WO2024000842A1 - 一种三元锂电池回收浸出液净化的方法 - Google Patents
一种三元锂电池回收浸出液净化的方法 Download PDFInfo
- Publication number
- WO2024000842A1 WO2024000842A1 PCT/CN2022/119989 CN2022119989W WO2024000842A1 WO 2024000842 A1 WO2024000842 A1 WO 2024000842A1 CN 2022119989 W CN2022119989 W CN 2022119989W WO 2024000842 A1 WO2024000842 A1 WO 2024000842A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- lithium battery
- battery recycling
- add
- filtrate
- Prior art date
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 89
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000011084 recovery Methods 0.000 title abstract description 11
- 239000000706 filtrate Substances 0.000 claims abstract description 48
- 239000007788 liquid Substances 0.000 claims abstract description 30
- 239000010949 copper Substances 0.000 claims abstract description 28
- 239000002699 waste material Substances 0.000 claims abstract description 27
- 229910052802 copper Inorganic materials 0.000 claims abstract description 26
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 22
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims abstract description 20
- 239000002893 slag Substances 0.000 claims abstract description 19
- XCPQSHFJZZSKLG-UHFFFAOYSA-N [Li].[Mg].[Ca] Chemical compound [Li].[Mg].[Ca] XCPQSHFJZZSKLG-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000605 extraction Methods 0.000 claims abstract description 18
- 239000012074 organic phase Substances 0.000 claims abstract description 16
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 11
- 238000001914 filtration Methods 0.000 claims abstract description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 11
- 239000010452 phosphate Substances 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 230000002378 acidificating effect Effects 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 35
- 238000004064 recycling Methods 0.000 claims description 32
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 21
- 238000001556 precipitation Methods 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 239000012266 salt solution Substances 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 239000011574 phosphorus Substances 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 150000003841 chloride salts Chemical class 0.000 claims description 5
- ZNBNBTIDJSKEAM-UHFFFAOYSA-N 4-[7-hydroxy-2-[5-[5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-2-methyl-3-propanoyloxypentanoic acid Chemical compound C1C(O)C(C)C(C(C)C(OC(=O)CC)C(C)C(O)=O)OC11OC(C)(C2OC(C)(CC2)C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CC1 ZNBNBTIDJSKEAM-UHFFFAOYSA-N 0.000 claims description 4
- FUSNOPLQVRUIIM-UHFFFAOYSA-N 4-amino-2-(4,4-dimethyl-2-oxoimidazolidin-1-yl)-n-[3-(trifluoromethyl)phenyl]pyrimidine-5-carboxamide Chemical compound O=C1NC(C)(C)CN1C(N=C1N)=NC=C1C(=O)NC1=CC=CC(C(F)(F)F)=C1 FUSNOPLQVRUIIM-UHFFFAOYSA-N 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 150000004673 fluoride salts Chemical class 0.000 claims description 4
- 229910000377 hydrazine sulfate Inorganic materials 0.000 claims description 4
- 239000012493 hydrazine sulfate Substances 0.000 claims description 4
- 229910000378 hydroxylammonium sulfate Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000011572 manganese Substances 0.000 claims description 4
- 230000001376 precipitating effect Effects 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims 1
- 150000003839 salts Chemical class 0.000 claims 1
- 239000011575 calcium Substances 0.000 abstract description 13
- 239000012535 impurity Substances 0.000 abstract description 11
- 238000000926 separation method Methods 0.000 abstract description 11
- 239000011777 magnesium Substances 0.000 abstract description 9
- 229910052791 calcium Inorganic materials 0.000 abstract description 8
- 229910052749 magnesium Inorganic materials 0.000 abstract description 8
- 238000000746 purification Methods 0.000 abstract description 8
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 abstract description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 3
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 abstract description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 16
- 239000002351 wastewater Substances 0.000 description 12
- 239000003513 alkali Substances 0.000 description 9
- 238000002386 leaching Methods 0.000 description 9
- VNTQORJESGFLAZ-UHFFFAOYSA-H cobalt(2+) manganese(2+) nickel(2+) trisulfate Chemical compound [Mn++].[Co++].[Ni++].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VNTQORJESGFLAZ-UHFFFAOYSA-H 0.000 description 8
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 8
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 230000035484 reaction time Effects 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 6
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 6
- 125000001309 chloro group Chemical class Cl* 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 238000004065 wastewater treatment Methods 0.000 description 5
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical group [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000011775 sodium fluoride Substances 0.000 description 4
- 235000013024 sodium fluoride Nutrition 0.000 description 4
- 239000001488 sodium phosphate Substances 0.000 description 4
- 229910000162 sodium phosphate Inorganic materials 0.000 description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 4
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 239000011698 potassium fluoride Substances 0.000 description 3
- 235000003270 potassium fluoride Nutrition 0.000 description 3
- 229910000160 potassium phosphate Inorganic materials 0.000 description 3
- 235000011009 potassium phosphates Nutrition 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910004261 CaF 2 Inorganic materials 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- SEGLCEQVOFDUPX-UHFFFAOYSA-N di-(2-ethylhexyl)phosphoric acid Chemical compound CCCCC(CC)COP(O)(=O)OCC(CC)CCCC SEGLCEQVOFDUPX-UHFFFAOYSA-N 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- -1 sulfide ions Chemical class 0.000 description 2
- LJKDOMVGKKPJBH-UHFFFAOYSA-N 2-ethylhexyl dihydrogen phosphate Chemical compound CCCCC(CC)COP(O)(O)=O LJKDOMVGKKPJBH-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910001447 ferric ion Inorganic materials 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010413 mother solution Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000010926 waste battery Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/007—Wet processes by acid leaching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/10—Obtaining alkali metals
- C22B26/12—Obtaining lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Definitions
- the invention belongs to the technical field of battery recycling, and particularly relates to a method for purifying leachate from ternary lithium battery recycling.
