵时的位置,此时转动轴(2)所处的位置作为转动轴(2)的升降下限位位置,此时转动件(1)若继续维持第二方向转动,则螺旋凸起(33)的上端可通过与第二相抵端面(32)的相抵连接来推动转动轴(2)转动。
  29. 如权利要求28所述的可升降的旋转拖布结构,其特征在于,第一相抵端面(31)、螺旋凸起(33)的下端面(34)均设置为径向配合面,和/或第二相抵端面(32)、螺旋凸起(33)的上端面(35)均设置为径向配合面。
  30. 如权利要求28所述的可升降的旋转拖布结构,其特征在于,转动件(1)沿周向被分为多个部分,该多个部分围绕转动轴(2)拼接以实现转动件(1)与转动轴(2)的螺旋传动连接。
  31. 如权利要求28所述的可升降的旋转拖布结构,其特征在于,转动轴(2)沿轴向被分为多个部分,其中至少一个部分打开外螺旋的螺旋槽(30)以供转动件(1)螺旋传动连接。
  32. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,拖布(3)与转动轴(2)之间可浮动连接,该可浮动连接是指拖布(3)在经过不同高度的被清洁表面时可相对转动轴(2)轴向运动以实现拖布(3)的自适应高度变化,但是转动轴(2)本身高度不变。
  33. 如权利要求32所述的可升降的旋转拖布结构,其特征在于,转动轴(2)与拖布(3)之间设有可轴向运动的弹性运动结构,该弹性运动结构用于带动拖布(3)相对转动轴(2)进行轴向弹性运动以实现拖布(3)的自适应高度变化。
  34. 如权利要求33所述的可升降的旋转拖布结构,其特征在于,弹性运动结构包括设于转动轴(2)的插入孔(40)和位于插入孔(40)中并可轴向运动的弹性连接件(41),拖布(3)的上侧设有连接杆(43),转动轴(2)的下端开口作为插入孔(40)的供连接杆(43)插入并与弹性连接件(41)连接的插入开口。
  35. 如权利要求34所述的可升降的旋转拖布结构,其特征在于,弹性连接件(41)的下端与连接杆(43)的上端通过磁性连接实现快拆式连接。
  36. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,还包括密封部分(56),摩擦件(4)与密封部分(56)沿转动轴(2)轴向上下依序设置,并且摩擦件(4)、密封部分(56)均与转动轴(2)可转动套接配合,密封部分(56)将摩擦件(4)密封在内侧,摩擦件(4)与密封部分(56)一体设置或分体设置。
  37. 如权利要求36所述的可升降的旋转拖布结构,其特征在于,采用第一密封圈(55)实现摩擦件(4)与密封部分(56)一体设置,该第一密封圈(55)包括上下两部分,分别为第一部分和第二部分,第一部分作为摩擦件(4),第二部分作为密封部分(56)。
  38. 如权利要求37所述的可升降的旋转拖布结构,其特征在于,第一部分周向套接有至少一个卡圈(57),该卡圈(57)用于使第一部分紧贴在转动轴(2)外周壁上。
  39. 如权利要求38所述的可升降的旋转拖布结构,其特征在于,第一部分沿周向设置有至少一个可向转动轴(2)一侧摆动的摆动段(58),卡圈(57)将摆动段(58)的贴合部(59)压紧贴合在转动轴(2)外周壁上。
  40. 如权利要求37所述的可升降的旋转拖布结构,其特征在于,还包括机座,机座的底部(14)下侧设有配合的底板(54),第一密封圈(55)配合在底部(14)与底板(54)之间;底板(54)下侧设置拖布(3),机座、底板(54)均设置供转动轴(2)升降的穿过孔(6),转动轴(2)下端露出在穿过孔(6)外。
  41. 如权利要求40所述的可升降的旋转拖布结构,其特征在于,底部(14)与第一部分之间设有周向限位结构,该周向限位结构用于周向限位第一部分。
  42. 如权利要求41所述的可升降的旋转拖布结构,其特征在于,该周向限位结构包括轴向凸起(60)和轴向凹口(61),在第一密封圈(55)自下而上套接在转动轴(2)时,轴向凸起(60)和轴向凹口(61)轴向配合以周向限位第一部分。
  43. 如权利要求42所述的可升降的旋转拖布结构,其特征在于,轴向凸起(60)设于第一部分,轴向凹口(61)设置在底部(14)上。
  44. 如权利要求40所述的可升降的旋转拖布结构,其特征在于,底板(54)设有密封环面(62),第二部分密封配合在密封环面(62)中。
  45. 一种清洁机,其特征在于,设有权利要求1至44任意一项权利要求所述的可升降的旋转拖布结构。
PCT/CN2023/105421 2022-06-30 2023-06-30 一种可升降的旋转拖布结构以及清洁机 WO2024002374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221696173 2022-06-30
CN202221696173.8 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024002374A1 true WO2024002374A1 (zh) 2024-01-04

Family

ID=88551566

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/105077 WO2024002361A1 (zh) 2022-06-30 2023-06-30 一种可升降的旋转拖布结构以及清洁机
PCT/CN2023/105421 WO2024002374A1 (zh) 2022-06-30 2023-06-30 一种可升降的旋转拖布结构以及清洁机

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105077 WO2024002361A1 (zh) 2022-06-30 2023-06-30 一种可升降的旋转拖布结构以及清洁机

Country Status (2)

