WO2023284787A1 - 爬行控制方法、装置、车辆及存储介质 - Google Patents

爬行控制方法、装置、车辆及存储介质 Download PDF

Info

Publication number
WO2023284787A1
WO2023284787A1 PCT/CN2022/105470 CN2022105470W WO2023284787A1 WO 2023284787 A1 WO2023284787 A1 WO 2023284787A1 CN 2022105470 W CN2022105470 W CN 2022105470W WO 2023284787 A1 WO2023284787 A1 WO 2023284787A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
vehicle
vehicle speed
current
target
Prior art date
Application number
PCT/CN2022/105470
Other languages
English (en)
French (fr)
Inventor
郭丁伊
刘元治
尹建坤
张天强
程健
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023284787A1 publication Critical patent/WO2023284787A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of vehicle control, for example, to a creep control method, device, vehicle and storage medium.
  • the motor of pure electric vehicles has a wide range of speed regulation. Generally, a single-stage reducer is used, and there is a gear gap in the transmission system. Therefore, pure electric vehicles are more prone to impact when entering crawl mode. Therefore, it is necessary to adjust the output torque of the motor when the vehicle enters the crawling mode, so as to ensure the driving stability and improve the driver's intuitive experience.
  • the present application provides a creep control method, device, vehicle and storage medium, which can ensure driving stability and improve the driver's intuitive experience when the vehicle enters the crawl mode.
  • the application provides a crawling control method, including:
  • the output torque of the electric motor of the control vehicle is changed from the current torque to the target torque, so that the vehicle speed of the vehicle is changed from the current vehicle speed to a target crawling speed, and the target crawling speed is preset;
  • Control the output torque of the motor from the current torque to the target torque including:
  • Feedforward control calculate the feedforward torque according to the current vehicle speed and road gradient
  • Feedback control calculating the feedback torque according to the current vehicle speed difference, the current vehicle speed difference is the difference between the target crawling vehicle speed and the current vehicle speed
  • the feedback control includes proportional control and integral control
  • the feedback torque includes The proportional feedback torque and the integral feedback torque calculated by the integral control, the proportional control is activated when the vehicle enters the crawl mode, the integral control is activated under preset conditions, and the preset conditions include:
  • the current pressure of the brake master cylinder is less than the pressure threshold Ps, and the current vehicle speed difference is less than the vehicle speed difference threshold ⁇ Vs, wherein Ps and ⁇ Vs are preset;
  • the sum of the feedforward torque and the feedback torque is used as the target torque, and the output torque of the motor is controlled to change from the current torque to the target torque.
  • the application provides a crawling control device, including:
  • the obtaining module is configured to obtain the current driving information of the vehicle in real time
  • the first judging module is configured to judge whether the vehicle enters the crawling mode according to the current driving information of the vehicle;
  • the first torque control module is configured to control the output torque of the electric motor of the vehicle to change from the current torque to the target torque in response to the judgment result that the vehicle enters the crawling mode, so that the vehicle speed of the vehicle changes from the current vehicle speed to the target crawling speed.
  • the above target crawl speed is pre-set;
  • the first torque control module includes:
  • the feed-forward control module is configured to calculate the feed-forward torque according to the current vehicle speed and road gradient
  • the feedback control module is configured to calculate the feedback torque according to the current vehicle speed difference, the current vehicle speed difference is the difference between the target crawling vehicle speed and the current vehicle speed, the feedback control module includes a proportional control module and an integral control module, and the feedback torque is composed of The proportional feedback torque calculated by the proportional control module and the integral feedback torque calculated by the integral control module, the proportional control module is activated when the vehicle enters the crawl mode, and the integral control module is activated under preset conditions activated, the preset conditions include:
  • the current pressure of the brake master cylinder is less than the pressure threshold Ps, and the current vehicle speed difference is less than the vehicle speed difference threshold Vs, wherein Ps and Vs are preset;
  • the torque changing module is configured to use the sum of the feedforward torque and the feedback torque as the target torque, and control the output torque of the motor to change from the current torque to the target torque.
  • the application provides a vehicle, comprising:
  • processors one or more processors
  • a storage device configured to store one or more programs
  • the one or more processors implement the creep control method as described above.
  • the present application provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the crawling control method as described above is realized.
  • FIG. 1 is a flowchart of a crawling control method provided in Embodiment 1 of the present application;
  • Fig. 2 is the relationship diagram between the proportional coefficient kp and the current vehicle speed difference ⁇ V provided by Embodiment 1 of the present application;
  • Fig. 3 is a relation diagram between the integral coefficient ki and the current vehicle speed difference ⁇ V provided by Embodiment 1 of the present application;
  • FIG. 4 is a flow chart of a crawling control method provided in Embodiment 2 of the present application.
  • FIG. 5 is a schematic diagram of a crawling control device provided in Embodiment 3 of the present application.
  • FIG. 6 is a schematic diagram of a vehicle provided in Embodiment 5 of the present application.
  • Fig. 1 is a flow chart of the crawling control method provided by the embodiment of the present application. This embodiment can be applied to judge whether the vehicle enters the crawling mode, and when the vehicle enters the crawling mode, control the torque output of the motor so that the vehicle is stable from the current speed And accurately change to the target creeping speed, reduce the impact of the vehicle transmission system during the speed adjustment process, and at the same time avoid the phenomenon of speed overshoot, improve driving stability, and improve the user's subjective driving experience.
  • the crawl control method can be executed by a crawl control device, which can be realized by software and/or hardware, and the crawl control device can be configured in a vehicle, for example, in an electric vehicle.
  • the crawling control method of the present embodiment includes:
  • the current driving information of the vehicle includes the current vehicle speed, the opening degree of the accelerator pedal, the pressure of the brake master cylinder, the gear position, the signal of the electronic parking brake (Electrical Park Brake, EPB), the vehicle fault signal, the speed of the driving wheel, the The speed of the driving wheel (if there is a non-driving wheel) and the longitudinal acceleration of the vehicle body.
  • the vehicle includes a vehicle controller, a drive motor, a motor control unit configured in the drive motor, a wheel speed sensor, an accelerator pedal position sensor, a gear position sensor module, an electronic parking sensor module, a brake master cylinder pressure sensor and a body Longitudinal acceleration sensor module, etc.
  • the wheel speed sensor is configured to measure the current rotational speed of the output shaft of the electric motor to determine the current vehicle speed.
  • the accelerator pedal position sensor is set to detect the position of the accelerator pedal to obtain the opening degree of the accelerator pedal.
  • the gear position sensing module is set to detect the gear position signal to determine the current gear position, such as P gear, N gear or D gear, etc.
  • the electronic parking sensor module is set to detect the current EPB signal to determine whether the EPB system is in the unlocked or locked state.
  • the master cylinder pressure sensor is set to measure the pressure of the master cylinder.
  • the longitudinal acceleration sensor module of the vehicle body is used to measure the longitudinal acceleration of the vehicle body.
  • the wheel speed sensor, accelerator pedal position sensor, gear position sensing module, electronic parking sensing module, brake master cylinder pressure sensor and body longitudinal acceleration sensing module are respectively electrically connected to the input end of the vehicle controller.
  • the output end of the vehicle controller is electrically connected to the input end of the motor control unit.
  • the output terminal of the motor control unit is electrically connected with the driving motor.
  • each sensing module or motor control unit the controller area network (Controller Area Network, CAN) bus, Local Interconnect (Local Interconnect) Network, LIN) bus or hard wire for signal transmission.
  • the accelerator pedal position sensor sends the detected position signal of the accelerator pedal to the vehicle controller through a hard wire.
  • the gear position sensing module, electronic parking sensing module, brake master cylinder pressure sensor and body longitudinal acceleration sensing module respectively send the measured information to the vehicle controller through the CAN bus.
  • the vehicle enters the crawling mode:
  • Vs1 can be preset.
  • Vs1 can be set through experience, such as 8km/h-12km/h; the opening of the accelerator pedal is less than a%, and a can be preset.
  • the value of a is 1-5, for example, the value of a is 2; the gear position is D or R; the pressure of the brake master cylinder is less than b bar, b can be preset, for example, b is 0.2 ; EPB is unlocked; the vehicle has no barriers that prohibit driving.
  • Creeper mode is activated when several of the above conditions are met.
  • the output torque of the control motor is changed from the current torque to the target torque, so that the vehicle speed is changed from the current speed to the target creeping speed, and the target creeping speed is preset.
  • Control the output torque of the motor from the current torque to the target torque including: feedforward control, calculate the feedforward torque according to the current vehicle speed and road gradient; feedback control, calculate the feedback torque according to the current vehicle speed difference, the current vehicle speed difference is the target crawling speed and the current The difference in vehicle speed, the feedback control includes proportional control and integral control, the proportional control is activated when the vehicle enters the crawl mode, and the integral control is activated under preset conditions, the preset conditions include: the current pressure of the brake master cylinder is less than the pressure threshold Ps, And the current vehicle speed difference is less than the vehicle speed difference threshold ⁇ Vs, wherein PS and ⁇ Vs can be preset; the sum of the feedforward torque and the feedback torque is used as the target torque, and the output torque of the control motor is changed from the current torque to the target torque.
  • the target crawling speed can be set according to the road conditions and combined with design experience.
  • the target torque corresponds to the target creeping vehicle speed, that is, the target torque is determined according to the target creeping vehicle speed.
  • the value range of the target creeping vehicle speed Vc is 3Km/h-8Km/h.
  • the control of changing the output torque of the motor from the current torque to the target torque includes feedforward control and feedback control.
  • Feed-forward control mainly considers the influence of the current vehicle speed and road gradient on the driving state of the vehicle.
  • Feedforward torque is calculated by feedforward control.
  • the feed-forward torque calculated according to the feed-forward control includes a vehicle speed feed-forward torque and a gradient feed-forward torque.
  • the vehicle speed feed-forward torque can be obtained according to the current vehicle speed look-up table, which is pre-stored in the vehicle controller, and can be set according to design experience.
  • the slope feed-forward torque can be obtained according to the road surface slope look-up table, which is also pre-stored in the vehicle controller, and the table can be set according to design experience.
  • the calculation formula of road slope is:
  • is the slope of the road surface
  • a sen is the longitudinal acceleration of the vehicle body measured by the sensor module of the longitudinal acceleration of the vehicle body; is the actual longitudinal acceleration of the vehicle body, and V is the current vehicle speed.
  • the road slope is 0°, and the slope feed-forward torque is also zero.
  • low-pass filtering is performed on the body longitudinal acceleration a sen , and the relationship between the body longitudinal acceleration a sen and the actual longitudinal acceleration of the body Low-pass filtering is performed on the difference to ensure the accuracy of slope calculation.
  • Feedback control mainly considers the impact of the current vehicle speed difference on the vehicle's driving state.
  • Feedback control adopts proportional integral (PI) control, which includes proportional control and integral control.
  • the feedback torque includes proportional feedback torque calculated by proportional control and integral feedback torque calculated by integral control.
  • the proportional control realizes the rapid adjustment of the vehicle speed from the current vehicle speed to the target creeping vehicle speed.
  • Proportional control is active when the vehicle is in crawl mode.
  • pure proportional control has an adjustment error, which leads to the fact that the steady-state vehicle speed cannot accurately reach the target crawling speed.
  • the combination of integral control and proportional control can effectively reduce the speed adjustment error and improve control accuracy.
  • integral control is prone to overshoot.
  • the integral control when the vehicle enters the crawling mode from the starting stage, if the integral control is activated at the initial stage of the crawling control, the torque calculated by the integral control will be too large, which will cause the vehicle speed to overshoot, and the phenomenon of jumping will easily occur when the vehicle speed is close to the target crawling speed ;
  • the initial stage of creep control since the force of the driver stepping on the brake pedal is still relatively large, that is, the pressure of the brake master cylinder is still relatively large, if the integral control is activated at this time, after the brake pedal is completely released, it will also The torque sudden change occurs due to the excessive torque calculated by the integral control, and the vehicle shakes.