- Lithium-ion batteries have the advantages of high voltage, good cycleability, high energy density, small self-discharge, and no memory effect. They have been widely used in the electronics and wireless communication industries, and are also the first choice for light and high-capacity batteries for electric vehicles in the future. As various types of electronic products have gradually become popular and maintained a rapid replacement rate, the demand for lithium-ion batteries is growing day by day, and the amount of used lithium-ion batteries and lithium-ion battery production waste is also increasing day by day. These wastes containing valuable metals belong to Hazardous waste will cause serious ecological and environmental pollution problems, and recycling and reusing resources is the best way to solve this problem.
- the commonly used cathode materials for lithium-ion batteries on the market include lithium cobalt oxide, lithium nickel oxide, lithium manganate, nickel-cobalt-manganese ternary cathode materials, and lithium iron phosphate.
- acids such as sulfuric acid, nitric acid, and hydrochloric acid are commonly used to leach valuable metals from electrode materials.
- lithium nickel cobalt manganate cobalt and manganese are in high valence states, so reducing agents such as hydrogen peroxide and sodium sulfite need to be added to complete the metal leaching.
- the waste battery leachate contains a large amount of Ni, Co, Mn, and Li valuable metals, as well as Cu, Fe, Al, Zn, Ca, Mg and other impurity ions.
- the mixed metal ions in the leachate still need to be purified using appropriate purification methods. resource.
- the present invention aims to solve at least one of the technical problems existing in the prior art.
- the present invention proposes a method for purifying ternary lithium battery recycling leachate. This purification method can improve the copper removal efficiency of the leachate, further remove calcium and magnesium impurities, and increase the recovery rate of lithium so that the recovery rate of lithium is no less than 99%.
- a method for purifying ternary lithium battery recycling leachate including the following steps:
- step (1) after heating the ternary lithium battery recycling leachate once, the pH is adjusted to 5.5-6.0.
- the temperature after one heating in step (1) is 60-100°C.
- the temperature after one heating in step (1) is 75-90°C.
- the amount of the reducing agent added in step (1) is 0.2-5 times the molar amount of copper in the filtrate after the primary filtration.
- the amount of reducing agent added in step (1) is 0.5-3 times the molar amount of copper in the filtrate after the primary filtration.
- controlling the pH to be acidic in step (1) means controlling the pH to 4.0-6.5.
- controlling the pH to be acidic in step (1) is to control the pH at 5.0-6.0.
- the temperature after the second heating in step (1) is 80-100°C.
- the temperature after the second heating in step (1) is 90-100°C, and the reaction is carried out for 1-2 hours after the second heating and then filtered twice.
- step (1) the precipitant is added after the filtrate after secondary filtration is cooled to room temperature.
- the precipitating agent described in step (1) is a soluble fluoride salt, and the fluoride ion concentration in the filtrate after three filtrations is 3-10g/L. .
- the precipitating agent described in step (1) is a soluble fluoride salt, and the fluoride ion concentration in the filtrate after three filtrations is 4-8g/L.
- the precipitating agent described in step (1) is at least one of sodium fluoride and potassium fluoride.
- the extraction agent described in step (1) is at least one of P204 (di(2-ethylhexyl)phosphate) and P507 (2-ethylhexyl phosphate).
- the stripping agent described in step (1) is at least one of hydrochloric acid or sulfuric acid.
- the stripping agent described in step (1) is sulfuric acid.
- the concentration of the stripping agent is 2-6 mol/L.
- the concentration of the stripping agent is 3-5 mol/L.
- step (2) soluble phosphate is added to the raffinate according to the molar ratio of lithium to phosphorus being 3: (1.0-1.2).
- step (2) soluble phosphate is added to the raffinate according to the molar ratio of lithium to phosphorus being 3: (1.0-1.05).
- the soluble phosphate described in step (2) is at least one of sodium phosphate and potassium phosphate.
- wastewater is also obtained after solid-liquid separation in step (2), and the wastewater is processed through a wastewater treatment system.
- step (3) after mixing the lithium-containing waste residue and the calcium-magnesium-lithium residue, they are added to the soluble chlorine salt solution according to a solid-to-liquid ratio of 10-180g/L.
- concentration of the soluble chlorine salt solution is 1.0-7.0mol/L.
