WO2024002361A1 - 一种可升降的旋转拖布结构以及清洁机 - Google Patents

一种可升降的旋转拖布结构以及清洁机 Download PDF

Info

Publication number
WO2024002361A1
WO2024002361A1 PCT/CN2023/105077 CN2023105077W WO2024002361A1 WO 2024002361 A1 WO2024002361 A1 WO 2024002361A1 CN 2023105077 W CN2023105077 W CN 2023105077W WO 2024002361 A1 WO2024002361 A1 WO 2024002361A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
rotating
mop
liftable
structure according
Prior art date
Application number
PCT/CN2023/105077
Other languages
English (en)
French (fr)
Inventor
王跃旦
骆俊彬
方剑强
汪旭
Original Assignee
宁波富佳实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波富佳实业股份有限公司 filed Critical 宁波富佳实业股份有限公司
Publication of WO2024002361A1 publication Critical patent/WO2024002361A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • A47L11/282Floor-scrubbing machines, motor-driven having rotary tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • A47L11/282Floor-scrubbing machines, motor-driven having rotary tools
    • A47L11/283Floor-scrubbing machines, motor-driven having rotary tools the tools being disc brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4052Movement of the tools or the like perpendicular to the cleaning surface
    • A47L11/4058Movement of the tools or the like perpendicular to the cleaning surface for adjusting the height of the tool
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4069Driving or transmission means for the cleaning tools

