WO2024001650A1 - 金属铱络合物及其应用 - Google Patents

金属铱络合物及其应用 Download PDF

Info

Publication number
WO2024001650A1
WO2024001650A1 PCT/CN2023/097311 CN2023097311W WO2024001650A1 WO 2024001650 A1 WO2024001650 A1 WO 2024001650A1 CN 2023097311 W CN2023097311 W CN 2023097311W WO 2024001650 A1 WO2024001650 A1 WO 2024001650A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
group
alkyl
Prior art date
Application number
PCT/CN2023/097311
Other languages
English (en)
French (fr)
Inventor
陈少福
戴雷
蔡丽菲
Original Assignee
广东阿格蕾雅光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东阿格蕾雅光电材料有限公司 filed Critical 广东阿格蕾雅光电材料有限公司
Publication of WO2024001650A1 publication Critical patent/WO2024001650A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Definitions

  • the present invention relates to the technical field of organic electroluminescence, in particular to an organic luminescent material, and in particular to a metal iridium complex and its application in an organic electroluminescent device.
  • OLED organic electroluminescent devices
  • the basic structure of an OLED device is a thin film of organic functional materials with different functions mixed between metal electrodes. It is like a sandwich structure. Driven by current, holes and electrons, holes and electrons are injected from the anode and cathode respectively. After moving a certain distance, it is compounded in the luminescent layer and released in the form of light or heat, thus producing the luminescence of the OLED.
  • organic functional materials are the core components of organic electroluminescent devices. The thermal stability, photochemical stability, electrochemical stability, quantum yield, film formation stability, crystallinity, color saturation, etc. of the material all have an impact. main factor in device performance.
  • organic functional materials include fluorescent materials and phosphorescent materials.
  • Fluorescent materials are usually organic small molecule materials, which generally can only utilize 25% of singlet states to emit light, so the luminous efficiency is relatively low.
  • Phosphorescent materials due to the spin-orbit coupling caused by the heavy atom effect, can not only utilize 25% of the singlet state, but also utilize 75% of the energy of triplet excitons, so the luminous efficiency can be improved.
  • phosphorescent materials started late, and the thermal stability, lifespan, and color saturation of the materials need to be improved. This is a challenging topic.
  • Various compounds have been developed as phosphorescent materials.
  • the invention patent document CN1589307A discloses a type of metal complex in which compounds connected to quinoline, isoquinoline and benzene ring serve as ligands.
  • the iridium complex can provide 500-700nm luminescence, and it is pointed out that the luminescence color of the compound can be adjusted by selecting electron donating or electron withdrawing groups at specific positions;
  • the invention patent document CN100375749C discloses the use of isoquinoline and benzene rings Iridium complex with derivative as ligand And certain selection and screening were carried out for the selection of R1 and R2, and a higher photoluminescence efficiency was achieved compared to Ir(ppy) 3 , but the corresponding device performance, especially the device efficiency, needs to be further improved;
  • invention Patent document CN101160369B discloses an iridium complex However, the color saturation, device efficiency and lifespan of this type of material need to be improved;
  • the invention patent document CN102603803B discloses a metal complex in which isoquino
  • the device performance of this type of material is low, especially the device efficiency may be lower than the same complex without biphenyl; the invention patent document CN104885248B discloses an Ir metal complex The applicant pointed out that by adjusting the matching and combination of the light-emitting layer, higher device efficiency and lifetime can be provided; the invention patent document CN110615816A discloses a type of iridium complex containing triphenyl silicon, specifically disclosing the complex The applicant pointed out that this type of material has high device efficiency and lifespan; the invention patent document TW200848422A discloses a type of iridium complex with phenylquinoline or isoquinoline as a ligand, especially the disclosed complex The performance needs to be better improved; the invention patent document TW200423814A has disclosed where R5 is a substituted or unsubstituted heteroaryl group, and the complex was prepared Comparing the device with Ir(ppy) 3 shows a red-shifted luminescence spectrum (514nm to 519nm) and a
  • the present invention was made to solve the above-mentioned problems, and aims to provide a high-performance organic electroluminescent device and a novel material that can realize such an organic electroluminescent device.
  • the inventors of the present invention have repeatedly conducted in-depth research in order to achieve the above-mentioned object, and as a result, they have found that by using an organometallic iridium complex represented by the following formula (1) and formula (2) as a ligand, high-performance organic iridium complexes can be obtained. Electromechanical luminescent devices.
  • the metal iridium complex has a general formula of Ir(La)(Lb)(Lc), where La is a structure represented by formula (1) and Lb is a structure represented by formula (2).
  • the complex provided by the invention has low driving voltage, low sublimation temperature, good optical and electrical stability, and With the advantages of high light efficiency, long life and high color saturation, it can be used in organic light-emitting devices, especially as a red-emitting phosphorescent material, and has the potential to be used in the AMOLED industry.
  • the dotted line indicates the location connected to the metal Ir;
  • R 0 and R 4 are independently selected from hydrogen, deuterium, halogen, cyano, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C3-C20 heterocycloalkyl, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, substituted or unsubstituted C6 -C30 aryl, substituted or unsubstituted C2-C30 heteroaryl, substituted or unsubstituted triC1-C10 alkylsilyl, substituted or unsubstituted triC6-C12 arylsilyl, substituted or unsubstituted Di-C1-C10 alkyl-C6-C30 arylsilyl group
  • R 1 and R 3 are independently selected from substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C3-C20 heterocycloalkyl;
  • R 2 is a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group;
  • the dotted line position indicates the position connected to the metal Ir;
  • RA-RG is independently selected from hydrogen, deuterium, halogen, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C1-C10 hetero Alkyl, substituted or unsubstituted C3-C20 heterocycloalkyl, or RA, RB, and RC are connected in pairs to form an aliphatic ring, and RE, RF, and RG are connected in pairs to form an aliphatic ring;
  • heteroaromatic ring, heteroalkyl group, heterocycloalkyl group and heteroaryl group contain at least one O, N or S heteroatom;
  • the substitution is amino group, cyano group, isonitrile substituted by deuterium, F, Cl, Br, C1-C6 alkyl group, C1-C6 alkoxy group, C3-C6 cycloalkyl group, C1-C6 alkyl group Substituted by a group or a phosphine group, wherein the substitution ranges from monosubstitution to maximum number substitution;
  • Lc is a monoanionic bidentate ligand
  • Lc and Lb are different and are not OO ligands
  • Lc and La are the same or different, and the difference is that the parent core structure is different, or the parent core structure is the same but the substituents are different, or the parent core structure is the same, the substituents are the same, but the substituent positions are different;
  • two or three of La, Lb, and Lc are connected to each other to form a multidentate ligand.
  • the aromatic ring or heteroaromatic ring structure is that X 1 and X 2 , or X 2 and X 3 , or X 3 and X 4 are both CR 0 and the two R 0 are connected to each other to form a five-membered ring or six
  • An aromatic ring or heteroaromatic ring structure of one-membered ring wherein the aromatic ring structure or heteroaromatic ring structure of a five-membered ring or a six-membered ring is a pendulum ring structure formed by fusion with the A ring, and the pendant ring structure is as follows: One shows:
  • * represents the position connected to the substituted benzene ring in formula (1);
  • R represents no substitution to the maximum possible substitution, or two adjacent R are connected to each other to form an aliphatic or aromatic cyclic structure, where no substitution means that the places connected to carbon are all hydrogen atoms, and R is independent is selected from deuterium, halogen, cyano, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C3-C20 heterocycloalkyl, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, substituted or unsubstituted C6-C30 aryl, substituted or unsubstituted C2-C30 heteroaryl, substituted or unsubstituted tri-C1-C10 alkylsilyl, substituted or unsubstitute
  • the structure shown in formula (3) formed by connecting two adjacent R 0s in formula (1) forms a parallel ring structure with the A ring:
  • the dotted line indicates the site connected to the A ring
  • Ra is independently selected from hydrogen, deuterium, halogen, cyano, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 Cycloalkyl, substituted or unsubstituted C3-C20 heterocycloalkyl, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, substituted or unsubstituted C6-C30 aryl , substituted or unsubstituted C2-C30 heteroaryl, substituted or unsubstituted triC1-C10 alkylsilyl, substituted or unsubstituted triC6-C12 arylsilyl, substituted or unsubstituted di-C1-C10 Alkyl-C6-C30 arylsilyl, substituted or unsubstitute
  • n is a natural number from 0 to 4.
  • formula (1) has the structure described in formula (4):
  • Rb is H, D, halogen, cyano, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 cycloalkyl , substituted or unsubstituted C3-C20 heterocycloalkyl;
  • At least one of Ra is not H
  • R 2 is a substituted or unsubstituted C6-C12 aryl group or a substituted or unsubstituted C4-C12 heteroaryl group.
  • Ra is independently selected from substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C3-C20 heterocycloalkyl, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, substituted or unsubstituted C6-C30 aryl, substituted or unsubstituted C2-C30 heteroaryl,
  • R 2 is substituted or unsubstituted phenyl, substituted or unsubstituted C4 heteroaryl.
  • the substitution described in R 2 is by an alkyl group containing D, F, CN, C1-C6, or a C3-C6 cycloalkane containing D, F, CN, C1-C6 substituted by a C1-C6 alkyl group containing D and F substitutions, or a C3-C6 cycloalkyl group containing D or F substitutions.
  • R 1 and R 3 are D, F substituted or unsubstituted C1-C6 alkyl, D, F substituted or unsubstituted C3-C6 cycloalkyl.
  • R 4 is hydrogen, D, F, CN, substituted or unsubstituted C1-C4 alkyl.
  • R 4 and Rb are connected to each other to form a structure shown in formula (6):
  • Rc and Rd are H, D, F, CN, substituted or unsubstituted C1-C4 alkyl, wherein the substitution in Rc and Rd is substituted by D, F or C1-C4 alkyl, and the At least one of Ra is not hydrogen.
  • At least one of the Ra is not hydrogen.
  • Lc is the same as La.
  • Lc and La are different.
  • Lc is the structure shown in formula (8),
  • the dotted line indicates the location connected to the metal Ir;
  • R 10 to R 17 are independently selected from hydrogen, deuterium, halogen, cyano, hydroxyl, amino, amine, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl base, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, substituted or unsubstituted C6-C18 aryl, substituted or Unsubstituted C2-C17 heteroaryl, substituted or unsubstituted triC1-C10 alkylsilyl, substituted or unsubstituted triC6-C12 arylsilyl, substituted or unsubstituted diC1-C10 alkyl- C6-C30 arylsilyl, substituted or unsubstituted mono-C1-C10
  • At least two of R 14 to R 17 are not hydrogen;
  • At least one group of two adjacent groups in R 10 to R 13 form an aromatic ring as shown in the following formula (9);
  • the dotted line indicates the position connected to the pyridine ring
  • R 18 to R 21 are independently selected from hydrogen, deuterium, halogen, cyano, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, substituted or unsubstituted C6-C18 aryl, substituted or unsubstituted C2-C17 hetero Aryl, Substituted or unsubstituted tri-C1-C10 alkylsilyl, substituted or unsubstituted tri-C6-C12 arylsilyl, substituted or unsubstituted di-C1-C10 alkyl-C6-C30 arylsilyl, substituted or Unsubstituted mono-C1-C10 alkyl,