- step (3) after mixing the lithium-containing waste residue and the calcium-magnesium-lithium residue, they are added to the soluble chlorine salt solution according to a solid-to-liquid ratio of 20-150g/L.
- concentration of the soluble chlorine salt solution is is 1.0-6.0mol/L.
- the soluble chloride salt solution described in step (3) is calcium chloride solution.
- the reaction temperature is controlled to 70-90°C, and the reaction time is 4-6 hours.
- a method for purifying ternary lithium battery recycling leachate includes the following steps:
- step (3) After the reaction in step (3) is completed, the solid and liquid are separated to obtain copper slag and the second filtrate;
- the precipitant is at least one of sodium fluoride and potassium fluoride, and control the fluoride ion concentration in the filtrate after precipitation to 4 -8g/L;
- step (6) After the reaction in step (5) is completed, the solid and liquid are separated to obtain calcium magnesium lithium residue and the third filtrate;
- phosphate is at least one of sodium phosphate and potassium phosphate. Separate the solid and liquid to obtain lithium-containing waste residue. and wastewater, which enters the wastewater treatment system;
- step (9) After mixing the lithium-containing waste residue with the calcium magnesium lithium residue obtained in step (6), add it to the calcium chloride solution of 1.0-6.0 mol/L according to the solid-liquid ratio of 20-150g/L to replace the lithium in the waste residue. , the replacement process controls the temperature to 70-90°C, the replacement time to 4-6 hours, and obtains a lithium chloride solution.
- the present invention adjusts the pH of the ternary lithium battery leachate to hydrolyze the iron and aluminum to remove the ferric ions and aluminum ions in the solution, and further adds a reducing agent to make the copper ions generate cuprous hydroxide at high temperature (low temperature). , the precipitation is incomplete), it is reduced to generate cuprous oxide and removed, which avoids the problem of low reaction efficiency by adding iron powder and the need to re-add oxidant to remove iron; on the other hand, through secondary lithium precipitation, the precipitation of lithium is improved rate, the obtained calcium magnesium lithium slag is further enriched to extract lithium, and a lithium chloride solution is obtained.
- the present invention uses a reducing agent to reduce copper ions to cuprous, which not only shortens the reaction time for removing copper, but also leaves less copper remaining in the solution. While using soluble fluoride salt as a precipitant to precipitate lithium, calcium and magnesium ions are further removed, avoiding the mixing of calcium and magnesium ions during subsequent extraction. Through further phosphate precipitation of lithium, the lithium content in the raffinate is further reduced. ; Finally, soluble chlorine salts are used to enrich lithium to obtain a lithium chloride solution, and the lithium element is recovered again, while calcium and magnesium impurities remain in the waste residue, making the final lithium recovery rate no less than 99%.
- Figure 1 is a schematic process flow diagram of Embodiment 1 of the present invention.
- the ternary lithium battery recycling leachate used in the specific embodiment of the present invention is a leachate obtained by using sulfuric acid and hydrogen peroxide in the leaching process. Its main components of metal ions are:
- a method for purifying ternary lithium battery recycling leachate includes the following steps:
- step (3) After the reaction in step (3) is completed, the solid and liquid are separated to obtain copper slag and the second filtrate;
- step (6) After the reaction in step (5) is completed, the solid and liquid are separated to obtain calcium magnesium lithium residue and the third filtrate;
- step (9) After mixing the lithium-containing waste residue with the calcium-magnesium-lithium residue obtained in step (6), add it to the 1.0 mol/L calcium chloride solution according to a solid-to-liquid ratio of 20g/L to replace the lithium in the waste residue.
- the replacement process is controlled The temperature was 90°C, the replacement time was 6 hours, and a lithium chloride solution was obtained.
- a method for purifying ternary lithium battery recycling leachate including the following steps:
- step (3) After the reaction in step (3) is completed, the solid and liquid are separated to obtain copper slag and the second filtrate;
- step (6) After the reaction in step (5) is completed, the solid and liquid are separated to obtain calcium magnesium lithium residue and the third filtrate;
- step (6) After mixing the lithium-containing waste residue with the calcium magnesium lithium residue obtained in step (6), add it to the 4.0 mol/L calcium chloride solution according to the solid-liquid ratio of 100g/L to replace the lithium in the waste residue.
- the replacement process is controlled The temperature was 80°C, the replacement time was 5 hours, and a lithium chloride solution was obtained.
- a method for purifying ternary lithium battery recycling leachate including the following steps:
- step (3) After the reaction in step (3) is completed, the solid and liquid are separated to obtain copper slag and the second filtrate;
- step (6) After the reaction in step (5) is completed, the solid and liquid are separated to obtain calcium magnesium lithium residue and the third filtrate;
- step (6) After mixing the lithium-containing waste residue with the calcium magnesium lithium residue obtained in step (6), add it to the 6.0 mol/L calcium chloride solution according to the solid-liquid ratio of 150g/L to replace the lithium in the waste residue.
- the replacement process is controlled The temperature is 70°C, the replacement time is 4 hours, and a lithium chloride solution is obtained.
- a method for purifying ternary lithium battery recycling leachate including the following steps:
- the ternary lithium battery recycling leachate purification method of the present invention can effectively remove Cu, Ca, and Mg impurity ions in the leachate.