Definitions

  • the invention relates to the technical field of cleaning equipment, specifically a liftable rotating mop structure and a cleaning machine.
  • the small sweeping robot has become very popular and has become an important cleaning product in the consumer market such as household cleaning.
  • the small sweeping robot has In the direction of integrated suction and mopping, there is a technical solution for integrated suction and mopping, which is achieved by adding a rotating mop structure on the basis of vacuuming. That is, when the small sweeping robot is walking, it also uses a rotating mop while vacuuming. The structure drives the mop to rotate and wipe the surface to be cleaned. Therefore, the design requirements for the rotating mop structure to be applied to small sweeping robots are proposed.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the existing technology and propose a liftable rotating mop structure, which can realize the mop rotation/lifting function while still having a simple structure, so that it can be applied to cleaning machines (such as Small sweeping robot); a cleaning machine is also proposed, which adopts the aforementioned liftable rotating mop structure, which is conducive to the miniaturization of the cleaning machine.
  • the present invention proposes a liftable rotating mop structure, which includes a rotating member, a rotating shaft and a mopping cloth.
  • the rotating member is connected with the rotating shaft through a spiral transmission.
  • the rotating member is fixed in axial position relative to the rotating shaft and can rotate.
  • the shaft has two positions: the upper lifting limit and the lower lifting limit.
  • the rotating part drives the rotating shaft to rise and fall through the spiral transmission connection between the upper lifting limit and the lower lifting limit.
  • the rotating part continues to maintain the When rotating in one direction, the position between the rotating member and the rotating shaft is limited by the first limiting structure so that the rotating member and the rotating shaft stop relative rotation, so that the rotating shaft can be driven by the rotating member to rotate together.
  • the first direction refers to the rotating member.
  • Relative rotation allows the rotating shaft to be driven by the rotating member to rotate together.
  • the second direction refers to the rotating direction in which the rotating member drives the rotating shaft downward.
  • the first direction is opposite to the second direction.
  • the rotating shaft is connected to the mop.
  • the rotating shaft is connected with the mop.
  • the magnetic component includes a first part and a second part that can attract each other through magnetic force.
  • the first part is fixedly arranged, and the second part is arranged on the rotating shaft.
  • the magnetic component The force is used to limit the rotation of the rotating shaft so that the rotating member and the rotating shaft rotate relative to each other to lift the rotating shaft.
  • the upper limit is lifted and lowered, if the rotating member continues to rotate in the first direction, it will drive the rotating shaft to overcome the magnetic force to lift the rotating shaft.
  • the rotating shaft rotates together, and when the lower limit is raised and lowered, if the rotating member continues to rotate in the second direction, it will drive the rotating shaft to overcome the magnetic force so that the rotating shaft rotates together.
  • a first magnetic force is provided between the first part and the second part. Under the action of the first magnetic force, the rotating shaft decelerates to cause relative motion between the rotating shaft and the rotating component.
  • the purpose of relative movement can be achieved without a strong first magnetic force. For example, using a smaller magnet is beneficial to reducing the structural volume of the first part and/or the second part.
  • a second magnetic force is provided between the first part and the second part. Under the action of the second magnetic force, the rotation shaft stops rotating so that relative motion occurs between the rotation shaft and the rotating component. After this design, it has a more efficient lifting capacity and can be lifted and lowered quickly, but generally requires a larger second magnetic force.
  • the first part is located in the circumferential direction of the rotation axis and is provided with a gap to form a non-contact arrangement. After this design, there is no friction loss, which is beneficial to significantly extending the service life.
  • the first part is configured as a first magnet and the second part is configured as a second magnet, or one between the first part and the second part is a magnet and the other is a material that can be attracted by magnetic force;
  • the first magnet, the second magnet, and the magnets may be permanent magnets or electromagnets.
  • the second portion at least partially overlaps the first portion in the radial direction throughout the entire lifting stroke.
  • the magnetic force acts on the entire lifting stroke to ensure that the lifting reaches the set height requirement; and the second part is arranged axially along the rotating shaft, which uses the rotating shaft as an axial member to facilitate installation.
  • the second part is conducive to production and manufacturing.
  • the second part is provided by the rotating shaft body, or the second part is an independent part.
  • the second part is entirely embedded in the rotating shaft or partially exposed in the circumferential direction of the rotating shaft. surface.
  • the rotating shaft is used as the second part, such as a rotating shaft made of magnetic material (such as steel), where "the second part is an independent part,
  • the second part is completely embedded in the rotating shaft or partially exposed on the circumferential surface of the rotating shaft.
  • the shaft is made of plastic material, and the second part is made of magnetic metal.
  • the second part is used as an insert to obtain the rotating shaft by one-time injection molding, or when assembling the rotating shaft, for example, the rotating shaft is divided into two along the axial direction.
  • One part is provided with a plug-in hole, and then the second part serves as a connector to axially connect the two parts through the plug-in hole to obtain a rotating shaft.
  • this improvement provides great convenience and design flexibility for design.
  • the second part adopts a columnar body with uniform mass distribution along the axial direction, and the columnar body is coaxially arranged along the axis of the rotation shaft. This design is conducive to good rotational dynamic balance of the rotating shaft.
  • a machine base is also included.
  • a mop is provided on the lower side of the machine base.
  • a through hole is provided on the machine base for the lifting and lowering of the rotating shaft. The lower end of the rotating shaft is exposed outside the through hole and is connected to the mop.
  • the through hole is provided with a seal. pieces. After this design, the sealing requirement is achieved to prevent foreign matter from entering the lifting structure.
  • the first part is located in the circumferential direction of the rotating shaft and is provided with a gap to form a non-contact arrangement, and the gap is located inside the seal to be protected by the seal.
  • a driving gear that is fixed in axial position relative to the rotating shaft and is rotatable is also included.
  • the driving gear is sleeve-connected with the rotating shaft, and the driving gear is coaxially connected with the rotating member to drive the rotating member to rotate together.
  • the driving gear and the rotating part are coaxially connected.
  • the driving gear is sleeve-connected with the rotating shaft. It is helpful to reduce the height of the lifting structure.
  • the driving gear is provided with a guide portion, and the guide portion is axially guide-connected to the rotation shaft.
  • the driving gear is provided with a guide part, which is very conducive to improving the compactness of the structure and conducive to miniaturization.
  • the guide part is conducive to better movement of the rotating shaft.
  • due to the drive The gear and the rotating part are coaxially connected, so the guide part is helpful for the rotating shaft to maintain a relatively stable fit with the rotating part during movement, which is beneficial to improving the structural reliability.
  • the guide part adopts a guide sleeve.
  • the lower limit is raised and lowered, the lower end of the external spiral of the rotating shaft is still located in the guide part, and at least part of the non-helical area of the rotating shaft is located on the lower side of the external spiral.
  • the outer peripheral wall is sleeve-fitted with the guide portion, and the sleeve-fit is used to prevent foreign matter from entering the screw transmission connection from the lower end of the outer screw.
  • the guide sleeve has better guiding performance; on the other hand, a simple and compact structure is designed to prevent foreign objects, which is conducive to miniaturization; on the other hand, this technical solution is specific for the guide sleeve and the rotating shaft.
  • the matching design can prevent foreign matter from entering the spiral transmission connection from the lower end of the outer spiral, thus helping to improve structural reliability.
  • the driving gear includes a transmission tooth portion located on the outer periphery and a guide portion located on the inner periphery. This design is conducive to the flattening of the drive gear design, thereby freeing up more height space to install other structures, which is conducive to miniaturization.
  • a first rotation support structure is provided between the transmission tooth portion and the guide portion.
  • the first rotation support structure is used to rotationally support the driving gear.
  • the first rotation support structure includes a first rotation support structure extending in a direction away from one side of the mop.
  • the mounting seat is inserted and fitted into the annular space between the transmission tooth part and the guide part, and the driving gear and the mounting seat are rotatably connected. After this design, the transmission tooth part, the guide part, and the mounting seat have a large overlap in the height direction (ie, the axial direction), which is more conducive to the realization of a flat design of the drive gear, and the height can also be further reduced, that is, there is Conducive to miniaturization.
  • the mounting base is provided at the bottom of the machine base, the lower side of the bottom is the side where the mop is located, and the mounting base is provided on the upper side of the bottom of the machine base.
  • the rotating part and the guide part are distributed up and down along the axis of the driving gear. This design is beneficial to reducing the height on the one hand.
  • the fitting accuracy of the spiral transmission connection cannot reach the same level as that of metal parts.
  • there is mineral content or gap in the spiral transmission connection and the consistency during mass production is also lower than that of metal parts. Therefore, the lower end of the rotating part and the upper end of the guide part are arranged adjacent to each other, which is beneficial to the guide part to assist the rotating part, that is, when lifting This makes the spiral transmission connection more stable.
  • a cover is provided on the upper side of the driving gear, and the cover is used to prevent foreign matter from entering the spiral transmission connection from the upper end of the outer spiral of the rotating shaft. This design will help prevent foreign matter from entering, thereby improving structural reliability.
  • a cover is provided on the upper side of the drive gear, and a second rotation support structure is provided between the cover and the drive gear.
  • the drive gear is rotatably connected to the cover through the second rotation support structure.
  • the second rotating support structure also serves as a blocker that blocks foreign matter from reaching the upper end of the outer helix of the rotating shaft from between the cover and the driving gear and then entering the channel in the helical transmission connection.
  • This design is conducive to miniaturization, that is, the second rotating support structure realizes two functions, one is a rotating support, and the other acts as a blocker. There is no need to set up additional blockers, and the blockage prevents foreign matter from entering, which is beneficial to the spiral transmission structure. reliability.
  • an electric motor and a plurality of mops are included.
  • Each mop is provided with a rotating shaft, and each rotating shaft is provided with a driving gear.
  • the electric motor is transmission connected to each driving gear through a transmission structure.
  • the electric motor serves as both a The rotating shaft drives the electric motor to lift and lower the mop, and also serves as the rotating shaft to drive the electric motor to rotate the mop. Since the cooperation of the drive gear and other structures can realize both lifting and lowering of the mop and rotation of the mop, further adoption of this design will help simplify the structure to a greater extent and achieve miniaturization. In addition, the number of electric motors will also be reduced. to one, which helps reduce costs.
  • the upper side of the rotating shaft is provided with a protective cover that accommodates the lifting and lowering of the rotating shaft.
  • a protective cover that accommodates the lifting and lowering of the rotating shaft. This design, on the one hand, helps protect the lifting of the rotating shaft, avoids interference with other structures, and improves structural reliability. On the other hand, it prevents foreign matter from entering the spiral transmission connection from the upper side of the rotating shaft.
  • the protective cover also serves as a guide cover for guiding the lifting and lowering of the rotating shaft. This design helps the rotating shaft move more stably.
  • a limiting top is provided on the upper side of the rotating shaft.
  • the upper end of the rotating shaft and the limiting top are rotatably connected to each other.
  • the limiting top forms an upper limit for lifting of the rotating shaft.
  • This design provides a structure that forms an upper limit for lifting of the rotating shaft. The structure is relatively simple. In addition, the space on the upper side of the rotating shaft for lifting is fully utilized, so it is conducive to miniaturization.
  • a protective cover is provided on the upper side of the rotating shaft to accommodate the lifting and lowering of the rotating shaft, and the inner top surface of the protective cover serves as a limiting top. Designed in this way, the structure is very simple while protecting the lifting of the rotating shaft and forming an upper limit for the lifting of the rotating shaft.
  • the lower end of the outer helical spiral groove of the rotating shaft is of a closed design, and the lower end is provided with a first opposing end surface.
  • the rotating shaft rises to the point where the lower end surface of the inner helical spiral protrusion of the rotating member is in contact with the first opposing end surface, When the end faces are in contact, the position of the rotating shaft at this time is the upper limit position of the rotating shaft. If the rotating member continues to rotate in the first direction, the lower end face of the spiral protrusion can be connected by the offset with the first opposing end face. to promote the rotation of the rotating shaft; and/or, the upper end of the outer spiral spiral groove of the rotating shaft is of a closed design, and the upper end is provided with a second opposing end surface.
  • the spiral groove be designed to be closed and provide corresponding offset end faces. Specifically, it has a first offset end face and/or a second offset end face.
  • the spiral protrusion The lower end face can push the rotation shaft to rotate through the offset connection with the first offset end face, and/or the upper end face of the spiral protrusion can push the rotation shaft to rotate through the offset connection with the second offset end face, thus avoiding the spiral to a certain extent.
  • the disadvantage of the spiral fitting surface between the protrusion and the spiral groove becoming tighter and tighter is also beneficial to reducing the deformation and wear of the spiral fitting surface.
  • this technical solution is specially designed to provide a spiral groove on the rotating shaft, and a spiral protrusion on the rotating member to cooperate with the spiral groove, which is conducive to reducing the height of the rotating member. At the same time, although the height is reduced, the above technical purpose can still be achieved.
  • the first opposing end surface and the lower end surface of the spiral protrusion are both configured as radial matching surfaces, and/or the second opposing end surface and the upper end surface of the spiral protruding are both configured as radial matching surfaces. After this design, the circumferential rotational force can be better transmitted.
  • the rotating member is divided into multiple parts along the circumferential direction, and the multiple parts are spliced around the rotating shaft to achieve a spiral transmission connection between the rotating member and the rotating shaft.
  • the spiral groove is closed at both the upper and lower ends, a technical solution is provided to facilitate the installation of the rotating part, especially when the rotating part has a circumferential closed hole, and the circumferential closed hole is provided with the above-mentioned
  • the spiral protrusion is in the form of a nut, for example, the spiral groove cannot be directly screwed into the rotating part when both the upper and lower ends are closed. Therefore, the rotating part is divided into multiple parts along the circumferential direction, and the rotating part can be easily connected. Multiple parts are spliced around the rotating shaft to realize the spiral transmission connection between the rotating part and the rotating shaft.
  • the multiple parts are, for example, divided into two halves, that is, divided into two parts.
  • the rotating shaft is divided into multiple parts along the axial direction, and at least one part opens the spiral groove of the outer helix for spiral transmission connection of the rotating member.
  • This design provides another technical solution for spiral transmission to connect rotating parts.
  • the assembly process can be referred to as follows. First, disassemble the rotating shaft in the axial direction to open the spiral groove, then screw in the rotating part through the opening, and then axially connect the rotating shaft. The connection is restored to realize the spiral transmission connection between the rotating part and the rotating shaft.
  • the second part adopts a cylindrical body with uniform mass distribution along the axial direction, and the cylindrical body is coaxially arranged along the axis of the rotation axis.
  • the cylindrical body connects the plurality of parts into a whole to obtain the rotation axis.
