WO2024000842A1 - 一种三元锂电池回收浸出液净化的方法 - Google Patents

一种三元锂电池回收浸出液净化的方法 Download PDF

Info

Publication number
WO2024000842A1
WO2024000842A1 PCT/CN2022/119989 CN2022119989W WO2024000842A1 WO 2024000842 A1 WO2024000842 A1 WO 2024000842A1 CN 2022119989 W CN2022119989 W CN 2022119989W WO 2024000842 A1 WO2024000842 A1 WO 2024000842A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium battery
battery recycling
add
filtrate
Prior art date
Application number
PCT/CN2022/119989
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024000842A1 publication Critical patent/WO2024000842A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of battery recycling, and particularly relates to a method for purifying leachate from ternary lithium battery recycling.
  • Lithium-ion batteries have the advantages of high voltage, good cycleability, high energy density, small self-discharge, and no memory effect. They have been widely used in the electronics and wireless communication industries, and are also the first choice for light and high-capacity batteries for electric vehicles in the future. As various types of electronic products have gradually become popular and maintained a rapid replacement rate, the demand for lithium-ion batteries is growing day by day, and the amount of used lithium-ion batteries and lithium-ion battery production waste is also increasing day by day. These wastes containing valuable metals belong to Hazardous waste will cause serious ecological and environmental pollution problems, and recycling and reusing resources is the best way to solve this problem.
  • the commonly used cathode materials for lithium-ion batteries on the market include lithium cobalt oxide, lithium nickel oxide, lithium manganate, nickel-cobalt-manganese ternary cathode materials, and lithium iron phosphate.
  • acids such as sulfuric acid, nitric acid, and hydrochloric acid are commonly used to leach valuable metals from electrode materials.
  • lithium nickel cobalt manganate cobalt and manganese are in high valence states, so reducing agents such as hydrogen peroxide and sodium sulfite need to be added to complete the metal leaching.
  • the waste battery leachate contains a large amount of Ni, Co, Mn, and Li valuable metals, as well as Cu, Fe, Al, Zn, Ca, Mg and other impurity ions.
  • the mixed metal ions in the leachate still need to be purified using appropriate purification methods. resource.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention proposes a method for purifying ternary lithium battery recycling leachate. This purification method can improve the copper removal efficiency of the leachate, further remove calcium and magnesium impurities, and increase the recovery rate of lithium so that the recovery rate of lithium is no less than 99%.
  • a method for purifying ternary lithium battery recycling leachate including the following steps:
  • step (1) after heating the ternary lithium battery recycling leachate once, the pH is adjusted to 5.5-6.0.
  • the temperature after one heating in step (1) is 60-100°C.
  • the temperature after one heating in step (1) is 75-90°C.
  • the amount of the reducing agent added in step (1) is 0.2-5 times the molar amount of copper in the filtrate after the primary filtration.
  • the amount of reducing agent added in step (1) is 0.5-3 times the molar amount of copper in the filtrate after the primary filtration.
  • controlling the pH to be acidic in step (1) means controlling the pH to 4.0-6.5.
  • controlling the pH to be acidic in step (1) is to control the pH at 5.0-6.0.
  • the temperature after the second heating in step (1) is 80-100°C.
  • the temperature after the second heating in step (1) is 90-100°C, and the reaction is carried out for 1-2 hours after the second heating and then filtered twice.
  • step (1) the precipitant is added after the filtrate after secondary filtration is cooled to room temperature.
  • the precipitating agent described in step (1) is a soluble fluoride salt, and the fluoride ion concentration in the filtrate after three filtrations is 3-10g/L. .
  • the precipitating agent described in step (1) is a soluble fluoride salt, and the fluoride ion concentration in the filtrate after three filtrations is 4-8g/L.