- the removal rate of Cu ions is close to 100%, and the removal rate of Ca and Mg impurity ions is close to 100%. Reaching 99.9%, while the nickel cobalt manganese sulfate solution obtained in Comparative Example 1 using the existing leachate purification process still has more Cu, Ca, and Mg impurity ions remaining.
- the lithium recovery rate of the ternary lithium battery recovery and leachate purification method of the present invention reaches 99.9%, while the lithium recovery rate in Comparative Example 1 using the existing leachate purification process is only 89.7%.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Removal Of Specific Substances (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种三元锂电池回收浸出液净化的方法,包括如下步骤:(1)将三元锂电池回收浸出液一次加热后,调节pH至5.0-6.5,一次过滤除去铁铝渣,加入还原剂,控制pH为酸性,二次加热,二次过滤除去铜渣,加入沉淀剂,三次过滤得到钙镁锂渣,向三次过滤后的滤液中加入萃取剂进行萃取,静置,分离得到萃取有机相和萃余液,向萃取有机相中加入反萃取剂进行反萃取,得到含镍钴锰的溶液;(2)向萃余液中加入可溶性磷酸盐后固液分离,得到含锂废渣;(3)将含锂废渣与钙镁锂渣混合后加入到可溶性氯盐溶液中进行反应,得到氯化锂溶液。该净化方法能提高浸出液的除铜效率,有效去除钙镁杂质,提高锂的回收率。
Description
本发明属于电池回收技术领域,特别涉及一种三元锂电池回收浸出液净化的方法。
锂离子电池具有电压高,循环性好,能量密度大,自放电小,无记忆效应等优点,已广泛应用于电子、无线通讯产业,也是未来电动汽车轻型高能力电池的首选电源。由于各类电子产品已经逐渐普及并保持着较快的更新换代速度,锂离子电池的需求日益增长,废旧锂离子电池以及锂离子电池生产废料的数量也是与日俱增,这些含有有价金属的废弃物属于危险废物,会产生严重的生态环境污染问题,而进行资源化回收再利用是解决这一问题的最佳途径。
目前市场上常用的锂离子电池正极材料主要有钴酸锂、镍酸锂、锰酸锂、镍钴锰三元正极材料和磷酸铁锂等。在回收处理这些废旧电池时,普遍采用硫酸、硝酸、盐酸等酸将电极材料中的有价金属浸出。且在镍钴锰酸锂中,钴和锰都为高价态,因此需要加入双氧水、亚硫酸钠等还原剂才能使金属浸出完全。研究表明在还原剂的条件下,盐酸或硫酸1-3mol/L,温度60-90℃,金属的浸出率能达到90%以上。废电池浸出液中含有大量的Ni、Co、Mn、Li有价金属,还含有Cu、Fe、Al、Zn、Ca、Mg等杂质离子,浸出液中的混合金属离子仍需采用合适的纯化方法才能实现资源化。
现有的浸出液净化工艺中,多采用铁粉置换除铜,再经氧化调节pH去除铁铝,然后采用P204(二(2-乙基己基)磷酸酯)萃取Ni、Co、Mn与杂质离子分离,最后,为了将锂回收,在萃余液中加入碳酸盐或磷酸盐沉淀锂。但上述工艺存在以下问题:①铁粉置换除铜效率低、铜离子残留仍较高,多数厂家选择加入硫化钠彻底除铜,而硫离子的加入也不可避免的将有价金属镍钴一并沉淀,造成有价金属的损失;②萃取过程的分离系数不高,杂质离子Ca、Mg不易除去;③萃余液含有大量锂,需单独去除,且常用碳酸钠沉锂,由于碳酸锂溶度积常数为8.15×10
-4,为了提高锂的沉淀率,普遍添加过量碳酸钠,但沉锂母液中的锂仍高达1.5g/L左右,而采用磷酸盐沉锂,又会导致后期锂的富集较为困难,难以提 高锂的回收率。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种三元锂电池回收浸出液净化的方法,该净化方法能提高浸出液的除铜效率,进一步去除钙镁杂质,并提高锂的回收率,使锂的回收率不低于99%。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将三元锂电池回收浸出液一次加热后,调节pH至5.0-6.5,一次过滤除去铁铝渣,加入还原剂,控制pH为酸性,二次加热,二次过滤除去铜渣,加入沉淀剂,三次过滤得到钙镁锂渣,向三次过滤后的滤液中加入萃取剂进行萃取,静置,分离得到萃取有机相和萃余液,向萃取有机相中加入反萃取剂进行反萃取,得到含镍钴锰的溶液,其中三元锂电池回收浸出液是在浸出工序使用硫酸和过氧化氢得到的浸出液;
(2)向萃余液中加入可溶性磷酸盐后固液分离,得到含锂废渣;
(3)将含锂废渣与钙镁锂渣混合后加入到可溶性氯盐溶液中进行反应,得到氯化锂溶液。
优选的,步骤(1)中将三元锂电池回收浸出液一次加热后,调节pH至5.5-6.0。
优选的,步骤(1)中所述一次加热后的温度为60-100℃。