  • the mop and the rotating shaft can have a floating connection.
  • the floating connection means that the mop can move axially relative to the rotating shaft when passing through surfaces to be cleaned at different heights to achieve adaptive height changes of the mop.
  • the rotation The height of the axis itself remains unchanged.
  • the mop The cleaning material on the surface is generally a soft material. This soft material has a certain amount of deformation, but it still cannot adapt to the large undulations of the surface to be cleaned. In severe cases, it may be pushed to death, so this design is conducive to Solving the aforementioned problems will not only enable the mop to better fit the surface to be cleaned, but also make the overall mechanism work more stable and reliable.
  • an axially movable elastic motion structure is provided between the rotation axis and the mop.
  • the elastic motion structure is used to drive the mop to perform axial elastic motion relative to the rotation axis to achieve adaptive height changes of the mop.
  • the elastic motion structure includes an insertion hole provided on the rotation shaft and an elastic connector located in the insertion hole and capable of axial movement.
  • a connecting rod is provided on the upper side of the mop, and the lower end opening of the rotation shaft serves as the insertion hole.
  • the lower end of the elastic connector and the upper end of the connecting rod are connected through magnetic connection to achieve a quick-release connection. This design greatly facilitates the disassembly and assembly between the mop and the rotating shaft.
  • the present invention After adopting the above structure, compared with the prior art, the present invention has the following advantages:
  • the magnetic force is used to limit the rotation of the rotating shaft so that the rotating member and the rotating shaft rotate relative to each other to lift the rotating shaft.
  • the structure is very simple. When the upper limit is lifted, under the limiting action of the first limiting structure, if the rotating member is Continuing to maintain the rotation in the first direction will drive the rotating shaft to overcome the magnetic force so that the rotating shaft rotates together. Also, when lifting and lowering the limit, under the limiting action of the second limiting structure, if the rotating member continues to maintain the second direction at this time, Rotation will drive the rotating shaft to overcome the magnetic force so that the rotating shaft rotates together.
  • the basic technical solution of magnetic components combined with other structures can solve the technical difficulties of lifting and continuous rotation and cleaning after lifting.
  • the structure is very simple, which provides a structural foundation advantage for further miniaturization.
  • the basic technical solution itself is relatively complex, then since the basic technical solution needs to be implemented first, the complexity cannot be significantly reduced, so miniaturization will be very difficult.
  • the basic technical solution of the present disclosure is very simple, so it is conducive to miniaturization. In other words, it can be applied to cleaning machines (such as small sweeping robots).
  • the present invention also provides a cleaning machine provided with the aforementioned liftable rotating mop structure.
  • the beneficial effect of the above technical solution is that it not only realizes the direct lifting and lowering of the mop, overcoming the problem of heavy weight in the lifting part, but also simplifies the structure, which is conducive to the miniaturization of the cleaning machine.
  • Figure 1 is a three-dimensional schematic diagram of a cleaning machine from a downward perspective.
  • Figure 2 is a schematic perspective view from above of a liftable rotating mop structure.
  • Figure 3 is a three-dimensional schematic view of a liftable rotating mop structure from a downward perspective (one mop has been removed, and the seal is removed to expose the annular groove).
  • Figure 4 is a schematic three-dimensional view of Figure 3 after the seal is installed.
  • Figure 5 is a three-dimensional schematic diagram of a liftable rotating mop structure from a downward perspective (with the base and a mop removed).
  • Figure 6 is a top view of a liftable rotating mop structure.
  • Figure 7 is a cross-sectional view along A-A.
  • Figure 8 is an enlarged schematic diagram of A.
  • Figure 9 is a schematic three-dimensional view of a liftable rotating mop structure with the cover removed.
  • Figure 10 is a schematic perspective view with the rotation axis further removed.
  • Figure 11 is a schematic three-dimensional view of another liftable rotating mop structure.
  • Figure 12 is a schematic three-dimensional view mainly showing the first opposing end surfaces.
  • Figure 13 is a schematic three-dimensional view mainly showing the second opposing end surface.
  • Figure 14 is a schematic perspective view of a rotating member from a downward perspective.
  • Figure 15 is a schematic perspective view of a rotating member from a top view.
  • Figure 16 is a schematic three-dimensional view of a rotating member.
  • Figure 17 is a top view of a seal.
  • Figure 18 is a B-B cross-sectional view.
  • Figure 19 is a schematic cross-sectional view of a liftable rotating mop structure with a limiting top.
  • Figure 20 is a schematic perspective view of a rotating shaft being divided into two sections along the axial direction to open the opening of the spiral groove.
  • Figure 21 is a schematic perspective view of the portion of the base where the mounting seat is located, viewed from above.
  • Figure 22 is a schematic perspective view of the portion of the base where the mounting seat is located, from a downward perspective.
  • Figure 23 is a schematic perspective view of the cover from a downward perspective.
  • Figure 24 is a schematic structural diagram of the rotating shaft as the second part.
  • Figure 25 is a schematic structural diagram of a cylindrical second part coaxially disposed in the rotating shaft.
  • Figure 26 is a schematic structural diagram of the first part using electromagnets.
  • Figures 1 to 26 show a liftable rotating mop structure and a cleaning machine.
  • a liftable rotating mop structure includes a rotating member 1, a rotating shaft 2 and a mop 3.
  • the rotating member 1 and the rotating mop The shaft 2 is connected by a spiral transmission.
  • the rotating member 1 is fixed in the axial position relative to the rotating shaft 2 and can rotate.
  • the rotating shaft 2 has two positions: an upper lifting limit and a lower lifting limit.
  • the rotating member 1 passes between the upper lifting limit and the lower lifting limit.
  • the spiral transmission connection between the rotating shaft 2 drives the rotating shaft 2 to rise and fall, and when the upper limit of the lifting and lowering is reached, if the rotating member 1 continues to rotate in the first direction, then the rotating member 1 and the rotating shaft 2 are limited by the first limiting structure to allow the rotating member 1 to rotate in the first direction.
  • the rotating member 1 and the rotating shaft 2 stop relative rotation, so that the rotating shaft 2 can be driven by the rotating member 1 to rotate together.
  • the first direction refers to the rotation direction in which the rotating member 1 drives the rotating shaft 2 to rise, and when the lower limit is lifted, If the rotating member 1 continues to rotate in the second direction, the position between the rotating member 1 and the rotating shaft 2 is limited by the second limiting structure so that the rotating member 1 and the rotating shaft 2 stop relative rotation, thereby allowing the rotating shaft 2 to be rotated. Part 1 is driven to rotate together.
  • the second direction refers to the rotation direction in which the rotating part 1 drives the rotating shaft 2 to descend.
  • the first direction is opposite to the second direction.
  • the rotating shaft 2 is connected to the mop 3.
  • the rotating shaft 2 is used to drive the mop 3.
  • Rotation and lifting also include a magnetic component.
  • the magnetic component includes a first part 54 and a second part 55 that can attract each other through magnetic force.
  • the first part 54 is fixedly arranged, and the second part 55 is provided on the rotating shaft 2.
  • the magnetic force is used to In order to restrict the rotation of the rotating shaft 2 so that the rotating member 1 and the rotating shaft 2 rotate relative to each other to lift the rotating shaft 2, and when the upper limit of the lifting is reached, if the rotating member 1 continues to rotate in the first direction, it will drive the rotating shaft 2 to overcome the problem.
  • the magnetic force makes the rotating shaft 2 rotate together, and when the lifting and lowering limit is reached, if the rotating member 1 continues to rotate in the second direction, it will drive the rotating shaft 2 to overcome the magnetic force so that the rotating shaft 2 rotates together; a kind of cleaning
  • the machine adopts the aforementioned liftable rotating mop structure.
  • a first magnetic force is provided between the first part 54 and the second part 55. Under the action of the first magnetic force, the rotating shaft 2 decelerates so that the relationship between the rotating shaft 2 and the rotating member 1 Relative motion occurs between them.
  • a second magnetic force is provided between the first part 54 and the second part 55. Under the action of the second magnetic force, the rotating shaft 2 stops rotating so that the rotating shaft 2 and the rotating member 1 relative motion between them.
  • the first part 54 is located in the circumferential direction of the rotating shaft 2 and is provided with a gap to form a non-contact arrangement.
  • the first part 54 is configured as a first magnet and the second part 55 is configured as a second magnet, or one part between the first part 54 and the second part 55 is a magnet and the other is a material that can be magnetically attracted. body; the first magnet, the second magnet, and the magnets may be permanent magnets or electromagnets.
  • the electromagnet is controlled by the electromagnet control circuit 56 , and whether the first part 54 generates magnetic force is determined by turning on or off the electromagnet control circuit 56 .
  • the second portion 55 at least partially overlaps the first portion 54 in the radial direction throughout the entire lifting stroke.
  • the axial length of the second part 55 is set to be approximately equal to or greater than the lifting stroke, while the first part 54 is radially located between the lifting strokes, at least partially between the lifting strokes.
  • the second portion 55 is provided by the body of the rotating shaft 2.
  • the second part 55 is an independent part. In the case where the second part 55 is an independent part, the second part 55 is entirely embedded in the rotating shaft 2. Of course, other arrangements are also possible. , for example, partially exposed on the circumferential surface of the rotating shaft 2.
  • the second part 55 adopts a cylindrical body with uniform mass distribution along the axial direction, and the cylindrical body is arranged along the rotating shaft 2
  • the axis is set coaxially.
  • Column-shaped bodies include cylinders, polygonal prisms, etc.
  • the first parts 54 are made of permanent magnets and are embedded upward in the bottom 14 . There are four first parts 54 , distributed circumferentially along the rotation axis 2 . This design can facilitate the first part 54 and the driving gear 10 to be arranged away from each other and have a strong magnetic force.
  • the first portion 54 is located in the circumferential direction of the rotating shaft 2 and is provided with a gap to form a non-contact arrangement.
  • the gap is located inside the seal 4 to be protected by the seal, as shown in Figure 4 It shows that the gap has been blocked by seal 4.
  • a cleaning machine i.e., sweeping robot
  • a body 46 which is used to install or serve as a shell to cover various components.
  • Components such as the first driving wheel 47, the second driving wheel 48, the middle sweep 49, the liftable rotating mop structure, etc.
  • the middle sweep 49 has a rolling brush and a main suction port.
  • the middle sweep 49 is used to roll the surface to be cleaned first. and vacuum cleaning, and then use the liftable rotating mop structure connected to the mop 3 for rotation cleaning.
  • the preferred technical solution is to set one on the left and one on the left.
  • two mops 3 are arranged substantially symmetrically on the left and right along the direction of travel of the cleaning machine. This means that the liftable rotating mop structure of the present disclosure has two substantially symmetrical arrangements on the left and right.
  • the driving gear 10 can not only drive the mop 3 to lift and rotate, but also provides a structural basis for further simplifying the structure. Therefore, although two mops 3 need to be operated , but only one electric motor 23 can be used.
  • the specific structure can be referred to as follows: it includes an electric motor 23 and multiple mops 3. Each mop 3 is provided with a rotating shaft 2, and each rotating shaft 2 is provided with a driving gear 10.
  • the motor 23 is transmission connected to each driving gear 10 through a transmission structure.
  • the electric motor 23 serves as an electric motor 23 for the rotating shaft 2 to drive the mop 3 to rise and fall, and as an electric motor 23 for the rotating shaft 2 to drive the mop 3 to rotate.
  • the transmission structure is such as a worm gear transmission structure.
  • the electric motor 23 can adopt a double-output shaft structure.
  • the double-output shaft structure has two symmetrical output shafts.
  • the two output shafts are respectively connected to a worm 25, and each worm 25 is provided with a corresponding worm gear. 24.
  • the worm gear 24 is provided with a transmission gear 26 coaxially, and the transmission gear 26 is meshed and transmission connected with the transmission tooth portion 12 of the driving gear 10.
  • the worm gear 24 and the transmission gear 26 adopt a coaxial upper and lower position.
  • Distributed structure The aforementioned structure may be referred to Figures 5 and 8.
  • the liftable rotating mop structure is configured as a modular structure, that is, the liftable rotating mop structure is set as a separate module, and the liftable rotating mop structure is first After the assembly of the mop structure is completed, the module is then installed into the body 46, and then the mop 3 is connected.
  • This design has the benefits of modularity. As long as the body 46 reserves space for module installation, the module can be obtained after the mop structure is assembled. Afterwards, the module can be easily installed to add the liftable mop 3 function to the body 46, which is suitable for large-scale mass production.
  • the volume of the modular liftable rotating mop structure is reduced or sufficient installation space is reserved for the body 46, even if the shape of the body 46 is changed or adjusted, it is beneficial to directly adopt the module, that is to say, the module can be directly used.
  • the shape of has nothing to do with the shape of the body 46.
  • the machine base includes a base 5 and a cover 20.
  • the liftable rotating mop structure except the mop 3, is installed between the base 5 and the cover 20. In order to facilitate assembly, it is also conducive to the center of gravity. Lower, as shown in Figures 2 to 5 and Figures 8 to 10, the liftable rotating mop structure is basically installed on the base 5.
  • the height of the rotating shaft 2 It is relatively high, so a protective cover 27 protruding upward from the upper side of the cover 20 is provided. The space around the protective cover 27 can be used for the installation of other components of the cleaning machine, so it is conducive to miniaturization.
  • the protective cover 27 also serves as a guide cover and can be used to guide the lifting and lowering of the rotating shaft 2 .
  • the electrical connection plug 50 serves as the general interface for internal and external electrical connections, and provides power supply and signal connection through the electrical connection plug 50, so that the modular liftable rotating mop structure can be installed in the body 46 At the same time, the assembly work is further simplified, and the modular liftable rotating mop structure is conveniently electrically connected to the power supply module and control module of the cleaning machine.
  • a mop 3 is provided on the lower side of the base 5.
  • the base 5 is provided with a through hole 6 for lifting the rotating shaft 2, and the lower end of the rotating shaft 2 is exposed in the through hole 6.
  • a seal 4 is provided through the hole 6.
  • the base 5 is provided with an annular groove 7 on the side of the mop 3, and the annular groove 7 is sleeved and fixed with a seal 4 , the seal 4 is provided with a sealing portion extending in the circumferential direction of the rotating shaft 2, and the sealing portion is rotatably connected to the rotating shaft 2.
  • the sleeve installation is carried out from the outside, which makes the production and manufacturing very convenient. When there is a need for replacement, it is also convenient to replace the seal 4.
  • the seal 4 is provided with a circumferential elastic portion, and the circumferential elastic portion is inclined relative to the rotation axis 2 .
  • the circumferential elastic portion includes two upper and lower annular portions, respectively designated as the upper annular portion 8 and the lower annular portion 9 . These two annular portions form a V-shaped portion that opens to one side of the rotation shaft 2 .
  • the circumferential elastic portion is arranged obliquely relative to the rotation axis.
  • the tilted structural setting is used as one of the technical means to ensure the elastic contact force (that is, the technical means to ensure the elastic contact force does not completely rely on elastic materials), so that it can still maintain good performance during frequent use.
  • the sealing contact on the other hand, is simple and compact in structure.
  • this design is based on the targeted design of the rotating shaft with the characteristics of lifting movement. Specifically, whether it is not rising or falling, it has better sealing.
  • the design of this technical solution can also It is helpful to prevent foreign matter from entering, and it is also helpful to scrape off foreign matter carried on the rotating shaft, thereby greatly reducing the possibility of foreign matter entering.
  • a driving gear 10 that is fixed in axial position relative to the rotating shaft 2 and is rotatable is also included.
  • the driving gear 10 is sleeve-connected with the rotating shaft 2.
  • the driving gear 10 is sleeve-connected with the rotating shaft 2.
  • 10 is coaxially connected with the rotating member 1 to drive the rotating member 1 to rotate together.
  • the driving gear 10 is provided with a guide portion 11 , and the guide portion 11 is connected to the rotation shaft 2 for axial guidance.
  • the guide part 11 adopts a guide sleeve.
  • the rotating shaft 2 is in the lower limit position of the lifting.