  • the integral control is only activated at the later stage of the creep control, which can not only ensure the adjustment accuracy of the torque, but also solve the problems of jumping and shaking of the vehicle, reduce the impact of the transmission system during the shifting process, and make the vehicle move from The current state smoothly transitions to the crawling mode, which improves driving stability and improves the driver's subjective experience.
  • the current vehicle speed difference ⁇ V and the pressure of the master brake cylinder are used as preset conditions for activation of the integral control.
  • the preset conditions include: the current pressure of the brake master cylinder is less than Ps, and the current vehicle speed difference is less than ⁇ Vs, wherein, Ps and ⁇ Vs can be preset.
  • the value of kp is related to the current vehicle speed difference ⁇ V.
  • kp1 When - ⁇ V1 ⁇ V ⁇ V1, the value of kp is kp1, ⁇ V1>0, kp1>0; when ⁇ V1 ⁇ V ⁇ V2, or - ⁇ V2 ⁇ V ⁇ - ⁇ V1, the value of kp is kp2, kp2 and The absolute value of ⁇ V is positively correlated, kp2>kp1; among them, ⁇ V1 is the first vehicle speed difference, ⁇ V2 is the second vehicle speed difference, kp1 is the first proportional coefficient, and kp2 is the second proportional coefficient, ⁇ V1, ⁇ V2, kp1 and kp2 are all It can be preset based on experience.
  • u2(k) is the integral feedback torque at the kth moment
  • ki is the integral coefficient
  • ⁇ V is the sum of the current vehicle speed difference ⁇ V from the i-th moment to the k-th moment.
  • the value of ki is related to the current vehicle speed difference ⁇ V.
  • ki When - ⁇ V3 ⁇ V ⁇ V3, the value of ki is ki1, ⁇ V3>0, ki1>0; when ⁇ V3 ⁇ V ⁇ V4, or - ⁇ V4 ⁇ V ⁇ - ⁇ V3, the value of ki is ki2, ki2 and The absolute value of ⁇ V is positively correlated, ki2>ki1; among them, ⁇ V3 is the third vehicle speed difference, ⁇ V4 is the fourth vehicle speed difference, ki1 is the first integral coefficient, and ki2 is the second integral coefficient, and ⁇ V3, ⁇ V4, ki1 and ki2 are all Can be preset.
  • the integral control is activated when the current vehicle speed difference ⁇ V is small.
  • ki takes a larger value of ki2, and ki2 is positively correlated with the absolute value of the current vehicle speed difference ⁇ V.
  • the value of ki2 decreases continuously.
  • the value of ki is smaller ki1.
  • the target torque is limited by the maximum torque and the minimum torque, that is, the target torque should not be less than the minimum torque, and the target torque should not be greater than the maximum torque, so as to ensure that the vehicle is in a creeping mode.
  • the maximum torque and minimum torque can be set according to experience. When the calculated target torque is greater than the maximum torque, the output torque of the motor is controlled to be the maximum torque. When the calculated target torque is less than the minimum torque, the output torque of the motor is controlled to be the minimum torque.
  • Feed-forward control mainly considers the influence of the current vehicle speed and road gradient on the driving state of the vehicle.
  • Feedback control mainly considers the impact of the current vehicle speed difference on the vehicle's driving state.
  • Feedback control adopts PI control, which includes proportional control and integral control. The proportional control realizes the rapid adjustment of the vehicle speed from the current vehicle speed to the target creeping vehicle speed. Proportional control is active when the vehicle is in crawl mode. However, pure proportional control has an adjustment error, which leads to the fact that the steady-state vehicle speed cannot accurately reach the target crawling speed.
  • integral control and proportional control can effectively reduce the speed adjustment error and improve control accuracy.
  • the integral control is prone to overshoot, which may cause the problem of jumping or shaking the vehicle. Therefore, in this embodiment, the integral control is only activated at the later stage of the creep control, which can not only ensure the adjustment accuracy of the torque, but also solve the problems of jumping and shaking of the vehicle, reduce the impact of the transmission system during the shifting process, and make the vehicle move from The current state smoothly transitions to the crawling mode, which improves driving stability and improves the driver's subjective experience.
  • Fig. 4 is a flow chart of the creep control method in this embodiment. This embodiment describes the crawling control method on the basis of the above embodiments.
  • the crawling modes include a first crawling mode and a second crawling mode.
  • judging whether the vehicle enters the crawling mode includes: judging whether the vehicle is slipping when judging that the vehicle enters the crawling mode according to the current driving information of the vehicle; if the vehicle does not slip, then the vehicle enters the first crawling mode; If the vehicle slips, the vehicle enters the second creeping mode.
  • the target crawling vehicle speed includes a first target crawling vehicle speed and a second target crawling vehicle speed, the first target crawling vehicle speed corresponds to the first crawling mode, the second target crawling vehicle speed corresponds to the second crawling mode, and the second target crawling vehicle speed is less than the first target crawling speed
  • target torque includes a first target torque and a second target torque, the first target torque corresponds to the first target creeping vehicle speed, and the second target torque corresponds to the second target creeping vehicle speed.
  • the output torque of the control motor is changed from the current torque to the first target torque, so that the vehicle speed is changed from the current vehicle speed to the first target crawling speed.
  • Control the output torque of the motor from the current torque to the first target torque including: feedforward control, calculate the feedforward torque according to the current vehicle speed and road gradient; feedback control, calculate the feedback torque according to the current vehicle speed difference, the current vehicle speed difference is the target crawling speed The difference with the current vehicle speed.
  • Feedback control includes proportional control and integral control.
  • Feedback torque includes proportional feedback torque calculated by proportional control and integral feedback torque calculated by integral control. The sum of feedforward torque and feedback torque is taken as the second a target torque, and control the output torque of the motor to change from the current torque to the target torque.
  • the output torque of the control motor is changed from the current torque to the second target torque, so that the vehicle speed is changed from the current vehicle speed to the second target crawling speed.
  • Control the output torque of the motor from the current torque to the second target torque including: feedforward control, calculate the feedforward torque according to the current vehicle speed and road gradient; feedback control, calculate the feedback torque according to the current vehicle speed difference, the current vehicle speed difference is the target crawling speed The difference with the current vehicle speed.
  • Feedback control includes proportional control and integral control.
  • Feedback torque includes proportional feedback torque calculated by proportional control and integral feedback torque calculated by integral control. The sum of feedforward torque and feedback torque is taken as the second a target torque, and control the output torque of the motor to change from the current torque to the target torque.
  • the adhesion coefficient of the road surface is reduced, and the vehicle is prone to skidding.
  • Set the second target crawling speed to be lower than the first target crawling speed.
  • control the steady-state vehicle speed to the second target crawling speed to prevent the vehicle from slipping and improve driving safety.
  • the value range of the first target creeping vehicle speed Vc1 is 6Km/h-8Km/h
  • the value range of the second target creeping vehicle speed Vc2 is 3Km/h-5Km/h.
  • the method for determining whether the vehicle is slipping is as follows: if the vehicle is a two-wheel-drive vehicle, the measured rotational speed ndrive of the driving wheels and the measured rotational speed nnondrive of the non-driven wheels can be obtained respectively. If the vehicle is slipping, the measured rotational speed ndrive of the driven wheels and the measured rotational speed nnondriven of the non -driven wheels are not equal. If the vehicle does not slip, the measured rotational speed ndrive of the drive wheel and the measured rotational speed nnondrive of the non -driven wheel are equal or have a smaller difference.
  • s is the slip rate of the driving wheel
  • n non -driving is the measured speed of the non-driving wheel
  • n driven is the measured speed of the driving wheel.
  • the wheel acceleration ⁇ can be used to judge whether the wheels are slipping. Exemplarily, if ⁇ > ⁇ 1 , it indicates that the wheels are slipping, and ⁇ 1 can be set in advance. If the wheel acceleration ⁇ remains stable, it can be further judged by the following formula:
  • s is the slip ratio of the driving wheel
  • v' is the product of the wheel angular velocity w of the front or rear wheel and the rolling radius of the wheel
  • V is the current speed of the vehicle, that is, the actual speed of the vehicle.
  • the crawl control method of this embodiment further includes: judging whether the vehicle exits the crawl mode according to the current driving information of the vehicle, and if so, changing the output torque of the motor from the current torque to the requested torque, so that the vehicle is changed from the current torque to the requested torque.
  • the vehicle speed changes to a requested vehicle speed, which is responsive to current driving demands.
  • the change of the output torque of the motor is ⁇ T, ⁇ Tmin ⁇ ⁇ T ⁇ ⁇ Tmax, ⁇ Tmin is the minimum change of the output torque, ⁇ Tmax is the maximum change of the output torque, ⁇ Tmin and ⁇ Tmax can be preset set up.
  • the vehicle may exit the crawling mode at any time after entering the crawling mode, so the current driving information of the vehicle should be obtained in real time, and it is judged in real time whether the vehicle is going to exit the crawling mode.
  • the vehicle exits the creep mode: the current vehicle speed V is greater than Vs2, and Vs2 can be preset; the opening of the accelerator pedal is not less than a%, and a can be preset.
  • the value of a is 1-5.
  • the value of a is 2; the gear shifts to P or N; and the vehicle encounters a driving prohibition obstacle.
  • the vehicle exits the creep mode and the vehicle responds to the current driving demand.
  • the output torque of the control motor is changed from the current torque to the requested torque, so that the vehicle is changed from the current speed to the requested speed, and the requested speed responds to the current driving demand.
  • the requested torque corresponds to a requested vehicle speed.
  • the rate of change of the output motor of the motor should be controlled.
  • the variation of the output torque of the motor is ⁇ T within a preset time from when the creep mode is triggered, ⁇ Tmin ⁇ T ⁇ Tmax, and ⁇ Tmin and ⁇ Tmax can be set according to design experience.
  • the crawling modes are divided into the first crawling mode and the second crawling mode.
  • the corresponding second target crawling speed is lower, so that the vehicle is free from slipping and driving safety is improved.
  • the rate of change of the output motor of the motor is controlled when the vehicle exits the crawl mode, so as to prevent the motor output torque from changing too quickly when the vehicle exits the crawl mode. Shock affects the driver's subjective driving experience.
  • This embodiment provides a crawling control device capable of executing the crawling control method provided in any embodiment of the present application, and having corresponding functional modules and effects for executing the method.
  • the crawling control device includes:
  • the acquiring module is configured to acquire the current driving information of the vehicle in real time.
  • the acquisition module may include multiple sensors and sensing modules mentioned in Embodiment 1, such as wheel speed sensor, accelerator pedal position sensor, gear position sensing module, electronic parking sensing module, brake master cylinder pressure sensor and vehicle body Longitudinal acceleration sensor module, etc.
  • the first judging module is configured to judge whether the vehicle enters the crawling mode according to the current driving information of the vehicle.
  • the first torque control module is configured to respond to the judgment result that the vehicle enters the crawling mode, and control the output torque of the motor of the vehicle to change from the current torque to the target torque, so that the vehicle speed of the vehicle changes from the current speed to the target crawling speed, and the target crawling speed is preset.
  • the first torque control module includes: a feedforward control module, which is configured to calculate the feedforward torque according to the current vehicle speed and the road surface gradient; a feedback control module, which is configured to calculate the feedback torque according to the current vehicle speed difference, and the current vehicle speed difference is the difference between the target crawling vehicle speed and the current vehicle speed Difference, the feedback control module includes a proportional control module and an integral control module, the feedback torque includes the proportional feedback torque calculated by the proportional control module and the integral feedback torque calculated by the integral control module, the proportional control module is activated when the vehicle enters the creep mode , the integral control module is activated under preset conditions, the preset conditions include: the current brake master cylinder pressure is less than the pressure threshold Ps, and the current vehicle speed difference is less than the vehicle speed difference threshold Vs, wherein Ps and Vs are preset; torque The change module is configured to use the sum of the feedforward torque and the feedback torque as the target torque, and control the output torque of the motor to change from the current torque to the target torque.