进一步优选的,步骤(1)中所述一次加热后的温度为75-90℃。
优选的,步骤(1)中所述的还原剂为羟胺、硫酸羟胺及硫酸肼中的至少一种。
优选的,步骤(1)中所述还原剂的加入量为所述一次过滤后滤液中铜的摩尔量的0.2-5倍。
进一步优选的,步骤(1)中还原剂的加入量为所述一次过滤后滤液中铜的摩尔量的0.5-3倍。
优选的,步骤(1)中所述控制pH为酸性是将pH控制在4.0-6.5。
进一步优选的,步骤(1)中所述控制pH为酸性是将pH控制在5.0-6.0。
优选的,步骤(1)中所述二次加热后的温度为80-100℃。
进一步优选的,步骤(1)中所述二次加热后的温度为90-100℃,二次加热后反应1-2h再进行二次过滤。
优选的,步骤(1)中待二次过滤后的滤液冷却至室温后,再加入沉淀剂。
优选的,步骤(1)中所述的沉淀剂为可溶性氟盐,且所述三次过滤后的滤液中氟离子浓度为3-10g/L。。
进一步优选的,步骤(1)中所述的沉淀剂为可溶性氟盐,且所述三次过滤后的滤液中氟离子浓度为4-8g/L。
优选的,步骤(1)中所述的沉淀剂为氟化钠及氟化钾中的至少一种。
优选的,步骤(1)中所述的萃取剂为P204(二(2-乙基己基)磷酸酯)、P507(2-乙基己基磷酸2-乙基己基酯)中的至少一种。
优选的,步骤(1)中所述的反萃取剂为盐酸或硫酸中的至少一种。
进一步优选的,步骤(1)中所述的反萃取剂为硫酸。
优选的,所述反萃取剂的浓度为2-6mol/L。
进一步优选的,所述反萃取剂的浓度为3-5mol/L。
优选的,步骤(2)中按照锂与磷的摩尔比为3:(1.0-1.2),向萃余液中加入可溶性磷酸盐。
进一步优选的,步骤(2)中按照锂与磷的摩尔比为3:(1.0-1.05),向萃余液中加入可溶性磷酸盐。
优选的,步骤(2)中所述的可溶性磷酸盐为磷酸钠及磷酸钾中的至少一种。
优选的,步骤(2)中固液分离后还得到了废水,所述废水通过废水处理系统进行处理。
优选的,步骤(3)中将含锂废渣与钙镁锂渣混合后,再按照固液比10-180g/L加入到所述的可溶性氯盐溶液中,所述可溶性氯盐溶液的浓度为1.0-7.0mol/L。
进一步优选的,步骤(3)中将含锂废渣与钙镁锂渣混合后,再按照固液比20-150g/L加入到所述的可溶性氯盐溶液中,所述可溶性氯盐溶液的浓度为1.0-6.0mol/L。
优选的,步骤(3)中所述的可溶性氯盐溶液为氯化钙溶液。
优选的,步骤(3)中反应过程中控制反应温度为60-95℃,反应时间为3-7h。
进一步优选的,步骤(3)中反应过程中控制反应温度为70-90℃,反应时间为4-6h。
优选的,一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将来自电池回收浸出工序的浸出液收集,并加热至75-90℃,去除残留的过氧化氢;
(2)加入碱液调节pH为5.5-6.0,固液分离后,得到铁铝渣和第一滤液;
(3)向所得第一滤液中加入还原剂,并用碱液控制pH在5.0-6.0,反应过程中控制温度为90-100℃,反应时间为1-2h;还原剂为羟胺、硫酸羟胺、硫酸肼中的至少一种,加入量为滤液中铜的摩尔量的0.5-3倍(羟胺基团为2-3倍,硫酸肼为0.5-1倍);
(4)步骤(3)反应结束后,固液分离,得到铜渣和第二滤液;
(5)待第二滤液冷却至室温后,向第二滤液中加入沉淀剂,沉淀剂为氟化钠、氟化钾中的至少一种,并控制在沉淀后滤液中的氟离子浓度为4-8g/L;
(6)步骤(5)反应结束后,固液分离,得到钙镁锂渣和第三滤液;
(7)使用萃取剂对第三滤液进行萃取,静置,分离得到萃取有机相和萃余液,用3-5mol/L的硫酸溶液从含镍萃取有机相中反萃取,得到硫酸镍钴锰溶液,萃取剂为P204、P507中的至少一种;
(8)按照锂与磷的摩尔比为3:(1.0-1.05),向萃余液中加入磷酸盐,磷酸盐为磷酸钠、磷酸钾中的至少一种,固液分离,得到含锂废渣和废水,废水进入废水处理系统;
(9)将含锂废渣与步骤(6)得到的钙镁锂渣混合后,按照固液比20-150g/L加入到1.0-6.0mol/L的氯化钙溶液中,置换废渣中的锂,置换过程控制温度为70-90℃,置换时间为4-6h,得到氯化锂溶液。
本发明的有益效果是:
1.本发明一方面通过将三元锂电池浸出液进行pH调节使铁铝水解除去溶液中的三价铁离子与铝离子,并进一步加入还原剂使铜离子在高温(低温生成氢氧化亚铜,沉淀不完全)下被还原生成氧化亚铜而去除,避免了通过加入铁粉反应效率低下,并需重新加入氧化剂去除铁的问题;另一方面,通过二次沉锂,提高了锂的沉淀率,得到的钙镁锂渣又进一步富集提锂,得到氯化锂溶液。
还原除铜:
2Cu
2++2NH
2OH→Cu
2O+N
2+4H
++H
2O。
一段沉锂:
Ca
2++2F
-→CaF
2
Mg
2++2F
-→MgF
2
Li
++F
-→LiF。
二段沉锂:
3Li
++PO
4
3-→Li
3PO
4
氯化钙置换提锂:
2LiF+Ca
2+→CaF
2+2Li
+
2Li
3PO
4+3Ca
2+→Ca
3(PO
4)
2+6Li
+。
2.本发明采用还原剂将铜离子还原为亚铜,不但缩短了除铜的反应时间,且溶液残留的铜更少。采用可溶性氟盐作为沉淀剂进行沉锂的同时,进一步去除了钙镁离子,避免了后续萃取时,钙镁离子的混入,通过进一步的磷酸盐沉锂,使萃余液中的锂含量进一步降低;最后,采用可溶性氯盐富集提锂,得到氯化锂溶液,重新回收了锂元素,而钙镁杂质仍留在废渣中,使得最终锂的回收率不低于99%。