  • the lower end of the outer helix of the rotating shaft 2 has exceeded The end surface of the lower end of the guide part 11, but in order to better prevent foreign matter from entering the screw transmission connection from the lower end of the outer screw, the guide part 11 can continue to be extended downward, so that the lower end of the outer screw of the rotating shaft 2 is still located in the guide part 11, that is, the lower end of the spiral groove 30 is still located in the guide portion 11, and at least part of the peripheral wall of the non-spiral area of the rotating shaft 2 located on the lower side of the outer spiral is sleeve-fitted with the guide portion 11, and the sleeve fit It is used to prevent foreign matter from entering the spiral transmission connection from the lower end of the outer spiral.
  • the driving gear 10 includes a transmission tooth portion 12 located on the outer circumference and a guide portion 11 located on the inner circumference, and a first rotation is provided between the transmission tooth portion 12 and the guide portion 11.
  • Support structure the first rotation support structure is used to rotationally support the driving gear 10 .
  • the first rotating support structure generally uses bearings or bushings.
  • the first rotation support structure includes a mounting base 13 extending in a direction away from the side of the mop 3, and the mounting base 13 is inserted into the transmission tooth portion 12 and the guide portion 11 , and the driving gear 10 and the mounting base 13 are rotatably connected.
  • the guide part 11 is internally connected to the mounting base 13
  • a first sleeve 18 is provided between the guide part 11 and the mounting base 13 .
  • the first sleeve 18 can also be replaced with a ball bearing or other rotating support structure.
  • the first sleeve 18 does not have rollers or other structures, it is smaller in thickness than a ball bearing or other rotating support structure, so it is more suitable. To meet the requirement of miniaturization of the present disclosure.
  • the mounting base 13 is provided at the bottom 14 of the machine base, that is, the bottom 14 of the base 5.
  • the lower side of the bottom 14 is the side where the mop 3 is located.
  • the mounting base 13 is provided on the upper side of the bottom 14 .
  • annular groove 7 is provided on the lower side of the bottom 14 corresponding to the position occupied by the mounting base 13, and a seal is fixed to the annular groove 7. 4.
  • the design of this technical solution will, on the one hand, further simplify the structure and facilitate installation and replacement.
  • the mounting base 13 since the mounting base 13 is provided on the upper side of the base bottom 14, the mounting base 13 will occupy the bottom of the base. 14, then after the design of this technical solution, the lower side of the bottom 14 corresponding to the position occupied by the mounting base 13 is fully utilized in terms of height.
  • opening the annular groove 7, the annular groove 7 can be opened upward to the mounting base. 13, so the mounting base 13 itself is fully utilized, and this arrangement is conducive to flat design, that is, conducive to miniaturization.
  • the rotating member 1 and the guide portion 11 are distributed up and down along the axis of the driving gear 10 , and the lower end of the rotating member 1 is adjacent to the upper end of the guide portion 11 .
  • the lower end of the rotating member 1 is arranged in contact with the upper end of the guide portion 11 .
  • the driving gear 10 is provided with a mounting post 15 located on the upper side of the guide portion 11.
  • the mounting post 15 is provided with a mounting hole 16, and the rotating member 1 is installed in the mounting hole 16. middle.
  • a plurality of screw posts 17 are provided in the mounting hole 16. The figure shows four circumferentially distributed posts. After the rotating member 1 is installed in the mounting hole 16, then Use screws 53 to fix the rotating member 1 to the screw post 17, so that it can withstand greater torque and meet the transmission requirements.
  • the aforementioned design also solves the problem of how to install the rotating part 1.
  • the rotating part 1 is installed in the mounting hole 16, that is, the rotating part 1 is equivalent to being installed in the driving gear 10, so it is beneficial to the rotating part 1 and the driving gear 10.
  • the lowering of the center of gravity after connection is conducive to smooth rotation.
  • the installation of the rotating member 1 in the mounting hole 16 is conducive to reducing the overall height and achieving flattening.
  • the driving gear 10 has a transmission tooth portion 12 located on the outer periphery.
  • the transmission tooth portion 12 is located on the underside of the mounting column 15.
  • the transmission tooth portion 12 is aligned with the rotating member 1.
  • the axis of the drive gear 10 is distributed up and down. This design facilitates the downward movement of the center of gravity, thereby facilitating the smooth rotation of the driving gear 10 .
  • the outer periphery of the mounting post 15 is provided with a rotational support structure.
  • the second rotation support structure serves as the aforementioned rotation support structure, which is beneficial to simplifying the structure.
  • the rotating member 1 is a force-bearing component during operation, and the mounting column 15 is provided with a mounting hole 16, the rotating member 1 is installed in the mounting hole 16, so a rotating support structure is specially provided on the outer periphery of the mounting column 15, which is conducive to The rotation of the rotating part 1 is smooth and reliable, which is beneficial to the rotating part 1 being in good working condition for a long time.
  • a cover 20 is provided on the upper side of the drive gear 10.
  • the cover 20 is rotatably connected to the drive gear 10.
  • the cover 20 is used to prevent foreign matter from ejecting from the rotating shaft.
  • the upper end of the outer spiral of 2 enters the spiral transmission connection.
  • a sealing ring can be provided between the cover 20 and the driving gear 10 .
  • other structures can be used, and any suitable structure can be applied to the present disclosure.
  • a second rotation support structure is provided on the upper circumference of the drive gear 10 .
  • the second rotation support structure and the first rotation support structure are distributed up and down to form up and down rotation support for the drive gear 10 . This is more conducive to the smooth rotation of the driving gear 10.
  • a cover 20 is provided on the upper side of the drive gear 10 , and a second rotation support structure is provided between the cover 20 and the drive gear 10 .
  • the drive gear 10 is supported by the second rotation.
  • the structure is rotatably connected to the cover 20.
  • the second rotation support structure also blocks the passage of foreign matter from reaching the upper end of the outer spiral of the rotating shaft 2 from between the cover 20 and the drive gear 10 and then entering the spiral transmission connection. That is to say, using The second rotating support structure prevents foreign matter from entering.
  • the cover 20 is provided with a socket post 51, which extends toward the driving gear 10 side.
  • the socket post 51 is internally and externally connected to the mounting post 15 of the drive gear 10.
  • a second sleeve 19 is provided between the sleeve column 51 and the drive gear 10.
  • the sleeve column 51 is sleeved externally and internally with the mounting column 15 of the drive gear 10, and the second sleeve 19 can be used to block foreign matter.
  • the second sleeve 19 can also be replaced with a ball bearing or other rotating support structure.
  • the second sleeve 19 does not have rollers or other structures, it is smaller in thickness than a ball bearing or other rotating support structure, so it is more suitable. To meet the requirement of miniaturization of the present disclosure.
  • a second rotation support structure is provided on the upper circumference of the drive gear 10 .
  • the second rotation support structure and the first rotation support structure are distributed up and down to form up and down rotation support for the drive gear 10 .
  • the upper part of the driving gear 10 is part or all of the mounting post 15 .
  • the second rotation support structure has an upper limit end 21 , and the upper limit end 21 axially offsets the drive gear 10 to axially limit the drive gear 10 , and the first rotation support structure It has a lower limiting end 22 , and the lower limiting end 22 axially offsets the driving gear 10 to limit the driving gear 10 axially downward.
  • the second rotation support structure and the first rotation support structure can simultaneously serve as axial limiting structures for the drive gear 10, which is beneficial to structural simplification.
  • the axial limitation of the driving gear 10 is achieved, thereby providing axial force support during the movement of the rotating member 1, and on the other hand, the second rotation support structure and the first rotation support structure are used.
  • Axial limiter simplifies the structure.
  • a first annular support surface is provided on the inner periphery of the mounting base 13 as the lower limit end 22 of the first rotation support structure.
  • the lower end of the first sleeve 18 and the lower limit end 22 The first sleeve 18 is axially limited by the lower limiting end 22 . Since the first sleeve 18 is limited between the guide portion 11 and the mounting base 13 , it ultimately forms an axial limit for the driving gear 10 . Bit.
  • the top surface of the cover serves as the upper limit end 21 of the second rotation support structure, and the upper end of the second sleeve 19 fits closely with the upper limit end 21, thereby passing the upper limit The bit end 21 axially limits the second bushing 19 . Since the second bushing 19 is limited between the housing and the driving gear 10 , it ultimately limits the driving gear 10 in the axial direction.
  • the structure shown in Figure 7 is a relatively compact and simple design solution, and the axial limiting solution can also be other solutions, such as limiting the upper and lower end surfaces of the driving gear 10.
  • the top surface of the cover and the upper end surface 35 of the driving gear 10 can be rotatably connected to each other, and the upper side of the bottom 14 of the base 5 and the lower end surface 34 of the driving gear 10 can be rotatably connected to each other.
  • the first bushing 18 and/or the second bushing 19 are replaced with bearings capable of axial limiting.
  • the axial limiting of the driving gear 10 is achieved through the axial limiting of the bearing itself. Any method suitable for axial limiting of the driving gear 10 Any scheme for axial limiting can be used in this disclosure.
  • a limiting top 29 is provided on the upper side of the rotating shaft 2.
  • the upper end of the rotating shaft 2 and the limiting top 29 are rotatably connected to each other.
  • the limiting top 29 constitutes the first limiting structure.
  • a sphere 28 is provided between the upper end of the rotating shaft 2 and the limiting top 29.
  • a sphere 28 is provided at the upper end of the rotating shaft 2.
  • the limiting top 29 forms an upper limit for lifting of the rotating shaft 2. . Therefore, it is different from the lifting upper limit scheme described below, which is composed of the lower end surface 34 of the inner helical spiral protrusion 33 and the first opposing end surface 31 .
  • the upper and lower ends of the spiral are matched, that is, the solution of locking at the end of the spiral is used to form the first limiting structure and the second limiting structure respectively.
  • upper and lower blocking rods are provided on the rotating shaft 2. The blocking rods prevent the rotating member 1 and the rotating shaft 2 from continuing to move relative to each other, while avoiding locking at the end of the spiral. The blocking rods prevent the rotating member 1 and the rotating shaft 2 from continuing to move relative to each other.
  • the solution respectively constitutes a first limiting structure and a second limiting structure. Any solution suitable for forming an upper lifting limiter and a lower lifting limiter for the rotating shaft 2 can be used in this disclosure.
  • a protective cover 27 is provided on the upper side of the rotating shaft 2 to accommodate the lifting and lowering of the rotating shaft 2 , and the inner top surface of the protective cover 27 serves as the limiting top 29 .
  • the lower end of the external helical spiral groove 30 of the rotating shaft 2 is of a closed design, and the lower end is provided with a first opposing end surface 31.
  • the rotating shaft 2 rises to the rotating member
  • the lower end surface 34 of the inner spiral spiral protrusion 33 of 1 is in contact with the first opposing end surface 31, the position of the rotating shaft 2 at this time is the lifting upper limit position of the rotating shaft 2, and the first opposing end surface 31 constitutes the first limit.
  • the lower end surface 34 of the spiral protrusion 33 can push the rotating shaft 2 to rotate through the offset connection with the first opposing end surface 31; and/or, the rotating shaft 2
  • the upper end of the outer spiral spiral groove 30 is of closed design, and the upper end is provided with a second opposing end surface 32.
  • the rotating shaft 2 descends to the upper end surface 35 of the inner spiral spiral protrusion 33 of the rotating member 1, the upper end surface 35 and the second opposing end surface 32
  • the position of the rotating shaft 2 at this time is used as the lifting lower limit position of the rotating shaft 2, and the second opposing end surface 32 constitutes the second limiting structure.
  • the upper end of the spiral protrusion 33 can push the rotation shaft 2 to rotate by being connected with the second opposing end surface 32 .
  • the lower end surface 34 of the inner spiral spiral protrusion 33 is in contact with the first conflicting end surface 31, and there is also a structure in which the upper end surface 35 of the spiral protrusion 33 is in conflict with the second conflicting end surface 32.
  • the spiral length of the spiral protrusion 33 can be short and does not need to be very long.
  • the first opposing end surface 31 and the lower end surface 34 of the spiral protrusion 33 are both configured as radial mating surfaces, and/or the second opposing end surface 32, the spiral protrusion
  • the upper end surfaces 35 of 33 are all set as radial mating surfaces.
  • the first opposing end surface 31, the lower end surface 34 of the spiral protrusion 33, the second opposing end surface 32, and the upper end surface 35 of the spiral protrusion 33 are all configured as radial matching surfaces.
  • the rotating member 1 is divided into multiple parts along the circumferential direction, and the multiple parts are spliced around the rotating shaft 2 to achieve a spiral transmission connection between the rotating member 1 and the rotating shaft 2 .
  • the rotating member 1 is divided into two parts, namely the left half 36 and the right half 37 .
  • the rotating shaft 2 is divided into multiple parts along the axial direction, at least one of which opens the outer helical spiral groove 30 for spiral transmission connection of the rotating member 1 .
  • the rotating shaft 2 is divided into an upper section 38 and a lower section 39.
  • the main body of the spiral groove 30 is located in the upper section 38, and the first opposing end surface 31 is located in the lower section 39. Therefore, the spiral groove 30 is opened, and the rotating member 1 can pass through the upper section.
  • the lower end of 38 is screwed into the upper section 38, and then the upper section 38 and the lower section 39 are spliced together, thereby completing the spiral transmission connection between the rotating member 1 and the rotating shaft 2.
  • the second part 55 adopts a cylindrical body with uniform mass distribution along the axial direction, and the cylindrical body is coaxially arranged along the axis of the rotation axis 2, and the cylindrical body combines the multiple parts
  • the upper section 38 and the lower section 39 are connected as a whole to obtain the rotating shaft 2.
  • the second part 55 is used to connect the upper section 38 and the lower section 39 as a whole to obtain the rotating shaft 2.
  • Both the upper section 38 and the lower section 39 are provided with plug holes for plug-in matching.
  • the mop 3 and the rotating shaft 2 can have a floating connection.
  • the floating connection means that the mop 3 can move axially relative to the rotating shaft 2 when passing through surfaces to be cleaned at different heights to achieve the adaptive adaptation of the mop 3 The height changes, but the height of the rotation axis 2 itself remains unchanged.
  • An elastic motion structure capable of axial movement is provided.
  • the elastic motion structure is used to drive the mop 3 to perform axial elastic movement relative to the rotating shaft 2 to achieve adaptive height changes of the mop 3. .
  • the elastic motion structure includes an insertion hole 40 provided on the rotating shaft 2 and an elastic connecting piece 41 located in the insertion hole 40 and capable of axial movement.
  • the upper side of the mop 3 is provided with a connecting rod 43, which rotates
  • the lower end opening of the shaft 2 serves as an insertion opening of the insertion hole 40 for the connecting rod 43 to be inserted and connected with the elastic connector 41 .
  • the mop 3 Under the action of the elastic connector 41, the mop 3 is elastically attached to the surface to be cleaned. As the unevenness of the surface to be cleaned changes, the mop 3 will naturally rise and fall under the action of the elastic connector 41, thus making the mop 3 better. Clean the surface to be cleaned thoroughly.
  • the elasticity of the elastic connector 41 can be made of elastic material.
  • an elastic member 42 is provided on the elastic connector 41, and the upper end of the elastic member 42 is connected to the bottom surface of the insertion hole 40.
  • the lower end of the elastic member 42 is sleeved and connected with the elastic connecting member 41.
  • the elastic connecting member 41 can be inserted into the guide hole 52 provided in the rotating shaft 2 and located on the upper side of the aforementioned bottom surface.
  • the lower end of the elastic connector 41 and the upper end of the connecting rod 43 are magnetically connected to achieve a quick-release connection.
  • the lower end of the elastic connector 41 is provided with
  • the magnet 45 and the upper end of the connecting rod 43 are provided with an iron core 44 .
  • the insertion hole 40 is set as an internal hexagonal fitting hole, and the connecting rod 43 is provided with an external hexagonal peripheral wall.
  • the outer hexagonal peripheral wall and the inner hexagonal matching hole form a rotation transmission sleeve between the connecting rod 43 and the insertion hole 40. Since the outer hexagonal peripheral wall and the inner hexagonal matching hole have a large contact surface, they can provide large torque transmission, which is beneficial to the rotation of the mop 3 stability.