  • the coefficients, ⁇ V1, ⁇ V2, kp1 and kp2 are all preset
  • u2(k) is the integral feedback torque at the kth moment
  • ki is the integral coefficient
  • ki is the integral coefficient
  • ki1 is the sum of the current vehicle speed difference from the i-th moment to the k-th moment
  • ki is the integral coefficient
  • ki1 is the sum of the current vehicle speed difference from the i-th moment to the k-th moment
  • ki is the integral coefficient
  • the crawling modes include a first crawling mode and a second crawling mode.
  • the first judging module includes: a first judging module 1, configured to judge whether the vehicle enters the crawling mode according to the current driving information of the vehicle; a first judging module 2, configured to judge whether the vehicle enters the crawling mode in response Whether the vehicle is slipping; in response to the judgment result that the vehicle does not slip, determine that the vehicle enters the first crawling mode; in response to the judgment result that the vehicle is slipping, determine that the vehicle enters the second crawling mode; the target crawling speed includes the first target crawling speed and the second target Crawling vehicle speed, the first target crawling vehicle speed corresponds to the first crawling mode, the second target crawling vehicle speed corresponds to the second crawling mode, the second target crawling vehicle speed is less than the first target crawling vehicle speed; the target torque includes the first target torque and the second target torque, the first target torque corresponds to the first target creep vehicle speed, and the second target torque corresponds to the second target creep vehicle speed.
  • the crawling control device further includes a second judging module, configured to judge whether the vehicle exits the crawling mode according to the current driving information of the vehicle; a second torque control module, configured to respond to the judging result that the vehicle exits the crawling mode , the output torque of the control motor changes from the current torque to the requested torque, so that the vehicle speed changes from the current speed to the requested speed, and the requested speed responds to the current driving demand; wherein, from the trigger to exit the crawl mode to the preset time, the motor's
  • the variation of the output torque is ⁇ T, ⁇ Tmin ⁇ T ⁇ Tmax, ⁇ Tmin is the minimum variation of the output torque, ⁇ Tmax is the maximum variation of the output torque, ⁇ Tmin and ⁇ Tmax are preset.
  • the crawling control device provided in this embodiment can execute the crawling control method provided in any embodiment of the present application, and has corresponding functional modules and effects for executing the method.
  • this embodiment provides execution strategies of the creep control method in various driving states.
  • the electric vehicle is stationary on a flat road, the vehicle has no faults, the road condition is good, and the road surface is flat.
  • the driver puts the gear into the D gear, lifts the brake lightly, and does not step on the accelerator pedal.
  • the vehicle controller determines that the vehicle enters the first crawling mode.
  • the feedforward control module is activated to obtain the feedforward torque. Since the road surface is flat, the feedforward control module calculates the feedforward torque according to the current vehicle speed.
  • the proportional control module is activated, and the current vehicle speed difference is large, kp takes a large value, and decreases with the decrease of the current vehicle speed difference, aiming to quickly approach the target crawling speed, the integral control module is not activated Activate to avoid jumping cars.
  • the target torque is the sum of feedforward torque and proportional feedback torque.
  • the target torque is sent to the motor control unit after being limited by the maximum torque and the minimum torque, and the motor control unit controls the output torque of the driving motor to be the target torque currently calculated, and the output torque is finally transmitted to the wheels through a single-stage reducer.
  • the integral control module in the feedback control module is activated, that is, the proportional control module and the integral control module calculate the feedback torque at the same time, ensuring that the coefficient kp and coefficient ki change with the change of the current vehicle speed difference Gradually change, dynamically adjust the output torque of the motor, and finally maintain a relatively stable vehicle speed.
  • the target torque is the sum of feedforward torque, proportional feedback torque and integral feedback torque.
  • the currently calculated target torque is sent to the motor control unit after being limited by the maximum torque and the minimum torque, and the motor control unit controls the output torque of the drive motor to be the currently calculated target torque.
  • the electric vehicle is stationary on a flat road, the vehicle has no faults, the road surface is flat, and the road adhesion coefficient of the road surface is low due to rain and snow conditions.
  • the electric vehicle enters the crawling mode when it is started in the D gear on flat roads. At this time, according to the collected wheel speed signal, wheel acceleration signal, actual vehicle speed and other signals, it is judged whether the wheel is slipping. If the wheel slips, it enters the second creeping mode to maintain the vehicle in a safe state.
  • the feedforward control block is active, and the proportional control block is active in the feedback control block. Since the road surface is flat, the feedforward control module calculates the feedforward torque according to the current vehicle speed.
  • the target torque calculated by the feed-forward control module and the feedback control module ensures the crawling start of the vehicle on low-level roads.
  • the integral control module in the feedback control module is activated, that is, the proportional control module and the integral control module calculate the feedback torque at the same time. Since the current vehicle speed difference is small, both the coefficient kp and the coefficient ki remain unchanged within a certain range.
  • the target torque calculated by the feedforward control module and the feedback control module ensures that the vehicle can crawl on low-level roads.
  • the electric vehicle is stationary on a slope, the vehicle has no faults, the road condition is good, and the road surface has a slope.
  • the driver puts the gear into the D gear and lightly lifts the brake. Electric cars go into crawl mode.
  • the feedforward control module is activated to obtain the feedforward torque.
  • the feedforward control module calculates the feedforward torque according to the current vehicle speed and the slope of the road. Only the proportional control module is active in the feedback control module. Since the current vehicle speed difference is relatively large, kp takes a relatively large value.
  • the integral control module in the feedback control module is not activated to prevent the car from jumping.
  • the target torque calculated by the feed-forward control module and the feedback control module ensures the crawling start of the vehicle on the high-slope road.
  • the integral control module in the feedback control module is activated, that is, the proportional control module and the integral control module calculate the feedback torque at the same time.
  • the coefficient kp and coefficient ki change in real time with the current vehicle speed difference.
  • the target torque calculated by the feedforward control module and the feedback control module ensures that the vehicle can crawl on low-level roads.
  • the electric vehicle is stationary on a slope, the vehicle has no faults, the road surface has a low road adhesion coefficient due to rain and snow conditions, and the road surface has a slope.
  • the electric vehicle enters the crawling mode when it is started from the D gear on a slope road. At this time, according to the collected wheel speed signal, wheel acceleration signal, actual vehicle speed and other signals, it is judged whether the wheel is slipping. If the wheels slip, then enter the second crawling module to maintain the vehicle in a safe state.
  • the feedforward control module is activated to obtain the feedforward torque. Since the road has a slope, the feedforward control module calculates the feedforward torque according to the current vehicle speed and the slope of the road. Only the proportional control module is active in the feedback control module.
  • the integral control block in the feedback control block is not active.
  • the target torque calculated by the feedforward control module and the feedback control module ensures that the vehicle can crawl and start on the low slope road.
  • the integral control module in the feedback control module is activated, that is, the proportional control module and the integral control module calculate the feedback torque at the same time. Both the coefficient kp and the coefficient ki remain unchanged within a certain range.
  • the target torque calculated by the feed-forward control module and the feedback control module ensures that the vehicle can crawl on the low slope road.
  • the electric vehicle is driving on a flat road, the vehicle is in the D gear, enters the creeping mode, and the driver steps on the accelerator pedal. In this transient process, the electric vehicle exits the creep control in a short time. Within the preset time, the output torque of the motor changes by ⁇ T, ⁇ Tmin ⁇ T ⁇ Tmax, to avoid shocks, and the output torque of the motor gradually transitions to that of the acceleration mode.
  • the torque which is sent to the motor control unit, can ensure the comfort during the transition from crawling to acceleration.
  • the crawling control entry condition is met and the electric vehicle enters the crawling mode.
  • the feedforward control module is activated, and the proportional control module in the feedback control module is activated. Since the road surface is flat, the feedforward control module calculates the feedforward torque according to the current vehicle speed.
  • the coefficient kp is dynamically adjusted according to the current vehicle speed difference, and the integral control module is not activated temporarily.
  • the output torque of the motor of the vehicle is switched from the driving demand torque to the target torque under creep control, and the target torque is limited by the maximum torque and minimum torque to ensure the speed of switching from high-speed coasting mode to crawling mode. comfort.
  • the electric vehicle enters into a crawling mode on a flat road, and a driving prohibition fault suddenly occurs.
  • the current driving cycle only warns the driver through the instrument, and does not actually restrict the vehicle to drive, so as to ensure that the vehicle can drive into a safe zone.
  • the vehicle controller is dormant and wakes up again to prohibit driving.
  • FIG. 6 is a schematic structural diagram of the vehicle in this embodiment.
  • FIG. 6 shows a block diagram of an exemplary vehicle 412 suitable for use in implementing embodiments of the present application.
  • the vehicle 412 shown in FIG. 6 is only an example, and should not limit the functions and scope of use of the embodiment of the present application.
  • the vehicle 412 takes the form of a universal terminal.
  • Components of the vehicle 412 may include, but are not limited to: a vehicle body (not shown), one or more processors 416, a storage device 428, and a bus 418 connecting various system components (including the storage device 428 and the processor 416).
  • Bus 418 represents one or more of several types of bus structures, including a storage device bus or storage device controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include but are not limited to Industry Standard Architecture (Industry Subversive Alliance, ISA) bus, Micro Channel Architecture (Micro Channel Architecture, MCA) bus, Enhanced ISA bus, Video Electronics Standards Association (Video Electronics Standards Association, VESA) local bus and peripheral component interconnect (Peripheral Component Interconnect, PCI) bus.
  • Vehicle 412 includes various computer system readable media. These media can be any available media that can be accessed by the vehicle 412 and include both volatile and non-volatile media, removable and non-removable media.
  • Storage 428 may include computer system readable media in the form of volatile memory, such as random access memory (Random Access Memory, RAM) 430 and/or cache memory 432 .
  • the vehicle 412 may also include other removable/non-removable, volatile/nonvolatile computer system storage media.
  • storage system 434 may be used to read and write to non-removable, non-volatile magnetic media (not shown in FIG. 6, commonly referred to as a "hard drive”).
  • a disk drive for reading and writing to a removable non-volatile disk such as a "floppy disk”
  • CDROM Compact Disc Read-Only Disk
  • each drive may be connected to bus 418 through one or more data media interfaces.
  • the storage device 428 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of each embodiment of the present application.
  • the program module 442 generally executes the functions and/or methods in the embodiments described in this application.
  • Vehicle 412 may also communicate with one or more external devices 414 (e.g., a keyboard, pointing terminal, display 424, etc.), may also communicate with one or more terminals that enable a user to interact with the vehicle 412, and/or communicate with the Vehicle 412 is capable of communicating with any terminal (eg, network card, modem, etc.) that communicates with one or more other computing terminals. Such communication may be performed through an Input/Output (I/O) interface 422 . And, vehicle 412 can also communicate with one or more networks (such as local area network (Local Area Network, LAN), wide area network (Wide Area Network, WAN) and/or public network (such as Internet) through network adapter 420.
  • networks such as local area network (Local Area Network, LAN), wide area network (Wide Area Network, WAN) and/or public network (such as Internet) through network adapter 420.
  • networks such as local area network (Local Area Network, LAN), wide area network (Wide Area Network, WAN
  • network adapter 420 communicates with other modules of vehicle 412 via bus 418. It should be understood that although not shown, other hardware and/or software modules may be used in conjunction with vehicle 412, including but not limited to: microcode, terminal drivers, Redundant processors, external disk drive arrays, disk array (Redundant Arrays of Independent Disks, RAID) systems, tape drives, and data backup storage systems, etc.