  • the precipitating agent described in step (1) is at least one of sodium fluoride and potassium fluoride.
  • the extraction agent described in step (1) is at least one of P204 (di(2-ethylhexyl)phosphate) and P507 (2-ethylhexyl phosphate).
  • the stripping agent described in step (1) is at least one of hydrochloric acid or sulfuric acid.
  • the stripping agent described in step (1) is sulfuric acid.
  • the concentration of the stripping agent is 2-6 mol/L.
  • the concentration of the stripping agent is 3-5 mol/L.
  • step (2) soluble phosphate is added to the raffinate according to the molar ratio of lithium to phosphorus being 3: (1.0-1.2).
  • step (2) soluble phosphate is added to the raffinate according to the molar ratio of lithium to phosphorus being 3: (1.0-1.05).
  • the soluble phosphate described in step (2) is at least one of sodium phosphate and potassium phosphate.
  • wastewater is also obtained after solid-liquid separation in step (2), and the wastewater is processed through a wastewater treatment system.
  • step (3) after mixing the lithium-containing waste residue and the calcium-magnesium-lithium residue, they are added to the soluble chlorine salt solution according to a solid-to-liquid ratio of 10-180g/L.
  • concentration of the soluble chlorine salt solution is 1.0-7.0mol/L.
  • step (3) after mixing the lithium-containing waste residue and the calcium-magnesium-lithium residue, they are added to the soluble chlorine salt solution according to a solid-to-liquid ratio of 20-150g/L.
  • concentration of the soluble chlorine salt solution is is 1.0-6.0mol/L.
  • the soluble chloride salt solution described in step (3) is calcium chloride solution.
  • the reaction temperature is controlled to 70-90°C, and the reaction time is 4-6 hours.
  • a method for purifying ternary lithium battery recycling leachate includes the following steps:
  • step (3) After the reaction in step (3) is completed, the solid and liquid are separated to obtain copper slag and the second filtrate;
  • the precipitant is at least one of sodium fluoride and potassium fluoride, and control the fluoride ion concentration in the filtrate after precipitation to 4 -8g/L;
  • step (6) After the reaction in step (5) is completed, the solid and liquid are separated to obtain calcium magnesium lithium residue and the third filtrate;
  • phosphate is at least one of sodium phosphate and potassium phosphate. Separate the solid and liquid to obtain lithium-containing waste residue. and wastewater, which enters the wastewater treatment system;
  • step (9) After mixing the lithium-containing waste residue with the calcium magnesium lithium residue obtained in step (6), add it to the calcium chloride solution of 1.0-6.0 mol/L according to the solid-liquid ratio of 20-150g/L to replace the lithium in the waste residue. , the replacement process controls the temperature to 70-90°C, the replacement time to 4-6 hours, and obtains a lithium chloride solution.
  • the present invention adjusts the pH of the ternary lithium battery leachate to hydrolyze the iron and aluminum to remove the ferric ions and aluminum ions in the solution, and further adds a reducing agent to make the copper ions generate cuprous hydroxide at high temperature (low temperature). , the precipitation is incomplete), it is reduced to generate cuprous oxide and removed, which avoids the problem of low reaction efficiency by adding iron powder and the need to re-add oxidant to remove iron; on the other hand, through secondary lithium precipitation, the precipitation of lithium is improved rate, the obtained calcium magnesium lithium slag is further enriched to extract lithium, and a lithium chloride solution is obtained.
  • the present invention uses a reducing agent to reduce copper ions to cuprous, which not only shortens the reaction time for removing copper, but also leaves less copper remaining in the solution. While using soluble fluoride salt as a precipitant to precipitate lithium, calcium and magnesium ions are further removed, avoiding the mixing of calcium and magnesium ions during subsequent extraction. Through further phosphate precipitation of lithium, the lithium content in the raffinate is further reduced. ; Finally, soluble chlorine salts are used to enrich lithium to obtain a lithium chloride solution, and the lithium element is recovered again, while calcium and magnesium impurities remain in the waste residue, making the final lithium recovery rate no less than 99%.