Landscapes

  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)
  • Electric Suction Cleaners (AREA)

Abstract

一种可升降的旋转拖布结构,包括磁性组件,磁性组件包括可通过磁性力相互吸引的第一部分(54)和第二部分(55),第一部分(54)固定设置,第二部分(55)设于转动轴(2)上,磁性力用于限制转动轴(2)转动从而使转动件(1)与转动轴(2)发生相对转动以升降转动轴(2),并且在升降上限位时转动件(1)带动转动轴(2)一起转动,以及在升降下限位时转动件(1)带动转动轴(2)一起转动。可升降的旋转拖布结构在实现拖布旋转/升降功能的同时,仍然做到结构简单,从而能够适用于清洁机。还提出一种清洁机,采用可升降的旋转拖布结构,有利于清洁机的小型化。

Description

一种可升降的旋转拖布结构以及清洁机 技术领域
本发明涉及清洁设备技术领域,具体讲是一种可升降的旋转拖布结构以及清洁机。
背景技术
有一种清洁机,例如小型扫地机器人(也称为家用扫地机器人),小型扫地机器人从诞生至现在,已具有较高的普及程度,成为家用清扫等消费市场的重要清洁产品,目前小型扫地机器人已经向吸拖一体化方向发展,其中,有一种吸拖一体的技术方案是采用在吸尘基础上增加旋转拖布结构来实现,即小型扫地机器人在行走过程中,吸尘的同时,还通过旋转拖布结构带动拖布旋转擦拭被清洁表面。因此提出了旋转拖布结构应用于小型扫地机器人的设计要求,由于小型扫地机器人自身体积较小,而且一般设置两个拖布,体积较小能使其灵活地在室内更好地清扫,而两个拖布则使得清扫更高效率又不至于导致小型扫地机器人体积太大,所以现有的旋转拖布结构需要小型化设计或者完全重新设计才能够应用于小型扫地机器人,这就给设计工作带来了很多困难,需要付出创造性劳动才能够加以实现。
而为了能够更好地进行清洁工作,又进一步提出了更高的要求,即提出拖布不仅要能够旋转,而且需要能够升降,这样就极大地增加了结构的复杂程度,使得小型化更加困难。
综上所述,如何在实现拖布旋转/升降功能的同时,仍然做到结构简单,存在很大困难,本申请人经过深入研究已经得到了一定的解决方案,从而提出一种可升降的旋转拖布结构以及清洁机,在实现拖布旋转/升降功能的同时,仍然做到结构简单。
技术问题
本发明所要解决的技术问题是,克服现有技术的缺陷,提出一种可升降的旋转拖布结构,在实现拖布旋转/升降功能的同时,仍然做到结构简单,从而能够适用于清洁机(例如小型扫地机器人);还提出一种清洁机,采用前述的可升降的旋转拖布结构,有利于清洁机的小型化。
技术解决方案
相比现有技术,本发明提出一种可升降的旋转拖布结构,包括转动件、转动轴和拖布,转动件与转动轴螺旋传动连接,转动件相对转动轴轴向位置固定并可转动,转动轴具有升降上限位和升降下限位这两个位置,转动件通过位于升降上限位和升降下限位之间的螺旋传动连接来带动转动轴升降,并且在升降上限位时,转动件若继续维持第一方向转动,那么转动件与转动轴之间通过第一限位结构限位以使转动件与转动轴停止相对转动,进而使转动轴可被转动件带动一起转动,第一方向是指转动件带动转动轴上升的转动方向,以及,在升降下限位时,转动件若继续维持第二方向转动,那么转动件与转动轴之间通过第二限位结构限位以使转动件与转动轴停止相对转动,进而使转动轴可被转动件带动一起转动,第二方向是指转动件带动转动轴下降的转动方向,第一方向与第二方向转动方向相反,转动轴与拖布连接,转动轴用于带动拖布旋转和升降,其特征在于,还包括磁性组件,该磁性组件包括可通过磁性力相互吸引的第一部分和第二部分,第一部分固定设置,第二部分设于转动轴上,该磁性力用于限制转动轴转动从而使转动件与转动轴发生相对转动以升降转动轴,并且在升降上限位时,此时转动件若继续维持第一方向转动则将带动转动轴克服磁性力以使转动轴一起转动,以及,在升降下限位时,此时转动件若继续维持第二方向转动则将带动转动轴克服磁性力以使转动轴一起转动。
在一些实施例中,第一部分和第二部分之间设置第一磁性力,在第一磁性力作用下,转动轴减速而使得转动轴与转动件之间产生相对运动。这样设计后,不需要很强的第一磁性力就能达到相对运动的目的,例如采用较小的磁体,有利于减小第一部分和/或第二部分的结构体积。
在一些实施例中,第一部分和第二部分之间设置第二磁性力,在第二磁性力作用下,转动轴停止转动而使得转动轴与转动件之间产生相对运动。这样设计后,具有更为高效的升降能力,能很快地进行升降,但是一般来说需要更大的第二磁性力。
在一些实施例中,第一部分位于转动轴周向并设有间隙形成非接触式设置。这样设计后,不存在摩擦损耗,有利于显著地延长使用寿命。
在一些实施例中,第一部分设置为第一磁体,第二部分设置为第二磁体,或者第一部分与第二部分之间有一个为磁体,另一个为可被磁力吸引的材料体;所述的第一磁体、第二磁体、磁体可采用永磁体或电磁铁。这样设计后,可以根据设计需要灵活组合设计;另外,当采用电磁铁时,可在升降结束后关闭,这样就不存在磁性力,节省转动能量的消耗。
在一些实施例中,第二部分在整个升降行程中,第二部分与第一部分之间在径向上至少局部重叠。这样设计后,在整个升降行程中,都受磁性力作用,确保升降达到设定高度要求;而第二部分沿转动轴轴向设置,则是利用转动轴为轴向件的一个特点,方便设置第二部分,有利于生产制造。
在一些实施例中,第二部分由转动轴本体提供,或者第二部分为独立零件,对于第二部分为独立零件的情形,第二部分全部埋设在转动轴中或者局部暴露在转动轴周向表面。这样设计后,其中“第二部分由转动轴本体提供,则是将转动轴作为第二部分使用”,例如采用可磁性材料(例如钢铁)制作的转动轴,其中“第二部分为独立零件,对于第二部分为独立零件的情形,第二部分全部埋设在转动轴中或者局部暴露在转动轴周向表面”,这样可以采用不同的材料进行组合设计,有利于降低重量,简化生产,例如转动轴用塑料材质,第二部分采用可磁性金属材质,在注塑生产转动轴时,第二部分作为嵌件一次性注塑得到该转动轴,或者装配转动轴时,例如将转动轴沿轴向分成两部分并设有插接孔,然后第二部分作为连接件通过插接孔轴向连接这两部分来得到转动轴。总之,本改进为设计提供了很大的便利和设计的灵活性。
在一些实施例中,对于第二部分全部埋设在转动轴中的情况,第二部分采用沿轴向质量分布均匀的柱状体,并且该柱状体沿转动轴轴线同轴设置。这样设计后,有利于转动轴的转动动平衡良好。
在一些实施例中,还包括机座,机座下侧设置拖布,机座设置供转动轴升降的穿过孔,转动轴下端露出在穿过孔外并与拖布连接,穿过孔设有密封件。这样设计后,实现了密封需求,避免异物进入升降结构中。
在一些实施例中,第一部分位于转动轴周向并设有间隙形成非接触式设置,该间隙位于密封件的内侧以受密封保护。这样设计后,避免异物进入间隙中,有利于提升可靠性,降低故障概率。
在一些实施例中,还包括相对转动轴轴向位置固定并可转动的驱动齿轮,驱动齿轮与转动轴套接连接,驱动齿轮与转动件同轴连接以带动转动件一起转动。这样设计后,驱动齿轮与转动件同轴连接,一方面有利于减小结构直径,即有利于小型化,另一方面有利于转动稳定性,再一方面,驱动齿轮与转动轴套接连接,有利于降低升降结构的高度。
在一些实施例中,驱动齿轮设有导向部,所述的导向部与转动轴轴向导向连接。这样设计后,一方面,在驱动齿轮设有导向部,非常有利于提高结构紧凑度,有利于小型化,另一方面,导向部设置有利于转动轴更好地运动,再一方面,由于驱动齿轮与转动件同轴连接,所以导向部设置有利于转动轴在运动时与转动件维持一个较为稳定的配合,因此有利于提升结构可靠性。
在一些实施例中,导向部采用导向套,在升降下限位时,转动轴的外螺旋的下端仍然位于导向部中,转动轴的位于所述的外螺旋的下侧的非螺旋区的至少局部外周壁与导向部套接配合,该套接配合用于防异物从外螺旋的下端进入螺旋传动连接中。这样设计后,一方面,导向套具有更好的导向性能,另一方面,设计了简单紧凑的结构来考虑防异物,有利于小型化,再一方面,本条技术方案对于导向套与转动轴特定配合设计能够防异物从外螺旋的下端进入螺旋传动连接中,从而有利于提升结构可靠性。
在一些实施例中,驱动齿轮包括位于外周的传动齿部和位于内周的导向部。这样设计后,有利于驱动齿轮设计扁平化,从而腾出更多的高度空间来设置其它结构,即有利于小型化。
在一些实施例中,传动齿部与导向部之间设置第一转动支撑结构,该第一转动支撑结构用于转动支撑驱动齿轮,第一转动支撑结构包括沿远离拖布一侧的方向延伸设置的安装座,该安装座插入配合在传动齿部与导向部之间的环形间隔中,并且驱动齿轮与安装座之间可转动连接。这样设计后,传动齿部、导向部、安装座三者在高度方向(即轴向)具有较大的重叠度,从而更有利于驱动齿轮设计扁平化的实现,高度也可以进一步降低,即有利于小型化。
在一些实施例中,安装座设于机座的底部,该底部的下侧为拖布的所在侧,该机座底部的上侧设置所述的安装座。这样设计后,可实现驱动齿轮、安装座靠近拖布设置,因此有利于降低拖布相对于驱动齿轮的摆动幅度,这样,驱动齿轮的导向部无需维持较高的高度来径向稳定转动轴,因此有利于降低驱动齿轮的整体高度,即有利于小型化。
在一些实施例中,转动件与导向部沿驱动齿轮的轴向上下分布。这样设计后,一方面有利于降低高度,另一方面,因为本公开所指的产品基于成本和生产效率考虑而大多采用塑料件,导致螺旋传动连接的配合精度无法达到向金属零件那样的配合程度,螺旋传动连接存在矿量或间隙、大批量量产时的一致性也相对金属零件较低,所以转动件的下端与导向部的上端相邻设置有利于导向部辅助转动件工作,即在升降时使螺旋传动连接更为稳定。
在一些实施例中,驱动齿轮的上侧设有罩盖,罩盖用于防异物从转动轴的外螺旋的上端进入螺旋传动连接中。这样设计后,有利于防异物进入,从而有利于提升结构可靠性。
在一些实施例中,驱动齿轮的上侧设有罩盖,该罩盖与驱动齿轮之间设有第二转动支撑结构,驱动齿轮通过第二转动支撑结构与罩盖可转动连接。这样设计后,一方面有利于驱动齿轮转动稳定可靠,另一方面有利于驱动齿轮更好地支撑转动件,间接的使得转动件或者进一步结合导向部能够更好地支撑转动轴。
在一些实施例中,第二转动支撑结构同时作为堵塞异物从罩盖与驱动齿轮之间到达转动轴的外螺旋的上端进而进入螺旋传动连接中的通道的堵塞物。这样设计后,有利于小型化,即第二转动支撑结构实现两种功能,一种是转动支撑,另一种作为堵塞物,无需额外设置堵塞物,而堵塞物避免异物进入有利于螺旋传动结构的可靠性。
在一些实施例中,包括一个电动马达和多个拖布,每个拖布设置一个转动轴,每个转动轴设置一个驱动齿轮,该电动马达通过传动结构与各个驱动齿轮传动连接,该电动马达既作为转动轴带动拖布升降的电动马达,又作为转动轴带动拖布旋转的电动马达。由于驱动齿轮等结构的配合既能够实现拖布升降、又能够实现拖布旋转,所以进一步采用本条设计后,有利于实现更大程度地简化结构,有利于实现小型化,另外,电动马达的数量也减至一个,有利于降低成本。
在一些实施例中,转动轴的上侧设有容纳转动轴升降的保护罩。这样设计,一方面有利于保护转动轴的升降,避免与其它结构干涉,提高结构可靠性,另一方面避免异物从转动轴上侧进入螺旋传动连接中。
在一些实施例中,保护罩同时作为导向罩,用于导向转动轴升降。这样设计,有利于转动轴更稳定地运动。
在一些实施例中,转动轴的上侧设有限位顶部,转动轴的上端与限位顶部可转动相抵连接,该限位顶部对转动轴构成升降上限位。这样设计提供了一种对转动轴构成升降上限位的结构,该结构较为简单,另外,充分利用了转动轴上侧用于升降的空间,因此有利于小型化。
在一些实施例中,转动轴的上侧设有容纳转动轴升降的保护罩,保护罩的内顶面作为限位顶部。这样设计,在实现对转动轴升降的保护和对转动轴构成升降上限位的同时,结构非常简单。
在一些实施例中,转动轴的外螺旋的螺旋槽的下端为封闭设计,该下端设有第一相抵端面,当转动轴上升至转动件的内螺旋的螺旋凸起的下端面与第一相抵端面相抵时,此时转动轴所处的位置为转动轴的升降上限位位置,此时转动件若继续维持第一方向转动,则螺旋凸起的下端面可通过与第一相抵端面的相抵连接来推动转动轴转动;和/或,转动轴的外螺旋的螺旋槽的上端为封闭设计,该上端设有第二相抵端面,当转动轴下降至转动件的内螺旋的螺旋凸起的上端面与第二相抵端面相抵时的位置,此时转动轴所处的位置作为转动轴的升降下限位位置,此时转动件若继续维持第二方向转动,则螺旋凸起的上端可通过与第二相抵端面的相抵连接来推动转动轴转动。在升降切换到带动转动轴一起转动并持续带动转动轴一起转动时,本条技术方案特别提出螺旋槽进行封闭设计并提供相应的相抵端面,具体来说,具有第一相抵端面和/或第二相抵端面,而螺旋凸起的下端面、上端面进行对应配合,这样,一方面实现了转动轴的升降上限位和升降下限位这两个位置,同时结构较为简单,另一方面,螺旋凸起的下端面可通过与第一相抵端面的相抵连接来推动转动轴转动,和/或螺旋凸起的上端面可通过与第二相抵端面的相抵连接来推动转动轴转动,因此一定程度上避免了螺旋凸起与螺旋槽之间的螺旋贴合面越压越紧的弊端,也有利于降低螺旋贴合面变形、磨损的情况。另外,本条技术方案特别设计为转动轴设置螺旋槽,转动件设置螺旋凸起与螺旋槽配合,有利于转动件的高度做小,同时虽然高度做小,但是还能够实现上述的技术目的。
在一些实施例中,第一相抵端面、螺旋凸起的下端面均设置为径向配合面,和/或第二相抵端面、螺旋凸起的上端面均设置为径向配合面。这样设计后,能够更好地传递周向转动力。
在一些实施例中,转动件沿周向被分为多个部分,该多个部分围绕转动轴拼接以实现转动件与转动轴的螺旋传动连接。这样设计后,当螺旋槽为上下两端都封闭的情况下,提供了一种方便安装转动件的技术方案,尤其是当转动件具有周向闭合孔、并且周向闭合孔内设有所述的螺旋凸起时,例如螺母形式时,那么螺旋槽在上下两端都封闭的情况下是无法直接旋入转动件,因此将转动件沿周向被分为多个部分,就可以方便地将多个部分围绕转动轴拼接以实现转动件与转动轴的螺旋传动连接,多个部分例如分成两半,即分成两个部分。