  • the processor 416 executes a variety of functional applications and data processing by running the program stored in the storage device 428, such as realizing the crawling control method provided by the embodiment of the present application, the method includes: obtaining the current driving information of the vehicle in real time; According to the current driving information of the vehicle, it is judged whether the vehicle enters the crawling mode; in response to the judgment result that the vehicle enters the crawling mode, the output torque of the motor of the control vehicle is changed from the current torque to the target torque, so that the speed of the vehicle is changed from the current The vehicle speed changes to the target crawling speed, and the target crawling speed is preset; the output torque of the control motor changes from the current torque to the target torque, including: feedforward control, which calculates the feedforward torque according to the current vehicle speed and road gradient; feedback control, according to The current vehicle speed difference calculates the feedback torque.
  • the current vehicle speed difference is the difference between the target creeping vehicle speed and the current vehicle speed.
  • the feedback control includes proportional control and integral control.
  • the feedback torque includes the proportional feedback torque calculated by the proportional control and the integral calculated by the integral control.
  • Feedback torque, proportional control is activated when the vehicle enters creep mode, integral control is activated under preset conditions, the preset conditions include: the current pressure of the brake master cylinder is less than the pressure threshold Ps, and the current vehicle speed difference is less than the vehicle speed difference threshold ⁇ Vs, where , Ps and ⁇ Vs are preset; the sum of the feedforward torque and the feedback torque is used as the target torque, and the output torque of the motor is controlled to change from the current torque to the target torque.
  • This embodiment provides a computer-readable storage medium, on which a computer program is stored.
  • the crawling control method provided in the embodiment of the present application is implemented.
  • the method includes: obtaining the current driving of the vehicle in real time information; according to the current driving information of the vehicle, it is judged whether the vehicle enters the crawling mode; in response to the judgment result that the vehicle enters the crawling mode, the output torque of the motor of the control vehicle is changed from the current torque to the target torque, so that the speed of the vehicle The current vehicle speed is changed to the target crawling speed, and the target crawling speed is preset; the output torque of the control motor is changed from the current torque to the target torque, including: feedforward control, which calculates the feedforward torque according to the current vehicle speed and road gradient; feedback control , the feedback torque is calculated according to the current vehicle speed difference, the current vehicle speed difference is the difference between the target creeping vehicle speed and the current vehicle speed, the feedback control includes proportional control and integral control, and the feedback torque includes the proportional feedback torque calculated
  • the proportional control is activated when the vehicle enters the crawl mode, and the integral control is activated under preset conditions.
  • the preset conditions include: the current pressure of the brake master cylinder is less than the pressure threshold Ps, and the current vehicle speed difference is less than the vehicle speed difference threshold ⁇ Vs , wherein, Ps and ⁇ Vs are preset; the sum of the feedforward torque and the feedback torque is used as the target torque, and the output torque of the motor is controlled to change from the current torque to the target torque.
  • the computer storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer-readable storage media include: electrical connections with one or more conductors, portable computer disks, hard disks, RAM, ROM, Erasable Programmable Read-Only Memory, EPROM) or flash memory, optical fiber, CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium may be transmitted by any appropriate medium, including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional Procedural Programming Language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or terminal.
  • the remote computer can be connected to the user computer through any kind of network, including a LAN or WAN, or it can be connected to an external computer (eg via the Internet using an Internet Service Provider).

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种爬行控制方法、装置、车辆(412)及存储介质。方法包括:实时获取车辆(412)的当前的行驶信息,判断车辆(412)是否进入爬行模式,若是,则控制车辆(412)的电机的输出扭矩由当前扭矩变化为目标扭矩,以使车辆(412)的车速由当前车速变化为目标爬行车速;电机的输出扭矩控制包括:前馈控制,根据当前车速及路面坡度计算前馈扭矩;反馈控制,根据当前车速差计算反馈扭矩,反馈控制包括比例控制和积分控制,比例控制于车辆(412)进入爬行模式时激活,积分控制于预设条件下激活,预设条件包括:当前制动主缸的压力小于压力阈值Ps,且当前车速差小于车速差阈值ΔVs;将前馈扭矩和反馈扭矩之和作为目标扭矩,并控制电机的输出扭矩由当前扭矩变化为目标扭矩。

Description

爬行控制方法、装置、车辆及存储介质
本申请要求在2021年07月14日提交中国专利局、申请号为202110797225.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆控制技术领域,例如涉及一种爬行控制方法、装置、车辆及存储介质。
背景技术
车辆行驶过程中,例如在市区内行驶时,有时需要进入爬行模式。进入爬行模式时,电机输出扭矩发生切换,而扭矩的切换会直接影响到驾驶员的驾乘感受。相比于传统燃油车,纯电动汽车的电机的调速范围广,一般采用单级减速器,传动系统存在齿轮间隙,因此,纯电动车进入爬行模式时更易产生冲击。因此,有必要在车辆进入爬行模式时,对电机输出扭矩进行调节,以保证行车平稳性,改善驾驶员的直观感受。
发明内容
本申请提供了一种爬行控制方法、装置、车辆及存储介质,在车辆进入爬行模式时,能够保证行车平稳性,改善驾驶员的直观感受。
本申请提供一种爬行控制方法,包括:
实时获取车辆的当前的行驶信息;
根据车辆的所述当前的所述行驶信息,判断车辆是否进入爬行模式;
响应于车辆进入爬行模式的判断结果,控制车辆的电机的输出扭矩由当前扭矩变化为目标扭矩,以使车辆的车速由当前车速变化为目标爬行车速,所述目标爬行车速是预先设定的;
控制电机的输出扭矩由当前扭矩变化为目标扭矩,包括:
前馈控制,根据当前车速及路面坡度计算前馈扭矩;