图1为本发明实施例1的工艺流程示意图。
下面结合具体实施例对本发明做进一步的说明。
本发明具体实施方式中使用的三元锂电池回收浸出液是在浸出工序使用硫酸和过氧化氢得到的浸出液,其金属离子主要成分为:
实施例1:
如图1所示,一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将来自电池回收浸出工序的浸出液收集,并加热至75℃,去除残留的过氧化氢;
(2)加入碱液调节pH为5.8,固液分离后,得到铁铝渣和第一滤液;
(3)向所得第一滤液中加入羟胺,加入量为滤液中铜的摩尔量的3倍,并用碱液控制pH在5.5,反应过程中控制温度为95℃,反应时间为2h;
(4)步骤(3)反应结束后,固液分离,得到铜渣和第二滤液;
(5)待第二滤液冷却至室温后,向第二滤液中加入氟化钠,并控制在沉淀后滤液中的氟离子浓度为8g/L;
(6)步骤(5)反应结束后,固液分离,得到钙镁锂渣和第三滤液;
(7)使用萃取剂P204,对第三滤液进行萃取,静置,分离得到萃取有机相和萃余液,用5mol/L的硫酸溶液从萃取有机相中反萃取,得到硫酸镍钴锰溶液;
(8)按照锂与磷的摩尔比为3:1.05,向萃余液中加入磷酸钠,固液分离,得到含锂废渣和废水,废水进入废水处理系统;
(9)将含锂废渣与步骤(6)得到的钙镁锂渣混合后,按照固液比20g/L加入到1.0mol/L的氯化钙溶液中,置换废渣中的锂,置换过程控制温度为90℃,置换时间为6h,得到氯化锂溶液。
实施例2:
一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将来自电池回收浸出工序的浸出液收集,并加热至80℃,去除残留的过氧化氢;
(2)加入碱液调节pH为5.5,固液分离后,得到铁铝渣和第一滤液;
(3)向所得第一滤液中加入硫酸羟胺,加入量为滤液中铜的摩尔量的1倍,并用碱液控制pH在6.0,反应过程中控制温度为100℃,反应时间为1.5h;
(4)步骤(3)反应结束后,固液分离,得到铜渣和第二滤液;
(5)待第二滤液冷却至室温后,向第二滤液中加入氟化钠,并控制在沉淀后滤液中的氟离子浓度为6g/L;
(6)步骤(5)反应结束后,固液分离,得到钙镁锂渣和第三滤液;
(7)使用萃取剂P507对第三滤液进行萃取,静置,分离得到萃取有机相和萃余液,用4mol/L的硫酸溶液从萃取有机相中反萃取,得到硫酸镍钴锰溶液;
(8)按照锂与磷的摩尔比为3:1.03,向萃余液中加入磷酸钠,固液分离,得到含锂废渣和废水,废水进入废水处理系统;
(9)将含锂废渣与步骤(6)得到的钙镁锂渣混合后,按照固液比100g/L加入到4.0mol/L的氯化钙溶液中,置换废渣中的锂,置换过程控制温度为80℃,置换时间为5h,得到氯化锂溶液。
实施例3:
一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将来自电池回收浸出工序的浸出液收集,并加热至90℃,去除残留的过氧化氢;
(2)加入碱液调节pH为6.0,固液分离后,得到铁铝渣和第一滤液;
(3)向所得第一滤液中加入硫酸肼,加入量为滤液中铜的摩尔量的1倍,并用碱液控制pH在5.0,反应过程中控制温度为90℃,反应时间为1h;
(4)步骤(3)反应结束后,固液分离,得到铜渣和第二滤液;
(5)待第二滤液冷却至室温后,向第二滤液中加入氟化钾,并控制在沉淀后滤液中的氟离子浓度为4g/L;
(6)步骤(5)反应结束后,固液分离,得到钙镁锂渣和第三滤液;
(7)使用萃取剂P507对第三滤液进行萃取,静置,分离得到萃取有机相和萃余液,用3mol/L的硫酸溶液从萃取有机相中反萃取,得到硫酸镍钴锰溶液;
(8)按照锂与磷的摩尔比为3:1.0,向萃余液中加入磷酸钾,固液分离,得到含锂废渣和废水,废水进入废水处理系统;
(9)将含锂废渣与步骤(6)得到的钙镁锂渣混合后,按照固液比150g/L加入到6.0mol/L的氯化钙溶液中,置换废渣中的锂,置换过程控制温度为70℃,置换时间为4h,得到氯化锂溶液。
对比例1:
一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将来自电池回收浸出工序的浸出液收集,向浸出液中加入铁粉,铁粉的加入量与铜离子的摩尔比为1.1:1,反应4h后固液分离,除去铁铜渣;
(2)加入与铁元素等摩尔量的过氧化氢,并加入碱液调节pH为5.5,固液分离后,得到铁铝渣和滤液;
(3)使用萃取剂P204,对滤液进行萃取,静置,分离得到萃取有机相和萃余液,用5mol/L的硫酸溶液从萃取有机相中反萃取,得到硫酸镍钴锰溶液;
(4)向萃余液中加入锂元素摩尔量0.6倍的碳酸钠,固液分离,得到含锂废渣和废水;
(5)将含锂废渣按照固液比20g/L加入到1.0mol/L的氯化钙溶液中,置换废渣中的锂,置换过程控制温度为90℃,置换时间为6h,得到氯化锂溶液。
试验例:
检测实施例1-3及对比例1中得到的硫酸镍钴锰溶液中的杂质金属离子含量,结果如表1所示。
表1:硫酸镍钴锰溶液中的杂质金属离子含量检测结果:
金属离子含量g/L | Cu | Ca | Mg |
实施例1 | 未检出 | 0.0001 | 0.0001 |
实施例2 | 未检出 | 0.0001 | 0.0001 |
实施例3 | 未检出 | 0.0001 | 0.0001 |
对比例1 | 0.0005 | 0.0027 | 0.0019 |