  • Figure 1 is a schematic process flow diagram of Embodiment 1 of the present invention.
  • the ternary lithium battery recycling leachate used in the specific embodiment of the present invention is a leachate obtained by using sulfuric acid and hydrogen peroxide in the leaching process. Its main components of metal ions are:
  • a method for purifying ternary lithium battery recycling leachate includes the following steps:
  • step (3) After the reaction in step (3) is completed, the solid and liquid are separated to obtain copper slag and the second filtrate;
  • step (6) After the reaction in step (5) is completed, the solid and liquid are separated to obtain calcium magnesium lithium residue and the third filtrate;
  • step (9) After mixing the lithium-containing waste residue with the calcium-magnesium-lithium residue obtained in step (6), add it to the 1.0 mol/L calcium chloride solution according to a solid-to-liquid ratio of 20g/L to replace the lithium in the waste residue.
  • the replacement process is controlled The temperature was 90°C, the replacement time was 6 hours, and a lithium chloride solution was obtained.
  • a method for purifying ternary lithium battery recycling leachate including the following steps:
  • step (3) After the reaction in step (3) is completed, the solid and liquid are separated to obtain copper slag and the second filtrate;
  • step (6) After the reaction in step (5) is completed, the solid and liquid are separated to obtain calcium magnesium lithium residue and the third filtrate;
  • step (6) After mixing the lithium-containing waste residue with the calcium magnesium lithium residue obtained in step (6), add it to the 4.0 mol/L calcium chloride solution according to the solid-liquid ratio of 100g/L to replace the lithium in the waste residue.
  • the replacement process is controlled The temperature was 80°C, the replacement time was 5 hours, and a lithium chloride solution was obtained.
  • a method for purifying ternary lithium battery recycling leachate including the following steps:
  • step (3) After the reaction in step (3) is completed, the solid and liquid are separated to obtain copper slag and the second filtrate;
  • step (6) After the reaction in step (5) is completed, the solid and liquid are separated to obtain calcium magnesium lithium residue and the third filtrate;
  • step (6) After mixing the lithium-containing waste residue with the calcium magnesium lithium residue obtained in step (6), add it to the 6.0 mol/L calcium chloride solution according to the solid-liquid ratio of 150g/L to replace the lithium in the waste residue.
  • the replacement process is controlled The temperature is 70°C, the replacement time is 4 hours, and a lithium chloride solution is obtained.
  • a method for purifying ternary lithium battery recycling leachate including the following steps:
  • the ternary lithium battery recycling leachate purification method of the present invention can effectively remove Cu, Ca, and Mg impurity ions in the leachate.
  • the removal rate of Cu ions is close to 100%, and the removal rate of Ca and Mg impurity ions is close to 100%. Reaching 99.9%, while the nickel cobalt manganese sulfate solution obtained in Comparative Example 1 using the existing leachate purification process still has more Cu, Ca, and Mg impurity ions remaining.
  • the lithium recovery rate of the ternary lithium battery recovery and leachate purification method of the present invention reaches 99.9%, while the lithium recovery rate in Comparative Example 1 using the existing leachate purification process is only 89.7%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种三元锂电池回收浸出液净化的方法,包括如下步骤:(1)将三元锂电池回收浸出液一次加热后,调节pH至5.0-6.5,一次过滤除去铁铝渣,加入还原剂,控制pH为酸性,二次加热,二次过滤除去铜渣,加入沉淀剂,三次过滤得到钙镁锂渣,向三次过滤后的滤液中加入萃取剂进行萃取,静置,分离得到萃取有机相和萃余液,向萃取有机相中加入反萃取剂进行反萃取,得到含镍钴锰的溶液;(2)向萃余液中加入可溶性磷酸盐后固液分离,得到含锂废渣;(3)将含锂废渣与钙镁锂渣混合后加入到可溶性氯盐溶液中进行反应,得到氯化锂溶液。该净化方法能提高浸出液的除铜效率,有效去除钙镁杂质,提高锂的回收率。