反馈控制,根据当前车速差计算反馈扭矩,当前车速差为所述目标爬行车速与当前车速的差值,所述反馈控制包括比例控制和积分控制,所述反馈扭矩包括由所述比例控制计算得到的比例反馈扭矩以及由所述积分控制计算得到的积分反馈扭矩,所述比例控制于车辆进入所述爬行模式时激活,所述积分控制于预设条件下激活,所述预设条件包括:
当前制动主缸的压力小于压力阈值Ps,且当前车速差小于车速差阈值ΔVs,其中,Ps和ΔVs是预先设定的;
将所述前馈扭矩和所述反馈扭矩之和作为所述目标扭矩,并控制电机的输出扭矩由当前扭矩变化为所述目标扭矩。
本申请提供一种爬行控制装置,包括:
获取模块,设置为实时获取车辆的当前的行驶信息;
第一判断模块,设置为根据车辆的所述当前的所述行驶信息,判断车辆是否进入爬行模式;
第一扭矩控制模块,设置为响应于车辆进入所述爬行模式的判断结果,控制车辆的电机的输出扭矩由当前扭矩变化为目标扭矩,以使车辆的车速由当前车速变化为目标爬行车速,所述目标爬行车速是预先设定的;
所述第一扭矩控制模块包括:
前馈控制模块,设置为根据当前车速及路面坡度计算前馈扭矩;
反馈控制模块,设置为根据当前车速差计算反馈扭矩,当前车速差为所述目标爬行车速与当前车速的差值,所述反馈控制模块包括比例控制模块和积分控制模块,所述反馈扭矩包括由所述比例控制模块计算得到的比例反馈扭矩以及由所述积分控制模块计算得到的积分反馈扭矩,所述比例控制模块于车辆进入所述爬行模式时激活,所述积分控制模块于预设条件下激活,所述预设条件包括:
当前制动主缸的压力小于压力阈值Ps,且当前车速差小于车速差阈值Vs,其中,Ps和Vs是预先设定的;
扭矩变化模块,设置为将所述前馈扭矩和所述反馈扭矩之和作为所述目标扭矩,并控制电机的输出扭矩由当前扭矩变化为所述目标扭矩。
本申请提供一种车辆,包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,所述一个或多个处理器实现如上所述的爬行控制方法。
本申请提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上所述的爬行控制方法。
附图说明
为了说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图作介绍。
图1为本申请实施例一提供的爬行控制方法的流程图;
图2为本申请实施例一提供的比例系数kp与当前车速差ΔV的关系图;
图3为本申请实施例一提供的积分系数ki与当前车速差ΔV的关系图;
图4为本申请实施例二提供的爬行控制方法的流程图;
图5为本申请实施例三提供的爬行控制装置的示意图;
图6为本申请实施例五提供的车辆的示意图。
具体实施方式
实施例一
图1为本申请实施例提供的爬行控制方法的流程图,本实施例可适用于判断车辆是否进入爬行模式,并于车辆进入爬行模式时,控制电机的扭矩输出,以使车辆由当前车速平稳且精确地变化至目标爬行车速,减少调速过程中车辆传动系统产生的冲击,同时避免出现车速超调现象,提高行车平稳性,改善用户主观驾驶体验。该爬行控制方法可由爬行控制装置执行,该爬行控制装置可以采用软件和/或硬件的方式实现,该爬行控制装置可配置于车辆中,例如可配置于电动汽车中。
如图1所示,本实施例的爬行控制方法,包括:
S1、实时获取车辆的当前的行驶信息。
车辆的当前的行驶信息包括当前车速、加速踏板的开度、制动主缸的压力、档位、电子驻车制动(Electrical Park Brake,EPB)信号、车辆故障信号、驱动轮轮速、非驱动轮轮速(如果有非驱动轮的话)及车身纵向加速度等。
车辆包括整车控制器、驱动电机、配置于驱动电机内的电机控制单元、轮速传感器、加速踏板位置传感器、档位传感模块、电子驻车传感模块、制动主缸压力传感器及车身纵向加速度传感模块等。
轮速传感器设置为测量当前电机的输出轴的转速,以确定当前车速。加速踏板位置传感器设置为检测加速踏板的位置,以得到加速踏板的开度。档位传感模块设置为检测档位信号,以确定当前的档位,如P档、N档或D档等。电子驻车传感模块设置为检测当前的EPB信号,以判断EPB系统处于解锁或锁定 状态。制动主缸压力传感器设置为测量制动主缸的压力。车身纵向加速度传感模块用于测量车身的纵向加速度。轮速传感器、加速踏板位置传感器、档位传感模块、电子驻车传感模块、制动主缸压力传感器及车身纵向加速度传感模块分别与整车控制器的输入端电连接。整车控制器的输出端与电机控制单元的输入端电连接。电机控制单元的输出端与驱动电机电连接。
可选地,整车控制器与每个传感器、每个传感模块或电机控制单元之间,可通过车辆内部的控制器局域网络(Controller Area Network,CAN)总线、局域互联网络(Local Interconnect Network,LIN)总线或硬线等进行信号传输。示例性地,加速踏板位置传感器将检测到的加速踏板的位置信号通过硬线发送至整车控制器。档位传感模块、电子驻车传感模块、制动主缸压力传感器及车身纵向加速度传感模块分别将各自测量的信息通过CAN总线发送至整车控制器。
S2、根据车辆的当前的行驶信息,判断车辆是否进入爬行模式,若是,则跳转至S3。
当车辆的当前的行驶信息满足以下全部条件时,车辆进入爬行模式:
当前车速V小于Vs1,Vs1可预先设定,示例性地,Vs1可通过经验设定,如8km/h-12km/h;加速踏板开度小于a%,a可预先设定,示例性地,a取值为1-5,示例性的,a取值为2;档位为D档或R档;制动主缸的压力小于b bar,b可预先设定,示例性地,b为0.2;EPB解锁;车辆无禁止行驶障碍。
当上述多个条件均满足时,爬行模式激活。
S3、控制电机的输出扭矩由当前扭矩变化为目标扭矩,以使车辆的车速由当前车速变化为目标爬行车速,目标爬行车速是预先设定的。
控制电机的输出扭矩由当前扭矩变化为目标扭矩,包括:前馈控制,根据当前车速及路面坡度计算前馈扭矩;反馈控制,根据当前车速差计算反馈扭矩,当前车速差为目标爬行车速与当前车速的差值,反馈控制包括比例控制和积分控制,比例控制于车辆进入爬行模式时激活,积分控制于预设条件下激活,预设条件包括:当前制动主缸的压力小于压力阈值Ps,且当前车速差小于车速差阈值ΔVs,其中,PS和ΔVs可预先设定;将所述前馈扭矩和所述反馈扭矩之和作为所述目标扭矩,并控制电机的输出扭矩由当前扭矩变化为所述目标扭矩。目标爬行车速可根据路面情况,并结合设计经验设定。目标扭矩与目标爬行车速对应,即目标扭矩根据目标爬行车速确定。示例性地,目标爬行车速Vc的取值范围为3Km/h–8Km/h。
对电机的输出扭矩由当前扭矩变化为目标扭矩的控制包括前馈控制和反馈控制。
前馈控制主要考虑当前车速及路面坡度对车辆行驶状态的影响。由前馈控制计算得到前馈扭矩。根据前馈控制计算的前馈扭矩包括车速前馈扭矩和坡度前馈扭矩。车速前馈扭矩可根据当前车速查表得到,该表预先存储于整车控制器内,该表可根据设计经验设定得到。坡度前馈扭矩可根据路面坡度查表得到,该表也预先存储于整车控制器内,该表可根据设计经验设定得到。其中,路面坡度的计算公式为:
Figure PCTCN2022105470-appb-000001
其中,θ是路面坡度,a sen是车身纵向加速度传感模块测得的车身纵向加速度;
Figure PCTCN2022105470-appb-000002
是车身的实际纵向加速度,V为当前车速。
车辆在平整路面上行驶时,路面坡度为0°,坡度前馈扭矩也为零。
可选地,为减小车身纵向加速度传感模块的噪音和车速抖动带来的影响,对车身纵向加速度a sen进行低通滤波,并对车身纵向加速度a sen与车身的实际纵向加速度
Figure PCTCN2022105470-appb-000003
的差值进行低通滤波,以保证坡度计算的准确性。
反馈控制主要考虑当前车速差对车辆行驶状态的影响。反馈控制采用比例积分(proportional integral,PI)控制,即包括比例控制和积分控制。反馈扭矩包括由比例控制计算得到的比例反馈扭矩以及由积分控制计算得到的积分反馈扭矩。
比例控制实现车速由当前车速变化至目标爬行车速的快速调节。比例控制于车辆爬行模式时激活。但是,单纯的比例控制存在调节误差,导致稳态车速不能准确地达到目标爬行车速,将积分控制与比例控制结合,可有效减小车速调节误差,提高控制精确性。但是,积分控制容易产生超调现象。例如,车辆由起步阶段进入爬行模式时,若在爬行控制初期就激活积分控制,则积分控制计算得到的扭矩会过大,进而导致车速超调,在车速接近目标爬行车速时易出现蹿车现象;另外,在爬行控制初期由于驾驶员踩踏制动踏板的力仍较大,即制动主缸的压力仍较大,若此时激活积分控制,则在完全松开制动踏板后,同样会因积分控制计算得到的扭矩过大而发生扭矩突变,车辆耸动。可以理解的是,对于车辆由高速变化为爬行模式的情况,若在爬行控制初期激活积分控制,也会出现上述的蹿车或车辆耸动的问题。因此,本实施例中,在爬行控制后期才激活积分控制,既能够保证对扭矩的调节精度,又能够解决蹿车及车辆耸动的问题,减少传动系统在变速过程中产生的冲击,使得车辆由当前状态平稳地过渡至爬行模式,提高行驶平稳性,改善驾驶员的主观感受。
本实施例中根据当前车速差ΔV及制动主缸的压力作为积分控制激活的预 设条件,该预设条件包括:当前制动主缸的压力小于Ps,且当前车速差小于ΔVs,其中,Ps和ΔVs可预先设定。在车辆的当前的行驶信息满足该预设条件时,表明爬行控制的初始调节阶段已结束,积分模式可激活。
比例反馈扭矩的计算公式为:u1(k)=kp·e(k),其中,u1(k)为第k时刻的比例反馈扭矩,kp是比例系数,e(k)是第k时刻的当前车速差ΔV。
如图2所示,kp的取值与当前车速差ΔV有关。
当-ΔV1≤ΔV≤ΔV1时,kp的取值为kp1,ΔV1>0,kp1>0;当ΔV1<ΔV<ΔV2,或-ΔV2<ΔV<-ΔV1时,kp的取值为kp2,kp2与ΔV的绝对值正相关,kp2>kp1;其中,ΔV1为第一车速差,ΔV2为第二车速差,kp1为第一比例系数,及kp2为第二比例系数,ΔV1、ΔV2、kp1及kp2均可根据经验预先设定得到。
可以理解的是,在爬行模式激活的初期,即扭矩调节的初期,只激活比例控制,当前车速差ΔV较大,为保证调节速度,kp的取值为kp2,kp2与当前车速差ΔV的绝对值正相关,从而得到较大的比例反馈扭矩,使车速由当前车速快速向目标爬行车速靠近。随着电机的输出扭矩不断向目标爬行扭矩靠近,当前车速差ΔV不断减小,为保证调节精度,kp的取值为较小的kp1。
积分反馈扭矩的计算公式为:
Figure PCTCN2022105470-appb-000004
其中,u2(k)为第k时刻的积分反馈扭矩,ki是积分系数,
Figure PCTCN2022105470-appb-000005
为第i时刻到第k时刻的当前车速差ΔV之和。
如图3所示,ki的取值与当前车速差ΔV有关。
当-ΔV3≤ΔV≤ΔV3时,ki的取值为ki1,ΔV3>0,ki1>0;当ΔV3<ΔV<ΔV4,或-ΔV4<ΔV<-ΔV3时,ki的取值为ki2,ki2与ΔV的绝对值正相关,ki2>ki1;其中,ΔV3为第三车速差,ΔV4为第四车速差,ki1为第一积分系数,及ki2为第二积分系数,ΔV3、ΔV4、ki1及ki2均可预先设定。
积分控制于当前车速差ΔV较小时激活。于积分控制激活的初期ki取值为较大值的ki2,ki2与当前车速差ΔV的绝对值正相关,随着当前车速差ΔV的绝对值不断减小,ki2的取值不断减小。随着当前车速越来越靠近目标爬行车速,为避免超调,ki的取值为较小的ki1。
可选地,目标扭矩受到最大扭矩和最小扭矩的限制,即目标扭矩应不小于最小扭矩,且目标扭矩不大于最大扭矩,以保证车辆处于爬行模式。最大扭矩和最小扭矩可根据经验设定。当计算得到的目标扭矩大于最大扭矩时,控制电机的输出扭矩为最大扭矩。当计算得到的目标扭矩小于最小扭矩时,控制电机的输出扭矩为最小扭矩。
本实施例的技术方案,在车辆进入爬行模式时,采用前馈控制和反馈控制来调节电机的输出扭矩。前馈控制主要考虑当前车速及路面坡度对车辆行驶状态的影响。反馈控制主要考虑当前车速差对车辆行驶状态的影响。反馈控制采用PI控制,即包括比例控制和积分控制。比例控制实现车速由当前车速变化至目标爬行车速的快速调节。比例控制于车辆爬行模式时激活。但是,单纯的比例控制存在调节误差,导致稳态车速不能准确地达到目标爬行车速,将积分控制与比例控制结合,可有效减小车速调节误差,提高控制精确性。但是,积分控制又容易产生超调现象,造成蹿车或车辆耸动的问题。因此,本实施例中,在爬行控制后期才激活积分控制,既能够保证对扭矩的调节精度,又能够解决蹿车及车辆耸动的问题,减少传动系统在变速过程中产生的冲击,使得车辆由当前状态平稳地过渡至爬行模式,提高行驶平稳性,改善驾驶员的主观感受。
实施例二
图4为本实施例中的爬行控制方法的流程图。本实施例在上述实施例的基础上,对爬行控制方法进行说明。
如图4所示,爬行模式包括第一爬行模式和第二爬行模式。根据车辆的当前的行驶信息,判断车辆是否进入爬行模式,包括:根据车辆的当前的行驶信息,判断车辆进入爬行模式时,判断车辆是否打滑;若车辆不打滑,则车辆进入第一爬行模式;若车辆打滑,则车辆进入第二爬行模式。
目标爬行车速包括第一目标爬行车速和第二目标爬行车速,第一目标爬行车速对应于第一爬行模式,第二目标爬行车速对应于第二爬行模式,第二目标爬行车速小于第一目标爬行车速;目标扭矩包括第一目标扭矩和第二目标扭矩,第一目标扭矩对应于第一目标爬行车速,第二目标扭矩对应于第二目标爬行车速。
车辆进入第一爬行模式时,控制电机的输出扭矩由当前扭矩变化为第一目标扭矩,以使车速由当前车速变化为第一目标爬行车速。