由表1可知,本发明的三元锂电池回收浸出液净化的方法能有效去除浸出液中的Cu、Ca、Mg杂质离子,对Cu离子的去除率接近100%,对Ca及Mg杂质离子的去除率达到99.9%,而使用现有的浸出液净化工艺的对比例1中得到的硫酸镍钴锰溶液中仍然具有较多的Cu、Ca、Mg杂质离子残留。
检测实施例1-3及对比例1中得到的废水中的锂含量,结果如表2所示。
表2:废水中的锂含量检测结果:
锂含量g/L | |
实施例1 | 0.0024 |
实施例2 | 0.0028 |
实施例3 | 0.0037 |
对比例1 | 1.0 |
由表2可知,本发明的三元锂电池回收浸出液净化的方法对锂的回收率达到了99.9%,而使用现有的浸出液净化工艺的对比例1中对锂的回收率仅为89.7%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
- 一种三元锂电池回收浸出液净化的方法,其特征在于:包括如下步骤:(1)将三元锂电池回收浸出液一次加热后,调节pH至5.0-6.5,一次过滤除去铁铝渣,加入还原剂,控制pH为酸性,二次加热,二次过滤除去铜渣,加入沉淀剂,三次过滤得到钙镁锂渣,向三次过滤后的滤液中加入萃取剂进行萃取,静置,分离得到萃取有机相和萃余液,向萃取有机相中加入反萃取剂进行反萃取,得到含镍钴锰的溶液;(2)向萃余液中加入可溶性磷酸盐后固液分离,得到含锂废渣;(3)将含锂废渣与钙镁锂渣混合后加入到可溶性氯盐溶液中进行反应,得到氯化锂溶液。
- 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(1)中所述一次加热后的温度为60-100℃。
- 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(1)中所述的还原剂为羟胺、硫酸羟胺及硫酸肼中的至少一种。
- 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(1)中所述还原剂的加入量为所述一次过滤后滤液中铜的摩尔量的0.2-5倍。
- 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(1)中所述控制pH为酸性是将pH控制在4.0-6.5。
- 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(1)中所述二次加热后的温度为80-100℃。
- 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:所述的沉淀剂为可溶性氟盐,且所述三次过滤后的滤液中氟离子浓度为3-10g/L。
- 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:所述的反萃取剂为盐酸或硫酸中的至少一种。
- 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(2)中按照锂与磷的摩尔比为3:(1.0-1.2),向萃余液中加入可溶性磷酸盐。
- 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于: 步骤(3)中将含锂废渣与钙镁锂渣混合后,再按照固液比10-180g/L加入到所述的可溶性氯盐溶液中,所述可溶性氯盐溶液的浓度为1.0-7.0mol/L。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210740118.2 | 2022-06-28 | ||
CN202210740118.2A CN115141933B (zh) | 2022-06-28 | 2022-06-28 | 一种三元锂电池回收浸出液净化的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024000842A1 true WO2024000842A1 (zh) | 2024-01-04 |
Family
ID=83410252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/119989 WO2024000842A1 (zh) | 2022-06-28 | 2022-09-20 | 一种三元锂电池回收浸出液净化的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115141933B (zh) |
WO (1) | WO2024000842A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116724441A (zh) * | 2023-03-20 | 2023-09-08 | 广东邦普循环科技有限公司 | 一种三元锂电池浸出液的净化方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106505272A (zh) * | 2016-12-12 | 2017-03-15 | 江西赣锋锂业股份有限公司 | 一种锂电池正极材料废料的处理方法 |
CN108767353A (zh) * | 2018-05-25 | 2018-11-06 | 北京矿冶科技集团有限公司 | 从废旧锂离子电池正极活性材料生产富锂净液的方法 |
CN110092398A (zh) * | 2019-04-23 | 2019-08-06 | 北京科技大学 | 一种废旧锂离子电池焙烧尾气资源化利用的方法 |