  • heteroalkyl group and heteroaryl group contain at least one O, N or S heteroatom;
  • substitution is an amino group, nitrile, isonitrile or phosphine group substituted by deuterium, F, Cl, Br, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 alkyl, wherein said Substitutions range from single to maximum number of substitutions.
  • Lc is one of the following structural formulas, or the corresponding partially or completely deuterated or fluorinated,
  • La is one of the following structural formulas, or the corresponding partially or completely deuterated or fluorinated,
  • Lb is one of the following structural formulas, or the corresponding partially or completely deuterated or fluorinated,
  • the bond energy of the C-D bond is larger than the bond energy of the C-H bond, thereby improving stability. and reduced vibration energy dissipation, which can provide improved device life and slightly improved device efficiency; when part of the positions in La and/or Lb and/or Lc are replaced by F, due to the strong electron withdrawal of F atoms
  • Properties and special optoelectronic physical properties can provide improved device luminescence color, device efficiency and lower material sublimation temperature.
  • Another object of the present invention is to provide an electroluminescent device, which includes: a cathode, an anode, and an organic layer disposed between the cathode and the anode, wherein the organic layer contains the above-mentioned organic metal iridium complex.
  • the organic layer includes a light-emitting layer, and the metal iridium complex serves as a red light-emitting doping material of the light-emitting layer; or wherein the organic layer includes a hole injection layer, and the metal iridium complex As a hole injection material in the hole injection layer.
  • One of the objects of the present invention is to provide a ligand La whose structural formula is as follows:
  • R 1 -R 4 and X 1 -X 4 are as described above.
  • the material of the present invention not only has the advantages of low sublimation temperature, high optical and electrochemical stability, high color saturation, high luminous efficiency, long device life, etc., it can be used in organic light-emitting devices, especially as a red-emitting phosphorescent material. applied to AMOLED industry possibilities.
  • the material of the present invention can convert triplet excited states into light, so it can improve the luminous efficiency of organic electroluminescent devices, thereby reducing energy consumption.
  • Figure 1 is a 1 HNMR spectrum of the compound La003 of the present invention in a deuterated chloroform solution.
  • Figure 2 is a 1 HNMR spectrum of the compound Ir(La003) 2 Lb005 of the present invention in a deuterated chloroform solution.
  • Figure 3 is a 1 HNMR spectrum of the compound La123 of the present invention in a deuterated chloroform solution.
  • Figure 4 is a 1 HNMR spectrum of the compound Ir(La123) 2 Lb005 of the present invention in a deuterated chloroform solution.
  • Figure 5 is a 1 HNMR spectrum of the compound La143 of the present invention in a deuterated chloroform solution.
  • Figure 6 is a 1 HNMR spectrum of the compound Ir(La143) 2 Lb005 of the present invention in a deuterated chloroform solution.
  • Figure 7 is the ultraviolet absorption spectrum and emission spectrum of the compound Ir(La003) 2 Lb005 of the present invention in dichloromethane solution.
  • Figure 8 is the ultraviolet absorption spectrum and emission spectrum of the compound Ir(La123) 2 Lb005 of the present invention in dichloromethane solution,
  • Figure 9 is the ultraviolet absorption spectrum and emission spectrum of the compound Ir(La143) 2 Lb005 of the present invention in dichloromethane solution.
  • the metal iridium complex of the present invention has the general formula Ir(La)(Lb)(Lc), where La is the structure shown in formula (1),
  • the dotted line indicates the location connected to the metal Ir;
  • X 1 -X 4 are independently N or CR 0 , and at least two are CR 0 , and the two R 0 are connected to each other to form a five- or six-membered substituted or unsubstituted aromatic ring;
  • R 0 and R 4 are independently selected from hydrogen, deuterium, halogen, cyano, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C3-C20 heterocycloalkyl, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, substituted or unsubstituted C6 -C30 aryl, substituted or unsubstituted C2-C30 heteroaryl, substituted or unsubstituted triC1-C10 alkylsilyl, substituted or unsubstituted triC6-C12 arylsilyl, substituted or unsubstituted Di-C1-C10 alkyl-C6-C30 arylsilyl group
  • R 1 and R 3 are independently selected from substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C3-C20 heterocycloalkyl;
  • R 2 is a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group;
  • heteroalkyl group, heterocycloalkyl group and heteroaryl group contain at least one O, N or S heteroatom;
  • the substitution is an amino group, a cyano group, an isonitrile group or a phosphine group substituted by deuterium, F, Cl, Br, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 alkyl, wherein said substitution ranges from a single substitution to a maximum number of substitutions;
  • the dotted line position indicates the position connected to the metal Ir;
  • RA-RG is independently selected from hydrogen, deuterium, halogen, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C1-C10 hetero Alkyl, substituted or unsubstituted C3-C20 heterocycloalkyl, or RA, RB, and RC are connected in pairs to form an aliphatic ring, and RE, RF, and RG are connected in pairs to form an aliphatic ring;
  • heteroalkyl group and heterocycloalkyl group contain at least one O, N or S heteroatom;
  • substitution is amino group, cyano group, nitrile substituted by deuterium, F, Cl, Br, C1-C4 alkyl group, C1-C4 alkoxy group, C3-C6 cycloalkyl group, C1-C4 alkyl group, Substituted by isonitrile or phosphine group;
  • Lc is a monoanionic bidentate ligand
  • Lc and Lb are different and are not OO ligands
  • Lc and La are the same or different, and the difference is that the parent core structure is different, or the parent core structure is the same but the substituents are different, or the parent core structure is the same, the substituents are the same, but the substituent positions are different;
  • two or three of La, Lb, and Lc are connected to each other to form a multidentate ligand;
  • the cyclic aromatic ring structure can be that X 1 and X 2 or X 2 and X 3 or X 3 and An aromatic ring structure of one-membered ring, wherein the aromatic ring structure of a five-membered ring or a six-membered ring is fused with the A ring to form a parallel ring structure. Examples that can be cited include but are not limited to the following structures:
  • * represents the position connected to the substituted benzene ring in formula (1);
  • R represents no substitution to the maximum possible substitution.
  • Two adjacent R can be connected to each other to form an aliphatic or aromatic ring structure.
  • No substitution means that the places that can be connected to carbon are all hydrogen atoms.
  • R Independently selected from deuterium, halogen, cyano, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted C3-C20 heterocycloalkyl, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, substituted or unsubstituted C6-C30 aryl, substituted or unsubstituted C2-C30 heteroaryl, substituted or unsubstituted tri-C1-C10 alkylsilyl, substituted or unsubsti
  • the structure shown in formula (3) formed by connecting two adjacent R 0s in formula (1) forms a parallel ring structure with the A ring:
  • the dotted line indicates the site connected to the A ring
  • Ra is independently selected from hydrogen, deuterium, halogen, cyano, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 Cycloalkyl, substituted or unsubstituted C3-C20 heterocycloalkyl, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, substituted or unsubstituted C6-C30 aryl , substituted or unsubstituted C2-C30 heteroaryl, substituted or unsubstituted triC1-C10 alkylsilyl, substituted or unsubstituted triC6-C12 arylsilyl, substituted or unsubstituted di-C1-C10 Alkyl-C6-C30 arylsilyl, substituted or unsubstitute
  • n is a natural number from 0 to 4.
  • formula (1) has the structure described in formula (4):
  • Rb is H, D, halogen, cyano, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C1-C10 heteroalkyl, substituted or unsubstituted C3-C20 cycloalkyl , substituted or unsubstituted C3-C20 heterocycloalkyl;
  • At least one of Ra is not H
  • carbon number a to b in the expression “substituted or unsubstituted X group having carbon number a to b” represents the carbon number when the X group is unsubstituted.
  • the carbon number of the substituent when the X group is substituted is not included.
  • the C1 to C10 alkyl group is a linear or branched alkyl group, specifically, it is a methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, or sec-butyl group. , tert-butyl, n-pentyl and its isomers, n-hexyl and its isomers, n-heptyl and its isomers, n-octyl and its isomers, n-nonyl and its isomers, n- Decyl group and its isomers, etc.
  • Examples of the C3 to C20 cycloalkyl group include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 1-adamantyl, 2-adamantyl, 1-norbornyl, and 2-norbornyl. Alkyl group, etc., preferably cyclopentyl group and cyclohexyl group.
  • Examples of the C2 to C10 alkenyl group include vinyl, propenyl, allyl, 1-butadienyl, 2-butadienyl, 1-hexatrienyl, 2-hexatrienyl, 3 - Hexatrienyl and the like, preferably propenyl and allyl.
  • the C1-C10 heteroalkyl group is a linear or branched alkyl group, cycloalkyl group, etc. containing atoms other than carbon and hydrogen, and examples thereof include mercaptomethylmethyl group, methoxymethyl group, and ethyl group.
  • aryl group examples include phenyl, naphthyl, anthracenyl, phenanthrenyl, tetraphenyl, pyrenyl, chrysyl, benzo[c]phenanthrenyl, benzo[g]chyl, fluorenyl, A benzofluorenyl group, a dibenzofluorenyl group, a biphenyl group, a terphenyl group, a tetraphenyl group, a fluoranthene group, etc. are preferably a phenyl group and a naphthyl group.
  • heteroaryl group examples include pyrrolyl, pyrazinyl, pyridyl, pyrimidinyl, triazinyl, indolyl, isoindolyl, imidazolyl, furyl, benzofuryl, and isophenyl.
  • substituents with a Hammett constant greater than -0.15 include methyl, ethyl, isopropyl, isobutyl, tert-butyl, nitro, cyano, sulfonic acid Base, F, Cl, Br, I, trifluoromethyl, trifluoromethanesulfonyl, trifluoromethanesulfonyl, alkynyl, sulfone, sulfoxide, phosphono, aldehyde, ketone, ester, Carbonyl, pyrazinyl, pyridyl, pyrimidinyl, triazinyl, quinolyl, isoquinolinyl, quinoxalinyl and alkyl, cycloalkyl, aryl, etc. groups containing the aforementioned groups.
  • its Hammett constant is ⁇ -0.15, particularly preferably ⁇ 0.1, and particularly preferably ⁇ 0.3.
  • a 50mm*50mm*1.0mm glass substrate with an ITO (100nm) anode electrode was ultrasonically cleaned in ethanol for 10 minutes, dried at 150 degrees and then treated with N 2 Plasma for 30 minutes. Install the washed glass substrate on the substrate holder of the vacuum evaporation device.
  • the organic electroluminescent device using the compound of the present invention as a dopant has better performance in driving voltage, luminous efficiency and device life than the comparative compound in devices with the same color scale. Superior performance.
  • the sublimation temperature is defined as the temperature corresponding to a vacuum degree of 10 -7 Torr and an evaporation rate of 1 angstrom per second.
  • the test results are as follows:
  • the metal iridium complex of the present invention has a lower sublimation temperature, which is beneficial to industrial application.
  • the present invention unexpectedly provides lower driving voltage, better device luminous efficiency and improved lifespan than the existing technology, and provides lower sublimation temperature and more saturation. red glow.
  • the above results show that the compound of the present invention has the advantages of low sublimation temperature, high optical and electrochemical stability, high color saturation, high luminous efficiency, long device life, etc., and can be used in organic electroluminescent devices. Especially as a red-emitting dopant, it has the potential to be used in the OLED industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