在一些实施例中,转动轴沿轴向被分为多个部分,其中至少一个部分打开外螺旋的螺旋槽以供转动件螺旋传动连接。该设计提供了另一种螺旋传动连接转动件的技术方案,装配过程可参考如下,先将转动轴沿轴向拆开以打开螺旋槽,然后通过开口旋入转动件,再将转动轴轴向连接复原,从而实现转动件与转动轴的螺旋传动连接。
在一些实施例中,第二部分采用沿轴向质量分布均匀的柱状体,并且该柱状体沿转动轴轴线同轴设置,该柱状体将所述的多个部分连接成整体以得到转动轴。这样设计后,一方面方便实现螺旋连接,另一方面同时解决了第二部分的设置问题,一举两得。
在一些实施例中,拖布与转动轴之间可浮动连接,该可浮动连接是指拖布在经过不同高度的被清洁表面时可相对转动轴轴向运动以实现拖布的自适应高度变化,但是转动轴本身高度不变。这样设计后,由于本公开是在升降上限位和升降下限位才能够继续转动带动转动轴一起转动,所以转动轴的升降高度是固定的,不会根据被清洁表面的高度变化而改变,虽然拖布表面的清洁材质一般为柔软的材质,该柔软的材质具有一定的形变量,但是遇到被清洁表面较大的起伏时,还是无法适应,严重时可能存在顶死的情况,因此本条设计有利于解决前述问题,不仅能够使拖布更好地贴合被清洁表面,而且能够使整体机构工作更为稳定和可靠。
在一些实施例中,转动轴与拖布之间设有可轴向运动的弹性运动结构,该弹性运动结构用于带动拖布相对转动轴进行轴向弹性运动以实现拖布的自适应高度变化。
在一些实施例中,弹性运动结构包括设于转动轴的插入孔和位于插入孔中并可轴向运动的弹性连接件,拖布的上侧设有连接杆,转动轴的下端开口作为插入孔的供连接杆插入并与弹性连接件连接的插入开口。这样设计有利于结构紧凑,另外对拖布的连接较为可靠,插入孔也可对连接杆起到一定的升降导向作用。
在一些实施例中,弹性连接件的下端与连接杆的上端通过磁性连接实现快拆式连接。这样设计,极大便利了拖布与转动轴之间的拆装。
有益效果
采用上述结构后,与现有技术相比,本发明具有以下优点:
通过磁性力来限制转动轴转动从而使转动件与转动轴发生相对转动以升降转动轴,结构非常简单,而在升降上限位时,在第一限位结构限位作用下,此时转动件若继续维持第一方向转动则将带动转动轴克服磁性力以使转动轴一起转动,以及,在升降下限位时,在第二限位结构限位作用下,此时转动件若继续维持第二方向转动则将带动转动轴克服磁性力以使转动轴一起转动。
由上述可知,以磁性组件并结合其它结构的基础技术方案能够解决升降以及升降后持续转动清洁的技术难点,并且结构非常简单,这样就为进一步小型化设置提供了结构基础优势,反过来说,如果基础技术方案本身就较为复杂,那么由于需要首先实现基础技术方案,复杂度无法较为明显降低,所以小型化将会非常困难,而本公开的基础技术方案则非常简单,因此有利于小型化,也就是说能够适用于清洁机(例如小型扫地机器人)。
本发明还提出了一种清洁机,设有前述的可升降的旋转拖布结构。
上述技术方案的有益效果在于:不仅实现了拖布为直接升降,克服了升降部位重量较重的问题,而且,结构更加简化,有利于清洁机的小型化。
附图说明
图1为一种清洁机的下视视角立体示意图。
图2为一种可升降的旋转拖布结构的上视视角立体示意图。
图3为一种可升降的旋转拖布结构的下视视角(已拿掉一个拖布,并去掉密封件后露出环形槽)立体示意图。
图4为图3安装好密封件后的立体示意图。
图5为一种可升降的旋转拖布结构的下视视角(已拿掉底座以及一个拖布)立体示意图。
图6为一种可升降的旋转拖布结构的俯视图。
图7为A-A向剖视图。
图8为A放大示意图。
图9为一种可升降的旋转拖布结构的去掉罩盖后的立体示意图。
图10为进一步去掉转动轴的立体示意图。
图11为另一种可升降的旋转拖布结构的立体示意图。
图12为主要展示第一相抵端面的立体示意图。
图13为主要展示第二相抵端面的立体示意图。
图14为一种转动件的下视视角的立体示意图。
图15为一种转动件的上视视角的立体示意图。
图16为一种转动件的立体示意图。
图17为一种密封件的俯视图。
图18为B-B向剖视图。
图19为一种可升降的旋转拖布结构的具有限位顶部的剖视示意图。
图20为一种将转动轴沿轴向分开两段以打开螺旋槽的开口的立体示意图。
图21为底座的安装座所在部分的上视视角的立体示意图。
图22为底座的安装座所在部分的下视视角的立体示意图。
图23为罩壳的下视视角立体示意图。
图24为转动轴作为第二部分的结构示意图。
图25为在转动轴中同轴设置圆柱状第二部分的结构示意图。
图26为第一部分采用电磁铁的结构示意图。
附图标记说明,1-转动件、2-转动轴、3-拖布、4-密封件、5-底座、6-穿过孔、7-环形槽、8-上环形部分、9-下环形部分、10-驱动齿轮、11-导向部、12-传动齿部、13-安装座、14-底部、15-安装柱、16-安装孔、17-螺接柱、18-第一轴套、19-第二轴套、20-罩盖、21-上限位端、22-下限位端、23-电动马达、24-蜗轮、25-蜗杆、26-传动齿轮、27-保护罩、28-球体、29-限位顶部、30-螺旋槽、31-第一相抵端面、32-第二相抵端面、33-螺旋凸起、34-下端面、35-上端面、36-左半边、37-右半边、38-上段、39-下段、40-插入孔、41-弹性连接件、42-弹性件、43-连接杆、44-铁芯、45-磁体、46-机体、47-第一驱动轮、48-第二驱动轮、49-中扫、50-电连接插头、51-套接柱、52-导向孔、53-螺钉、54-第一部分、55-第二部分、56-电磁铁控制电路。
本发明的实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的实施例只作为举例,本领域技术人员可以想到其它显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其它实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其它技术方案。  
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底” “内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
如图1至26所示为一种可升降的旋转拖布结构以及清洁机,具体来说,一种可升降的旋转拖布结构,包括转动件1、转动轴2和拖布3,转动件1与转动轴2螺旋传动连接,转动件1相对转动轴2轴向位置固定并可转动,转动轴2具有升降上限位和升降下限位这两个位置,转动件1通过位于升降上限位和升降下限位之间的螺旋传动连接来带动转动轴2升降,并且在升降上限位时,转动件1若继续维持第一方向转动,那么转动件1与转动轴2之间通过第一限位结构限位以使转动件1与转动轴2停止相对转动,进而使转动轴2可被转动件1带动一起转动,第一方向是指转动件1带动转动轴2上升的转动方向,以及,在升降下限位时,转动件1若继续维持第二方向转动,那么转动件1与转动轴2之间通过第二限位结构限位以使转动件1与转动轴2停止相对转动,进而使转动轴2可被转动件1带动一起转动,第二方向是指转动件1带动转动轴2下降的转动方向,第一方向与第二方向转动方向相反,转动轴2与拖布3连接,转动轴2用于带动拖布3旋转和升降,还包括磁性组件,该磁性组件包括可通过磁性力相互吸引的第一部分54和第二部分55,第一部分54固定设置,第二部分55设于转动轴2上,该磁性力用于限制转动轴2转动从而使转动件1与转动轴2发生相对转动以升降转动轴2,并且在升降上限位时,此时转动件1若继续维持第一方向转动则将带动转动轴2克服磁性力以使转动轴2一起转动,以及,在升降下限位时,此时转动件1若继续维持第二方向转动则将带动转动轴2克服磁性力以使转动轴2一起转动;一种清洁机,采用前述的可升降的旋转拖布结构。
在一些实施例中,如图24所示,第一部分54和第二部分55之间设置第一磁性力,在第一磁性力作用下,转动轴2减速而使得转动轴2与转动件1之间产生相对运动。
在一些实施例中,如图25所示,第一部分54和第二部分55之间设置第二磁性力,在第二磁性力作用下,转动轴2停止转动而使得转动轴2与转动件1之间产生相对运动。
在一些实施例中,如图3、4、24、25、26所示,第一部分54位于转动轴2周向并设有间隙形成非接触式设置。
在一些实施例中,第一部分54设置为第一磁体,第二部分55设置为第二磁体,或者第一部分54与第二部分55之间有一个为磁体,另一个为可被磁力吸引的材料体;所述的第一磁体、第二磁体、磁体可采用永磁体或电磁铁。
如图26所示,电磁铁受控于电磁铁控制电路56,通过电磁铁控制电路56的通断电来实现第一部分54是否产生磁性力。
在一些实施例中,如图25所示,第二部分55在整个升降行程中,第二部分55与第一部分54之间在径向上至少局部重叠。本例中,第二部分55的轴向长度设置为约等于升降的行程或大于升降的行程,而第一部分54在径向上位于升降的行程之间,至少有局部位于升降的行程之间。
在一些实施例中,如图24所示,第二部分55由转动轴2本体提供。
在一些实施例中,如图25所示,第二部分55为独立零件,对于第二部分55为独立零件的情形,第二部分55全部埋设在转动轴2中,当然,还可以是其它设置,例如局部暴露在转动轴2周向表面。
在一些实施例中,如图25所示,对于第二部分55全部埋设在转动轴2中的情况,第二部分55采用沿轴向质量分布均匀的柱状体,并且该柱状体沿转动轴2轴线同轴设置。柱状体例如圆柱体、多棱柱等。
在一些实施例中,如图3、4所示,第一部分54采用永磁体,并向上嵌入在底部14中,第一部分54为四个,沿转动轴2周向分布。这样设计后,可以有利于第一部分54与驱动齿轮10避开设置,且具有较强的磁性力。
在一些实施例中,如图3、4所示,第一部分54位于转动轴2周向并设有间隙形成非接触式设置,该间隙位于密封件4的内侧以受密封保护,如图4所示,该间隙已被密封件4挡住。
在一些实施例中,如图1所示为一种采用本公开的可升降的旋转拖布结构的清洁机(即扫地机器人),包括:机体46,机体46用于安装或作为壳体包覆各个组件,组件例如第一驱动轮47、第二驱动轮48、中扫49、可升降的旋转拖布结构等,中扫49具有滚刷和主吸口,利用中扫49先对被清洁表面进行滚刷及吸尘清洁,然后利用连接有拖布3的可升降的旋转拖布结构,用于旋转清洁,基于控制清洁机体积和保障清洁效率这两个角度来说,较为优选的技术方案为左右各设置一个拖布3,例如将两个拖布3沿清洁机行进方向的左右基本对称设置,这样也就意味着本公开的可升降的旋转拖布结构具有左右基本对称设置的两个。
由于本公开的技术方案所具有的优势,即驱动齿轮10既可以带动拖布3升降、又可以带动拖布3转动,所以为进一步简化结构提供了结构基础,因此,虽然需要对两个拖布3进行操作,但是可以仅用一个电动马达23,具体结构可参考如下:包括一个电动马达23和多个拖布3,每个拖布3设置一个转动轴2,每个转动轴2设置一个驱动齿轮10,该电动马达23通过传动结构与各个驱动齿轮10传动连接,该电动马达23既作为转动轴2带动拖布3升降的电动马达23,又作为转动轴2带动拖布3旋转的电动马达23。传动结构例如蜗轮蜗杆传动结构,电动马达23可采用双出轴结构,双出轴结构具有左右对称的两个输出轴,该两个输出轴分别连接一个蜗杆25,每个蜗杆25对应设置一个蜗轮24,该蜗轮24同轴设置一个传动齿轮26,该传动齿轮26与驱动齿轮10的传动齿部12啮合传动连接,为了使驱动齿轮10重心靠下,因此蜗轮24与传动齿轮26采用同轴上下分布的结构。前述结构可参考附图5和8。
在一些实施例中,如图2至5以及图8至10所示,可升降的旋转拖布结构设置成模块化结构,即将可升降的旋转拖布结构设置为单独的模块,先将可升降的旋转拖布结构装配完成后,然后再将该模块装入机体46内,然后连接上拖布3,这样设计具有模块化带来的好处,只要机体46预留了模块安装的空间,则在拿到该模块后,就能够方便地装入模块来为机体46增加可升降的拖布3的功能,适合大规模量产。尤其是将模块化的可升降的旋转拖布结构体积做小或者机体46预留有足够的安装空间,那么即使机体46的外形有变换或调整,也有利于直接采用该模块,也就是说将模块的形状与机体46的外形无关。
模块化的具体结构例如:机座包括底座5和罩盖20,可升降的旋转拖布结构除了拖布3外的部分均安装在底座5和罩盖20之间,为了更加方便装配,另外有利于重心更低,如图2至5以及图8至10所示,可升降的旋转拖布结构基本都安装在底座5上,另外,在一些实施例中,由于升降高度要求较高,导致转动轴2高度较高,所以设置有向上凸出于罩盖20上侧面的保护罩27,保护罩27周围的空间则可用于清洁机其它部件安装使用,因此,有利于小型化。而在一些实施例中,保护罩27同时作为导向罩,可用于导向转动轴2升降。另外,通过进一步设置电连接插头50,该电连接插头50作为内外电连接的总接口,通过电连接插头50提供供电及信号联系,从而使得模块化的可升降的旋转拖布结构在装入机体46中时,进一步简化装配工作,方便模块化的可升降的旋转拖布结构与清洁机的供电模块和控制模块进行电连接。
在一些实施例中,如图2、3、4、6所示,底座5下侧设置拖布3,底座5设置供转动轴2升降的穿过孔6,转动轴2下端露出在穿过孔6外并与拖布3连接,穿过孔6设有密封件4。
由于实现相对运动的主要力量来自于磁性力,所以可采取其它措施来有效降低密封件4与转动轴2之间密封接触所形成的第一摩擦力,这样有利于密封件4的密封寿命。
在一些实施例中,如图2、3、4、6、17、18所示,底座5的位于拖布3的一侧的侧面上设有环形槽7,环形槽7套接固定有密封件4,该密封件4设有向转动轴2周向延伸设置的密封部,密封部与转动轴2可转动连接。这样设计后,从外侧进行套接安装,使得生产制造非常方便,当有更换的需求时,也方便对密封件4的更换。
在一些实施例中,如图6、17、18所示,密封件4设有周向弹性部,周向弹性部相对转动轴2倾斜设置。特别的,在一些实施例中,周向弹性部包括上下两个环形部分,分别记为上环形部分8和下环形部分9,这两个环形部分构成向转动轴2一侧开口的V形部。
这样设计后,一方面避免硬接触,有利于降低损耗,另一方面有利于降噪,避免产生较大的噪音。