Description

一种三元锂电池回收浸出液净化的方法 技术领域
本发明属于电池回收技术领域,特别涉及一种三元锂电池回收浸出液净化的方法。
背景技术
锂离子电池具有电压高,循环性好,能量密度大,自放电小,无记忆效应等优点,已广泛应用于电子、无线通讯产业,也是未来电动汽车轻型高能力电池的首选电源。由于各类电子产品已经逐渐普及并保持着较快的更新换代速度,锂离子电池的需求日益增长,废旧锂离子电池以及锂离子电池生产废料的数量也是与日俱增,这些含有有价金属的废弃物属于危险废物,会产生严重的生态环境污染问题,而进行资源化回收再利用是解决这一问题的最佳途径。
目前市场上常用的锂离子电池正极材料主要有钴酸锂、镍酸锂、锰酸锂、镍钴锰三元正极材料和磷酸铁锂等。在回收处理这些废旧电池时,普遍采用硫酸、硝酸、盐酸等酸将电极材料中的有价金属浸出。且在镍钴锰酸锂中,钴和锰都为高价态,因此需要加入双氧水、亚硫酸钠等还原剂才能使金属浸出完全。研究表明在还原剂的条件下,盐酸或硫酸1-3mol/L,温度60-90℃,金属的浸出率能达到90%以上。废电池浸出液中含有大量的Ni、Co、Mn、Li有价金属,还含有Cu、Fe、Al、Zn、Ca、Mg等杂质离子,浸出液中的混合金属离子仍需采用合适的纯化方法才能实现资源化。
现有的浸出液净化工艺中,多采用铁粉置换除铜,再经氧化调节pH去除铁铝,然后采用P204(二(2-乙基己基)磷酸酯)萃取Ni、Co、Mn与杂质离子分离,最后,为了将锂回收,在萃余液中加入碳酸盐或磷酸盐沉淀锂。但上述工艺存在以下问题:①铁粉置换除铜效率低、铜离子残留仍较高,多数厂家选择加入硫化钠彻底除铜,而硫离子的加入也不可避免的将有价金属镍钴一并沉淀,造成有价金属的损失;②萃取过程的分离系数不高,杂质离子Ca、Mg不易除去;③萃余液含有大量锂,需单独去除,且常用碳酸钠沉锂,由于碳酸锂溶度积常数为8.15×10 -4,为了提高锂的沉淀率,普遍添加过量碳酸钠,但沉锂母液中的锂仍高达1.5g/L左右,而采用磷酸盐沉锂,又会导致后期锂的富集较为困难,难以提 高锂的回收率。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种三元锂电池回收浸出液净化的方法,该净化方法能提高浸出液的除铜效率,进一步去除钙镁杂质,并提高锂的回收率,使锂的回收率不低于99%。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将三元锂电池回收浸出液一次加热后,调节pH至5.0-6.5,一次过滤除去铁铝渣,加入还原剂,控制pH为酸性,二次加热,二次过滤除去铜渣,加入沉淀剂,三次过滤得到钙镁锂渣,向三次过滤后的滤液中加入萃取剂进行萃取,静置,分离得到萃取有机相和萃余液,向萃取有机相中加入反萃取剂进行反萃取,得到含镍钴锰的溶液,其中三元锂电池回收浸出液是在浸出工序使用硫酸和过氧化氢得到的浸出液;
(2)向萃余液中加入可溶性磷酸盐后固液分离,得到含锂废渣;
(3)将含锂废渣与钙镁锂渣混合后加入到可溶性氯盐溶液中进行反应,得到氯化锂溶液。
优选的,步骤(1)中将三元锂电池回收浸出液一次加热后,调节pH至5.5-6.0。
优选的,步骤(1)中所述一次加热后的温度为60-100℃。
进一步优选的,步骤(1)中所述一次加热后的温度为75-90℃。
优选的,步骤(1)中所述的还原剂为羟胺、硫酸羟胺及硫酸肼中的至少一种。
优选的,步骤(1)中所述还原剂的加入量为所述一次过滤后滤液中铜的摩尔量的0.2-5倍。
进一步优选的,步骤(1)中还原剂的加入量为所述一次过滤后滤液中铜的摩尔量的0.5-3倍。
优选的,步骤(1)中所述控制pH为酸性是将pH控制在4.0-6.5。
进一步优选的,步骤(1)中所述控制pH为酸性是将pH控制在5.0-6.0。
优选的,步骤(1)中所述二次加热后的温度为80-100℃。
进一步优选的,步骤(1)中所述二次加热后的温度为90-100℃,二次加热后反应1-2h再进行二次过滤。
优选的,步骤(1)中待二次过滤后的滤液冷却至室温后,再加入沉淀剂。
优选的,步骤(1)中所述的沉淀剂为可溶性氟盐,且所述三次过滤后的滤液中氟离子浓度为3-10g/L。。
进一步优选的,步骤(1)中所述的沉淀剂为可溶性氟盐,且所述三次过滤后的滤液中氟离子浓度为4-8g/L。
优选的,步骤(1)中所述的沉淀剂为氟化钠及氟化钾中的至少一种。
优选的,步骤(1)中所述的萃取剂为P204(二(2-乙基己基)磷酸酯)、P507(2-乙基己基磷酸2-乙基己基酯)中的至少一种。