涉及一种金属铱络合物及其应用。所述金属铱络合物具有Ir(La)(Lb)(Lc)的通式,其中La为式(1)所示的结构,Lb为式(2)所示的结构。化合物具有驱动电压低,升华温度低,光、电稳定性好,发光效率高,寿命长,色饱和度高等优点,可用于有机发光器件中,特别是作为红色发光磷光材料,具有应用于AMOLED产业的可能。

Description

金属铱络合物及其应用 技术领域
本发明涉及有机电致发光技术领域,尤其涉及一种有机发光材料,特别涉及一种金属铱络合物及其在有机电致发光器件上的应用。
背景技术
目前,作为新一代显示技术的有机电致发光器件(OLED)在显示和照明技术方面都获得了越来越多的关注,应用前景十分广泛。但是,和市场应用要求相比,OLED器件的发光效率、驱动电压、使用寿命等性能还需要继续加强和改进。
一般来说,OLED器件基本结构为在金属电极中间夹杂各种不同功能的有机功能材料薄膜,犹如一个三明治的结构,在电流的驱动下,从阴阳两极分别注入空穴和电子,空穴和电子在移动一段距离后,在发光层得到复合,并以光或热的形式进行释放,从而产生了OLED的发光。然而,有机功能材料是有机电致发光器件的核心组成部分,材料的热稳定性、光化学稳定性、电化学稳定性、量子产率、成膜稳定性、结晶性、色饱和度等都是影响器件性能表现的主要因素。
一般地,有机功能材料包括荧光材料和磷光材料。荧光材料通常为有机小分子材料,一般只能利用25%单重态发光,所以发光效率比较低。而磷光材料由于重原子效应引起地自旋轨道耦合作用,除了利用25%单重态之外,还可以利用75%三重态激子的能量,所以发光效率可以得到提升。但是相较于荧光材料,磷光材料起步较晚,且材料的热稳定性、寿命、色饱和度等都有待提升,这是一个具有挑战性的课题。现已经有人开发各种化合物作为磷光材料。例如发明专利文献CN1589307A公开了一类喹啉、异喹啉与苯环相连的化合物作为配体的金属络合物尤其特别是铱络合物,可以提供500-700nm的发光,并指出通过在特定位置选择供电子或者吸电子基团以调节化合物的发光颜色;发明专利文献CN100375749C公开了以异喹啉和苯环衍生物为配体的铱络合物并针对R1和R2的选择进行了一定的选择和筛选,取得了相对于Ir(ppy)3来说较高的光致发光效率,但是对应的器件性能特别是器件效率需要得到进一步改善;发明 专利文献CN101160369B公开了铱络合物但是该类材料的色饱和度、器件效率和寿命都需要得到改善;发明专利文献CN102603803B公开了异喹啉连接间位联苯的金属络合物但是该类材料的器件性能较低,特别是器件效率还可能低于不带联苯的相同络合物;发明专利文献CN104885248B公开了Ir金属络合物申请人指出,通过调整发光层的搭配和组合,可以提供较高的器件效率和寿命;发明专利文献CN110615816A公开了一类含有三苯基硅的铱络合物,具体公开了络合物申请人指出,该类材料具有较高的器件效率和寿命;发明专利文献TW200848422A公开了一类苯基喹啉或者异喹啉作为配体的铱络合物,特别是公开的络合物的性能需要得到更好的改善;发明专利文献TW200423814A公开了其中R5是取代的或者未取代的杂芳基,并制备了络合物与Ir(ppy)3进行对比器件,显示出红移的发光光谱(514nm到519nm)和略微提升的EQE(6.5%到7.0%)。该类材料的器件性能虽然得到了不同程度的提高,特别是器件效率和寿命,还需要得到进一步的改善,以满足市场日益增长的需求。
发明内容
本发明是为了解决上述课题而完成的,目的在于提供高性能的有机电致发光器件及可实现这样的有机电致发光器件的新型材料。
本发明人为了达成前述目的而反复进行了深入的研究,结果发现,通过使用包含下述式(1)和式(2)为配体表示的有机金属铱络合物,可以得到高性能的有机电致发光器件。
所述金属铱络合物具有Ir(La)(Lb)(Lc)的通式,其中La为式(1)所示的结构,Lb为式(2)所示的结构。本发明提供的络合物具有驱动电压低,升华温度低,光、电稳定性好,发 光效率高,寿命长,色饱和度高等优点,可用于有机发光器件中,特别是作为红色发光磷光材料,具有应用于AMOLED产业的可能。
一种金属铱络合物,具有Ir(La)(Lb)(Lc)的通式,其中La为式(1)所示的结构,
其中,虚线表示与金属Ir连接的位置;
其中,X1-X4独立地为N或者CR0,且至少两个为CR0,并且两个R0之间相互连接形成五元或六元的取代或未取代的芳香环或杂芳环;
其中,R0、R4独立地选自氢、氘、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基、氨基,巯基、羟基;
其中,R1、R3独立地选自取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基;
其中,R2为取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基;
其中Lb为式(2)所示的结构,
其中,虚线位置表示与金属Ir连接的位置;
其中,RA-RG独立地选自氢、氘、卤素、取代的或未取代的C1-C10烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20杂环烷基、或者RA、RB、RC之间两两连接以形成脂肪环,RE、RF、RG之间两两连接以形成脂肪环;
其中,所述杂芳环、杂烷基、杂环烷基和杂芳基中至少含有一个O、N或S杂原子;
其中,所述取代为被氘、F、Cl、Br、C1-C6烷基、C1-C6烷氧基、C3-C6环烷基、C1-C6烷基取代的胺基、氰基、异腈基或膦基所取代,其中所述取代为单取代到最大数目取代;
其中,Lc均为单阴离子型双齿配体,Lc与Lb不相同且不为OO型配体;
其中,Lc与La相同或不相同,所述不相同为母核结构不相同或母核结构相同但取代基不同或母核结构相同取代基相同但取代基位置不相同;
或者,La、Lb、Lc两两或三者相互连接形成多齿配体。
其中,所述芳香环或杂芳环结构是X1和X2、或X2和X3、或X3和X4均为CR0并两个R0之间相互连接形成五元环或者六元环的芳香环或杂芳环结构,其中所述的五元环或者六元环的芳环结构或杂芳环结构与A环稠合形成的并环结构,所述并环结构如下式之一所示:
其中,*表示与式(1)中取代苯环相连的位置;
其中,R表示无取代到最大可能的取代,或者两个相邻的R之间互相连接形成脂肪族或者芳香族环状结构,其中无取代意味着与碳相连的地方都是氢原子,R独立地选自氘、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基、氨基,巯基、羟基。
作为优选的金属铱络合物,其中式(1)中两个相邻的R0之间相互连接形成的式(3)所示的结构与A环形成并环结构:
其中,虚线表示与A环连接的位点
其中,Ra独立地选自氢、氘、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基,或者两个相邻的Ra之间相互连接以形成脂环族环或芳香族环;
其中,n为0-4的自然数。
作为优选的金属铱络合物,其中式(1)具有式(4)所述的结构:
其中,Rb为H、D、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基;
其中,Ra至少之一不为H;
其符号定义与前述相同。
作为的金属铱络合物,R2为取代或未取代的C6-C12芳基、取代或未取代的C4-C12杂芳基。
作为优选的金属铱络合物,具有式(5)所述的结构:
其中,Ra独立地选自取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基,
R2为取代或未取代的苯基、取代或未取代的C4杂芳基。
作为优选的金属铱络合物,其中R2中所述的取代是被含有D、F、CN、C1-C6的烷基、含有D、F、CN、C1-C6的C3-C6的环烷基、含有D、F取代的C1-C6的烷基、含有D、F取代的C3-C6的环烷基所取代。
作为优选的金属铱络合物,R1、R3为D、F取代或未取代的C1-C6烷基、D、F取代或未取代的C3-C6环烷基。
作为优选的金属铱络合物,其中R4为氢、D、F、CN、取代或未取代的C1-C4烷基。
作为优选的金属铱络合物,其中R4与Rb相互连接形成式(6)所示结构:
其中,Rc、Rd为H、D、F、CN、取代或未取代的C1-C4烷基,其中Rc、Rd中的所述取代为被D、F或C1-C4烷基所取代,所述Ra至少一个不为氢。
进一步优选:
其中,所述Ra至少有一个不为氢。
作为优选的金属铱络合物,其中Lc与La相同。
作为优选的金属铱络合物,其中Lc与La不相同。
作为优选的金属铱络合物,其中Lc为式(8)所示的结构,
其中,虚线表示与金属Ir连接的位置;
其中,R10-R17独立地选自氢、氘、卤素、氰基、羟基、氨基、胺基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C18芳基、取代或未取代的C2-C17杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基;
其中,R14-R17中至少两个不为氢;
或者,R10-R13中至少一组两个相邻的基团之间形成如下式(9)所示芳香族环;
式(9)中
其中,虚线表示与吡啶环连接的位置;
其中,R18-R21独立地选自氢、氘、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C18芳基、取代或未取代的C2-C17杂芳基、 取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基、或者R18-R21两个相邻的基团之间相互连接形成脂环族环或芳香族环;
其中,所述杂烷基和杂芳基中至少含有一个O、N或S杂原子;
其中,所述取代为被氘、F、Cl、Br、C1-C6烷基、C3-C6环烷基、C1-C6烷基取代的胺基、腈、异腈或膦基取代,其中所述取代为单取代到最大数目取代。
作为优选的金属铱络合物,其中Lc为以下结构式之一,或者对应的部分或完全氘代或者氟代,

作为优选的金属铱络合物,其中La为以下结构式之一,或者对应的部分或完全氘代或者氟代,














作为优选的金属铱络合物,其中Lb为以下结构式之一,或者对应的部分或完全氘代或者氟代,

特别的,当所述La和/或Lb和/或Lc中的部分或全部位置被氘取代之后,由于C-D键的键能相较于C-H键的键能要大,从而带来稳定性的提升和降低的振动能量耗散,可以提供改善的器件寿命以及略微提升的器件效率;当所述La和/或Lb和/或Lc中的部分位置被F取代之后,由于F原子较强的吸电子性以及特殊的光电物理特性,可以提供改善的器件发光颜色、器件效率和较低的材料升华温度。
本发明的目的之一还在于,提供一种电致发光器件,其包括:阴极,阳极以及设置在阴极与阳极之间的有机层,所述有机层中包含上述的有机金属铱络合物。
其中所述有机层中包括有发光层,所述金属铱络合物作为发光层的红色发光掺杂材料;或者其中所述有机层中包括有空穴注入层,所述的金属铱络合物作为空穴注入层中的空穴注入材料。
本发明的目的之一还在于,提供一种配体La,其结构式如下:
其中R1-R4、X1-X4如上述所述。
本发明的材料不但具有升华温度较低,光、电化学稳定性高,色饱和度高,发光效率高,器件寿命长等优点,可用于有机发光器件中,特别是作为红色发光磷光材料,具有应用于 AMOLED产业的可能。本发明的材料作为磷光材料,可以将三重激发态转换成光,所以能够提高有机电致发光器件的发光效率,从而降低能耗。
附图说明
图1是本发明的化合物La003在氘代氯仿溶液中的1HNMR谱图,
图2是本发明的化合物Ir(La003)2Lb005在氘代氯仿溶液中的1HNMR谱图,
图3是本发明的化合物La123在氘代氯仿溶液中的1HNMR谱图,
图4是本发明的化合物Ir(La123)2Lb005在氘代氯仿溶液中的1HNMR谱图,
图5是本发明的化合物La143在氘代氯仿溶液中的1HNMR谱图,
图6是本发明的化合物Ir(La143)2Lb005在氘代氯仿溶液中的1HNMR谱图,
图7是本发明的化合物Ir(La003)2Lb005在二氯甲烷溶液中的紫外吸收光谱以及发射光谱,
图8是本发明的化合物Ir(La123)2Lb005在二氯甲烷溶液中的紫外吸收光谱以及发射光谱,
图9是本发明的化合物Ir(La143)2Lb005在二氯甲烷溶液中的紫外吸收光谱以及发射光谱。
具体实施方式
本发明金属铱络合物,具有Ir(La)(Lb)(Lc)的通式,其中La为式(1)所示的结构,
其中,虚线表示与金属Ir连接的位置;
其中,X1-X4独立地为N或者CR0,且至少两个为CR0,并且两个R0之间相互连接形成五元或六元取代或未取代的芳香环;
其中,R0、R4独立地选自氢、氘、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基、氨基,巯基、羟基;
其中,R1、R3独立地选自取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基;
其中,R2为取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基;
其中,所述杂烷基、杂环烷基和杂芳基中至少含有一个O、N或S杂原子;
其中,所述取代为被氘、F、Cl、Br、C1-C6烷基、C3-C6环烷基、C1-C6烷基取代的胺基、氰基、异腈基或膦基所取代,其中所述取代为单取代到最大数目取代;
其中Lb为式(2)所示的结构,
其中,虚线位置表示与金属Ir连接的位置;
其中,RA-RG独立地选自氢、氘、卤素、取代的或未取代的C1-C10烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20杂环烷基、或者RA、RB、RC之间两两连接以形成脂肪环,RE、RF、RG之间两两连接以形成脂肪环;
其中,所述杂烷基和杂环烷基中至少含有一个O、N或S杂原子;
其中,所述取代为被氘、F、Cl、Br、C1-C4烷基、C1-C4烷氧基、C3-C6环烷基、C1-C4烷基取代的胺基、氰基、腈、异腈或膦基所取代;
其中,Lc均为单阴离子型双齿配体,Lc与Lb不相同且不为OO型配体;
其中,Lc与La相同或不相同,所述不相同为母核结构不相同或母核结构相同但取代基不同或母核结构相同取代基相同但取代基位置不相同;
其中,La、Lb、Lc两两或三者相互连接形成多齿配体;
其中,所述的形成环状芳环结构,可以是X1和X2或X2和X3或X3和X4均为CR0并两个R0之间相互连接形成五元环或者六元环的芳环结构,其中所述的五元环或者六元环的芳环结构与A环稠合形成的并环结构可以举出的示例包含但不限于如下结构:

其中,*表示与式(1)中取代苯环相连的位置;
其中,R表示无取代到最大可能的取代,两个相邻的R之间可以互相连接形成脂肪族或者芳香族环状结构,其中无取代意味着可以与碳相连的地方都是氢原子,R独立地选自氘、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基、氨基,巯基、羟基;
作为优选的金属铱络合物,其中式(1)中两个相邻的R0之间相互连接形成的式(3)所示的结构与A环形成并环结构:
其中,虚线表示与A环连接的位点
其中,Ra独立地选自氢、氘、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基,两个相邻的Ra之间可以相互连接以形成脂环族环或芳香 族环;
其中,n为0-4的自然数;
其余符号定义与前述相同。
作为优选的金属铱络合物,其中式(1)具有式(4)所述的结构:
其中,Rb为H、D、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基;
其中,Ra至少之一不为H;
其符号定义与前述相同。
以下,对于式(1)-式(4)所表示的化合物的各基团的例子进行说明。
需要说明的是,本说明书中,“取代或未取代的碳数a~b的X基”这一表述中的“碳数a~b”表示的是X基未取代的情况下的碳数,不包括X基被取代时的取代基的碳数。
作为C1~C10的烷基,为直链状或支链状的烷基,具体来说,为甲基、乙基、丙基、、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基及其异构体、正己基及其异构体、正庚基及其异构体、正辛基及其异构体、正壬基及其异构体、正癸基及其异构体等,优选为甲基、乙基、丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基,更优选为丙基、异丙基、异丁基、仲丁基、叔丁基。
作为C3~C20的环烷基,可举出环丙基、环丁基、环戊基、环己基、1-金刚烷基、2-金刚烷基、1-降冰片烷基、2-降冰片烷基等,优选为环戊基、环己基。
作为C2~C10的烯基,可举出乙烯基、丙烯基、烯丙基、1-丁二烯基、2-丁二烯基、1-己三烯基、2-己三烯基、3-己三烯基等,优选为丙烯基、烯丙基。
作为C1-C10杂烷基,为含有除碳氢以外的原子构成的直链状或支链状的烷基、环烷基等,可举出巯甲基甲烷基、甲氧基甲烷基、乙氧基甲烷基、叔丁氧基甲烷基、N,N-二甲基甲烷基、环氧丁烷基、环氧戊烷基、环氧己烷基等,优选为甲氧基甲烷基、环氧戊烷基。
作为芳基的具体例,为苯基、萘基、蒽基、菲基、并四苯基、芘基、屈基、苯并[c]菲基、苯并[g]屈基、芴基、苯并芴基、二苯并芴基、联苯基、三联苯基、四联苯基、荧蒽基等,优选为苯基、萘基。
作为杂芳基的具体例,可举出吡咯基、吡嗪基、吡啶基、嘧啶基、三嗪基、吲哚基、异吲哚基、咪唑基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、二苯并噻吩基、氮杂二苯并呋喃基、氮杂二苯并噻吩基、二氮杂二苯并呋喃基、二氮杂二苯并噻吩基、喹啉基、异喹啉基、喹喔啉基、咔唑基、菲啶基、吖啶基、菲咯啉基、吩嗪基、吩噻嗪基、吩噁嗪基、噁唑啉基、噁二唑基、呋咱基、噻吩基、苯并噻吩基、二氢吖啶基、氮杂咔唑基、二氮杂咔唑基、喹唑啉基等,优选为吡啶基、嘧啶基、三嗪基、二苯并呋喃基、二苯并噻吩基、氮杂二苯并呋喃基、氮杂二苯并噻吩基、二氮杂二苯并呋喃基、二氮杂二苯并噻吩基、咔唑基、氮杂咔唑基、二氮杂咔唑基。
本说明书中,所述的哈米特常数大于-0.15的取代基的具体例,可举出甲基、乙基、异丙基、异丁基、叔丁基、硝基、氰基、磺酸基、F、Cl、Br、I、三氟甲基、三氟甲磺酰基、三氟甲磺亚酰基、炔基、砜基、亚砜基、膦酰基、醛基、酮基、酯基、羰基、吡嗪基、吡啶基、嘧啶基、三嗪基、喹啉基、异喹啉基、喹喔啉基以及含有前述基团烷基、环烷基、芳香基等。作为优选的取代基,其哈米特常数为≥-0.15,特别优选为≥0.1,尤其特别优选为≥0.3。作为示例优选为CN、F。
下述实施例仅仅是为了便于理解技术发明,不应视为本发明的具体限制。
本发明中的化合物合成中涉及的原物料和溶剂等均购自于Alfa、Acros等本领域技术人员熟知的供应商。
化合物2的合成:
将化合物1(25.0g,103.09mmol,1.0eq)、异丙基硼酸(13.59g,154.64mmol,1.5eq)、二氯-二叔丁基-(4-二甲基氨基苯基)磷钯(II)(3.65g,5.15mmol,0.05eq)、无水磷酸钾(54.71g,257.73mmol,2.5eq)、甲苯(375ml)加入到1L的三口烧瓶中,抽真空氮气置换3次,在氮气保护下,100℃搅拌反应6小时。TLC监控,化合物1反应完全。冷却到室温,减压浓缩除去有机溶剂,加入乙酸乙酯(180ml)和去离子水(180ml)萃取,旋干后进行柱层析分离(洗脱剂为乙酸乙酯:正己烷=1:50),浓缩后得到白色糖状固体为化合物2(12.57g,收率:59.3%),质谱:206.68(M+H)。
配体La002的合成:
化合物4的合成:
将化合物3(120.0g,385.9mmol,1.0eq)、苯硼酸(50.35g,412.92mmol,1.07eq)、二氯-二叔丁基-(4-二甲基氨基苯基)磷钯(II)(2.73g,3.86mmol,0.01eq)、无水磷酸钾(163.83g,771.81mmol,2.0eq)加入到3L反应瓶中,再加入THF(1.08L)搅拌,最后加入H2O(360ml),真空、氮气置换3次后60℃油浴反应4h。TLC监控,化合物3基本反应完全。冷却到室温后分液,收集有机相旋干,加二氯甲烷(350ml)溶解,并水洗两次(150ml/次),收集有机相浓缩,进行柱层析纯化(正己烷洗脱)得到化合物4(63.90g,收率:63.40%),质谱:262.16(M+H)。
化合物5的合成:
先将化合物4(58.0g,222.09mmol,1.0eq)和THF(580ml)加入到2L三口瓶中,氮气保护。反应降温到-78℃开始缓慢滴加2.0M的正丁基锂(133.25ml,266.51mmol,1.2eq),滴加完保温反应0.5h,再缓慢滴加硼酸三异丙酯(50.12g,266.51mmol,1.2eq),加完后逐渐回温到室温反应过夜。TLC监控,化合物4基本反应完全。再加入2.5M稀盐酸(300ml)调pH为2-3,分液,收集有机相浓缩干,再加正己烷(220ml)打浆得到白色固体化合物5(27.93g,收率:55.63%),227.08(M+H)。
配体La002的合成:
将化合物5(9.10g,40.25mmol,1.2eq)、化合物2(6.90g,33.54mmol,1.0eq)、二氯-二叔丁基-(4-二甲基氨基苯基)磷钯(II)(2.37mg,3.54mmol,0.01eq)、碳酸钾
(9.27g,67.09mmol,2.00eq)、甲苯(105ml)、乙醇(35ml)、去离子水(35ml)加入到500ml的三口烧瓶中,抽真空氮气置换3次,在氮气保护下,70℃搅拌反应1.5小时。TLC监控,化合物2反应完全。冷却到室温,分液收集有机层,再水洗两次(100ml/次),浓缩旋干后进行柱层析分离(洗脱剂为乙酸乙酯:正己烷=1:35),浓缩后得到白色固体为配体La002(9.40g,收率:79.69%),质谱:351.48(M+H)。
化合物Ir(La002)2(Lb005)的合成:
化合物Ir(La002)-1的合成:
将化合物La002(10.6g,29.0mmol,3.5eq)、IrCl3.3H2O(2.92g,8.29mmol,1.0eq)置于一个250ml的单口圆底烧瓶中,加入乙二醇乙醚(100ml)及去离子水(30ml),真空置换3次,混合液于N2保护作用下,110℃搅拌18小时。冷却到室温后,加入甲醇(100ml)搅拌析出固体,过滤收集固体,干燥得到暗红色油状物为化合物Ir(La002)-1(6.55g,82.6%)。得到的化合物不经进一步纯化直接使用于下一步。
化合物Ir(La002)2(Lb005)的合成:
将化合物Ir(La002)-1(6.55g,3.55mmol,1.0eq)、Lb005(3.77g,17.77mmol,5.0eq)、碳酸钠(3.77g,35.54mmol,10.0eq)置于一个250ml的单口圆底烧瓶中,加入乙二醇乙醚(65ml),真空置换3次,混合液于N2保护作用下50℃搅拌反应20小时,TLC监控Ir(La002)-1反应完全。冷却到室温后,加入甲醇(110ml)室温打浆2h,抽滤,滤饼使用甲苯(100ml)溶解澄清后,采用硅胶过滤,滤液加入去离子水(80ml)洗涤3次,分液,收集有机相浓缩,干燥得到暗红色固体,采用甲苯/正己烷(产品/甲苯/正己烷=1g/10ml/20ml)重结晶3次,干燥得到红色固体为化合物Ir(La002)2(Lb005)(3.13g,收率:40.32%)。将3.13克Ir(La002)2(Lb005)粗品升华纯化后得到升华纯Ir(La002)2(Lb005)(1.76g,收率:56.23%)。质谱:1105.45(M+H)。1HNMR(400MHz,CDCl3)δ8.91(d,J=8.8Hz,2H),8.17(d,J=6.4Hz,2H),8.04(s,2H),7.47(s,2H),7.43(d,J=9.5Hz,2H),7.29(t,J=7.6Hz,4H),7.19(t,J=7.8Hz,4H),7.08(d,J=6.4Hz,2H),7.03(d,J=7.3Hz,2H),4.82(s,1H),2.68(d,J=7.2Hz,4H),2.14–1.89(m,8H),1.61(d,J=7.5Hz,3H),1.28–1.06(m,6H),1.00–0.86(m,15H),0.41(t,J=7.4Hz,6H),-0.06(t,J=7.3Hz,6H).
配体La003的合成:
化合物6的合成:
参照化合物2的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物6,质谱:220.71(M+H)。
配体La003的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La003,质谱:366.51(M+H)。1HNMR(400MHz,CDCl3)δ8.59(t,J=3.9Hz,1H),8.18(dd,J=8.7,2.8Hz,1H),7.66–7.56(m,1H),7.50–7.43(m,1H),7.38(ddd,J=10.8,6.7,1.4Hz,1H),7.24(dd,J=6.3,4.9Hz,1H),2.70(t,J=5.2Hz,1H),2.14(d,J=2.7Hz,1H),2.05–1.98(m,1H),0.98(t,J=4.5Hz,1H).
化合物Ir(La003)2(Lb005)的合成:
化合物Ir(La003)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La003)-1不经纯化直接使用于下一步。
化合物Ir(La003)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La003)2(Lb005)(3.23g,收率:43.57%)。将3.23克Ir(La003)2(Lb005)粗品升华纯化后得到升华纯Ir(La003)2(Lb005)(2.04g,收率:63.15%),质谱:1133.54(M+H)。1HNMR(400MHz,CDCl3)δ8.90(d,J=8.8Hz,2H),8.15(d,J=6.4Hz,2H),8.00(s,2H),7.48(s,2H),7.44(d,J=9.5Hz,2H),7.30(t,J=7.6Hz,4H),7.19(t,J=7.8Hz,4H),7.06(d,J=6.4Hz,2H),7.01(d,J=7.3Hz,2H),4.82(s,1H),2.66(d,J=7.2Hz,4H),2.14–1.89(m,8H),1.60(d,J =7.5Hz,3H),1.33–1.08(m,10H),1.00–0.88(m,15H),0.40(t,J=7.4Hz,6H),-0.08(t,J=7.3Hz,6H).
化合物Ir(La003)2(Lb031)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La003)2(Lb031)(2.87g,收率:38.65%)。将2.87克Ir(La003)2(Lb007)粗品升华纯化后得到升华纯Ir(La003)2(Lb007)(1.77g,收率:61.67%),质谱:1157.57(M+H)。1HNMR(400MHz,CDCl3)δ8.88(d,J=8.7Hz,2H),8.21(d,J=6.3Hz,2H),8.06(s,2H),7.47(s,2H),7.45(d,J=9.1Hz,2H),7.32(t,J=7.4Hz,4H),7.15(t,J=7.6Hz,4H),7.08(d,J=6.2Hz,2H),7.02(d,J=7.4Hz,2H),4.82(s,1H),2.68(d,J=7.2Hz,4H),2.08–1.91(m,6H),1.72(d,J=7.6Hz,3H),1.34–1.12(m,12H),1.02–0.89(m,15H),0.33–0.12(m,12H).
配体Lc004的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体Lc004,质谱:290.41(M+H)。
化合物Ir(La003)(Lb005)(Lc004)的合成:

化合物Ir(La003)-2的合成:
在一个3L的三口烧瓶中加入二聚体Ir(La003)-1(7.85g,8.21mmol,1.0eq)和二氯甲烷(630ml)中,搅拌溶解。将三氟甲磺酸银(4.22g,16.41mmol,2.0eq)溶解于甲醇(253ml),再加入到原反应瓶溶液中,真空置换3次,混合液于N2保护作用下,室温搅拌16小时。然后将反应液进行硅藻土过滤,用二氯甲烷(200ml)淋洗滤渣,将滤液旋干得到化合物Ir(La003)-2(7.5g,80.62%)。得到的化合物不经纯化直接使用于下一步。
化合物Ir(La003)2(Lc004)的合成:
将化合物Ir(La003)-2(7.5g,6.61mmol,1.0eq)、Lc004(4.78g,16.53mmol,2.5eq)加入到250ml的三口烧瓶中,加入乙醇(113ml),真空置换3次,在N2保护作用下,搅拌回流12小时。冷却到室温后进行过滤,收集固体用二氯甲烷(168ml)溶解,进行硅胶过滤,再用二氯甲烷(60ml)淋洗滤饼,滤液旋干后,采用四氢呋喃/甲醇重结晶2次(产品:四氢呋喃:甲醇=1:5:8),干燥得到化合物Ir(La003)2(Lc004)(3.79g,47.33%)。质谱:1210.63(M+H)。化合物Ir(La003)(Lc004)-1的合成:
将化合物Ir(La003)2(Lc004)(5.25g,4.34mmol,1.0eq)、氯化锌(29.58g,217.01mmol,50eq)置于一个1L的单口烧瓶中,加入1,2二氯乙烷(350ml),真空置换3次,于N2保护作用下,搅拌回流反应18小时。TLC点板监控原料Ir(La003)2(Lc004)基本反应完全,冷却到室温后,加入去离子水洗涤3次(120ml/次),滤液旋干得到化合物Ir(La003)(Lc004)-1(3.22g,84.32%)。得到的化合物不经纯化直接使用于下一步。
化合物Ir(La003)(Lb005)(Lc004)的合成:
将化合物Ir(La003)(Lc004)-1(4.32g,2.45mmol,1.0eq)、Lb005(2.6g,12.26mmol,5.0eq)、碳酸钠(2.6g,24.53mmol,10.0eq)置于一个250ml的单口圆底烧瓶中,加入乙二醇乙醚(65ml),真空置换3次,混合液于N2保护作用下,50℃搅拌24小时,TLC监控Ir(La003)(Lc004)-1反应完全。冷却到室温后,加入106ml甲醇室温打浆2h,抽滤,滤饼使用二氯甲烷(90ml)溶解进行硅胶过滤,再用二氯甲烷(50ml)淋洗滤饼,收集滤液加入去离子水洗涤3次(50ml/次),分液,收集有机相浓缩,干燥得到暗红色固体,采用四氢呋喃/ 甲醇(产品:四氢呋喃:甲醇=1:5:7)重结晶3次得到红色固体为化合物Ir(La003)(Lb005)(Lc004)(1.22g,收率:46.87%)。将1.22克Ir(La003)(Lb005)(Lc004)粗品升华纯化后得到升华纯Ir(La003)(Lb005)(Lc004)(0.78g,收率:63.93%)。质谱:1058.45(M+H)。1H NMR(400MHz,CDCl3)δ8.91(s,1H),8.87(s,1H),8.26(s,1H),8.11(s,1H),7.51(s,1H),7.37(m,4H),7.16(m,4H),7.11(d,J=7.2Hz,2H),7.04(d,J=6.6Hz,2H),6.97(d,J=7.6Hz,2H),4.83(s,1H),2.62(d,J=6.8Hz,2H),2.58(d,J=7.4Hz,2H),2.11–1.96(m,6H),1.76(m,6H),1.37–1.18(m,12H),0.96–0.81(m,14H),0.21–0.08(m,10H).
配体Lc025的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体Lc025,质谱:366.47(M+H)。
化合物Ir(La003)(Lb005)(Lc025)的合成:
化合物Ir(La003)2(Lc025)的合成:
参照化合物Ir(La003)2(Lc004)的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物Ir(La003)2(Lc025),质谱:1286.68(M+H)。
化合物Ir(La003)(Lc025)-1的合成:
参照配体Ir(La003)(Lc004)-1的合成和纯化方法,只需要将对应的原物料变更即可,得 到目标化合物Ir(La003)(Lc025)-1不经纯化直接使用于下一步。
化合物Ir(La003)(Lb005)(Lc025)的合成:
参照化合物Ir(La003)(Lb005)(Lc004)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La003)(Lb005)(Lc025)(1.54g,收率:41.21%)。将1.54克Ir(La003)(Lb005)(Lc025)粗品升华纯化后得到升华纯Ir(La003)(Lb005)(Lc025)(0.87g,收率:56.49%),质谱:1134.51(M+H)。1H NMR(400MHz,CDCl3)δ8.90(s,1H),8.86(s,1H),8.19(s,1H),8.16(s,1H),7.44–7.38(m,6H),7.15–7.09(m,5H),7.04–6.97(d,J=7.6Hz,6H),4.81(s,1H),2.63(d,J=7.0Hz,2H),2.59(d,J=7.2Hz,2H),2.21–2.04(m,6H),1.76(m,6H),1.37–1.18(m,12H),0.96–0.81(m,12H),0.21–0.14(m,9H).
配体Lc026的合成:
化合物9的合成:
参照化合物2的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物9,质谱:234.74(M+H)。
配体Lc026的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体Lc026,质谱:380.49(M+H)。
化合物Ir(La003)(Lb005)(Lc026)的合成:

化合物Ir(La003)2(Lc026)的合成:
参照化合物Ir(La003)2(Lc004)的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物Ir(La003)2(Lc026),质谱:1230.71(M+H)。
化合物Ir(La003)(Lc026)-1的合成:
参照配体Ir(La003)(Lc004)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物Ir(La003)(Lc026)-1不经纯化直接使用于下一步。
化合物Ir(La003)(Lb005)(Lc026)的合成:
参照化合物Ir(La003)(Lb005)(Lc004)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La003)(Lb005)(Lc026)(1.75g,收率:42.35%)。将1.75克Ir(La003)(Lb005)(Lc026)粗品升华纯化后得到升华纯Ir(La003)(Lb005)(Lc026)(1.02g,收率:58.28%),质谱:1148.53(M+H)。1H NMR(400MHz,CDCl3)δ8.89(s,1H),8.85(s,1H),8.18(s,1H),8.15(s,1H),7.46–7.39(m,6H),7.18–7.12(m,5H),7.07–6.98(d,J=7.4Hz,6H),4.81(s,1H),2.62(d,J=7.6Hz,2H),2.58(d,J=7.4Hz,2H),2.21–2.04(m,6H),1.76(m,6H),1.37–1.18(m,12H),0.96–0.81(m,10H),0.43–0.38(m,6H),0.16–0.11(m,10H).
配体La004的合成:
化合物10的合成:
参照化合物2的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物10,质谱:234.74(M+H)。
配体La004的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体 La004,质谱:380.54(M+H)。
化合物Ir(La004)2(Lb005)的合成:
化合物Ir(La004)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La004)-1不经纯化直接使用于下一步。
化合物Ir(La004)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La004)2(Lb005)(2.64g,收率:46.37%)。将2.64克Ir(La004)2(Lb005)粗品升华纯化后得到升华纯Ir(La004)2(Lb005)(1.74g,收率:65.9%),质谱:1161.59(M+H)。1HNMR(400MHz,CDCl3)δ8.91(d,J=8.6Hz,2H),8.17(d,J=6.6Hz,2H),8.03(s,2H),7.46(s,2H),7.42(d,J=9.3Hz,2H),7.32(t,J=7.9Hz,4H),7.21(t,J=7.5Hz,4H),7.08(d,J=6.4Hz,2H),7.02(d,J=7.1Hz,2H),4.82(s,1H),2.66(d,J=7.4Hz,4H),2.15–1.91(m,8H),1.61(d,J=7.5Hz,3H),1.33–1.08(m,10H),1.00–0.88(m,15H),0.67–0.58(m,4H),0.41(t,J=7.4Hz,6H),-0.08(t,J=7.1Hz,6H).
配体La005的合成:
化合物11的合成:
参照化合物2的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物11,质谱:261.79(M+H)。
配体La005的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La005,质谱:408.59(M+H)。
化合物Ir(La005)2(Lb005)的合成:
化合物Ir(La005)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La005)-1不经纯化直接使用于下一步。
化合物Ir(La005)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La005)2(Lb005)(2.74g,收率:44.21%)。将2.74克Ir(La005)2(Lb005)粗品升华纯化后得到升华纯Ir(La005)2(Lb005)(1.68g,收率:61.31%),质谱:1217.7(M+H)。1HNMR(400MHz,CDCl3)δ8.90(d,J=8.7Hz,2H),8.16(d,J=6.5Hz,2H),8.01(s,2H),7.47(s,2H),7.41(d,J=9.1Hz,2H),7.30(t,J=7.8Hz,4H),7.22(t,J=7.5Hz,4H),7.11(d,J=6.4Hz,2H),7.04(d,J=7.1Hz,2H),4.82(s,1H),2.65(d,J=7.2Hz,4H),2.15–1.91(m,8H),1.61(d,J=7.5Hz,3H),1.42–1.36(m,6H),1.23–1.07(m,12H),0.92–0.84(m,16H),0.41-0.36(m,10H),0.15-0.08(m,6H).
配体La007的合成:
配体La007的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La007,质谱:380.54(M+H)。
化合物Ir(La007)2(Lb005)的合成:
化合物Ir(La007)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La007)-1不经纯化直接使用于下一步。
化合物Ir(La007)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La007)2(Lb005)(2.74g,收率:44.21%)。将2.74克Ir(La007)2(Lb005)粗品升华纯化后得到升华纯Ir(La007)2(Lb005)(1.68g,收率:61.31%),质谱:1161.59(M+H)。1HNMR(400MHz,CDCl3)δ8.89(d,J=8.7Hz,2H),8.19(d,J=6.6Hz,2H),8.04(s,2H),7.48(s,2H),7.43(d,J=9.1Hz,2H),7.33(t,J=8.2Hz,4H),7.24(t,J=7.5Hz,4H),7.08(d,J=6.4Hz,2H),7.02(d,J=7.1Hz,2H),4.82(s,1H),2.52(d,J=7.4Hz,4H),2.15–1.91(m,8H),1.61(d,J=7.5Hz,3H),1.33–1.08(m,10H),0.96–0.86(m,15H),0.48-0.35(m,10H),-0.08(t,J=7.1Hz,6H).
配体La010的合成:
化合物12的合成:
参照化合物2的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物12,质谱:232.72(M+H)。
配体La010的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La010,质谱:378.52(M+H)。
化合物Ir(La010)2(Lb005)的合成:
化合物Ir(La010)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La010)-1不经纯化直接使用于下一步。
化合物Ir(La010)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La010)2(Lb005)(2.74g,收率:44.21%)。将2.74克Ir(La010)2(Lb005)粗品升华纯化后得到升华纯Ir(La010)2(Lb005)(1.68g,收率:61.31%),质谱:1157.56(M+H)。1HNMR(400MHz,CDCl3)δ8.92(d,J=8.8Hz,2H),8.21(d,J=6.8Hz,2H),8.08(s,2H),7.51(s,2H),7.45(d,J=9.1Hz,2H),7.34(t,J=8.2Hz,4H),7.22(t,J=7.5Hz,4H),7.11(d,J=6.4Hz,2H),7.03(d,J=7.1Hz,2H),4.82(s,1H),2.51(d,J=7.4Hz,4H),2.14–2.03(m,8H),1.63(d,J=7.5Hz,3H),1.27–1.12(m,10H),0.96–0.86(m,15H),0.48-0.35(m,6H),-0.08(t,J=7.1Hz,6H).
配体La017的合成:
化合物13的合成:
参照化合物2的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物13,质谱:254.73(M+H)。
配体La017的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La017,质谱:400.53(M+H)。
化合物Ir(La017)2(Lb005)的合成:
化合物Ir(La017)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La017)-1不经纯化直接使用于下一步。
化合物Ir(La017)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La017)2(Lb005)(2.21g,收率:39.21%)。将2.21克Ir(La017)2(Lb005) 粗品升华纯化后得到升华纯Ir(La017)2(Lb005)(1.24g,收率:56.10%),质谱:1201.57(M+H)。1HNMR(400MHz,CDCl3)δ8.92(d,J=8.8Hz,2H),8.25(d,J=6.6Hz,2H),8.04(s,2H),7.48(s,2H),7.63-7.56(m,6H),7.36-7.28(m,8H),7.16(t,J=7.8Hz,4H),7.06(d,J=6.4Hz,2H),7.04(d,J=7.3Hz,2H),4.82(s,1H),1.91(m,8H),1.62(s,6H),1.24–1.12(m,8H),0.96–0.86(m,6H),0.48-0.35(m,6H),-0.08(t,J=7.2Hz,6H).
配体La023的合成:
化合物15的合成:
将化合物14(25.0g,120.16mmol,1.0eq)、碘(36.6g,144.19mmol,1.2eq)、70%的叔丁基过氧化氢(123.76g,0.96mol,8.0eq)、四氢呋喃(150ml)加入到500mL反应瓶中,真空、氮气置换3次后80℃油浴反应6h。TLC监控,化合物14基本反应完全。冷却到室温旋干反应溶剂,加饱和的硫代硫酸钠溶液(200ml)和乙酸乙酯(150ml),搅拌洗涤,分液收集有机相再水洗1次(150ml),收集有机相浓缩,进行柱层析纯化(正己烷:乙酸乙酯=15:1洗脱)得到化合物15(25.81g,收率:64.32%),质谱:334.95(M+H)。
化合物16的合成:
参照化合物2的合成和纯化方法,只需要将对应的原物料和催化剂变更即可,得到目标化合物16,质谱:334.95(M+H)。
化合物17的合成:
参照化合物2的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物17,质谱:251.13(M+H)。
化合物18的合成:
将化合物17(14.5g,63.78mmol,1.0eq)、二氯甲烷(145ml)加入到500mL反应瓶中,反应降温至0℃,将间氯过氧苯甲酸(33.02g,191.34mmol,3.0eq)分批加入反应液中,加完恢复至室温过夜。TLC监控,化合物17基本反应完全。将反应液直接过滤,收集滤液旋干,直接进行下步反应。将干燥的氮氧化物加入二氯甲烷(50ml),反应降温至0℃,并缓慢加入 三氯氧磷(50ml),加完升温至45℃反应2h。在室温下将反应液缓慢滴入250ml冰水中淬灭,再加入饱和碳酸钠溶液调PH=8-9,加入乙酸乙酯(150ml/次)萃取3次,有机相浓干,进行柱层析纯化(正己烷:乙酸乙酯=100:1)得到化合物18(6.78g,收率:40.62%),质谱:262.79(M+H)。
配体La023的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La023,质谱:408.59(M+H)。
化合物Ir(La023)2(Lb005)的合成:
化合物Ir(La023)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La023)-1不经纯化直接使用于下一步。
化合物Ir(La023)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La023)2(Lb005)(2.45g,收率:38.62%)。将2.45克Ir(La023)2(Lb005)粗品升华纯化后得到升华纯Ir(La023)2(Lb005)(1.59g,收率:64.89%),质谱:1217.7(M+H)。1HNMR(400MHz,CDCl3)δ8.92(s,J=8.8Hz,2H),8.21(d,J=6.8Hz,2H),8.08(s,2H),7.51(s,2H),7.34(t,J=8.2Hz,4H),7.22(t,J=7.5Hz,4H),7.11(d,J=6.4Hz,2H),7.03(d,J=7.1Hz,2H),4.82(s,1H),2.52(d,J=7.4Hz,4H),2.43(d,J=6.8Hz,2H),2.32(d,J=7.0Hz,2H),1.96–1.85(m,12H),1.71(m,6H),1.22–1.08(m,9H),0.92–0.84(m,16H),0.48-0.35(m,9H),-0.08(t,J=7.1Hz,6H).
配体La043的合成:
将配体La023(14.3g,30.18mmol,1.0eq)、十二羰基三钌(1.93g,3.02mmol,0.1eq)、氘代叔丁醇(75ml)加入到250mL反应瓶中,真空、氮气置换3次后75℃油浴反应6h。冷却到 室温,旋干反应溶剂,再加入二氯甲烷(80ml)溶解过滤,收集有机相旋干。重新按照原投料方法,反应一次。反应结束后,旋除溶剂,进行柱层析纯化(正己烷:乙酸乙酯=30:1洗脱)得到配体La043(6.28g,收率:50.9%),质谱:409.6(M+H)。
化合物Ir(La043)2(Lb005)的合成:
化合物Ir(La043)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La043)-1不经纯化直接使用于下一步。
化合物Ir(La043)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La043)2(Lb005)(1.68g,收率:37.62%)。将1.68克Ir(La043)2(Lb005)粗品升华纯化后得到升华纯Ir(La043)2(Lb005)(0.93g,收率:55.35%),质谱:1219.71(M+H)。1HNMR(400MHz,CDCl3)8.56(d,J=6.8Hz,2H),8.08(s,2H),7.51(s,2H),7.34(t,J=8.2Hz,4H),7.22(t,J=7.5Hz,4H),7.11(d,J=6.4Hz,2H),7.03(d,J=7.1Hz,2H),4.81(s,1H),2.50(d,J=7.4Hz,4H),2.42(d,J=6.8Hz,2H),2.31(d,J=7.0Hz,2H),1.95–1.84(m,12H),1.72(m,6H),1.22–1.08(m,9H),0.92–0.84(m,16H),0.48-0.35(m,9H),-0.08(t,J=7.1Hz,6H).
配体La083的合成:
化合物19的合成:
参照化合物4的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物19,质谱:276.18(M+H)。
化合物20的合成:
参照化合物5的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物20, 质谱:241.44(M+H)。
配体La083的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La083,质谱:380.54(M+H)。
化合物Ir(La083)2(Lb005)的合成:
化合物Ir(La083)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La083)-1不经纯化直接使用于下一步。
化合物Ir(La083)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La083)2(Lb005)(1.85g,收率:39.67%)。将1.85克Ir(La083)2(Lb005)粗品升华纯化后得到升华纯Ir(La083)2(Lb005)(1.14g,收率:61.62%),质谱:1161.59(M+H)。1HNMR(400MHz,CDCl3)δ8.91(d,J=8.9Hz,2H),8.16(d,J=6.6Hz,2H),8.02(s,2H),7.46(s,2H),7.46(d,J=9.6Hz,2H),7.30(t,J=7.8Hz,4H),7.19(t,J=7.6Hz,4H),7.01(d,J=7.6Hz,2H),4.82(s,1H),2.66(d,J=7.4Hz,4H),2.14–1.89(m,8H),1.62(d,J=7.5Hz,3H),1.2–1.08(m,10H),1.02–0.89(m,15H),0.41(t,J=7.4Hz,6H),-0.07(t,J=7.3Hz,6H).
配体La107的合成:
化合物21的合成:
参照化合物4的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物21,质谱:304.24(M+H)。
化合物22的合成:
参照化合物5的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物22,质谱:269.16(M+H)。
配体La107的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La107,质谱:422.62(M+H)。
化合物Ir(La107)2(Lb005)的合成:
化合物Ir(La107)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La107)-1不经纯化直接使用于下一步。
化合物Ir(La107)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La107)2(Lb005)(2.04g,收率:42.4%)。将2.04克Ir(La107)2(Lb005)粗品升华纯化后得到升华纯Ir(La107)2(Lb005)(1.21g,收率:59.31%),质谱:1245.75(M+H)。1HNMR(400MHz,CDCl3)δ8.91(d,J=8.9Hz,2H),8.16(d,J=6.6Hz,2H),8.02(s,2H),7.46(s,2H),7.46(d,J=9.6Hz,2H),7.30(t,J=7.8Hz,4H),7.19(t,J=7.6Hz,4H),7.01(d,J=7.6Hz,2H),4.82(s,1H),2.66(d,J=7.4Hz,4H),2.23(m,2H),2.14–1.89(m,8H),1.62(m,12H),1.2–1.08(m,12H),1.02–0.89(m,16H),0.41(t,J=7.4Hz,6H),-0.07(m,10H).