对于周向弹性部相对转动轴倾斜设置。这样设计后,一方面,通过倾斜设置这样的结构设置来作为保障弹性接触力的技术手段之一(即保障弹性接触力的技术手段并非完全依赖弹性材料),从而在频繁使用中仍然能够维持良好的密封接触,另一方面,结构简单紧凑。
对于V形部。该设计是在实现本发明目的的同时,基于对转动轴具有升降运动的特点的针对性设计,具体来说,不够上升还是下降,均具有较好地密封,另外,采用本条技术方案设计,也有利于阻止异物进入,还有利于将转动轴上携带的异物刮下来,从而很大程度上降低了异物进入的可能性。
在一些实施例中,如图6至10以及图14、15所示,还包括相对转动轴2轴向位置固定并可转动的驱动齿轮10,驱动齿轮10与转动轴2套接连接,驱动齿轮10与转动件1同轴连接以带动转动件1一起转动。
在一些实施例中,如图7、14、15所示,驱动齿轮10设有导向部11,所述的导向部11与转动轴2轴向导向连接。
在一些实施例中,如图7、14、15所示,导向部11采用导向套,如图7所示转动轴2处于升降下限位的位置,此时转动轴2的外螺旋的下端已经超出导向部11的下端的端面,但是为了更好地防异物从外螺旋的下端进入螺旋传动连接中,可以将导向部11继续向下延伸,从而使转动轴2的外螺旋的下端仍然位于导向部11中,即螺旋槽30的下端仍然位于导向部11中,转动轴2的位于所述的外螺旋的下侧的非螺旋区的至少局部外周壁与导向部11套接配合,该套接配合用于防异物从外螺旋的下端进入螺旋传动连接中。
在一些实施例中,如图7、14、15所示,驱动齿轮10包括位于外周的传动齿部12和位于内周的导向部11,传动齿部12与导向部11之间设置第一转动支撑结构,该第一转动支撑结构用于转动支撑驱动齿轮10。第一转动支撑结构一般采用轴承或轴套。
在一些实施例中,如图7、14、15、23所示,第一转动支撑结构包括沿远离拖布3一侧的方向延伸设置的安装座13,该安装座13插入配合在传动齿部12与导向部11之间的环形间隔中,并且驱动齿轮10与安装座13之间可转动连接。本例中,导向部11与安装座13内外套接,导向部11与安装座13之间设置第一轴套18。当然也可以将第一轴套18用球轴承等转动支撑结构来替换,但是由于第一轴套18没有滚子等结构,所以相比球轴承等转动支撑结构来说厚度较小,所以更适用于本公开小型化的需求。
在一些实施例中,如图7、21、22所示,安装座13设于机座的底部14,即设于底座5的底部14,该底部14的下侧为拖布3的所在侧,该底部14的上侧设置所述的安装座13。
在一些实施例中,如图3、4、7、21、22所示,该底部14的与安装座13所占位置对应的下侧面设有环形槽7,环形槽7套接固定有密封件4。本条技术方案这样设计后,一方面有利于进一步简化结构,方便安装,也方便更换,另一方面,由于机座底部14的上侧设置所述的安装座13,安装座13将占据机座底部14的一定的面积,那么本条技术方案设计后,在高度上充分利用了底部14的与安装座13所占位置对应的下侧面,在开环形槽7时,环形槽7可向上开设到安装座13中,因此安装座13自身得到了充分利用,这样设置有利于扁平化设计,即有利于小型化。
在一些实施例中,如图7、9所示,转动件1与导向部11沿驱动齿轮10的轴向上下分布,转动件1的下端与导向部11的上端相邻设置。本例中,转动件1的下端与导向部11的上端相贴设置。
在一些实施例中,如图7、14、15所示,驱动齿轮10设有位于导向部11的上侧的安装柱15,安装柱15设有安装孔16,转动件1安装于安装孔16中。为了更方便安装及更可靠地固定转动件1,安装孔16内设有多个螺接柱17,图中所示为周向分布的4个,转动件1安装于安装孔16中后,再用螺钉53将转动件1固定再螺接柱17上,这样可承受更大的扭矩,满足传动需求。
前述设计还解决了转动件1如何设置的问题,并且,一方面转动件1安装于安装孔16中,即转动件1相当于设于驱动齿轮10中,因此有利于转动件1与驱动齿轮10在连接后重心的降低,有利于转动平稳,另一方面转动件1安装于安装孔16中,有利于降低整体高度,实现扁平化。
在一些实施例中,如图7、14、15所示,驱动齿轮10具有位于外周的传动齿部12,该传动齿部12位于安装柱15的下侧,传动齿部12与转动件1沿驱动齿轮10的轴向上下分布。这样设计后,有利于重心下移,从而有利于驱动齿轮10转动平稳。
在一些实施例中,安装柱15的外周设有转动支撑结构。如图7所示,第二转动支撑结构作为前述的转动支撑结构,有利于结构更为简化。另外,因为转动件1在工作时为受力部件,而安装柱15设有安装孔16,转动,1安装于安装孔16中,所以特地在安装柱15的外周设有转动支撑结构,有利于转动件1的转动平稳和可靠,因此有利于转动件1能够长期处于良好的工作状态。
在一些实施例中,如图7、14、15所示,驱动齿轮10的上侧设有罩盖20,该罩盖20与驱动齿轮10可转动连接,罩盖20用于防异物从转动轴2的外螺旋的上端进入螺旋传动连接中。例如,可在该罩盖20与驱动齿轮10之间设置密封圈,当然除了密封圈,还可以是其它结构,凡是适用的结构均可应用于本公开中。
在一些实施例中,驱动齿轮10的上部周向设有第二转动支撑结构,第二转动支撑结构、第一转动支撑结构上下分布形成对驱动齿轮10的上下转动支撑。这样更有利于驱动齿轮10转动平稳。
在一些实施例中,如图7所示,驱动齿轮10的上侧设有罩盖20,该罩盖20与驱动齿轮10之间设有第二转动支撑结构,驱动齿轮10通过第二转动支撑结构与罩盖20可转动连接,第二转动支撑结构同时堵塞了异物从罩盖20与驱动齿轮10之间到达转动轴2的外螺旋的上端进而进入螺旋传动连接中的通道,也就是说利用第二转动支撑结构来实现防异物进入。本例中,如图7、23所示,罩盖20设有套接柱51,该套接柱51向驱动齿轮10一侧延伸,套接柱51与驱动齿轮10的安装柱15外内套接,套接柱51与驱动齿轮10之间设置第二轴套19,套接柱51与驱动齿轮10的安装柱15外内套接以及第二轴套19的设置可以用来阻挡异物。当然也可以将第二轴套19用球轴承等转动支撑结构来替换,但是由于第二轴套19没有滚子等结构,所以相比球轴承等转动支撑结构来说厚度较小,所以更适用于本公开小型化的需求。
在一些实施例中,如图7所示,驱动齿轮10的上部周向设有第二转动支撑结构,第二转动支撑结构、第一转动支撑结构上下分布形成对驱动齿轮10的上下转动支撑。本例中,所述的驱动齿轮10的上部即安装柱15的局部或全部。
在一些实施例中,如图7所示,第二转动支撑结构具有上限位端21,上限位端21与驱动齿轮10轴向相抵以对驱动齿轮10进行轴向上限位,第一转动支撑结构具有下限位端22,下限位端22与驱动齿轮10轴向相抵以对驱动齿轮10进行轴向下限位。这样第二转动支撑结构、第一转动支撑结构可以同时作为对驱动齿轮10进行轴向限位结构,因此有利于结构简化。
另外,这样设计后,一方面,实现对驱动齿轮10的轴向限位,从而在转动件1运动中提供轴向力的支撑,另一方面利用第二转动支撑结构、第一转动支撑结构构成轴向限位,结构得以简化。
在一些实施例中,如图7、21所示,安装座13内周设有第一环形支撑面作为第一转动支撑结构的下限位端22,第一轴套18的下端与下限位端22相贴配合,从而通过下限位端22轴向下限位第一轴套18,由于第一轴套18限位在导向部11与安装座13之间,所以最终构成对驱动齿轮10的轴向下限位。
在一些实施例中,如图7、23所示,罩壳的顶面作为第二转动支撑结构的上限位端21,第二轴套19的上端与上限位端21相贴配合,从而通过上限位端21轴向上限位第二轴套19,由于第二轴套19限位在罩壳与驱动齿轮10之间,所以最终构成对驱动齿轮10的轴向上限位。
关于对驱动齿轮10的轴向限位方案,如图7所示的结构是较为紧凑和简单的设计方案,而轴向限位方案还可以是其它方案,例如对驱动齿轮10的上下端面进行限位,具体来说,可以是罩壳的顶面与驱动齿轮10的上端面35可转动相贴连接,底座5的底部14上侧面与驱动齿轮10的下端面34可转动相贴连接,又例如将第一轴套18和/或第二轴套19更换成可进行轴向限位的轴承,通过轴承自身轴向限位实现对驱动齿轮10的轴向限位,凡是适用于对驱动齿轮10进行轴向限位的方案均可用于本公开中。
在一些实施例中,如图19所示,转动轴2的上侧设有限位顶部29,转动轴2的上端与限位顶部29可转动相抵连接,限位顶部29构成第一限位结构,为了减小摩擦力,在转动轴2的上端与限位顶部29之间设置球体28,本例中,在转动轴2的上端设置球体28,该限位顶部29对转动轴2构成升降上限位。因此,不同于下述的由内螺旋的螺旋凸起33的下端面34与第一相抵端面31相抵构成的升降上限位方案。当然对转动轴2构成升降上限位和升降下限位的方案还有其它,例如螺旋的上下端相契合,即利用在螺旋末端锁死的方案分别构成第一限位结构和第二限位结构,又例如在转动轴2上设置上下挡杆,通过挡杆阻止转动件1与转动轴2继续相对运动,同时避免在螺旋末端锁死,通过挡杆阻止转动件1与转动轴2继续相对运动的方案分别构成第一限位结构和第二限位结构。凡是适用于对转动轴2构成升降上限位和升降下限位的限位结构的方案均可用于本公开中。
在一些实施例中,如图19所示,转动轴2的上侧设有容纳转动轴2升降的保护罩27,保护罩27的内顶面作为限位顶部29。
在一些实施例中,如图12、13、16所示,转动轴2的外螺旋的螺旋槽30的下端为封闭设计,该下端设有第一相抵端面31,当转动轴2上升至转动件1的内螺旋的螺旋凸起33的下端面34与第一相抵端面31相抵时,此时转动轴2所处的位置为转动轴2的升降上限位位置,第一相抵端面31构成第一限位结构,此时转动件1若继续维持第一方向转动,则螺旋凸起33的下端面34可通过与第一相抵端面31的相抵连接来推动转动轴2转动;和/或,转动轴2的外螺旋的螺旋槽30的上端为封闭设计,该上端设有第二相抵端面32,当转动轴2下降至转动件1的内螺旋的螺旋凸起33的上端面35与第二相抵端面32相抵时的位置,此时转动轴2所处的位置作为转动轴2的升降下限位位置,第二相抵端面32构成第二限位结构,此时转动件1若继续维持第二方向转动,则螺旋凸起33的上端可通过与第二相抵端面32的相抵连接来推动转动轴2转动。本例中,既有内螺旋的螺旋凸起33的下端面34与第一相抵端面31相抵的结构,又有螺旋凸起33的上端面35与第二相抵端面32相抵的结构,这样既构成对转动轴2构成升降上限位和升降下限位的方案,又实现转动件1更好地带动转动轴2转动的目的,从而有利于简化结构,实现小型化。由于上述结构的设置,所以,螺旋凸起33的螺旋长度可以较短,不用很长,例如如图10所示,可以仅有一小段,该一小段的螺旋凸起33全部位于转动件1的左半边36上。
在一些实施例中,如图12、13、16所示,第一相抵端面31、螺旋凸起33的下端面34均设置为径向配合面,和/或第二相抵端面32、螺旋凸起33的上端面35均设置为径向配合面。本例中,第一相抵端面31、螺旋凸起33的下端面34、第二相抵端面32、螺旋凸起33的上端面35均设置为径向配合面。
在一些实施例中,如图9、10所示,转动件1沿周向被分为多个部分,该多个部分围绕转动轴2拼接以实现转动件1与转动轴2的螺旋传动连接。本例中,转动件1被分为两部分,分别为左半边36和右半边37。
在一些实施例中,如图11所示,由于螺旋凸起33的螺旋长度可以不用很长,所以可以仅有左半边36,螺旋凸起33全部位于左半边36上,但是如果转动件1为周向闭合零件,则有利于带动转动轴2运动。
在一些实施例中,转动轴2沿轴向被分为多个部分,其中至少一个部分打开外螺旋的螺旋槽30以供转动件1螺旋传动连接。如图20所示,转动轴2被分为上段38和下段39,螺旋槽30主体位于上段38,而第一相抵端面31则位于下段39,因此螺旋槽30被打开,转动件1可从而上段38的下端旋入上段38,接着再将上段38和下段39拼接,从而完成转动件1与转动轴2的螺旋传动连接。
在一些实施例中,如图25所示,第二部分55采用沿轴向质量分布均匀的柱状体,并且该柱状体沿转动轴2轴线同轴设置,该柱状体将所述的多个部分连接成整体以得到转动轴2,本例中,即利用第二部分55将上段38和下段39连接成整体以得到转动轴2,上段38和下段39均设有插接配合的插接孔。
在一些实施例中,拖布3与转动轴2之间可浮动连接,该可浮动连接是指拖布3在经过不同高度的被清洁表面时可相对转动轴2轴向运动以实现拖布3的自适应高度变化,但是转动轴2本身高度不变。可浮动连接例如转动轴2与拖布3之间设有可轴向运动的弹性运动结构,该弹性运动结构用于带动拖布3相对转动轴2进行轴向弹性运动以实现拖布3的自适应高度变化。如图7、8所示,弹性运动结构包括设于转动轴2的插入孔40和位于插入孔40中并可轴向运动的弹性连接件41,拖布3的上侧设有连接杆43,转动轴2的下端开口作为插入孔40的供连接杆43插入并与弹性连接件41连接的插入开口。在弹性连接件41作用下,使拖布3弹性贴住被清洁表面,随着被清洁表面的凹凸不平的变化,在弹性连接件41作用下,拖布3也会自然升降,从而使拖布3更好地清洁被清洁表面。
在弹性连接件41的弹性可以利用弹性材料制成弹性连接件41,当然还可以是其它方案,例如弹性连接件41上设置弹性件42,该弹性件42的上端与插入孔40的底面相抵连接,该弹性件42的下端与弹性连接件41套接并相抵连接,弹性连接件41可插入导向配合在转动轴2中设置的位于前述的底面的上侧的导向孔52中。
在一些实施例中如图7、8所示,弹性连接件41的下端与连接杆43的上端通过磁性连接实现快拆式连接,本例中,具体来说,弹性连接件41的下端设有磁体45,连接杆43的上端设有铁芯44。
在一些实施例中,如图5所示,由于在清洁被清洁表面时,拖布3转动所需的扭力较大,所以插入孔40设置为内六角配合孔,连接杆43设有外六角周壁,外六角周壁与内六角配合孔形成连接杆43与插入孔40的转动传动套接,由于外六角周壁与内六角配合孔的具有较大接触面,所以能够提供大扭力传动,有利于拖布3转动的稳定性。
在理解本公开时,若有需要,上述结构可参考其它实施例/附图一并理解,这里不加赘述。
以上所述仅是本发明的用于举例说明的实施方式,故凡依本发明专利保护范围所述的构造、特征及原理所做的等效变化或修饰,均包括于本发明专利保护范围内。