优选的,步骤(1)中所述的反萃取剂为盐酸或硫酸中的至少一种。
进一步优选的,步骤(1)中所述的反萃取剂为硫酸。
优选的,所述反萃取剂的浓度为2-6mol/L。
进一步优选的,所述反萃取剂的浓度为3-5mol/L。
优选的,步骤(2)中按照锂与磷的摩尔比为3:(1.0-1.2),向萃余液中加入可溶性磷酸盐。
进一步优选的,步骤(2)中按照锂与磷的摩尔比为3:(1.0-1.05),向萃余液中加入可溶性磷酸盐。
优选的,步骤(2)中所述的可溶性磷酸盐为磷酸钠及磷酸钾中的至少一种。
优选的,步骤(2)中固液分离后还得到了废水,所述废水通过废水处理系统进行处理。
优选的,步骤(3)中将含锂废渣与钙镁锂渣混合后,再按照固液比10-180g/L加入到所述的可溶性氯盐溶液中,所述可溶性氯盐溶液的浓度为1.0-7.0mol/L。
进一步优选的,步骤(3)中将含锂废渣与钙镁锂渣混合后,再按照固液比20-150g/L加入到所述的可溶性氯盐溶液中,所述可溶性氯盐溶液的浓度为1.0-6.0mol/L。
优选的,步骤(3)中所述的可溶性氯盐溶液为氯化钙溶液。
优选的,步骤(3)中反应过程中控制反应温度为60-95℃,反应时间为3-7h。
进一步优选的,步骤(3)中反应过程中控制反应温度为70-90℃,反应时间为4-6h。
优选的,一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将来自电池回收浸出工序的浸出液收集,并加热至75-90℃,去除残留的过氧化氢;
(2)加入碱液调节pH为5.5-6.0,固液分离后,得到铁铝渣和第一滤液;
(3)向所得第一滤液中加入还原剂,并用碱液控制pH在5.0-6.0,反应过程中控制温度为90-100℃,反应时间为1-2h;还原剂为羟胺、硫酸羟胺、硫酸肼中的至少一种,加入量为滤液中铜的摩尔量的0.5-3倍(羟胺基团为2-3倍,硫酸肼为0.5-1倍);
(4)步骤(3)反应结束后,固液分离,得到铜渣和第二滤液;
(5)待第二滤液冷却至室温后,向第二滤液中加入沉淀剂,沉淀剂为氟化钠、氟化钾中的至少一种,并控制在沉淀后滤液中的氟离子浓度为4-8g/L;
(6)步骤(5)反应结束后,固液分离,得到钙镁锂渣和第三滤液;
(7)使用萃取剂对第三滤液进行萃取,静置,分离得到萃取有机相和萃余液,用3-5mol/L的硫酸溶液从含镍萃取有机相中反萃取,得到硫酸镍钴锰溶液,萃取剂为P204、P507中的至少一种;
(8)按照锂与磷的摩尔比为3:(1.0-1.05),向萃余液中加入磷酸盐,磷酸盐为磷酸钠、磷酸钾中的至少一种,固液分离,得到含锂废渣和废水,废水进入废水处理系统;
(9)将含锂废渣与步骤(6)得到的钙镁锂渣混合后,按照固液比20-150g/L加入到1.0-6.0mol/L的氯化钙溶液中,置换废渣中的锂,置换过程控制温度为70-90℃,置换时间为4-6h,得到氯化锂溶液。
本发明的有益效果是:
1.本发明一方面通过将三元锂电池浸出液进行pH调节使铁铝水解除去溶液中的三价铁离子与铝离子,并进一步加入还原剂使铜离子在高温(低温生成氢氧化亚铜,沉淀不完全)下被还原生成氧化亚铜而去除,避免了通过加入铁粉反应效率低下,并需重新加入氧化剂去除铁的问题;另一方面,通过二次沉锂,提高了锂的沉淀率,得到的钙镁锂渣又进一步富集提锂,得到氯化锂溶液。
还原除铜:
2Cu 2++2NH 2OH→Cu 2O+N 2+4H ++H 2O。
一段沉锂:
Ca 2++2F -→CaF 2
Mg 2++2F -→MgF 2
Li ++F -→LiF。
二段沉锂:
3Li ++PO 4 3-→Li 3PO 4
氯化钙置换提锂:
2LiF+Ca 2+→CaF 2+2Li +
2Li 3PO 4+3Ca 2+→Ca 3(PO 4) 2+6Li +
2.本发明采用还原剂将铜离子还原为亚铜,不但缩短了除铜的反应时间,且溶液残留的铜更少。采用可溶性氟盐作为沉淀剂进行沉锂的同时,进一步去除了钙镁离子,避免了后续萃取时,钙镁离子的混入,通过进一步的磷酸盐沉锂,使萃余液中的锂含量进一步降低;最后,采用可溶性氯盐富集提锂,得到氯化锂溶液,重新回收了锂元素,而钙镁杂质仍留在废渣中,使得最终锂的回收率不低于99%。
附图说明
图1为本发明实施例1的工艺流程示意图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
本发明具体实施方式中使用的三元锂电池回收浸出液是在浸出工序使用硫酸和过氧化氢得到的浸出液,其金属离子主要成分为:
Figure PCTCN2022119989-appb-000001
实施例1:
如图1所示,一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将来自电池回收浸出工序的浸出液收集,并加热至75℃,去除残留的过氧化氢;
(2)加入碱液调节pH为5.8,固液分离后,得到铁铝渣和第一滤液;
(3)向所得第一滤液中加入羟胺,加入量为滤液中铜的摩尔量的3倍,并用碱液控制pH在5.5,反应过程中控制温度为95℃,反应时间为2h;
(4)步骤(3)反应结束后,固液分离,得到铜渣和第二滤液;
(5)待第二滤液冷却至室温后,向第二滤液中加入氟化钠,并控制在沉淀后滤液中的氟离子浓度为8g/L;
(6)步骤(5)反应结束后,固液分离,得到钙镁锂渣和第三滤液;
(7)使用萃取剂P204,对第三滤液进行萃取,静置,分离得到萃取有机相和萃余液,用5mol/L的硫酸溶液从萃取有机相中反萃取,得到硫酸镍钴锰溶液;
(8)按照锂与磷的摩尔比为3:1.05,向萃余液中加入磷酸钠,固液分离,得到含锂废渣和废水,废水进入废水处理系统;
(9)将含锂废渣与步骤(6)得到的钙镁锂渣混合后,按照固液比20g/L加入到1.0mol/L的氯化钙溶液中,置换废渣中的锂,置换过程控制温度为90℃,置换时间为6h,得到氯化锂溶液。
实施例2:
一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将来自电池回收浸出工序的浸出液收集,并加热至80℃,去除残留的过氧化氢;
(2)加入碱液调节pH为5.5,固液分离后,得到铁铝渣和第一滤液;
(3)向所得第一滤液中加入硫酸羟胺,加入量为滤液中铜的摩尔量的1倍,并用碱液控制pH在6.0,反应过程中控制温度为100℃,反应时间为1.5h;
(4)步骤(3)反应结束后,固液分离,得到铜渣和第二滤液;
(5)待第二滤液冷却至室温后,向第二滤液中加入氟化钠,并控制在沉淀后滤液中的氟离子浓度为6g/L;
(6)步骤(5)反应结束后,固液分离,得到钙镁锂渣和第三滤液;
(7)使用萃取剂P507对第三滤液进行萃取,静置,分离得到萃取有机相和萃余液,用4mol/L的硫酸溶液从萃取有机相中反萃取,得到硫酸镍钴锰溶液;
(8)按照锂与磷的摩尔比为3:1.03,向萃余液中加入磷酸钠,固液分离,得到含锂废渣和废水,废水进入废水处理系统;
(9)将含锂废渣与步骤(6)得到的钙镁锂渣混合后,按照固液比100g/L加入到4.0mol/L的氯化钙溶液中,置换废渣中的锂,置换过程控制温度为80℃,置换时间为5h,得到氯化锂溶液。
实施例3:
一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将来自电池回收浸出工序的浸出液收集,并加热至90℃,去除残留的过氧化氢;
(2)加入碱液调节pH为6.0,固液分离后,得到铁铝渣和第一滤液;
(3)向所得第一滤液中加入硫酸肼,加入量为滤液中铜的摩尔量的1倍,并用碱液控制pH在5.0,反应过程中控制温度为90℃,反应时间为1h;
(4)步骤(3)反应结束后,固液分离,得到铜渣和第二滤液;
(5)待第二滤液冷却至室温后,向第二滤液中加入氟化钾,并控制在沉淀后滤液中的氟离子浓度为4g/L;
(6)步骤(5)反应结束后,固液分离,得到钙镁锂渣和第三滤液;
(7)使用萃取剂P507对第三滤液进行萃取,静置,分离得到萃取有机相和萃余液,用3mol/L的硫酸溶液从萃取有机相中反萃取,得到硫酸镍钴锰溶液;
(8)按照锂与磷的摩尔比为3:1.0,向萃余液中加入磷酸钾,固液分离,得到含锂废渣和废水,废水进入废水处理系统;
(9)将含锂废渣与步骤(6)得到的钙镁锂渣混合后,按照固液比150g/L加入到6.0mol/L的氯化钙溶液中,置换废渣中的锂,置换过程控制温度为70℃,置换时间为4h,得到氯化锂溶液。
对比例1:
一种三元锂电池回收浸出液净化的方法,包括如下步骤:
(1)将来自电池回收浸出工序的浸出液收集,向浸出液中加入铁粉,铁粉的加入量与铜离子的摩尔比为1.1:1,反应4h后固液分离,除去铁铜渣;
(2)加入与铁元素等摩尔量的过氧化氢,并加入碱液调节pH为5.5,固液分离后,得到铁铝渣和滤液;
(3)使用萃取剂P204,对滤液进行萃取,静置,分离得到萃取有机相和萃余液,用5mol/L的硫酸溶液从萃取有机相中反萃取,得到硫酸镍钴锰溶液;
(4)向萃余液中加入锂元素摩尔量0.6倍的碳酸钠,固液分离,得到含锂废渣和废水;
(5)将含锂废渣按照固液比20g/L加入到1.0mol/L的氯化钙溶液中,置换废渣中的锂,置换过程控制温度为90℃,置换时间为6h,得到氯化锂溶液。
试验例:
检测实施例1-3及对比例1中得到的硫酸镍钴锰溶液中的杂质金属离子含量,结果如表1所示。
表1:硫酸镍钴锰溶液中的杂质金属离子含量检测结果:
金属离子含量g/L Cu Ca Mg
实施例1 未检出 0.0001 0.0001
实施例2 未检出 0.0001 0.0001
实施例3 未检出 0.0001 0.0001
对比例1 0.0005 0.0027 0.0019
由表1可知,本发明的三元锂电池回收浸出液净化的方法能有效去除浸出液中的Cu、Ca、Mg杂质离子,对Cu离子的去除率接近100%,对Ca及Mg杂质离子的去除率达到99.9%,而使用现有的浸出液净化工艺的对比例1中得到的硫酸镍钴锰溶液中仍然具有较多的Cu、Ca、Mg杂质离子残留。
检测实施例1-3及对比例1中得到的废水中的锂含量,结果如表2所示。
表2:废水中的锂含量检测结果:
  锂含量g/L
实施例1 0.0024
实施例2 0.0028
实施例3 0.0037
对比例1 1.0
由表2可知,本发明的三元锂电池回收浸出液净化的方法对锂的回收率达到了99.9%,而使用现有的浸出液净化工艺的对比例1中对锂的回收率仅为89.7%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种三元锂电池回收浸出液净化的方法,其特征在于:包括如下步骤:
    (1)将三元锂电池回收浸出液一次加热后,调节pH至5.0-6.5,一次过滤除去铁铝渣,加入还原剂,控制pH为酸性,二次加热,二次过滤除去铜渣,加入沉淀剂,三次过滤得到钙镁锂渣,向三次过滤后的滤液中加入萃取剂进行萃取,静置,分离得到萃取有机相和萃余液,向萃取有机相中加入反萃取剂进行反萃取,得到含镍钴锰的溶液;
    (2)向萃余液中加入可溶性磷酸盐后固液分离,得到含锂废渣;
    (3)将含锂废渣与钙镁锂渣混合后加入到可溶性氯盐溶液中进行反应,得到氯化锂溶液。
  2. 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(1)中所述一次加热后的温度为60-100℃。
  3. 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(1)中所述的还原剂为羟胺、硫酸羟胺及硫酸肼中的至少一种。
  4. 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(1)中所述还原剂的加入量为所述一次过滤后滤液中铜的摩尔量的0.2-5倍。
  5. 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(1)中所述控制pH为酸性是将pH控制在4.0-6.5。
  6. 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(1)中所述二次加热后的温度为80-100℃。
  7. 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:所述的沉淀剂为可溶性氟盐,且所述三次过滤后的滤液中氟离子浓度为3-10g/L。
  8. 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:所述的反萃取剂为盐酸或硫酸中的至少一种。
  9. 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于:步骤(2)中按照锂与磷的摩尔比为3:(1.0-1.2),向萃余液中加入可溶性磷酸盐。
  10. 根据权利要求1所述的三元锂电池回收浸出液净化的方法,其特征在于: 步骤(3)中将含锂废渣与钙镁锂渣混合后,再按照固液比10-180g/L加入到所述的可溶性氯盐溶液中,所述可溶性氯盐溶液的浓度为1.0-7.0mol/L。
PCT/CN2022/119989 2022-06-28 2022-09-20 一种三元锂电池回收浸出液净化的方法 WO2024000842A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210740118.2 2022-06-28
CN202210740118.2A CN115141933B (zh) 2022-06-28 2022-06-28 一种三元锂电池回收浸出液净化的方法