配体La123的合成:
化合物23的合成:
参照化合物4的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物23,质谱:280.15(M+H)。
化合物24的合成:
参照化合物5的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物24,质谱:245.07(M+H)。
配体La123的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La123,质谱:384.5(M+H)。1HNMR(400MHz,DMSO)δ8.52(d,J=5.6Hz,1H),8.04(d,J=8.7Hz,1H),7.84–7.71(m,2H),7.50(dd,J=8.7,1.4Hz,1H),7.41(s,2H),7.37–7.25(m,4H),2.66(d,J=7.1Hz,2H),2.07(s,6H),0.91(d,J=6.6Hz,6H).
化合物Ir(La123)2(Lb005)的合成:
化合物Ir(La123)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La123)-1不经纯化直接使用于下一步。
化合物Ir(La123)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La123)2(Lb005)(1.87g,收率:39.64%)。将1.87克Ir(La123)2(Lb005)粗品升华纯化后得到升华纯Ir(La123)2(Lb005)(0.98g,收率:52.4%),质谱:1169.52(M+H)。1HNMR(400MHz,CDCl3)δ8.89(d,J=8.8Hz,2H),8.14(d,J=6.4Hz,2H),8.00(s,2H),7.52–7.42(m,4H),7.17–7.12(m,2H),7.07(d,J=6.4Hz,2H),7.02–6.94(m,6H),4.81(s,1H),2.66(d,J=7.2Hz,4H),2.10–1.99(m,8H),1.59(d,J=5.0Hz,5H),1.41–1.05(m,12H),1.01–0.84(m,17H),0.39(t,J=7.4Hz,6H),-0.10(t,J=7.3Hz,6H).
配体La127的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La127,质谱:398.53(M+H)。
化合物Ir(La127)2(Lb005)的合成:
化合物Ir(La127)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La127)-1不经纯化直接使用于下一步。
化合物Ir(La127)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La127)2(Lb005)(1.63g,收率:38.5%)。将1.63克Ir(La127)2(Lb005)粗品升华纯化后得到升华纯Ir(La127)2(Lb005)(0.92g,收率:56.44%),质谱:1197.59(M+H)。1HNMR(400MHz,CDCl3)δ8.90(d,J=8.8Hz,2H),8.15(d,J=6.4Hz,2H),8.02(s,2H),7.52–7.42(m,4H),7.16–7.12(m,2H),7.06(d,J=6.4Hz,2H),7.02–6.94(m,6H),4.82(s,1H),2.68(d,J=7.2Hz,4H),2.13–2.01(m,8H),1.61(d,J=5.0Hz,5H),1.39–1.04(m,14H),1.01–0.84(m,17H),0.41(t,J=7.4Hz,8H),-0.12(t,J=7.3Hz,6H).
配体La143的合成:
化合物25的合成:
参照化合物4的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物25,质谱:287.14(M+H)。
化合物26的合成:
参照化合物5的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物26,质谱:252.09(M+H)。
配体La143的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La143,质谱:391.52(M+H)。1HNMR(400MHz,CDCl3)δ8.58(dd,J=6.9,4.7Hz,1H),8.12(t,J=6.0Hz,1H),7.79(t,J=5.9Hz,1H),7.65–7.58(m,1H),7.47(d,J=4.2Hz,1H),7.41–7.34(m,1H),2.70(t,J=5.7Hz,1H),2.10(d,J=3.9Hz,1H),2.01(dd,J=12.7,5.9Hz,1H),0.97(t,J=5.1Hz,1H).
化合物Ir(La143)2(Lb005)的合成:
化合物Ir(La143)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La143)-1不经纯化直接使用于下一步。
化合物Ir(La143)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La143)2(Lb005)(1.77g,收率:39.62%)。将1.77克Ir(La143)2(Lb005)粗品升华纯化后得到升华纯Ir(La143)2(Lb005)(1.04g,收率:58.75%),质谱:1183.56(M+H)。1HNMR(400MHz,CDCl3)δ8.88(d,J=8.8Hz,2H),8.14(d,J=6.4Hz,2H),8.03(s,2H),7.60(dd,J=5.3,2.0Hz,4H),7.55–7.43(m,4H),7.37–7.29(m,2H),7.19–7.05(m,4H),4.83(s,1H),2.67(d,J=7.1Hz,4H),2.11–1.96(m,8H),1.69–1.52(m,3H),1.36–1.03(m,11H),1.03–0.78(m,17H),0.41(t,J=7.4Hz,6H),-0.12(t,J=7.3Hz,6H).
配体La147的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La147,质谱:405.55(M+H)。
化合物Ir(La147)2(Lb005)的合成:
化合物Ir(La147)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La147)-1不经纯化直接使用于下一步。
化合物Ir(La147)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La147)2(Lb005)(1.94g,收率:43.6%)。将1.94克Ir(La147)2(Lb005)粗品升华纯化后得到升华纯Ir(La147)2(Lb005)(1.21g,收率:62.37%),质谱:1211.61(M+H)。1HNMR(400MHz,CDCl3)δ8.88(d,J=8.8Hz,2H),8.14(d,J=6.4Hz,2H),8.03(s,2H),7.60(dd,J=5.3,2.0Hz,4H),7.55–7.43(m,4H),7.37–7.29(m,2H),7.19–7.05(m,4H),4.83(s,1H),2.68(d,J=7.2Hz,4H),2.13–2.01(m,8H),1.61(d,J=5.0Hz,5H),1.39–1.04(m,14H),1.01–0.84(m,17H),0.41(t,J=7.4Hz,8H),-0.12(t,J=7.3Hz,6H).
配体La203的合成:
化合物27的合成:
参照化合物4的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物27,质谱:324.29(M+H)。
化合物28的合成:
参照化合物5的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物28,质谱:289.21(M+H)。
配体La203的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La203,质谱:428.64(M+H)。
化合物Ir(La203)2(Lb005)的合成:
化合物Ir(La203)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La203)-1不经纯化直接使用于下一步。
化合物Ir(La203)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La203)2(Lb005)(1.52g,收率:35.64%)。将1.52克Ir(La203)2(Lb005)粗品升华纯化后得到升华纯Ir(La203)2(Lb005)(0.86g,收率:56.57%),质谱:1257.81(M+H)。1HNMR(400MHz,CDCl3)δ8.89(d,J=8.8Hz,2H),8.16(d,J=6.4Hz,2H),8.05(s,2H),7.60(d,2H),7.62–7.46(m,4H),7.37(d,J=6.8Hz,2H),6.81(d,J=6.4Hz,2H),4.83(s,1H),2.68(d,J=7.2Hz,4H),1.85-1.61(m,12H),1.39–1.04(m,14H),1.01–0.84(m,16H),0.76–054(m,10H),0.42(t,J=7.4Hz,8H),-0.08(t,J=7.3Hz,6H).
配体La223的合成:
化合物30的合成:
参照化合物4的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物30,质谱:278.75(M+H)。
化合物31的合成:
参照化合物5的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物31,质谱:424.55(M+H)。
化合物32的合成:
将化合物31(12.5g,29.51mmol,1.0eq)、无水四氢呋喃(125ml)加入250ml三口反应瓶中,真空、氮气置换3次后降温至-10℃,缓慢滴加2M甲基溴化镁(7.74g,64.93mmol,2.2eq)至反应液中,滴完搅拌1h。恢复到室温反应3h,TLC监控,化合物31基本反应完全。加入2M的稀盐酸(60ml)搅拌淬灭反应,分液收集有机相,再萃取水洗2次(80ml/次),分液旋干有机相,进行柱层析纯化(正己烷:乙酸乙酯=30:1洗脱)得到化合物32(9.61g,收率:76.9%),质谱:424.59(M+H)。
配体La223的合成:
将化合物32(9.5g,22.43mmol,1.0eq)、醋酸(100ml)、稀盐酸(10ml)加入250ml三口反应瓶中,真空、氮气置换3次后升温至100℃,反应4h,TLC监控,化合物32基本反应完全。加入去离子水(150ml)搅拌淬灭反应,再用乙酸乙酯(150ml)萃取有机相,有机相水洗2次(80ml/次),分液旋干进行柱层析纯化(正己烷:乙酸乙酯=40:1洗脱)得到配体La223(7.85g,收率:86.32%),质谱:406.57(M+H)。
化合物Ir(La223)2(Lb005)的合成:
化合物Ir(La223)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La223)-1不经纯化直接使用于下一步。
化合物Ir(La223)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La223)2(Lb005)(1.71g,收率:44.8%)。将1.71克Ir(La223)2(Lb005) 粗品升华纯化后得到升华纯Ir(La223)2(Lb005)(1.04g,收率:60.81%),质谱:1213.67(M+H)。1HNMR(400MHz,CDCl3)δ8.90(d,J=8.8Hz,2H),8.03(s,2H),7.49(s,2H),7.43(d,J=9.5Hz,2H),7.32(t,J=7.6Hz,4H),7.23(t,J=7.8Hz,2H),7.04(d,J=6.4Hz,4H),4.83(s,1H),2.62(d,J=7.2Hz,4H),2.12–1.88(m,8H),1.61(d,J=7.5Hz,3H),1.32–1.11(m,10H),1.00–0.88(m,15H),0.43(t,J=7.4Hz,6H),-0.12(t,J=7.3Hz,6H).
配体La261的合成:
化合物34的合成:
将化合物33(13.5g,77.51mmol,1.0eq)与氯仿(100ml)加入到250ml三口瓶中,并在室温下向其缓慢地添加氨基乙醛二甲基缩醛(12.22g,116.26mmol,1.5eq)。在1小时之后,TLC监控,化合物33基本反应完全。将混合物旋干除去溶剂。然后将所得粗品化合物34在没有进一步纯化过程的情况下,进行下一步反应。
化合物35的合成:
将化合物34(28.6g,109.46mmol,1.0eq)与氯仿(150ml)加入到500ml三口瓶中,并且在0℃的温度下将氯甲酸乙酯(11.88g,109.46mmol,1.0eq)和亚磷酸三甲酯(16.3g,131.35mmol,1.2eq)以分别逐滴缓慢地添加至反应瓶中。反应在室温下搅拌16小时后,再在0℃的温度下向其逐滴缓慢地添加1.0M的四氯化钛(83.05g,437.83mmol,4.0eq)。然后将所得混合物在回流下加热约16小时。TLC监控,化合物34基本反应完全,反应冷却至室温,然后加入冰水(200ml),分液收集有机相,水层再用二氯甲烷(100ml)萃取,合并有机相并加入酒石酸盐溶液(250ml),将该混合溶液用饱和NaHCO3溶液中和,分液收集有机相旋干除去溶剂,进行柱层析纯化(正己烷:乙酸乙酯=25:1洗脱)得到化合物35(8.33g,收率:38.6%),质谱:198.21(M+H)。
化合物36的合成:
参照化合物18的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物36,质谱:232.65(M+H)。
配体La261的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体 La261,质谱:378.45(M+H)。
化合物Ir(La261)2(Lb005)的合成:
化合物Ir(La261)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La261)-1不经纯化直接使用于下一步。
化合物Ir(La261)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La261)2(Lb005)(1.82g,收率:36.35%)。将1.82克Ir(La261)2(Lb005)粗品升华纯化后得到升华纯Ir(La261)2(Lb005)(0.96g,收率:52.74%),质谱:1157.43(M+H)。1HNMR(400MHz,CDCl3)δ8.96(d,J=7.8Hz,2H),δ8.88(d,J=8.6Hz,2H),δ8.42(m,4H),8.02(s,2H),7.56(m,4H),7.39(m,4H),7.18(t,J=7.8Hz,4H),7.04(d,J=6.4Hz,4H),4.83(s,1H),2.03–1.86(m,8H),1.32–1.11(m,14H),1.00–0.88(m,6H),0.43(t,J=7.4Hz,6H).
配体La261的合成:
化合物38的合成:
将化合物37(23.5g,83.01mmol,1.0eq)、无水四氢呋喃(188ml)加入500ml三口反应瓶中,真空、氮气置换3次后降温至-78℃,缓慢滴加2M正丁基锂(49.81ml,99.61mmol,1.2eq)至反应液中,滴完搅拌1h。再缓慢加入无水DMF(12.14g,166.02mmol,2.0eq),滴完搅拌0.5h,恢复到室温反应2h。TLC监控,化合物37基本反应完全。加入2M的稀盐酸(80ml)搅拌淬灭反应,分液收集有机相,再萃取水洗2次(100ml/次),分液旋干有机相,进行柱层析纯化 (正己烷:乙酸乙酯=15:1洗脱)得到化合物38(10.77g,收率:55.87%),质谱:233.21(M+H)。化合物39的合成:
参照化合物34的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物39,质谱:320.33(M+H)。
化合物40的合成:
参照化合物35的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物40,质谱:256.24(M+H)。
化合物41的合成:
参照化合物18的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物41,质谱:290.69(M+H)。
化合物42的合成:
参照配体La002的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物42,质谱:436.49(M+H)。
化合物43的合成:
参照化合物32的合成和纯化方法,只需要将对应的原物料变更即可,得到目标化合物43,质谱:436.53(M+H)。
配体La261的合成:
参照配体La223的合成和纯化方法,只需要将对应的原物料变更即可,得到目标配体La261,质谱:418.52(M+H)。
化合物Ir(La310)2(Lb005)的合成:
化合物Ir(La310)-1的合成:
参照化合物Ir(La002)-1的合成和纯化方法,只需要将对应的原物料变更即可,得到化合物Ir(La310)-1不经纯化直接使用于下一步。
化合物Ir(La310)2(Lb005)的合成:
参照化合物Ir(La002)2(Lb005)的合成和纯化方法,只需要将对应的原物料变更即可,得到红色固体为化合物Ir(La310)2(Lb005)(1.47g,收率:36.35%)。将1.47克Ir(La310)2(Lb005) 粗品升华纯化后得到升华纯Ir(La310)2(Lb005)(0.84g,收率:57.14%),质谱:1237.55(M+H)。1HNMR(400MHz,CDCl3)δ8.96(d,J=7.8Hz,2H),δ8.88(d,J=8.6Hz,2H),δ8.34(m,2H),8.06(s,2H),7.42(m,4H),7.32(m,2H),7.16(t,J=7.8Hz,4H),7.05(d,J=6.4Hz,4H),4.83(s,1H),2.03–1.86(m,8H),1.29–1.08(m,14H),1.00–0.88(m,6H),0.76-0.58(m,12H),0.26(t,J=7.4Hz,6H).
选取对应的材料,用同样类似的方法可以用于合成、升华得到其他化合物。
应用例:有机电致发光器件的制作
将50mm*50mm*1.0mm的具有ITO(100nm)阳极电极的玻璃基板在乙醇中超声清洗10分钟,再150度烘干后经过N2Plasma处理30分钟。将洗涤后的玻璃基板安装在真空蒸镀装置的基板支架上,首先再有阳极电极线一侧的面上按照覆盖电极的方式采用共蒸镀的模式蒸镀化合物HTM1和P-dopant(比例为97%:3%),形成膜厚为10nm的薄膜,紧接着蒸镀一层HTM1形成膜厚为60nm左右的薄膜,再在HTM1薄膜上蒸镀一层HTM2形成膜厚为10nm的薄膜,然后,在HTM2膜层上再采用共蒸镀的模式蒸镀主体材料1和主体材料2和掺杂化合物(比例为:48.5%:48.5%:3%,对比化合物X、本发明化合物),膜厚为40nm,在发光层上采用共蒸镀的模式蒸镀ETL:LiQ(35nm,比例为50%:50%),再在电子传输层材料上蒸镀Yb(1nm),最后蒸镀一层金属Ag(15nm)作为电极。