Claims (35)

  1. 一种可升降的旋转拖布结构,包括转动件(1)、转动轴(2)和拖布(3),转动件(1)与转动轴(2)螺旋传动连接,转动件(1)相对转动轴(2)轴向位置固定并可转动,转动轴(2)具有升降上限位和升降下限位这两个位置,转动件(1)通过位于升降上限位和升降下限位之间的螺旋传动连接来带动转动轴(2)升降,并且在升降上限位时,转动件(1)若继续维持第一方向转动,那么转动件(1)与转动轴(2)之间通过第一限位结构限位以使转动件(1)与转动轴(2)停止相对转动,进而使转动轴(2)可被转动件(1)带动一起转动,第一方向是指转动件(1)带动转动轴(2)上升的转动方向,以及,在升降下限位时,转动件(1)若继续维持第二方向转动,那么转动件(1)与转动轴(2)之间通过第二限位结构限位以使转动件(1)与转动轴(2)停止相对转动,进而使转动轴(2)可被转动件(1)带动一起转动,第二方向是指转动件(1)带动转动轴(2)下降的转动方向,第一方向与第二方向转动方向相反,转动轴(2)与拖布(3)连接,转动轴(2)用于带动拖布(3)旋转和升降,其特征在于,还包括磁性组件,该磁性组件包括可通过磁性力相互吸引的第一部分(54)和第二部分(55),第一部分(54)固定设置,第二部分(55)设于转动轴(2)上,该磁性力用于限制转动轴(2)转动从而使转动件(1)与转动轴(2)发生相对转动以升降转动轴(2),并且在升降上限位时,此时转动件(1)若继续维持第一方向转动则将带动转动轴(2)克服磁性力以使转动轴(2)一起转动,以及,在升降下限位时,此时转动件(1)若继续维持第二方向转动则将带动转动轴(2)克服磁性力以使转动轴(2)一起转动。
  2. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,第一部分(54)和第二部分(55)之间设置第一磁性力,在第一磁性力作用下,转动轴(2)减速而使得转动轴(2)与转动件(1)之间产生相对运动。
  3. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,第一部分(54)和第二部分(55)之间设置第二磁性力,在第二磁性力作用下,转动轴(2)停止转动而使得转动轴(2)与转动件(1)之间产生相对运动。
  4. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,第一部分(54)位于转动轴(2)周向并设有间隙形成非接触式设置。
  5. 如权利要求1至5任意一项权利要求所述的可升降的旋转拖布结构,其特征在于,第一部分(54)设置为第一磁体,第二部分(55)设置为第二磁体,或者第一部分(54)与第二部分(55)之间有一个为磁体,另一个为可被磁力吸引的材料体;所述的第一磁体、第二磁体、磁体可采用永磁体或电磁铁。
  6. 如权利要求5所述的可升降的旋转拖布结构,其特征在于,第二部分(55)沿转动轴(2)轴向设置,第二部分(55)在整个升降行程中,第二部分(55)与第一部分(54)之间在径向上至少局部重叠。
  7. 如权利要求6所述的可升降的旋转拖布结构,其特征在于,第二部分(55)由转动轴(2)本体提供,或者第二部分(55)为独立零件,对于第二部分(55)为独立零件的情形,第二部分(55)全部埋设在转动轴(2)中或者局部暴露在转动轴(2)周向表面。
  8. 如权利要求7所述的可升降的旋转拖布结构,其特征在于,对于第二部分(55)全部埋设在转动轴(2)中的情况,第二部分(55)采用沿轴向质量分布均匀的柱状体,并且该柱状体沿转动轴(2)轴线同轴设置。
  9. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,还包括机座,机座下侧设置拖布(3),机座设置供转动轴(2)升降的穿过孔(6),转动轴(2)下端露出在穿过孔(6)外并与拖布(3)连接,穿过孔(6)设有密封件(4)。
  10. 如权利要求9所述的可升降的旋转拖布结构,其特征在于,第一部分(54)位于转动轴(2)周向并设有间隙形成非接触式设置,该间隙位于密封件(4)的内侧以受密封保护。
  11. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,还包括相对转动轴(2)轴向位置固定并可转动的驱动齿轮(10),驱动齿轮(10)与转动轴(2)套接连接,驱动齿轮(10)与转动件(1)同轴连接以带动转动件(1)一起转动。
  12. 如权利要求11所述的可升降的旋转拖布结构,其特征在于,驱动齿轮(10)设有导向部(11),所述的导向部(11)与转动轴(2)轴向导向连接。
  13. 如权利要求12所述的可升降的旋转拖布结构,其特征在于,导向部(11)采用导向套,在升降下限位时,转动轴(2)的外螺旋的下端仍然位于导向部(11)中,转动轴(2)的位于所述的外螺旋的下侧的非螺旋区的至少局部外周壁与导向部(11)套接配合,该套接配合用于防异物从外螺旋的下端进入螺旋传动连接中。
  14. 如权利要求12所述的可升降的旋转拖布结构,其特征在于,驱动齿轮(10)包括位于外周的传动齿部(12)和位于内周的导向部(11)。
  15. 如权利要求14所述的可升降的旋转拖布结构,其特征在于,传动齿部(12)与导向部(11)之间设置第一转动支撑结构,该第一转动支撑结构用于转动支撑驱动齿轮(10),第一转动支撑结构包括沿远离拖布(3)一侧的方向延伸设置的安装座(13),该安装座(13)插入配合在传动齿部(12)与导向部(11)之间的环形间隔中,并且驱动齿轮(10)与安装座(13)之间可转动连接。
  16. 如权利要求15所述的可升降的旋转拖布结构,其特征在于,安装座(13)设于机座的底部(14),该底部(14)的下侧为拖布(3)的所在侧,该机座底部(14)的上侧设置所述的安装座(13)。
  17. 如权利要求12所述的可升降的旋转拖布结构,其特征在于,转动件(1)与导向部(11)沿驱动齿轮(10)的轴向上下分布。
  18. 如权利要求11所述的可升降的旋转拖布结构,其特征在于,驱动齿轮(10)的上侧设有罩盖(20),该罩盖(20)用于防异物从转动轴(2)的外螺旋的上端进入螺旋传动连接中。
  19. 如权利要求11所述的可升降的旋转拖布结构,其特征在于,驱动齿轮(10)的上侧设有罩盖(20),该罩盖(20)与驱动齿轮(10)之间设有第二转动支撑结构,驱动齿轮(10)通过第二转动支撑结构与罩盖(20)可转动连接。
  20. 如权利要求19所述的可升降的旋转拖布结构,其特征在于,第二转动支撑结构同时作为堵塞异物从罩盖(20)与驱动齿轮(10)之间到达转动轴(2)的外螺旋的上端进而进入螺旋传动连接中的通道的堵塞物。
  21. 如权利要求11所述的可升降的旋转拖布结构,其特征在于,包括一个电动马达(23)和多个拖布(3),每个拖布(3)设置一个转动轴(2),每个转动轴(2)设置一个驱动齿轮(10),该电动马达(23)通过传动结构与各个驱动齿轮(10)传动连接,该电动马达(23)既作为转动轴(2)带动拖布(3)升降的电动马达(23),又作为转动轴(2)带动拖布(3)旋转的电动马达(23)。
  22. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,转动轴(2)的上侧设有容纳转动轴(2)升降的保护罩(27)。
  23. 如权利要求22所述的可升降的旋转拖布结构,其特征在于,保护罩(27)同时作为导向罩,用于导向转动轴(2)升降。
  24. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,转动轴(2)的上侧设有限位顶部(29),转动轴(2)的上端与限位顶部(29)可转动相抵连接,该限位顶部(29)对转动轴(2)构成升降上限位。
  25. 如权利要求24所述的可升降的旋转拖布结构,其特征在于,转动轴(2)的上侧设有容纳转动轴(2)升降的保护罩(27),保护罩(27)的内顶面作为限位顶部(29)。
  26. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,转动轴(2)的外螺旋的螺旋槽(30)的下端为封闭设计,该下端设有第一相抵端面(31),当转动轴(2)上升至转动件(1)的内螺旋的螺旋凸起(33)的下端面(34)与第一相抵端面(31)相抵时,此时转动轴(2)所处的位置为转动轴(2)的升降上限位位置,此时转动件(1)若继续维持第一方向转动,则螺旋凸起(33)的下端面(34)可通过与第一相抵端面(31)的相抵连接来推动转动轴(2)转动;和/或,转动轴(2)的外螺旋的螺旋槽(30)的上端为封闭设计,该上端设有第二相抵端面(32),当转动轴(2)下降至转动件(1)的内螺旋的螺旋凸起(33)的上端面(35)与第二相抵端面(32)相抵时的位置,此时转动轴(2)所处的位置作为转动轴(2)的升降下限位位置,此时转动件(1)若继续维持第二方向转动,则螺旋凸起(33)的上端可通过与第二相抵端面(32)的相抵连接来推动转动轴(2)转动。
  27. 如权利要求26所述的可升降的旋转拖布结构,其特征在于,第一相抵端面(31)、螺旋凸起(33)的下端面(34)均设置为径向配合面,和/或第二相抵端面(32)、螺旋凸起(33)的上端面(35)均设置为径向配合面。
  28. 如权利要求26所述的可升降的旋转拖布结构,其特征在于,转动件(1)沿周向被分为多个部分,该多个部分围绕转动轴(2)拼接以实现转动件(1)与转动轴(2)的螺旋传动连接。
  29. 如权利要求26所述的可升降的旋转拖布结构,其特征在于,转动轴(2)沿轴向被分为多个部分,其中至少一个部分打开外螺旋的螺旋槽(30)以供转动件(1)螺旋传动连接。
  30. 如权利要求29所述的可升降的旋转拖布结构,其特征在于,第二部分(55)采用沿轴向质量分布均匀的柱状体,并且该柱状体沿转动轴(2)轴线同轴设置,该柱状体将所述的多个部分连接成整体以得到转动轴(2)。
  31. 如权利要求1所述的可升降的旋转拖布结构,其特征在于,拖布(3)与转动轴(2)之间可浮动连接,该可浮动连接是指拖布(3)在经过不同高度的被清洁表面时可相对转动轴(2)轴向运动以实现拖布(3)的自适应高度变化,但是转动轴(2)本身高度不变。
  32. 如权利要求31所述的可升降的旋转拖布结构,其特征在于,转动轴(2)与拖布(3)之间设有可轴向运动的弹性运动结构,该弹性运动结构用于带动拖布(3)相对转动轴(2)进行轴向弹性运动以实现拖布(3)的自适应高度变化。
  33. 如权利要求32所述的可升降的旋转拖布结构,其特征在于,弹性运动结构包括设于转动轴(2)的插入孔(40)和位于插入孔(40)中并可轴向运动的弹性连接件(41),拖布(3)的上侧设有连接杆(43),转动轴(2)的下端开口作为插入孔(40)的供连接杆(43)插入并与弹性连接件(41)连接的插入开口。
  34. 如权利要求33所述的可升降的旋转拖布结构,其特征在于,弹性连接件(41)的下端与连接杆(43)的上端通过磁性连接实现快拆式连接。
  35. 一种清洁机,其特征在于,设有权利要求1至34任意一项权利要求所述的可升降的旋转拖布结构。
PCT/CN2023/105077 2022-06-30 2023-06-30 一种可升降的旋转拖布结构以及清洁机 WO2024002361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221696173 2022-06-30
CN202221696173.8 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024002361A1 true WO2024002361A1 (zh) 2024-01-04

Family

ID=88551566

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/105077 WO2024002361A1 (zh) 2022-06-30 2023-06-30 一种可升降的旋转拖布结构以及清洁机
PCT/CN2023/105421 WO2024002374A1 (zh) 2022-06-30 2023-06-30 一种可升降的旋转拖布结构以及清洁机

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105421 WO2024002374A1 (zh) 2022-06-30 2023-06-30 一种可升降的旋转拖布结构以及清洁机

Country Status (2)

Country Link
CN (6) CN117322808A (zh)
WO (2) WO2024002361A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1544531A (fr) * 1966-11-15 1968-10-31 Hoover Ltd Système automatique de transformation d'un appareil pour le brossage d'un sol avec aspiration de liquide
US20180003265A1 (en) * 2016-07-01 2018-01-04 HONORS Co., Ltd. Rotary mop with durable gear drive unit
CN113558528A (zh) * 2021-07-20 2021-10-29 杰瑞华创科技有限公司 一种升降装置以及扫地机器人
CN113749574A (zh) * 2021-10-15 2021-12-07 普联技术有限公司 升降装置及清洁机器人
CN215305548U (zh) * 2021-02-08 2021-12-28 美智纵横科技有限责任公司 升降装置及清洁机器人
CN216126145U (zh) * 2020-06-29 2022-03-25 宁波富佳实业股份有限公司 一种可升降的旋转拖布结构以及清洁机
CN216569781U (zh) * 2021-02-10 2022-05-24 云鲸智能科技(东莞)有限公司 清洁组件及清洁机器人

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141318A (ja) * 2018-02-21 2019-08-29 パナソニックIpマネジメント株式会社 自律走行型掃除機
CN113576344A (zh) * 2021-08-16 2021-11-02 普联技术有限公司 清洁机构及清洁机器人
CN216823237U (zh) * 2021-09-30 2022-06-28 北京顺造科技有限公司 旋转升降浮动装置及自动清洁设备
CN216569820U (zh) * 2021-09-30 2022-05-24 云鲸智能科技(东莞)有限公司 清洁组件及清洁设备
CN216167243U (zh) * 2021-10-15 2022-04-05 普联技术有限公司 升降装置及清洁机器人
CN216417086U (zh) * 2021-10-25 2022-05-03 杭州华橙软件技术有限公司 升降拖地装置、主机以及清洁机器人
CN216628452U (zh) * 2021-11-01 2022-05-31 深圳市魅电科技有限公司 一种可升降式扫地机器人拖地刷
CN114010117B (zh) * 2021-11-01 2022-10-28 深圳市魅电科技有限公司 一种可升降式扫地机器人拖地刷
CN217911742U (zh) * 2022-06-30 2022-11-29 宁波富佳实业股份有限公司 一种可升降的旋转拖布结构以及清洁机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1544531A (fr) * 1966-11-15 1968-10-31 Hoover Ltd Système automatique de transformation d'un appareil pour le brossage d'un sol avec aspiration de liquide
US20180003265A1 (en) * 2016-07-01 2018-01-04 HONORS Co., Ltd. Rotary mop with durable gear drive unit
CN216126145U (zh) * 2020-06-29 2022-03-25 宁波富佳实业股份有限公司 一种可升降的旋转拖布结构以及清洁机
CN215305548U (zh) * 2021-02-08 2021-12-28 美智纵横科技有限责任公司 升降装置及清洁机器人
CN216569781U (zh) * 2021-02-10 2022-05-24 云鲸智能科技(东莞)有限公司 清洁组件及清洁机器人
CN113558528A (zh) * 2021-07-20 2021-10-29 杰瑞华创科技有限公司 一种升降装置以及扫地机器人
CN113749574A (zh) * 2021-10-15 2021-12-07 普联技术有限公司 升降装置及清洁机器人

Also Published As

Publication number Publication date
CN219940496U (zh) 2023-11-03
CN117322809A (zh) 2024-01-02
WO2024002374A1 (zh) 2024-01-04
CN220477535U (zh) 2024-02-13
CN220327398U (zh) 2024-01-12
CN117322808A (zh) 2024-01-02
CN220477536U (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
EP3835515B1 (en) Mechanism for detecting obstacles and mechanically revesring a direction of a pool cleaner
CN106499775B (zh) 一种传动减速装置
WO2024002361A1 (zh) 一种可升降的旋转拖布结构以及清洁机
CN110075777B (zh) 一种卧式双向搅拌反应釜
CN115673734A (zh) 一种摩托车踏板总成加工装置
CN217911742U (zh) 一种可升降的旋转拖布结构以及清洁机
CN110112861B (zh) 一种电磁式驱动机
CN114916869B (zh) 旋转升降拖地装置及扫地机
CN101776055A (zh) 一种摆筒式容积泵
CN105496275A (zh) 洗脸刷刷头的驱动结构及驱动运动方式
CN209692513U (zh) 一种便于拆装的电动推杆
CN117380612A (zh) 一种可升降的旋转拖布结构以及清洁机
CN216679424U (zh) 一种带有清理机构的食品加工装置
CN111719949A (zh) 一种离合机构
CN205781211U (zh) 一种适用于燃气表的控制阀
CN110201405A (zh) 一种无线充电驱动陀螺
CN219034874U (zh) 一种化油器的防尘结构
CN214170508U (zh) 一种螺旋往复式井下采油装置
CN214212828U (zh) 一种加热管引出棒震动上料机构
CN215721135U (zh) 一种矿用隔爆型一体化阀门电动装置
CN212489749U (zh) 电动地刷
CN220850763U (zh) 磁吸式出水结构及泡茶壶
CN213808718U (zh) 电机驱动的升降装置
CN201882115U (zh) 滚棒联结器
CN208381444U (zh) 一种电动排污阀驱动器的限位开关结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830523

Country of ref document: EP

Kind code of ref document: A1