Publications (1)

Publication Number Publication Date
WO2024000842A1 true WO2024000842A1 (zh) 2024-01-04

Family

ID=83410252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119989 WO2024000842A1 (zh) 2022-06-28 2022-09-20 一种三元锂电池回收浸出液净化的方法

Country Status (2)

Country Link
CN (1) CN115141933B (zh)
WO (1) WO2024000842A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116724441A (zh) * 2023-03-20 2023-09-08 广东邦普循环科技有限公司 一种三元锂电池浸出液的净化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505272A (zh) * 2016-12-12 2017-03-15 江西赣锋锂业股份有限公司 一种锂电池正极材料废料的处理方法
CN108767353A (zh) * 2018-05-25 2018-11-06 北京矿冶科技集团有限公司 从废旧锂离子电池正极活性材料生产富锂净液的方法
CN110092398A (zh) * 2019-04-23 2019-08-06 北京科技大学 一种废旧锂离子电池焙烧尾气资源化利用的方法
CN110396607A (zh) * 2019-09-03 2019-11-01 中南大学 一种废旧三元锂离子电池粉料的处理方法
CN111180819A (zh) * 2019-12-30 2020-05-19 荆门市格林美新材料有限公司 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505272A (zh) * 2016-12-12 2017-03-15 江西赣锋锂业股份有限公司 一种锂电池正极材料废料的处理方法
CN108767353A (zh) * 2018-05-25 2018-11-06 北京矿冶科技集团有限公司 从废旧锂离子电池正极活性材料生产富锂净液的方法
CN110092398A (zh) * 2019-04-23 2019-08-06 北京科技大学 一种废旧锂离子电池焙烧尾气资源化利用的方法
CN110396607A (zh) * 2019-09-03 2019-11-01 中南大学 一种废旧三元锂离子电池粉料的处理方法
CN111180819A (zh) * 2019-12-30 2020-05-19 荆门市格林美新材料有限公司 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法

Also Published As

Publication number Publication date
CN115141933B (zh) 2024-02-09
CN115141933A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN108878866B (zh) 利用废旧锂离子电池三元正极材料制备三元材料前驱体及回收锂的方法
CN106319228B (zh) 一种从含镍钴锰废渣中同步回收镍钴锰的方法
CN107591584B (zh) 一种废旧锂离子电池正极粉料的回收利用方法
CN111278998A (zh) 从废锂基电池和其它进料中回收钴、锂和其它金属的方法
CN103088215B (zh) 高锰钴比镍钴锰原料中镍钴与锰分离的方法
CN107267759A (zh) 一种锂离子电池正极材料的综合回收方法
CN113106257B (zh) 锂电池废料的回收利用方法及其应用
EP2832700B1 (en) Method for producing high-purity nickel sulfate
WO2022052670A1 (zh) 一种镍钴锰浸出液净化的方法
CN114655969B (zh) 高杂磷酸铁锂正极废料回收制备碳酸锂和磷酸铁的方法
WO2023035636A1 (zh) 一种由低冰镍制备硫酸镍的方法
CN108767353B (zh) 从废旧锂离子电池正极活性材料生产富锂净液的方法
US11695170B2 (en) Battery-level Ni—Co—Mn mixed solution and preparation method for battery-level Mn solution
TW202221145A (zh) 鈷及鎳之分離方法
CN115321502A (zh) 一种废旧磷酸铁锂电池与镍钴锰三元电池综合回收工艺
CN115321505B (zh) 一种含锂废水综合回收制取磷酸铁锂的方法及应用
CN113912033A (zh) 一种前置提锂的废旧磷酸铁锂电池正负极混粉的回收方法
CN115367776B (zh) 一种磷酸铁锂电池的回收方法
GB2622169A (en) Method for selectively recovering valuable metal in waste lithium battery
CN116377243A (zh) 一种镍钴氢氧化物原料分离镍钴锰的方法
KR20220134387A (ko) 폐양극활물질로부터 유가 금속을 회수하는 방법
WO2024000842A1 (zh) 一种三元锂电池回收浸出液净化的方法
CN110342581B (zh) 一种从铜锰钙硫酸盐溶液中制得高纯硫酸锰的方法
KR101839460B1 (ko) 리튬 함유 용액으로부터 고순도의 탄산리튬 회수방법
CN112342383B (zh) 三元废料中镍钴锰与锂的分离回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948931

Country of ref document: EP

Kind code of ref document: A1