评价:将上述器件进行器件性能测试,在各实施例和比较例中,使用恒定电流电源(Keithley 2400),使用固定的电流密度流过发光元件,使用分光辐射亮度计(CS 2000)测试发光波谱。同时测定电压值以及测试亮度为初始亮度的95%的时间(LT95)。结果如下:电流效率以及器件寿命均为以对比化合物4的数值为100%计算。

由上面表格中的数据对比可知,使用本发明的化合物作为掺杂剂的有机电致发光器件,在相同色标的器件中,相较于对比化合物在驱动电压、发光效率、器件寿命都表现出更加优越的性能。
升华温度对比:升华温度的定义为:在10-7Torr的真空度,蒸镀速率为1埃每秒对应的温度。测试结果如下:
由上面表格中的数据对比可知,本发明金属铱络合物具有较低的升华温度,有利于产业化应用。
本发明通过对取代基的特殊搭配,相对于现有技术,出乎意料地提供了较低的驱动电压低,更好的器件发光效率和改善的寿命,提供了较低的升华温度、更饱和的红色发光。上述结果表明本发明的化合物具有升华温度较低,光、电化学稳定性高,色饱和度高,发光效率高,器件寿命长等优点,可用于有机电致发光器件中。特别是作为红色发光掺杂体,具有应用于OLED产业的可能。

Claims (19)

  1. 一种金属铱络合物,具有Ir(La)(Lb)(Lc)的通式,其中La为式(1)所示的结构,
    其中,虚线表示与金属Ir连接的位置;
    其中,X1-X4独立地为N或者CR0,且至少两个为CR0,并且两个R0之间相互连接形成五元或六元的取代或未取代的芳香环或杂芳环;
    其中,R0、R4独立地选自氢、氘、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基、氨基,巯基、羟基;
    其中,R1、R3独立地选自取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基;
    其中,R2为取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基;
    其中Lb为式(2)所示的结构,
    其中,虚线位置表示与金属Ir连接的位置;
    其中,RA-RG独立地选自氢、氘、卤素、取代的或未取代的C1-C10烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20杂环烷基、或者RA、RB、RC之间两两连接以形成脂肪环,RE、RF、RG之间两两连接以形成脂肪环;
    其中,所述杂芳环、杂烷基、杂环烷基和杂芳基中至少含有一个O、N或S杂原子;
    其中,所述取代为被氘、F、Cl、Br、C1-C6烷基、C1-C6烷氧基、C3-C6环烷基、C1-C6烷基取代的胺基、氰基、异腈基或膦基所取代,其中所述取代为单取代到最大数目取代;
    其中,Lc均为单阴离子型双齿配体,Lc与Lb不相同且不为OO型配体;
    其中,Lc与La相同或不相同,所述不相同为母核结构不相同或母核结构相同但取代基 不同或母核结构相同取代基相同但取代基位置不相同;
    或者,La、Lb、Lc两两或三者相互连接形成多齿配体。
  2. 根据权利要求1所述的金属铱络合物,其中,所述芳香环或杂芳环结构是X1和X2、或X2和X3、或X3和X4均为CR0并且两个R0之间相互连接形成五元环或者六元环的芳香环或杂芳环结构,其中所述的五元环或者六元环的芳环结构或杂芳环结构与A环稠合形成的并环结构,所述并环结构如下式之一所示:
    其中,*表示与式(1)中取代苯环相连的位置;
    其中,R表示无取代到最大可能的取代,或者两个相邻的R之间互相连接形成脂肪族或者芳香族环状结构,其中无取代意味着与碳相连的地方都是氢原子,R独立地选自氘、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基、取代或未取代的C2-C10烯基、取代 或未取代的C2-C10炔基、取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基、氨基,巯基、羟基。
  3. 根据权利要求2所述的金属铱络合物,其中式(1)中两个相邻的R0之间相互连接形成的式(3)所示的结构与A环形成并环结构:
    其中,虚线表示与A环连接的位点,
    其中,Ra独立地选自氢、氘、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基,两个相邻的Ra之间可以相互连接以形成脂环族环或芳香族环;
    其中,n为0-4的自然数。
  4. 根据权利要求3所述的金属铱络合物,其中式(1)具有式(4)所述的结构:
    其中,Rb为H、D、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基;
    其中,Ra至少之一不为H。
  5. 根据权利要求4所述的金属铱络合物,具有式(5)所述的结构:
    其中,Ra独立地选自取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代的或未取代的C3-C20杂环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C30芳基、取代或未取代的C2-C30杂芳基;R2为取代或未取代的C6-C12芳基、取代或未取代的C4-C12杂芳基。
  6. 根据权利要求5所述的金属铱络合物,R2为取代或未取代的苯基、取代或未取代的C4杂芳基。
  7. 根据权利要求6所述的金属铱络合物,其中R2中所述的取代是被含有D、F、CN、C1-C6的烷基、含有D、F、CN、C1-C6的C3-C6的环烷基、含有D、F取代的C1-C6的烷基、含有D、F取代的C3-C6的环烷基所取代。
  8. 根据权利要求7所述的金属铱络合物,其中R1、R3为D、F取代或未取代的C1-C6烷基、D、F取代或未取代的C3-C6环烷基。
  9. 根据权利要求8所述的金属铱络合物,其中R4为氢、D、F、CN、取代或未取代的C1-C4烷基。
  10. 根据权利要求3所述的金属铱络合物,其中R4与其中之一的Ra相互连接形成式(6)所示结构:
    其中,Rc、Rd为H、D、F、CN、取代或未取代的C1-C4烷基,其中所述取代为被D、F或C1-C4烷基所取代,Ra至少之一不为H。
  11. 根据权利要求10所述的金属铱络合物,具有式(7)所示结构:
    其中Ra至少之一不为H。
  12. 根据权利要求1-11任一所述的金属铱络合物,其中Lc与La不相同。
  13. 根据权利要求12所述的金属铱络合物,其中Lc为式(8)所示的结构,
    其中,虚线表示与金属Ir连接的位置;
    其中,R10-R17独立地选自氢、氘、卤素、氰基、羟基、氨基、胺基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C18芳基、取代或未取代的C2-C17杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基;
    其中,R14-R17中至少两个不为氢;
    或者,R10-R13中至少一组两个相邻的基团之间形成如下式(9)所示芳香族环;
    其中,虚线表示与吡啶环连接的位置;
    其中,R18-R21独立地选自氢、氘、卤素、氰基、取代的或未取代的C1-C10烷基、取代的或未取代的C1-C10杂烷基、取代的或未取代的C3-C20环烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C18芳基、取代或未取代的C2-C17杂芳基、取代或未取代的三C1-C10烷基硅基、取代或未取代的三C6-C12芳基硅基、取代或未取代的 二C1-C10烷基一C6-C30芳基硅基、取代或未取代的一C1-C10烷基二C6-C30芳基硅基、或者R18-R21两个相邻的基团之间相互连接形成脂环族环或芳香族环;
    其中,所述杂烷基和杂芳基中至少含有一个O、N或S杂原子;
    其中,所述取代为被氘、F、Cl、Br、C1-C6烷基、C3-C6环烷基、C1-C6烷基取代的胺基、腈、异腈或膦基取代,其中所述取代为单取代到最大数目取代。
  14. 根据权利要求13所述的金属铱络合物,其中Lc为以下结构式之一,或者对应的部分或完全氘代或者氟代,

  15. 根据权利要求3所述的金属铱络合物,其中La为以下结构式之一,或者对应的部分或完全氘代或者氟代,














  16. 根据权利要求1所述的金属铱络合物,其中Lb为以下结构式之一,或者对应的部分或完全氘代或者氟代,

  17. 一种电致发光器件,其包括:阴极,阳极以及设置在阴极与阳极之间的有机层,所述有机层中包含权利要求1-16任一所述的金属铱络合物。
  18. 权利要求17所述的电致发光器件,其中所述有机层中包括有发光层,所述权利要求1-16任一所述的金属铱络合物作为发光层的红色发光掺杂材料;或者其中所述有机层中包括有空穴注入层,所述权利要求1-16任一所述的金属铱络合物作为空穴注入层中的空穴注入材料。
  19. 配体La,其结构式如下:
    其中R1-R4、X1-X4如权利要求1-3任一所示。
PCT/CN2023/097311 2022-06-30 2023-05-31 金属铱络合物及其应用 WO2024001650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210754653.3 2022-06-30
CN202210754653.3A CN115232173B (zh) 2022-06-30 2022-06-30 金属铱络合物及其应用

Publications (1)

Publication Number Publication Date
WO2024001650A1 true WO2024001650A1 (zh) 2024-01-04

Family

ID=83670887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097311 WO2024001650A1 (zh) 2022-06-30 2023-05-31 金属铱络合物及其应用

Country Status (2)

Country Link
CN (1) CN115232173B (zh)
WO (1) WO2024001650A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115232173B (zh) * 2022-06-30 2023-05-12 广东阿格蕾雅光电材料有限公司 金属铱络合物及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657518A (zh) * 2007-03-08 2010-02-24 通用显示公司 磷光材料
CN102911213A (zh) * 2011-08-01 2013-02-06 通用显示公司 用于有机发光二极管的材料
CN104871333A (zh) * 2012-12-27 2015-08-26 佳能株式会社 有机发光元件和显示装置
CN108690091A (zh) * 2018-07-02 2018-10-23 南京工业大学 一种铱配合物及其制备方法和应用
CN110343136A (zh) * 2018-04-02 2019-10-18 三星电子株式会社 有机金属化合物、以及包括其的有机发光器件和诊断组合物
CN114075252A (zh) * 2021-08-25 2022-02-22 吉林奥来德光电材料股份有限公司 铱金属化合物、发光材料、发光层和有机电致发光器件
CN115232173A (zh) * 2022-06-30 2022-10-25 广东阿格蕾雅光电材料有限公司 金属铱络合物及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070278936A1 (en) * 2006-06-02 2007-12-06 Norman Herron Red emitter complexes of IR(III) and devices made with such compounds
CN111943988B (zh) * 2020-08-17 2023-04-18 奥来德(上海)光电材料科技有限公司 一种铱掺杂电致发光材料及其制备方法和光电器件
CN114605474A (zh) * 2020-12-04 2022-06-10 广东阿格蕾雅光电材料有限公司 一种铱络合物及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657518A (zh) * 2007-03-08 2010-02-24 通用显示公司 磷光材料
CN102911213A (zh) * 2011-08-01 2013-02-06 通用显示公司 用于有机发光二极管的材料
CN104871333A (zh) * 2012-12-27 2015-08-26 佳能株式会社 有机发光元件和显示装置
CN110343136A (zh) * 2018-04-02 2019-10-18 三星电子株式会社 有机金属化合物、以及包括其的有机发光器件和诊断组合物
CN108690091A (zh) * 2018-07-02 2018-10-23 南京工业大学 一种铱配合物及其制备方法和应用
CN114075252A (zh) * 2021-08-25 2022-02-22 吉林奥来德光电材料股份有限公司 铱金属化合物、发光材料、发光层和有机电致发光器件
CN115232173A (zh) * 2022-06-30 2022-10-25 广东阿格蕾雅光电材料有限公司 金属铱络合物及其应用

Also Published As

Publication number Publication date
CN115232173A (zh) 2022-10-25
CN115232173B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
EP3664172B1 (en) Compound for organic optoelectronic diode, organic optoelectronic diode, and display device
CN109415625B (zh) 化合物及其组成物、有机光电装置及显示装置
CN109312230B (zh) 用于有机光电装置的化合物、用于有机光电装置的组成物以及有机光电装置及显示装置
JP6443107B2 (ja) トリアジン化合物及びその製造方法
TW201509915A (zh) 有機光電元件用組成物及有機光電元件及顯示元件
KR20110049217A (ko) 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
CN102548968A (zh) 芳香族杂环衍生物及使用该芳香族杂环衍生物的有机场致发光元件
KR20110008723A (ko) 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
EP3480277A1 (en) Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display apparatus
KR101618426B1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102263822B1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN107257787B (zh) 杂环化合物和包含其的有机发光元件
TWI813427B (zh) 一種金屬銥絡合物及其應用
KR20150086994A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2024001650A1 (zh) 金属铱络合物及其应用
JP2019026556A (ja) アリールアミン誘導体、それを用いたホール輸送材料及び有機el素子
WO2021258875A1 (zh) 一种金属铱络合物及其应用
CN112592333B (zh) 用于有机光电装置的化合物、有机光电装置及显示装置
WO2022116733A1 (zh) 一种金属络合物及其应用
KR20140023283A (ko) 치환된 오르토 터페닐 구조를 가지는 화합물 및 유기 일렉트로루미네선스 소자
WO2023246449A1 (zh) 一种金属铱络合物及其应用
TWI815358B (zh) 一種有機金屬化合物及其應用
TWI823632B (zh) 一種金屬銥絡合物及其應用
CN111362866A (zh) 一种由氮杂苯修饰的有机化合物及其应用
TWI847109B (zh) 一種有機金屬銥化合物及其應用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829835

Country of ref document: EP

Kind code of ref document: A1