控制电机的输出扭矩由当前扭矩变化为第一目标扭矩,包括:前馈控制,根据当前车速及路面坡度计算前馈扭矩;反馈控制,根据当前车速差计算反馈扭矩,当前车速差为目标爬行车速与当前车速的差值,反馈控制包括比例控制和积分控制,反馈扭矩包括由比例控制计算得到的比例反馈扭矩以及由积分控制计算得到的积分反馈扭矩;将前馈扭矩和反馈扭矩之和作为第一目标扭矩,并控制电机的输出扭矩由当前扭矩变化为当前扭矩变化为所述目标扭矩。
车辆进入第二爬行模式时,控制电机的输出扭矩由当前扭矩变化为第二目 标扭矩,以使车速由当前车速变化为第二目标爬行车速。
控制电机的输出扭矩由当前扭矩变化为第二目标扭矩,包括:前馈控制,根据当前车速及路面坡度计算前馈扭矩;反馈控制,根据当前车速差计算反馈扭矩,当前车速差为目标爬行车速与当前车速的差值,反馈控制包括比例控制和积分控制,反馈扭矩包括由比例控制计算得到的比例反馈扭矩以及由积分控制计算得到的积分反馈扭矩;将前馈扭矩和反馈扭矩之和作为第一目标扭矩,并控制电机的输出扭矩由当前扭矩变化为当前扭矩变化为所述目标扭矩。
考虑到雨雪天气的行车工况,路面附着系数降低,车辆易出现打滑。设置第二目标爬行车速小于第一目标爬行车速,当车辆出现打滑时,控制稳态车速为第二目标爬行车速,使车辆脱离打滑,提高行车安全。示例性地,第一目标爬行车速Vc1的取值范围为6Km/h–8Km/h;第二目标爬行车速Vc2的取值范围为3Km/h–5Km/h。
判定车辆是否打滑的方法如下:若车辆为两驱车辆,则可分别获取驱动轮的测量转速n 驱动和非驱动轮的测量转速n 非驱动。若车辆打滑,则驱动轮的测量转速n 驱动和非驱动轮的测量转速n 非驱动不相等。若车辆不打滑,则驱动轮的测量转速n 驱动和非驱动轮的测量转速n 非驱动相等或差值较小。
Figure PCTCN2022105470-appb-000006
式中,s为驱动轮的滑移率,n 非驱动为非驱动轮的测量转速,n 驱动为驱动轮的测量转速。当s>s1时,表明车轮打滑。s1可预先设定。
若车辆为四驱车辆,可通过轮加速度α来判断车轮是否打滑。示例性的,若α>α 1,则表明车轮打滑,α 1可预先设定。若轮加速度α保持稳定,则可进一步通过下式判断:
Figure PCTCN2022105470-appb-000007
式中,s为驱动轮的滑移率,v′为前轮或后轮的轮角速度w与车轮的滚动半径的乘积得到,V是当前车速,即车辆的实际速度。当s>s2时,表明车轮打滑。s2可预先设定。
可选地,本实施例的爬行控制方法还包括:根据车辆的当前的行驶信息,判断车辆是否退出爬行模式,若是,则控制电机的输出扭矩由当前扭矩变化为请求扭矩,以使车辆由当前车速变化为请求车速,请求车速响应于当前驾驶需求。
自触发退出爬行模式至预设时间内,电机的输出扭矩的变化量为ΔT,ΔTmin ≤ΔT≤ΔTmax,ΔTmin为输出扭矩的最小变化量,ΔTmax为输出扭矩的最大变化量,ΔTmin和ΔTmax可预先设定。
由于多种原因,车辆在进入爬行模式后可能会随时退出爬行模式,因此应实时获取车辆的当前的行驶信息,并实时判断车辆是否要退出爬行模式。
当车辆的当前的行驶信息满足以下多个条件中的一个条件时,车辆退出爬行模式:当前车速V大于Vs2,Vs2可预先设定;加速踏板开度不小于a%,a可预先设定,示例性地,a取值为1-5,示例性的,a取值为2;档位变为P档或N档;车辆发生禁止行驶障碍。
当上述多个条件中的一个条件满足时,车辆退出爬行模式,车辆响应于当前驾驶需求。
控制电机的输出扭矩由当前扭矩变化为请求扭矩,以使车辆由当前车速变化为请求车速,请求车速响应于当前驾驶需求。请求扭矩对应于请求车速。为避免车辆退出爬行模式时因电机的输出扭矩变化太快而产生冲击,影响驾驶员主观驾驶感受,应控制电机的输出电机的变化速率。示例性的,自触发退出爬行模式至预设时间内,电机的输出扭矩的变化量为ΔT,ΔTmin≤ΔT≤ΔTmax,ΔTmin和ΔTmax可根据设计经验设定。
本实施例的技术方案,在车辆进入爬行模式时,进一步根据车辆是否打滑,从而将爬行模式分别第一爬行模式和第二爬行模式。对于车辆打滑时的第二爬行模式,其对应的第二目标爬行车速更低,使车辆脱离打滑,提高行车安全。另外,在车辆进入爬行模式后,实时判断车辆是否要退出爬行模式,并于车辆退出爬行模式时控制电机的输出电机的变化速率,避免车辆退出爬行模式时因电机的输出扭矩变化太快而产生冲击,影响驾驶员主观驾驶感受。
实施例三
本实施例提供一种爬行控制装置,可执行本申请任意实施例所提供的爬行控制方法,具备执行方法相应的功能模块和效果。
如图5所示,该爬行控制装置包括:
获取模块,设置为实时获取车辆的当前的行驶信息。获取模块可包括实施例一中提及的多个传感器和传感模块,如轮速传感器、加速踏板位置传感器、档位传感模块、电子驻车传感模块、制动主缸压力传感器及车身纵向加速度传感模块等。
第一判断模块,设置为根据车辆的所述当前的行驶信息,判断车辆是否进 入爬行模式。
第一扭矩控制模块,设置为响应于车辆进入爬行模式的判断结果,控制车辆的电机的输出扭矩由当前扭矩变化为目标扭矩,以使车辆的车速由当前车速变化为目标爬行车速,目标爬行车速是预先设定的。
第一扭矩控制模块包括:前馈控制模块,设置为根据当前车速及路面坡度计算前馈扭矩;反馈控制模块,设置为根据当前车速差计算反馈扭矩,当前车速差为目标爬行车速与当前车速的差值,反馈控制模块包括比例控制模块和积分控制模块,反馈扭矩包括由比例控制模块计算得到的比例反馈扭矩以及由积分控制模块计算得到的积分反馈扭矩,比例控制模块于车辆进入爬行模式时激活,积分控制模块于预设条件下激活,预设条件包括:当前制动主缸的压力小于压力阈值Ps,且当前车速差小于车速差阈值Vs,其中,Ps和Vs是预先设定的;扭矩变化模块,设置为将所述前馈扭矩和所述反馈扭矩之和作为所述目标扭矩,并控制电机的输出扭矩由当前扭矩变化为所述目标扭矩。
比例反馈扭矩的计算公式为:u1(k)=kp·e(k),其中,u1(k)为第k时刻的比例反馈扭矩,kp是比例系数,e(k)是第k时刻的车速差;设定当前车速差为ΔV;当-ΔV1≤ΔV≤ΔV1时,kp的取值为kp1,ΔV1>0,kp1>0;当ΔV1<ΔV<ΔV2,或-ΔV2<ΔV<-ΔV1时,kp的取值为kp2,kp2与ΔV的绝对值正相关,kp2>kp1;其中,ΔV1为第一车速差,ΔV2为第二车速差,kp1为第一比例系数,及kp2为第二比例系数,ΔV1、ΔV2、kp1及kp2均为预先设定的。
积分反馈扭矩的计算公式为:
Figure PCTCN2022105470-appb-000008
其中,u2(k)为第k时刻的积分反馈扭矩,ki是积分系数,
Figure PCTCN2022105470-appb-000009
为第i时刻到第k时刻的当前车速差之和;当-ΔV3≤ΔV≤ΔV3时,ki的取值为ki1,ΔV3>0,ki1>0;当ΔV3<ΔV<ΔV4,或-ΔV4<ΔV<-ΔV3时,ki的取值为ki2,ki2与ΔV的绝对值正相关,ki2>ki1;其中,ΔV3为第三车速差,ΔV4为第四车速差,ki1为第一积分系数,及ki2为预设积分系数,ΔV3、ΔV4、ki1及ki2均为预先设定的。
可选地,爬行模式包括第一爬行模式和第二爬行模式。
第一判断模块包括:第一判断模块一,设置为根据车辆的所述当前的行驶信息,判断车辆是否进入爬行模式;第一判断模块二,设置为响应于车辆进入爬行模式的判断结果,判断车辆是否打滑;响应于车辆不打滑的判断结果,确定车辆进入第一爬行模式;响应于车辆打滑的判断结果,确定车辆进入第二爬行模式;目标爬行车速包括第一目标爬行车速和第二目标爬行车速,第一目标爬行车速对应于第一爬行模式,第二目标爬行车速对应于第二爬行模式,第二目标爬行车速小于第一目标爬行车速;目标扭矩包括第一目标扭矩和第二目标扭矩,第一目标扭矩对应于第一目标爬行车速,第二目标扭矩对应于第二目标 爬行车速。
可选地,所述爬行控制装置还包括第二判断模块,设置为根据车辆的当前的行驶信息,判断车辆是否退出爬行模式;第二扭矩控制模块,设置为响应于车辆退出爬行模式的判断结果,控制电机的输出扭矩由当前扭矩变化为请求扭矩,以使车辆的车速由当前车速变化为请求车速,请求车速响应于当前驾驶需求;其中,自触发退出爬行模式至预设时间内,电机的输出扭矩的变化量为ΔT,ΔTmin≤ΔT≤ΔTmax,ΔTmin为所述输出扭矩的最小变化量,ΔTmax为所述输出扭矩的最大变化量,ΔTmin和ΔTmax是预先设定的。
本实施例所提供的爬行控制装置可执行本申请任意实施例所提供的爬行控制方法,具备执行方法相应的功能模块和效果。
实施例四
基于上述实施例一、实施例二和实施例三,本实施例提供爬行控制方法在多种行车状态下的执行策略。
一实施例中,电动汽车平路静止,车辆无故障,道路状况良好,路面为平路。驾驶员将挡位挂入D挡,轻抬制动,不踩加速踏板。整车控制器判断车辆进入第一爬行模式。前馈控制模块激活,得到前馈扭矩。由于路面为平路,前馈控制模块根据当前车速计算得到前馈扭矩。反馈控制模块中仅比例控制模块激活,并且当前车速差较大,kp取较大值,并随着当前车速差的减小而减小,旨在快速向目标爬行车速靠近,积分控制模块未被激活,避免蹿车。目标扭矩为前馈扭矩与比例反馈扭矩之和。目标扭矩通过最大扭矩和最小扭矩限制后发送给电机控制单元,电机控制单元控制驱动电机的输出扭矩为当前计算得到的目标扭矩,该输出扭矩最终通过单级减速器传递到车轮。
随着爬行控制的进行,当前车速差减小,反馈控制模块中的积分控制模块激活,即比例控制模块和积分控制模块同时计算反馈扭矩,保证系数kp和系数ki随着当前车速差的变化而逐渐变化,动态调节电机的输出扭矩,最终维持较稳定的车速。目标扭矩为前馈扭矩、比例反馈扭矩以及积分反馈扭矩之和。当前计算得到的目标扭矩通过最大扭矩和最小扭矩限制后,发送到电机控制单元,电机控制单元控制驱动电机的输出扭矩为当前计算得到的目标扭矩。
另一实施例中,电动汽车平路静止,车辆无故障,路面为平路,路面由于雨雪条件造成道路附着系数低。电动汽车平路D挡起步进入爬行模式。此时根据采集的轮速信号、轮加速度信号、实际车速等信号,判断车轮是否打滑。如果车轮打滑,则进入第二爬行模式,维持车辆在安全状态。前馈控制模块激活, 反馈控制模块中的比例控制模块激活。由于路面为平路,前馈控制模块根据当前车速计算得到前馈扭矩。由于第二目标车速较小,当前车速差较小,kp维持在一定范围内不变,积分控制模块不激活。前馈控制模块和反馈控制模块计算得到的目标扭矩保证车辆在低附平路上的爬行起步。
随着爬行控制的进行,当前车速差减小,反馈控制模块中的积分控制模块激活,即比例控制模块和积分控制模块同时计算反馈扭矩。由于当前车速差较小,系数kp和系数ki都维持在一定范围内不变。前馈控制模块和反馈控制模块计算得到的目标扭矩保证车辆在低附平路上的爬行行驶。
再一实施例中,电动汽车坡路静止,车辆无故障,道路状况良好,路面有坡度。驾驶员将挡位挂入D挡,轻抬制动。电动汽车进入爬行模式。前馈控制模块激活,得到前馈扭矩。其中,由于路面有坡度,前馈控制模块根据当前车速和路面坡度计算得到前馈扭矩。反馈控制模块中仅比例控制模块激活。由于当前车速差较大,kp取较大值。反馈控制模块中积分控制模块不激活,防止蹿车。前馈控制模块和反馈控制模块计算得到的目标扭矩保证车辆在高附坡路上的爬行起步。
随着爬行控制的进行,当前车速差减小,反馈控制模块中的积分控制模块激活,即比例控制模块和积分控制模块同时计算反馈扭矩。系数kp和系数ki随当前车速差实时变化。前馈控制模块和反馈控制模块计算得到的目标扭矩保证车辆在低附平路上的爬行行驶。
又一实施例中,电动汽车坡路静止,车辆无故障,路面由于雨雪条件造成道路附着系数低,路面有坡度。电动汽车坡路D挡起步进入爬行模式。此时根据采集的轮速信号、轮加速度信号、实际车速等信号,判断车轮是否打滑。如果车轮打滑,则进入第二爬行模块,维持车辆在安全状态。前馈控制模块激活,得到前馈扭矩。由于路面有坡度,前馈控制模块根据当前车速和路面坡度计算得到前馈扭矩。反馈控制模块中仅比例控制模块激活。由于第二目标车速较小,当前车速差较小,kp维持在一定范围内不变。反馈控制模块中积分控制模块不激活。前馈控制模块和反馈控制模块计算得到的目标扭矩保证车辆在低附坡路上的爬行起步。
随着爬行控制的进行,当前车速差减小,反馈控制模块中的积分控制模块激活,即比例控制模块和积分控制模块同时计算反馈扭矩。系数kp和系数ki均维持在一定范围内不变。前馈控制模块和反馈控制模块计算得到的目标扭矩保证车辆在低附坡路上的爬行行驶。
又一实施例中,电动汽车行驶在平路,车辆在D挡,进入爬行模式,驾驶员踩加速踏板。此瞬态过程,电动汽车短时间内退出爬行控制,在预设时间内, 电机的输出扭矩的变化量为ΔT,ΔTmin≤ΔT≤ΔTmax,避免产生冲击,电机的输出扭矩逐渐过渡到加速模式的扭矩,此扭矩发送到电机控制单元,能够保证爬行切换到加速过程中的舒适性。
又一实施例中,电动汽车在平路以较高车速滑行一段时间后,满足爬行控制进入条件,进入爬行模式。此瞬态过程中,前馈控制模块激活,反馈控制模块中的比例控制模块激活。由于路面为平路,前馈控制模块根据当前车速计算得到前馈扭矩。系数kp随着当前车速差进行动态调节,而积分控制模块暂不激活。由于车辆滑行一般需要负扭矩进行能量回收,车辆的电机的输出扭矩从驾驶需求扭矩切换到爬行控制下的目标扭矩,目标扭矩受到最大扭矩和最小扭矩限制,保证从高速滑行模式切换到爬行模式的舒适性。又一实施例中,电动汽车在平路进入爬行模式,突然发生禁止行驶故障。当前驾驶循环只通过仪表警示驾驶员,并不实际限制车辆行驶,以保障车辆能够驶入安全地带,整车控制器休眠再次唤醒后禁止行驶。
实施例五