CN110396607A (zh) * | 2019-09-03 | 2019-11-01 | 中南大学 | 一种废旧三元锂离子电池粉料的处理方法 |
CN111180819A (zh) * | 2019-12-30 | 2020-05-19 | 荆门市格林美新材料有限公司 | 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法 |
-
2022
- 2022-06-28 CN CN202210740118.2A patent/CN115141933B/zh active Active
- 2022-09-20 WO PCT/CN2022/119989 patent/WO2024000842A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106505272A (zh) * | 2016-12-12 | 2017-03-15 | 江西赣锋锂业股份有限公司 | 一种锂电池正极材料废料的处理方法 |
CN108767353A (zh) * | 2018-05-25 | 2018-11-06 | 北京矿冶科技集团有限公司 | 从废旧锂离子电池正极活性材料生产富锂净液的方法 |
CN110092398A (zh) * | 2019-04-23 | 2019-08-06 | 北京科技大学 | 一种废旧锂离子电池焙烧尾气资源化利用的方法 |
CN110396607A (zh) * | 2019-09-03 | 2019-11-01 | 中南大学 | 一种废旧三元锂离子电池粉料的处理方法 |
CN111180819A (zh) * | 2019-12-30 | 2020-05-19 | 荆门市格林美新材料有限公司 | 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115141933B (zh) | 2024-02-09 |
CN115141933A (zh) | 2022-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108878866B (zh) | 利用废旧锂离子电池三元正极材料制备三元材料前驱体及回收锂的方法 | |
CN106319228B (zh) | 一种从含镍钴锰废渣中同步回收镍钴锰的方法 | |
CN107591584B (zh) | 一种废旧锂离子电池正极粉料的回收利用方法 | |
CN111278998A (zh) | 从废锂基电池和其它进料中回收钴、锂和其它金属的方法 | |
CN103088215B (zh) | 高锰钴比镍钴锰原料中镍钴与锰分离的方法 | |
CN107267759A (zh) | 一种锂离子电池正极材料的综合回收方法 | |
CN113106257B (zh) | 锂电池废料的回收利用方法及其应用 | |
EP2832700B1 (en) | Method for producing high-purity nickel sulfate | |
WO2022052670A1 (zh) | 一种镍钴锰浸出液净化的方法 | |
CN114655969B (zh) | 高杂磷酸铁锂正极废料回收制备碳酸锂和磷酸铁的方法 | |
WO2023035636A1 (zh) | 一种由低冰镍制备硫酸镍的方法 | |
CN108767353B (zh) | 从废旧锂离子电池正极活性材料生产富锂净液的方法 | |
US11695170B2 (en) | Battery-level Ni—Co—Mn mixed solution and preparation method for battery-level Mn solution | |
TW202221145A (zh) | 鈷及鎳之分離方法 | |
CN115321502A (zh) | 一种废旧磷酸铁锂电池与镍钴锰三元电池综合回收工艺 | |
CN115321505B (zh) | 一种含锂废水综合回收制取磷酸铁锂的方法及应用 | |
CN113912033A (zh) | 一种前置提锂的废旧磷酸铁锂电池正负极混粉的回收方法 | |
CN115367776B (zh) | 一种磷酸铁锂电池的回收方法 | |
GB2622169A (en) | Method for selectively recovering valuable metal in waste lithium battery | |
CN116377243A (zh) | 一种镍钴氢氧化物原料分离镍钴锰的方法 | |
KR20220134387A (ko) | 폐양극활물질로부터 유가 금속을 회수하는 방법 | |
WO2024000842A1 (zh) | 一种三元锂电池回收浸出液净化的方法 | |
CN110342581B (zh) | 一种从铜锰钙硫酸盐溶液中制得高纯硫酸锰的方法 | |
KR101839460B1 (ko) | 리튬 함유 용액으로부터 고순도의 탄산리튬 회수방법 | |
CN112342383B (zh) | 三元废料中镍钴锰与锂的分离回收方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22948931 Country of ref document: EP Kind code of ref document: A1 |