Country Link
CN (6) CN117322808A (zh)
WO (2) WO2024002361A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141318A (ja) * 2018-02-21 2019-08-29 パナソニックIpマネジメント株式会社 自律走行型掃除機
CN113576344A (zh) * 2021-08-16 2021-11-02 普联技术有限公司 清洁机构及清洁机器人
CN114010117A (zh) * 2021-11-01 2022-02-08 深圳市魅电科技有限公司 一种可升降式扫地机器人拖地刷
CN216167243U (zh) * 2021-10-15 2022-04-05 普联技术有限公司 升降装置及清洁机器人
CN216417086U (zh) * 2021-10-25 2022-05-03 杭州华橙软件技术有限公司 升降拖地装置、主机以及清洁机器人
CN216569820U (zh) * 2021-09-30 2022-05-24 云鲸智能科技(东莞)有限公司 清洁组件及清洁设备
CN216628452U (zh) * 2021-11-01 2022-05-31 深圳市魅电科技有限公司 一种可升降式扫地机器人拖地刷
CN216823237U (zh) * 2021-09-30 2022-06-28 北京顺造科技有限公司 旋转升降浮动装置及自动清洁设备
CN217911742U (zh) * 2022-06-30 2022-11-29 宁波富佳实业股份有限公司 一种可升降的旋转拖布结构以及清洁机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1544531A (fr) * 1966-11-15 1968-10-31 Hoover Ltd Système automatique de transformation d'un appareil pour le brossage d'un sol avec aspiration de liquide
US20180003265A1 (en) * 2016-07-01 2018-01-04 HONORS Co., Ltd. Rotary mop with durable gear drive unit
CN214678799U (zh) * 2020-06-29 2021-11-12 宁波富佳实业股份有限公司 一种抹布升降驱动、抹布驱动机构及吸尘器
CN215305548U (zh) * 2021-02-08 2021-12-28 美智纵横科技有限责任公司 升降装置及清洁机器人
CN112869648A (zh) * 2021-02-10 2021-06-01 云鲸智能科技(东莞)有限公司 清洁组件及清洁机器人
CN113558528B (zh) * 2021-07-20 2023-10-20 杰瑞华创科技有限公司 一种升降装置以及扫地机器人
CN113749574A (zh) * 2021-10-15 2021-12-07 普联技术有限公司 升降装置及清洁机器人

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141318A (ja) * 2018-02-21 2019-08-29 パナソニックIpマネジメント株式会社 自律走行型掃除機
CN113576344A (zh) * 2021-08-16 2021-11-02 普联技术有限公司 清洁机构及清洁机器人
CN216569820U (zh) * 2021-09-30 2022-05-24 云鲸智能科技(东莞)有限公司 清洁组件及清洁设备
CN216823237U (zh) * 2021-09-30 2022-06-28 北京顺造科技有限公司 旋转升降浮动装置及自动清洁设备
CN216167243U (zh) * 2021-10-15 2022-04-05 普联技术有限公司 升降装置及清洁机器人
CN216417086U (zh) * 2021-10-25 2022-05-03 杭州华橙软件技术有限公司 升降拖地装置、主机以及清洁机器人
CN114010117A (zh) * 2021-11-01 2022-02-08 深圳市魅电科技有限公司 一种可升降式扫地机器人拖地刷
CN216628452U (zh) * 2021-11-01 2022-05-31 深圳市魅电科技有限公司 一种可升降式扫地机器人拖地刷
CN217911742U (zh) * 2022-06-30 2022-11-29 宁波富佳实业股份有限公司 一种可升降的旋转拖布结构以及清洁机

Also Published As

Publication number Publication date
CN219940496U (zh) 2023-11-03
CN117322809A (zh) 2024-01-02
WO2024002361A1 (zh) 2024-01-04
CN220477535U (zh) 2024-02-13
CN220327398U (zh) 2024-01-12
CN117322808A (zh) 2024-01-02
CN220477536U (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
CN110075777B (zh) 一种卧式双向搅拌反应釜
WO2020224308A1 (zh) 一种水池清洁机机械换向触壁检测机构
WO2024002374A1 (zh) 一种可升降的旋转拖布结构以及清洁机
CN217911742U (zh) 一种可升降的旋转拖布结构以及清洁机
CN216167243U (zh) 升降装置及清洁机器人
CN107755386A (zh) 油罐的清理装置
CN114396486A (zh) 一种应用于焦炭塔汽油吸附装置的耐磨球阀
CN113693510A (zh) 一种新型扫地机器人
CN202483316U (zh) 电动合页装置
CN209692513U (zh) 一种便于拆装的电动推杆
CN114916869B (zh) 旋转升降拖地装置及扫地机
CN218515699U (zh) 滚刷组件及具有其的清洁设备
CN117380612A (zh) 一种可升降的旋转拖布结构以及清洁机
CN216530930U (zh) 直线电机及使用直线电机的装置
CN214460193U (zh) 一种电气自动化闸门
CN107882740A (zh) 一种轴流泵防反转装置
WO2021159631A1 (zh) 清洁设备传动安装结构及清洁设备
CN113126215A (zh) 一种能够自动切换不同光纤的光电连接器
CN107126285A (zh) 一种电动牙刷
CN215720709U (zh) 具有高负载能力的电动推杆轴承结构
CN218697563U (zh) 一种石材护理机器人
CN216679424U (zh) 一种带有清理机构的食品加工装置
CN217206345U (zh) 一种螺杆钻具用球铰式万向轴
CN215383527U (zh) 一种优化排浆结构的食品加工机
CN219034874U (zh) 一种化油器的防尘结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830536

Country of ref document: EP

Kind code of ref document: A1