图6为本实施例中的车辆的结构示意图。图6示出了适于用来实现本申请实施方式的示例性车辆412的框图。图6显示的车辆412仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图6所示,车辆412以通用终端的形式表现。车辆412的组件可以包括但不限于:车辆本体(图中未示出)、一个或者多个处理器416,存储装置428,连接不同系统组件(包括存储装置428和处理器416)的总线418。
总线418表示多类总线结构中的一种或多种,包括存储装置总线或者存储装置控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Subversive Alliance,ISA)总线,微通道体系结构(Micro Channel Architecture,MCA)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA)局域总线以及外围组件互连(Peripheral Component Interconnect,PCI)总线。
车辆412包括多种计算机系统可读介质。这些介质可以是任何能够被车辆412访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
存储装置428可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(Random Access Memory,RAM)430和/或高速缓存存储器432。车辆412还可以包括其它可移动/不可移动的、易失性/非易失性计算机系统存储 介质。仅作为举例,存储系统434可以用于读写不可移动的、非易失性磁介质(图6未显示,通常称为“硬盘驱动器”)。尽管图6中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘,例如只读光盘(Compact Disc Read-Only Memory,CD-ROM),数字视盘(Digital Video Disc-Read Only Memory,DVD-ROM)或者其它光介质)进行读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线418相连。存储装置428可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请每个实施例的功能。
具有一组(至少一个)程序模块442的程序/实用工具440,可以存储在例如存储装置428中,这样的程序模块442包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或一种组合中可能包括网络环境的实现。程序模块442通常执行本申请所描述的实施例中的功能和/或方法。
车辆412也可以与一个或多个外部设备414(例如键盘、指向终端、显示器424等)通信,还可与一个或者多个使得用户能与该车辆412交互的终端通信,和/或与使得该车辆412能与一个或多个其它计算终端进行通信的任何终端(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(Input/Output,I/O)接口422进行。并且,车辆412还可以通过网络适配器420与一个或者多个网络(例如局域网(Local Area Network,LAN),广域网(Wide Area Network,WAN)和/或公共网络(例如因特网)通信。如图6所示,网络适配器420通过总线418与车辆412的其它模块通信。应当明白,尽管图中未示出,可以结合车辆412使用其它硬件和/或软件模块,包括但不限于:微代码、终端驱动器、冗余处理器、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Disks,RAID)系统、磁带驱动器以及数据备份存储系统等。
处理器416通过运行存储在存储装置428中的程序,从而执行多种功能应用以及数据处理,例如实现本申请实施例所提供的爬行控制方法,该方法包括:实时获取车辆的当前的行驶信息;根据车辆的所述当前的行驶信息,判断车辆是否进入爬行模式,;响应于车辆进入爬行模式的判断结果,控制车辆的电机的输出扭矩由当前扭矩变化为目标扭矩,以使车辆的车速由当前车速变化为目标爬行车速,目标爬行车速是预先设定的;控制电机的输出扭矩由当前扭矩变化为目标扭矩,包括:前馈控制,根据当前车速及路面坡度计算前馈扭矩;反馈控制,根据当前车速差计算反馈扭矩,当前车速差为目标爬行车速与当前车速的差值,反馈控制包括比例控制和积分控制,反馈扭矩包括由比例控制计算得到的比例反馈扭矩以及由积分控制计算得到的积分反馈扭矩,比例控制于车 辆进入爬行模式时激活,积分控制于预设条件下激活,预设条件包括:当前制动主缸的压力小于压力阈值Ps,且当前车速差小于车速差阈值ΔVs,其中,Ps和ΔVs是预先设定的;将所述前馈扭矩和所述反馈扭矩之和作为所述目标扭矩,并控制电机的输出扭矩由当前扭矩变化为所述目标扭矩。
实施例六
本实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请实施例所提供的爬行控制方法,该方法包括:实时获取车辆的当前的行驶信息;根据车辆的所述当前的行驶信息,判断车辆是否进入爬行模式,;响应于车辆进入爬行模式的判断结果,控制车辆的电机的输出扭矩由当前扭矩变化为目标扭矩,以使车辆的车速由当前车速变化为目标爬行车速,目标爬行车速是预先设定的;控制电机的输出扭矩由当前扭矩变化为目标扭矩,包括:前馈控制,根据当前车速及路面坡度计算前馈扭矩;反馈控制,根据当前车速差计算反馈扭矩,当前车速差为目标爬行车速与当前车速的差值,反馈控制包括比例控制和积分控制,反馈扭矩包括由比例控制计算得到的比例反馈扭矩以及由积分控制计算得到的积分反馈扭矩,比例控制于车辆进入爬行模式时激活,积分控制于预设条件下激活,预设条件包括:当前制动主缸的压力小于压力阈值Ps,且当前车速差小于车速差阈值ΔVs,其中,Ps和ΔVs是预先设定的;将所述前馈扭矩和所述反馈扭矩之和作为所述目标扭矩,并控制电机的输出扭矩由当前扭矩变化为所述目标扭矩。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、RAM、ROM、可擦式可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)或闪存、光纤、CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算 机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或终端上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括LAN或WAN—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种爬行控制方法,包括:
    实时获取车辆的当前的行驶信息;
    根据车辆的所述当前的所述行驶信息,判断车辆是否进入爬行模式;
    响应于车辆进入爬行模式的判断结果,控制车辆的电机的输出扭矩由当前扭矩变化为目标扭矩,以使车辆的车速由当前车速变化为目标爬行车速,所述目标爬行车速是预先设定的;
    其中,控制电机的输出扭矩由当前扭矩变化为目标扭矩,包括:
    前馈控制,根据当前车速及路面坡度计算前馈扭矩;
    反馈控制,根据当前车速差计算反馈扭矩,当前车速差为所述目标爬行车速与当前车速的差值,所述反馈控制包括比例控制和积分控制,所述反馈扭矩包括由所述比例控制计算得到的比例反馈扭矩以及由所述积分控制计算得到的积分反馈扭矩,所述比例控制于车辆进入所述爬行模式时激活,所述积分控制于预设条件下激活,所述预设条件包括:当前制动主缸的压力小于压力阈值Ps,且当前车速差小于车速差阈值ΔVs,其中,Ps和ΔVs是预先设定的;
    将所述前馈扭矩和所述反馈扭矩之和作为所述目标扭矩,并控制电机的输出扭矩由当前扭矩变化为所述目标扭矩。
  2. 根据权利要求1所述的爬行控制方法,其中,比例反馈扭矩的计算公式为:u1(k)=kp·e(k),其中,u1(k)为第k时刻的比例反馈扭矩,kp是比例系数,e(k)是第k时刻的当前车速差ΔV;
    当-ΔV1≤ΔV≤ΔV1时,kp的取值为kp1,ΔV1>0,kp1>0;
    当ΔV1<ΔV<ΔV2,或-ΔV2<ΔV<-ΔV1时,kp的取值为kp2,kp2与ΔV的绝对值正相关,kp2>kp1;
    其中,ΔV1为第一车速差,ΔV2为第二车速差,kp1为第一比例系数,及 kp2为第二比例系数,ΔV1、ΔV2、kp1及kp2均为预先设定的;
    积分反馈扭矩的计算公式为:
    Figure PCTCN2022105470-appb-100001
    其中,u2(k)为第k时刻的积分反馈扭矩,ki是积分系数,
    Figure PCTCN2022105470-appb-100002
    为第i时刻到第k时刻的当前车速差ΔV之和;
    当-ΔV3≤ΔV≤ΔV3时,ki的取值为ki1,ΔV3>0,ki1>0;
    当ΔV3<ΔV<ΔV4,或-ΔV4<ΔV<-ΔV3时,ki的取值为ki2,ki2与ΔV的绝对值正相关,ki2>ki1;
    其中,ΔV3为第三车速差,ΔV4为第四车速差,ki1为第一积分系数,及ki2为预设积分系数,ΔV3、ΔV4、ki1及ki2均为预先设定的。
  3. 根据权利要求1所述的爬行控制方法,其中,爬行模式包括第一爬行模式和第二爬行模式;
    根据车辆的所述当前的所述行驶信息,判断车辆是否进入爬行模式,包括:
    在根据车辆的所述当前的所述行驶信息,判断车辆进入爬行模式的情况下,判断车辆是否打滑;
    响应于车辆不打滑的判断结果,确定车辆进入所述第一爬行模式;
    响应于车辆打滑的判断结果,确定车辆进入所述第二爬行模式;
    所述目标爬行车速包括第一目标爬行车速和第二目标爬行车速,所述第一目标爬行车速对应于所述第一爬行模式,所述第二目标爬行车速对应于所述第二爬行模式,所述第二目标爬行车速小于所述第一目标爬行车速;
    所述目标扭矩包括第一目标扭矩和第二目标扭矩,所述第一目标扭矩对应于所述第一目标爬行车速,所述第二目标扭矩对应于所述第二目标爬行车速。
  4. 根据权利要求1-3任一项所述的爬行控制方法,还包括:根据车辆的当前的所述行驶信息,判断车辆是否退出所述爬行模式;
    响应于车辆退出所述爬行模式的判断结果,控制电机的输出扭矩由当前扭矩变化为请求扭矩,以使车辆的车速由当前车速变化为请求车速,请求车速响应于当前驾驶需求;
    其中,自触发退出所述爬行模式至预设时间内,电机的输出扭矩的变化量为ΔT,ΔTmin≤ΔT≤ΔTmax,ΔTmin为所述输出扭矩的最小变化量,ΔTmax为所述输出扭矩的最大变化量,ΔTmin和ΔTmax是预先设定的。
  5. 一种爬行控制装置,包括:
    获取模块,设置为实时获取车辆的当前的行驶信息;
    第一判断模块,设置为根据车辆的所述当前的所述行驶信息,判断车辆是否进入爬行模式;
    第一扭矩控制模块,设置为响应于车辆进入所述爬行模式的判断结果,控制车辆的电机的输出扭矩由当前扭矩变化为目标扭矩,以使车辆的车速由当前车速变化为目标爬行车速,所述目标爬行车速是预先设定的;
    所述第一扭矩控制模块包括:
    前馈控制模块,设置为根据当前车速及路面坡度计算前馈扭矩;
    反馈控制模块,设置为根据当前车速差计算反馈扭矩,当前车速差为所述目标爬行车速与当前车速的差值,所述反馈控制模块包括比例控制模块和积分控制模块,所述反馈扭矩包括由所述比例控制模块计算得到的比例反馈扭矩以及由所述积分控制模块计算得到的积分反馈扭矩,所述比例控制模块于车辆进入所述爬行模式时激活,所述积分控制模块于预设条件下激活,所述预设条件包括:
    当前制动主缸的压力小于压力阈值Ps,且当前车速差小于车速差阈值Vs,其中,Ps和Vs是预先设定的;
    扭矩变化模块,设置为将所述前馈扭矩和所述反馈扭矩之和作为所述目标扭矩,并控制电机的输出扭矩由当前扭矩变化为所述目标扭矩。
  6. 根据权利要求5所述的爬行控制装置,其中,比例反馈扭矩的计算公式为:u1(k)=kp·e(k),其中,u1(k)为第k时刻的比例反馈扭矩,kp是比例系数,e(k)是第k时刻的当前车速差ΔV;
    当-ΔV1≤ΔV≤ΔV1时,kp的取值为kp1,ΔV1>0,kp1>0;
    当ΔV1<ΔV<ΔV2,或-ΔV2<ΔV<-ΔV1时,kp的取值为kp2,kp2与ΔV的绝对值正相关,kp2>kp1;
    其中,ΔV1为第一车速差,ΔV2为第二车速差,kp1为第一比例系数,及kp2为第二比例系数,ΔV1、ΔV2、kp1及kp2均为预先设定的;
    积分反馈扭矩的计算公式为:
    Figure PCTCN2022105470-appb-100003
    其中,u2(k)为第k时刻的积分反馈扭矩,ki是积分系数,
    Figure PCTCN2022105470-appb-100004
    为第i时刻到第k时刻的当前车速差ΔV之和;
    当-ΔV3≤ΔV≤ΔV3时,ki的取值为ki1,ΔV3>0,ki1>0;
    当ΔV3<ΔV<ΔV4,或-ΔV4<ΔV<-ΔV3时,ki的取值为ki2,ki2与ΔV的绝对值正相关,ki2>ki1;
    其中,ΔV3为第三车速差,ΔV4为第四车速差,ki1为第一积分系数,及ki2为预设积分系数,ΔV3、ΔV4、ki1及ki2均为预先设定的。
  7. 根据权利要求5所述的爬行控制装置,其中,爬行模式包括第一爬行模式和第二爬行模式;
    所述第一判断模块包括:
    第一判断模块一,设置为根据车辆的所述当前的所述行驶信息,判断车辆是否进入爬行模式;
    第一判断模块二,设置为响应于车辆进入爬行模式的判断结果,判断车辆是否打滑;响应于车辆不打滑的判断结果,确定车辆进入所述第一爬行模式;响应于车辆打滑的判断结果,确定车辆进入所述第二爬行模式;所述目标爬行车速包括第一目标爬行车速和第二目标爬行车速,所述第一目标爬行车速对应于所述第一爬行模式,所述第二目标爬行车速对应于所述第二爬行模式,所述第二目标爬行车速小于所述第一目标爬行车速;
    所述目标扭矩包括第一目标扭矩和第二目标扭矩,所述第一目标扭矩对应于所述第一目标爬行车速,所述第二目标扭矩对应于所述第二目标爬行车速。
  8. 根据权利要求5-7任一项所述的爬行控制装置,还包括:
    第二判断模块,设置为根据车辆的当前的所述行驶信息,判断车辆是否退出所述爬行模式;
    第二扭矩控制模块,设置为响应于车辆退出爬行模式的判断结果,控制电机的输出扭矩由当前扭矩变化为请求扭矩,以使车辆的车速由当前车速变化为请求车速,请求车速响应于当前驾驶需求;
    其中,自触发退出所述爬行模式至预设时间内,电机的输出扭矩的变化量为ΔT,ΔTmin≤ΔT≤ΔTmax,ΔTmin为所述输出扭矩的最小变化量,ΔTmax为所述输出扭矩的最大变化量,ΔTmin和ΔTmax是预先设定的。
  9. 一种车辆,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个个程序;
    当所述至少一个程序被所述至少一个处理器执行时,所述至少一个处理器实现如权利要求1-4任一项所述的爬行控制方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执 行时实现如权利要求1-4任一项所述的爬行控制方法。
PCT/CN2022/105470 2021-07-14 2022-07-13 爬行控制方法、装置、车辆及存储介质 WO2023284787A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110797225.4 2021-07-14
CN202110797225.4A CN113401105B (zh) 2021-07-14 2021-07-14 一种爬行控制方法、装置、车辆及存储介质

Publications (1)

Publication Number Publication Date
WO2023284787A1 true WO2023284787A1 (zh) 2023-01-19

Family

ID=77686499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105470 WO2023284787A1 (zh) 2021-07-14 2022-07-13 爬行控制方法、装置、车辆及存储介质

Country Status (2)

Country Link
CN (1) CN113401105B (zh)
WO (1) WO2023284787A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116001796A (zh) * 2023-03-24 2023-04-25 盛瑞传动股份有限公司 车速控制方法、装置、车辆、设备和计算机可读存储介质
CN116749946A (zh) * 2023-08-21 2023-09-15 新誉集团有限公司 一种车辆能量管理方法、装置、设备及可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401105B (zh) * 2021-07-14 2022-04-01 中国第一汽车股份有限公司 一种爬行控制方法、装置、车辆及存储介质
CN113844278B (zh) * 2021-09-23 2023-07-28 智新控制系统有限公司 快速控制车辆蠕行扭矩方法及系统
CN114758429B (zh) * 2022-03-30 2023-10-31 广州小鹏自动驾驶科技有限公司 一种扭矩的确定方法及装置、车辆和存储介质
CN114771283A (zh) * 2022-05-30 2022-07-22 中国第一汽车股份有限公司 一种爬行控制方法、装置、电动汽车和存储介质
CN115556726B (zh) * 2022-12-01 2023-03-03 小米汽车科技有限公司 制动效能衰退补偿方法,装置,车辆及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186183A (ja) * 1988-01-19 1989-07-25 Yokogawa Electric Corp モータの制御回路
CN103359104A (zh) * 2013-07-23 2013-10-23 安徽江淮汽车股份有限公司 汽车蠕动控制方法及系统
CN107839688A (zh) * 2017-10-19 2018-03-27 吉林大学 一种电动汽车蠕行车速控制方法
CN110254251A (zh) * 2019-06-26 2019-09-20 四川阿尔特新能源汽车有限公司 爬行控制方法、装置、控制器、车辆及可读存储介质
CN110667401A (zh) * 2019-09-29 2020-01-10 上海伊控动力系统有限公司 一种纯电动汽车电爬行起步扭矩控制方法
CN113401105A (zh) * 2021-07-14 2021-09-17 中国第一汽车股份有限公司 一种爬行控制方法、装置、车辆及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951649B2 (ja) * 2001-08-27 2007-08-01 三菱ふそうトラック・バス株式会社 電気自動車のモータ制御装置
KR20170010124A (ko) * 2015-07-15 2017-01-26 현대자동차주식회사 차량의 크립 주행 제어방법
KR20170119088A (ko) * 2016-04-18 2017-10-26 현대자동차주식회사 차량의 모터 토크 제어를 통한 제동 성능 향상 방법
US10308138B2 (en) * 2016-05-11 2019-06-04 Ford Global Technologies, Llc Hybrid electric vehicle creep control
CN109131330B (zh) * 2018-09-25 2020-02-21 吉林大学 一种电动汽车自适应蠕行控制方法
KR20200068156A (ko) * 2018-12-04 2020-06-15 현대자동차주식회사 차량 및 그 제어방법
KR102603040B1 (ko) * 2019-05-07 2023-11-15 현대자동차주식회사 차량의 발진 제어방법
CN110194141B (zh) * 2019-05-29 2020-11-24 中国第一汽车股份有限公司 一种爬行控制方法、装置、变速器及车辆
CN112297872B (zh) * 2019-08-02 2022-04-08 北京新能源汽车股份有限公司 一种汽车扭矩控制方法、装置、控制设备及汽车
CN110696812B (zh) * 2019-10-30 2020-12-11 一汽解放青岛汽车有限公司 混合动力汽车防溜坡控制方法、混合动力汽车及存储介质
CN111186309B (zh) * 2020-01-02 2021-07-27 合创汽车科技有限公司 电动汽车防溜坡控制系统、方法、计算机设备和存储介质
GB2590961B (en) * 2020-01-09 2022-08-24 Jaguar Land Rover Ltd Hybrid vehicle control system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186183A (ja) * 1988-01-19 1989-07-25 Yokogawa Electric Corp モータの制御回路
CN103359104A (zh) * 2013-07-23 2013-10-23 安徽江淮汽车股份有限公司 汽车蠕动控制方法及系统
CN107839688A (zh) * 2017-10-19 2018-03-27 吉林大学 一种电动汽车蠕行车速控制方法
CN110254251A (zh) * 2019-06-26 2019-09-20 四川阿尔特新能源汽车有限公司 爬行控制方法、装置、控制器、车辆及可读存储介质
CN110667401A (zh) * 2019-09-29 2020-01-10 上海伊控动力系统有限公司 一种纯电动汽车电爬行起步扭矩控制方法
CN113401105A (zh) * 2021-07-14 2021-09-17 中国第一汽车股份有限公司 一种爬行控制方法、装置、车辆及存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116001796A (zh) * 2023-03-24 2023-04-25 盛瑞传动股份有限公司 车速控制方法、装置、车辆、设备和计算机可读存储介质
CN116001796B (zh) * 2023-03-24 2023-07-07 盛瑞传动股份有限公司 车速控制方法、装置、车辆、设备和计算机可读存储介质
CN116749946A (zh) * 2023-08-21 2023-09-15 新誉集团有限公司 一种车辆能量管理方法、装置、设备及可读存储介质
CN116749946B (zh) * 2023-08-21 2023-10-20 新誉集团有限公司 一种车辆能量管理方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN113401105B (zh) 2022-04-01
CN113401105A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2023284787A1 (zh) 爬行控制方法、装置、车辆及存储介质
CN109131330B (zh) 一种电动汽车自适应蠕行控制方法
CN101405176B (zh) 对驾驶方式敏感的车辆子系统控制方法和装置
WO2022001975A1 (zh) 车辆转向控制方法、装置及系统
US8370038B2 (en) Vehicle subsystem control method and apparatus
WO2016045365A1 (zh) 一种含有驾驶员模型的智能驾驶系统
WO2022160783A1 (zh) 车辆防滑控制方法、装置、电子设备及介质
US9868439B2 (en) Vehicle control system
CN110550024B (zh) 一种基于自动驾驶的车辆运行控制方法和装置
CN112537307B (zh) 一种四轮轮毂电机自寻优驱动防滑控制方法和系统
JP5375677B2 (ja) 走行支援装置、方法およびプログラム
US8275532B2 (en) Anti-skid device for the driving wheels of a vehicle and method for realising the same
CN111497866B (zh) 一种基于改进马氏距离的转向盘转角传感器故障诊断方法
CN113264052B (zh) 汽车车速的计算方法、装置、电子控制单元及存储介质
Lu et al. From vehicle stability control to intelligent personal minder: Real-time vehicle handling limit warning and driver style characterization
WO2024055671A1 (zh) 一种整车控制器、电机控制器以及相关设备
GB2435102A (en) Friction estimation for vehicle control systems
KR20210080659A (ko) 후륜 조향 제어 장치 및 후륜 조향 제어 방법
WO2022088175A1 (zh) 一种车辆行驶控制方法、装置及车辆
RU2398694C2 (ru) Способ и устройство управления чувствительной к стилю вождения подсистемой транспортного средства
JP2000130206A (ja) 自動車における最大出力可能駆動トルクの評価方法および装置
WO2024027262A1 (zh) 车辆控制方法、装置、车辆及存储介质
US6792803B2 (en) Method to improve estimation of vehicle longitudinal velocity
CN211995173U (zh) 电动汽车路面突变稳定性控制与转矩寻优系统
JPH03224860A (ja) 目標スリップ率推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE