WO2024027262A1 - 车辆控制方法、装置、车辆及存储介质 - Google Patents

车辆控制方法、装置、车辆及存储介质 Download PDF

Info

Publication number
WO2024027262A1
WO2024027262A1 PCT/CN2023/093428 CN2023093428W WO2024027262A1 WO 2024027262 A1 WO2024027262 A1 WO 2024027262A1 CN 2023093428 W CN2023093428 W CN 2023093428W WO 2024027262 A1 WO2024027262 A1 WO 2024027262A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
parameter set
control
road surface
preset
Prior art date
Application number
PCT/CN2023/093428
Other languages
English (en)
French (fr)
Inventor
王广义
周勇有
马文涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027262A1 publication Critical patent/WO2024027262A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS

Definitions

  • Embodiments of the present application relate to the field of smart cars, and in particular, to a vehicle control method, device, vehicle, and storage medium.
  • the vehicle braking system mainly achieves the purpose of anti-locking by adjusting and controlling the brake line pressure to prevent the wheels from locking and slipping during the braking process.
  • the way the vehicle control system adjusts and controls the brake line pressure is usually based on the preset parameters of the braking system.
  • vehicle control systems usually preset a set of parameters, which may include multiple parameters.
  • this parameter set is difficult to match different road conditions, which leads to poor vehicle braking efficiency and an increase in traffic accident rates.
  • Embodiments of the present application provide a vehicle control method, device, vehicle and storage medium, which can improve vehicle braking efficiency.
  • embodiments of the present application provide a vehicle control method, including:
  • Configuration is based on a determined set of preset brake control parameters.
  • the vehicle braking system can select a braking system that matches the current road conditions.
  • the parameter set can give full play to the optimal performance of the vehicle braking system, thereby improving the efficiency of vehicle braking.
  • the method further includes:
  • the first information prompt is sent based on the traffic scene, where the first information prompt is used to prompt the user with the identified traffic scene.
  • the embodiment of the present application uses information prompts to remind the user of the current traffic scene, thereby enabling the user to make predictions about driving decisions based on the current traffic scene, thereby improving the user's experience.
  • the method further includes:
  • a second information prompt is sent, where the second information prompt is used to prompt the user that the configuration of the preset braking control parameter set determined according to the road condition scenario has taken effect.
  • the embodiment of the present application reminds the user that the parameter set configuration has taken effect through information prompts, thereby allowing the user to wait for a long time until the parameter set configuration takes effect, thereby improving the user experience.
  • determining the traffic scenario based on control-related information includes:
  • control-related information from multiple channels, where each channel includes control-related information corresponding to each channel;
  • control-related information includes one or more of weather information, traffic information, road surface information, vehicle body interior information, and vehicle information.
  • the configuration based on the determined preset braking control parameter set includes:
  • the method further includes:
  • Brake control is performed based on a configured set of preset brake control parameters.
  • the method further includes:
  • braking control is performed based on a configured preset braking control parameter set.
  • the user's braking operation can be responded to as quickly as possible and the braking performance of the vehicle can be improved.
  • the vehicle is traveling on the first road, and the method further includes:
  • the first parameter set is a preset braking control parameter set configured when the vehicle is traveling on the first road surface;
  • the second parameter set is a preset braking control parameter set configured when the vehicle is traveling on the second road surface
  • Braking control is performed based on the second parameter set.
  • the method further includes:
  • Configuration is based on a determined set of preset drive control parameters.
  • the driving of the vehicle can be associated with the road conditions on which the vehicle is currently traveling, thereby improving the posture performance of the vehicle.
  • the method further includes:
  • driving control is performed based on a configured preset driving control parameter set.
  • the configuration of the parameter set is performed before the user's driving operation, so that the user's braking operation can be responded to as quickly as possible and the driving performance of the vehicle can be improved.
  • the vehicle is traveling on the first road, and the method further includes:
  • the first parameter set is a preset driving control parameter set configured when the vehicle is traveling on the first road surface
  • the second parameter set is a preset drive control parameter set configured when the vehicle is driving on the second road surface
  • a vehicle control device including:
  • Collection module used to collect control-related information
  • the determination module is used to determine the road condition scenario based on control-related information; determine the preset braking control parameter set corresponding to the road condition scenario based on the road condition scenario;
  • Configuration module for configuration based on a determined set of preset brake control parameters.
  • the above device further includes:
  • An information prompt module is configured to send a first information prompt based on a traffic scene, where the first information prompt is used to prompt the user with the identified traffic scene.
  • the above-mentioned information prompt module is also used to send a second information prompt, wherein the second information prompt is used to prompt the user that the configuration of the preset braking control parameter set determined according to the road condition scenario has taken effect.
  • the above determination module is specifically used to determine
  • control-related information from multiple channels, where each channel includes control-related information corresponding to each channel;
  • control-related information includes one or more of weather information, traffic information, road surface information, body interior information, and vehicle information.
  • the above configuration module is specifically configured to perform configuration based on the determined preset braking control parameter set in response to the detected user's braking operation;
  • the above devices also include:
  • Brake module for performing brake control based on a configured set of preset brake control parameters.
  • the above-mentioned braking module may also be used to perform braking control based on a configured preset braking control parameter set in response to the detected user's braking operation.
  • the above-mentioned braking module can also be used to determine that the vehicle is about to enter the second road surface from the first road surface when the vehicle is driving on the first road surface;
  • the first parameter set is a preset braking control parameter set configured when the vehicle is traveling on the first road surface;
  • the second parameter set is a preset braking control parameter set configured when the vehicle is traveling on the second road surface
  • Braking control is performed based on the second parameter set.
  • the above configuration module can also be used to
  • Configuration is based on a determined set of preset drive control parameters.
  • the above device further includes:
  • the driving module is configured to perform driving control based on a configured preset driving control parameter set in response to the detected user's driving operation.
  • the above-mentioned driving module is also used to determine that the vehicle is about to enter the second road surface from the first road surface when the vehicle is driving on the first road surface;
  • the first parameter set is a preset driving control parameter set configured when the vehicle is traveling on the first road surface
  • the second parameter set is a preset drive control parameter set configured when the vehicle is driving on the second road surface
  • embodiments of the present application provide a vehicle, including: a processor and a memory, the memory being used to store a computer program; the processor being used to run the computer program to implement vehicle control as described in the first aspect method.
  • inventions of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program that, when run on a computer, causes the computer to implement the vehicle control method as described in the first aspect. .
  • inventions of the present application provide a computer program product.
  • the computer program product includes a computer program.
  • the computer program When executed by a computer, the computer implements the vehicle control method as described in the first aspect.
  • the program in the fifth aspect may be stored in whole or in part on a storage medium packaged with the processor, or may be partly or entirely stored in a storage medium that is not packaged with the processor. on the device.
  • Figure 1 is a schematic diagram of the hardware structure of a vehicle provided by an embodiment of the present application.
  • FIG. 2 is a schematic flow chart of an embodiment of the vehicle control method provided by this application.
  • FIG. 3 is a schematic diagram of information collection provided by the embodiment of this application.
  • FIG. 4 is a schematic diagram of weight value changes provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of an embodiment of the braking control effect provided by this application.
  • Figure 6 is a schematic diagram of an embodiment of the driving control effect provided by this application.
  • FIG. 7 is a schematic flow chart of another embodiment of the vehicle control method provided by this application.
  • Figure 8 is a schematic diagram of another embodiment of the braking control effect provided by the present application.
  • Figure 9 is a schematic diagram of an application scenario provided by the embodiment of the present application.
  • Figure 10 is a schematic diagram of the braking effect of the prior art
  • Figure 11 is a schematic diagram of another embodiment of the braking control effect provided by the present application.
  • Figure 12 is a schematic diagram of another embodiment of the driving control effect provided by this application.
  • Figure 13 is a schematic structural diagram of a vehicle control device according to an embodiment of the present application.
  • the character "/" indicates that the related objects are an or relationship.
  • A/B can mean A or B.
  • “And/or” describes the relationship between related objects, indicating that three relationships can exist.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • at least one of the following” or similar expressions thereof refers to any combination of these items, which may include any combination of a single item (items) or a plurality of items (items).
  • at least one item (item) of A, B or C can represent: A, B, C, A and B, A and C, B and C, or A, B and C.
  • each of A, B, and C can itself be an element, or it can be a set containing one or more elements.
  • transmission can include sending and/or receiving, and can be a noun or a verb.
  • the equals involved in the embodiments of this application can be used in conjunction with greater than, and are applicable to the technical solution adopted when it is greater than, and can also be used in conjunction with less than, and are applicable to the technical solution adopted when it is less than. It should be noted that when equal is used with greater than, it cannot be used with less than; when equal to is used with less than, it is not used with greater than.
  • the vehicle braking system mainly achieves the purpose of anti-locking by adjusting and controlling the brake line pressure to prevent the wheels from locking and slipping during the braking process.
  • the way the vehicle control system adjusts and controls the brake line pressure is usually based on the preset parameters of the braking system.
  • vehicle control systems usually preset a set of parameters, which may include multiple parameters.
  • this parameter set is difficult to match different road conditions, which leads to poor vehicle braking efficiency and an increase in traffic accident rates.
  • embodiments of the present application propose a vehicle control method, which is applied to vehicles.
  • Multiple parameter sets for braking control can be preset in the vehicle.
  • the parameter names and total number of parameters between each set of brake control parameter sets can be the same, and the values of each parameter between each set of brake control parameter sets can be different, so that each set of brake control parameter sets can be matched.
  • Different road condition scenarios allow the vehicle to select a braking control parameter set that matches the current road conditions when braking, thereby giving full play to the vehicle's optimal braking performance and improving the vehicle's braking efficiency.
  • the vehicle can also be preset with multiple sets of parameter sets for driving control, which are used to select matching driving control parameter sets under different road conditions, thereby enabling the vehicle to exert better driving performance.
  • FIG. 1 shows a schematic structural diagram of a vehicle 100 .
  • a vehicle 100 includes a brake caliper 101, a brake friction disc 102, a rear drive shaft 103, a rear drive motor 104, a brake fluid pipe 105, an integrated booster 106, a chassis communication line 107, a front There is a drive motor 108, a front drive shaft 109, and a vehicle controller 110. in,
  • the integrated booster 106 is the core of the braking system and integrates an electronic control unit (ECU), pedal stroke sensor, brake master cylinder, motor, push rod mechanism, etc.
  • ECU electronice control unit
  • the brake pedal is rigidly connected to the integrated booster 106
  • the integrated booster 106 is connected to the brake caliper 101 through a brake fluid pipe 105 .
  • the vehicle controller 110 is the core of the drive system. It is connected to the front drive motor 108 and the rear drive motor 104 respectively through controller area network (CAN) communication.
  • the front drive motor 108 passes through the front drive shaft 109 Connected to the wheels, the rear drive motor 104 is connected to the wheels through the rear drive shaft 103 .
  • the driver steps on the electronic throttle and the vehicle controller 110 collects the opening of the electronic throttle, calculates the torque instructions of the front and rear motors, and sends them to the drive motor control of the front drive motor 108 and the rear drive motor 104 through CAN (motor control unit, MCU).
  • CAN motor control unit, MCU.
  • the front drive motor 108 and the rear drive motor 104 generate torque and are connected to the wheels through the front drive shaft 109 and the rear drive shaft 103 to drive the wheels forward.
  • the driver depresses the brake pedal, and the push rod mechanism of the integrated booster 106 generates displacement.
  • the pedal stroke sensor detects the displacement of the push rod mechanism and sends the displacement signal to the ECU.
  • the ECU calculates the amount of braking required by the motor.
  • the torque generated is then converted into braking force by the transmission mechanism of the motor.
  • the braking force and the push rod force generated by the brake pedal through the push rod mechanism act together on the brake master cylinder, and are converted into hydraulic pressure in the brake master cylinder.
  • the brake fluid with hydraulic pressure acts through the brake fluid pipe 105 On the brake caliper 101.
  • the vehicle controller 110 can receive the driving command of the integrated power assist 106. After calculation, the modified driving torque is sent to the front drive motor 108 and the rear drive motor 104 respectively.
  • FIG. 2 shows a schematic flow chart of an embodiment of the vehicle control method provided by this application, which specifically includes the following steps:
  • Step 201 Collect control-related information.
  • the vehicle 100 can collect control-related information while driving.
  • the control-related information can be used to determine the road condition scenario
  • the road condition scenario is used to determine the braking control parameter set.
  • the road condition scene may be the scene where the vehicle 100 is currently located.
  • the road condition scene may be ice, snow, slippery road, cement road, asphalt road, etc. It can be understood that the above examples only illustrate multiple types of traffic scenes, but do not constitute a limitation on the embodiments of the present application. In some embodiments, other types of traffic scenes may also be included.
  • the brake control parameter set may be a parameter set used to configure various parameters of the brake control system of the vehicle 100.
  • the brake control parameter set may include multiple parameters.
  • the parameters may include: target boost gradient.
  • the control-related information may be relevant information collected by the vehicle 100 through various channels.
  • the control-related information may include weather information, traffic information, road surface information, body interior information, vehicle information, etc. It can be understood that the above-mentioned collection channels can be collected through cameras, sensors, or obtained through the Internet, or the vehicle's own information can be obtained directly through CAN, which is not specifically limited in this application.
  • the vehicle 100 can obtain control-related information such as weather information, traffic information, and road surface information through the Internet (for example, high-definition map software, vehicle cloud, or Internet of Vehicles, etc.).
  • weather information can include information such as temperature, humidity, wind speed, rain, snow, frost and fog.
  • Traffic information can include geographical location, road signs and other information.
  • the road surface information may include information such as road surface type, for example, cement road surface, asphalt road surface, etc.
  • the vehicle 100 can also collect control-related information such as vehicle information through sensors.
  • vehicle information can include vehicle speed, wheel speed, steering wheel, vehicle longitudinal acceleration, vehicle yaw angular velocity, accelerator pedal, brake pedal, brake master cylinder and rotation pressure, etc.
  • vehicle information can include vehicle speed, wheel speed, steering wheel, vehicle longitudinal acceleration, vehicle yaw angular velocity, accelerator pedal, brake pedal, brake master cylinder and rotation pressure, etc.
  • the vehicle 100 can also collect control-related information such as road surface information through a vehicle-mounted camera.
  • vehicle 100 can also collect control-related information such as body internal information in the body control module (BCM) through CAN.
  • BCM body control module
  • the vehicle interior information may include rain sensor information, wiper frequency information, etc.
  • Step 202 Determine the traffic scene based on control-related information.
  • the vehicle 100 can combine a variety of collection methods shown in Figure 3 to collect control-related information.
  • the control-related information can be collected through the combined collection method of camera + sensor, or through the camera + sensor + Internet.
  • +CAN combined collection method collects control-related information, and other groups can also be used to collect control-related information.
  • the control-related information is collected using a combination of collection methods, which is not particularly limited in the embodiments of this application.
  • the vehicle 100 After the vehicle 100 collects the control-related information, it can determine the road condition scene based on the control-related information. It can be understood that the main purpose of determining the road condition scene is to determine the adhesion between the tire and the road. Different adhesion conditions between the tire and the road mean different road adhesion coefficients. If in scenarios with different road adhesion coefficients, the vehicle adopts a braking control scheme that better matches the current road adhesion coefficient, the vehicle will have better braking performance. It can be seen that if each braking control scheme corresponds to a set of braking control parameter sets, by configuring different braking control parameter sets for the vehicle, the vehicle can configure the braking control parameters according to the configured braking control parameter set.
  • multiple road condition scenarios and multiple braking control parameter sets can be preset, and the mapping relationship between the road condition scenarios and the braking control parameter sets can be set.
  • one road condition scenario corresponds to one set of braking control parameter sets.
  • multiple road condition scenarios and multiple sets of braking control parameter sets may be pre-stored in the vehicle 100, and the multiple road condition scenarios and multiple sets of braking control parameter sets may be mapped one-to-one.
  • Table 1 exemplarily shows the mapping relationship between road condition scenarios and braking control parameter sets, where N is a positive integer greater than 1.
  • parameter set 1 and parameter set 2 both contain parameter 1.
  • the value of parameter 1 in parameter set 1 is x
  • the value of parameter 1 in parameter set 2 is y. , where x and y are different.
  • the vehicle 100 After the vehicle 100 collects the control-related information A through the Internet, it can identify the external environment in which the vehicle 100 is currently operating based on the control-related information A, thereby identifying the adhesion between the vehicle tires and the road surface, and then determining the first road surface information.
  • the first road surface information is used to represent the road surface information determined by the vehicle 100 based on the control-related information A. For example, the vehicle 100 can identify the difference between the north and south roads according to the geographical location information in the control-related information A.
  • the road surface materials can be used to distinguish the differences in adhesion between different road surfaces and tires, and can be obtained by combining the weather information in the control-related information A. Adhesion after weather effects.
  • the adhesion coefficient of dry cement pavement is about 0.8
  • the adhesion coefficient of wet cement pavement is about 0.7
  • the adhesion coefficient of dry asphalt pavement is about 0.9
  • the adhesion coefficient of wet asphalt pavement is about 0.8
  • the adhesion coefficient of polished ice surface is about 0.2.
  • the adhesion coefficient of compacted snow pavement is about 0.5. It can be understood that the above examples only illustrate road adhesion coefficient values in different road condition scenarios, but do not constitute a limitation on the embodiments of the present application.
  • a weight a can be set for the first road surface information.
  • the value of the weight a can change with the duration t within the information update period T. For example, as the duration t increases within the information update period T, the value of the weight a decreases.
  • Figure 4 exemplarily shows a schematic diagram of the value of weight a changing with time t.
  • the vehicle 100 After the vehicle 100 collects the control-related information B through the sensor, it can identify the road surface where the vehicle 100 is currently located based on the control-related information B, that is, obtain the second road surface information.
  • the second road surface information is used to represent the road surface information determined by the vehicle 100 based on the control-related information B.
  • the vehicle 100 can obtain the lateral motion state of the vehicle 100 through information such as the steering wheel, lateral acceleration, and yaw angular velocity, where the lateral motion state can include turning, lane changing, and other states.
  • the vehicle 100 can also obtain the longitudinal motion state of the vehicle 100 based on wheel speed, vehicle speed, and longitudinal acceleration, where the longitudinal motion state can include acceleration, deceleration, emergency braking, and other states.
  • the road surface on which the vehicle 100 is currently located can be identified; for example, a special road surface, such as a washboard road surface, can be identified based on the fluctuation pattern of wheel speed.
  • acceleration information can also be combined to identify off-road roads, rough roads, gravel roads, etc.
  • the butt road surface, split road surface, checkerboard road surface, etc. can also be identified based on the pressure of the master cylinder and wheel cylinder.
  • the above-mentioned method of collecting control-related information B through sensors is a passive detection method, and acquisition and processing of information require a certain amount of time. Therefore, the second road surface information has hysteresis.
  • a weight b may also be set for the second road surface information.
  • the vehicle 100 After the vehicle 100 collects the control-related information C through the camera, it can identify the road surface where the vehicle 100 is currently located based on the control-related information C, that is, obtain the third road surface information.
  • the third road surface information is used to represent the road surface information determined by the vehicle 100 based on the control-related information C.
  • the vehicle 100 can collect image information around the vehicle 100 through a camera, and can input the collected image information into a preset neural network model for identification, which is used to determine the road surface on which the vehicle 100 is currently located.
  • the above-mentioned preset neural network model can be pre-trained. For example, a large number of road surface data sets can be collected in advance to train the neural network model.
  • the neural network model can be used to determine the road surface where the vehicle is based on the surrounding environment of the vehicle.
  • the image recognition results can also be corrected in combination with weather information and BCM feedback information, that is, the third road surface information can be corrected to obtain a more accurate third road surface. information.
  • the weight c can be set for the third road surface information according to the weather information. For example, Table 2 shows the mapping relationship between weather types and the value of weight c.
  • the time coefficient d can also be set according to time. For example, during the day, the value of the time coefficient d is higher, and at night, the value of the time coefficient d is lower.
  • the vehicle 100 After the vehicle 100 obtains the above-mentioned first road surface information, second road surface information, and third road surface information, it can synthesize the above-mentioned first road surface information, second road surface information, third road surface information, and the weight coefficient corresponding to each road surface information.
  • the road condition scene may be the road surface on which the vehicle 100 is currently located.
  • the road condition scene may include: ice surface, snow surface, slippery road surface, cement road surface, asphalt road surface, etc.
  • the vehicle 100 may also send a first information prompt to the user (eg, driver), where the first information prompt is used to prompt the driver of the identified road condition scene.
  • the first information prompt may be displayed on the instrument panel of the vehicle 100 in the form of text and/or symbols to prompt the driver of the recognized road condition scene.
  • the first information prompt may also be sent in the form of a voice prompt to prompt the driver of the recognized road condition scene.
  • Step 203 Determine a preset braking control parameter set corresponding to the traffic scenario based on the traffic scenario.
  • the preset braking control parameter set corresponding to the current road condition scenario can be determined based on the current road condition scenario, thereby enabling the vehicle 100 to perform braking control according to the determined preset braking control parameter set. parameter set to configure.
  • the vehicle 100 can be pre-configured with a preset braking control parameter set corresponding to the above-mentioned better road surface.
  • the vehicle 100 determines a new road condition scenario while driving, it can be updated to Preset braking control parameter sets corresponding to new traffic scenarios.
  • Step 204 Configure based on the determined preset braking control parameter set.
  • the configuration process may be that the vehicle 100 is configured according to the parameters in the determined preset braking control parameter set, so that multiple functions of the braking system in the vehicle 100 can perform optimally, for example, the functions of the braking system Can include: antilock brake system (ABS), body electronic stability control system (electronic stability controller, ESC), traction control system (traction control system, TCS) and additional functions (value added function, VAF )wait.
  • ABS antilock brake system
  • ESC body electronic stability control system
  • traction control system traction control system
  • additional functions value added function, VAF
  • the configuration in this step 204 can also be understood as a configuration update.
  • the vehicle 100 has the configuration of the initial preset braking control parameter set.
  • the vehicle 100 determines a new road condition scene based on the current road surface during driving, and then determines a new preset brake control parameter set, and then performs configuration updates based on the new preset brake control parameter set.
  • the preset braking control parameter set of the vehicle 100 can be configured in the following two ways.
  • Method 1 configure before the user performs braking operation
  • the vehicle 100 determines the preset braking control parameter set corresponding to the current road condition scenario, it immediately configures various parameters of the braking system of the vehicle 100 according to the determined preset braking control parameter set, so that After detecting the user's braking operation (for example, braking), the vehicle 100 can immediately perform braking control according to the configured braking control parameter set, thereby enabling the preset braking control parameter set to be quickly switched, and thus enabling This enables the vehicle to perform braking control as soon as possible according to the switched preset braking control parameter set, thereby improving the execution efficiency of braking control.
  • the vehicle 100 determines the preset braking control parameter set corresponding to the current road condition scenario, it immediately configures various parameters of the braking system of the vehicle 100 according to the determined preset braking control parameter set, so that After detecting the user's braking operation (for example, braking), the vehicle 100 can immediately perform braking control according to the configured braking control parameter set, thereby enabling the preset braking control parameter set to be quickly switched, and thus
  • a second information prompt may also be sent, where the second information prompt is used to prompt the user for the preset braking control determined according to the current road condition scenario.
  • the configuration of the parameter set has taken effect, and the braking control adopted by the vehicle according to the user's braking operation is based on the above-mentioned effective configuration.
  • the specific method of sending the second information prompt please refer to the above-mentioned method of sending the first information prompt, which will not be described again here.
  • Method 2 configure after the user performs braking operation
  • the vehicle 100 may frequently switch the preset brake control parameter set, which increases the processing burden of the vehicle 100 .
  • the vehicle 100 does not need to configure various parameters of the braking system of the vehicle 100 according to the currently determined preset braking control parameter set, because the vehicle 100 can update the current parameters according to the collected control-related information during driving. Therefore, after detecting the user's braking operation, the vehicle 100 can perform configuration based on the currently determined preset brake control parameter set, so that the vehicle 100 can perform configuration after configuring the preset brake control parameter set.
  • the braking system of the vehicle 100 can achieve better braking performance, and at the same time, the processing load of the vehicle can be reduced.
  • Figure 5 is a schematic diagram of the braking effect in a uniform low-adhesion road condition scenario, that is, a schematic diagram of the braking effect when the vehicle is driving on a low-adhesion road.
  • the upper chart is a schematic curve of the braking effect of the prior art.
  • the chart below is a schematic curve of the braking effect of the embodiment of this application.
  • the road surface information can be obtained in advance.
  • the locking pressure of the road surface can be obtained. Therefore, by configuring the braking control parameter set corresponding to the road surface, the four rotation pressures can be controlled during the locking process. Near the dead pressure, the pressure adjustment fluctuates less, which can maximize the use of road adhesion and reduce the braking distance.
  • the parameter sets configured in the acceleration scenario and the braking scenario may be different.
  • the parameter set configured in the braking scenario may be the braking control parameter set
  • the parameter set configured in the acceleration scenario may be the driving control parameter set.
  • the drive control parameter set can also correspond to the road condition scene one-to-one.
  • the configuration method of the drive control parameter set can refer to the configuration method of the brake control parameter set, which will not be described again here.
  • FIG. 6 is a schematic diagram of the acceleration effect in a uniform low adhesion scenario.
  • the upper chart is a schematic curve of the acceleration effect of the prior art. It can be understood that when the driver steps on the accelerator pedal, the drive wheels slip and the TCS function intervenes. Since the controller distinguishes the road surface based on wheel slippage, the controller can only identify the current road surface if the wheels slip first. In this scenario, the method is passive. In order to ensure robustness, multiple cycles of confirmation are required, so the slip rate in the first cycle of TCS is relatively large. After multiple cycles of wheel speed feedback is obtained, low target slip will be entered. rate for TCS control.
  • the chart below is a schematic curve of the acceleration effect of the embodiment of the present application.
  • the road surface information can be obtained in advance.
  • the adhesion status of the road surface can be obtained.
  • the driving force when the road surface is about to slip but not slip can be obtained.
  • the target value of the driving force is controlled to meet the above ideal slip conditions, so that the wheel does not slip and the adhesion utilization rate can be improved, thereby improving the driving performance.
  • the butt road surface refers to the road surface where the road adhesion difference between the front and rear wheels is relatively large.
  • the front wheels are on the cement road and the rear wheels are on the ice. That is to say, the scene can be a scene in which the vehicle 100 drives from the ice to the cement road.
  • the vehicle 100 when the vehicle 100 travels from the ice surface to the cement road, it can obtain the road information of the cement road in advance, so that the preset braking control parameter set of the cement road can be determined in advance, and when entering the cement road At this time, the preset braking control parameter set of the cement road is configured in time, so that the vehicle 100 can perform braking control in time according to the road condition scene of the cement road after entering the cement road, thereby improving the braking performance and braking performance of the vehicle. Dynamic efficiency.
  • FIG. 7 is a schematic flowchart of another embodiment of a vehicle control method provided by this application, which specifically includes the following steps:
  • Step 701 Monitor the connection between the ice surface and the cement road.
  • the surrounding environment information can be obtained, for example, real-time monitoring can be performed through a camera.
  • the vehicle 100 can also determine that it is about to drive from the ice surface to the cement road through the collected surrounding environment information.
  • the vehicle 100 can be identified through the image captured by the camera, so that it can be identified that the vehicle 100 is about to enter the cement road from the current ice surface.
  • Step 702 In response to the detected user's braking operation, determine a preset braking control parameter set for the cement road surface.
  • a preset braking control parameter set corresponding to the ice surface may be configured.
  • the preset braking control parameter set corresponding to the ice surface is referred to as the "first parameter set” below.
  • the user can perform braking operations, such as pressing the brake pedal.
  • the vehicle 100 may perform braking control using the configured first parameter set, and may determine a preset braking control parameter set corresponding to the cement road surface.
  • the preset braking control parameter set corresponding to the cement road surface will be referred to as the "second parameter set” below.
  • the vehicle 100 can cache the second parameter set, thereby allowing the vehicle 100 to configure the second parameter set after entering the cement road.
  • Step 703 In response to the detected vehicle 100 entering the cement road, the currently configured first parameter set is switched to the second parameter set.
  • the vehicle 100 may determine to enter the cement road surface. For example, when the front wheels of the vehicle 100 reach the docking point between the ice surface and the cement road surface, it can be considered that the vehicle 100 has traveled to the docking point between the ice surface and the cement road surface.
  • the vehicle 100 can be identified through the image captured by the camera, thereby identifying that the vehicle 100 has entered the cement road. In response to the monitored vehicle 100 entering the cement road surface, due to the change in the road surface, the adhesion coefficient of the road surface changes accordingly.
  • the vehicle 100 can switch the currently configured first parameter set to the second parameter set, that is, When the vehicle 100 drives on the ice, it is configured with the first parameter set.
  • the second parameter set allows the vehicle 100 to use the second parameter set for braking control.
  • the front wheels of the vehicle 100 can be braked according to the configuration of the second reference set, so that the braking performance of the vehicle 100 matches.
  • the cement road surface can better exert the braking performance of the vehicle 100 and shorten the braking distance.
  • Figure 8 is a schematic diagram of the braking effect according to the embodiment of the present application.
  • the upper graph is a schematic curve of the braking effect of the prior art
  • the lower graph is a schematic curve of the braking effect of the present application.
  • the current braking control parameter set can be immediately switched to the braking control parameter set corresponding to the cement road surface, that is, it can be switched to the first braking control parameter set.
  • the vehicle 100 can exert better braking performance, shorten the braking distance, and thereby improve the safety of the vehicle.
  • the docking road surface is an ice surface and a cement road surface, but does not constitute a limitation on the embodiments of the present application.
  • it can also be other docking road surfaces, such as , the docking road surface may be an ice surface and an asphalt road surface, or the docking road surface may be a cement road surface and an asphalt road surface, or the docking road surface may be a gravel road surface, a cement road surface, etc.
  • FIGS. 9 to 11 the split road surface refers to the road surface where the road adhesion between the left and right wheels is greatly different, and it can also be called a separated road surface.
  • Figure 9 is a schematic diagram of the application scenario of the split road surface according to the embodiment of the present application.
  • the left wheel of the vehicle 100 is on the ice surface and the right wheel is on the asphalt road surface.
  • the vehicle 100 is braking, since the friction between the ice surface and the left wheel is small, while the friction between the asphalt road surface and the right wheel is large, the vehicle 100 instantly generates a clockwise yaw moment.
  • FIG 10 is a schematic diagram of the braking effect of the prior art. As shown in Figure 10, due to the large difference between the left and right wheels after the vehicle is braked, the vehicle will generate a large yaw angular velocity, which will bring safety risks to driving.
  • Figure 11 is a schematic diagram of the braking effect of this application.
  • the controller When the front wheel reaches the docking point Q, the wheel moves from low attachment to high attachment, and enters the high attachment road surface with low attachment driving force.
  • the slip rate of the wheel Because it is small, the controller itself cannot confirm whether it is on a low-grip road surface or a high-grip road surface. Therefore, it can only increase the driving force a small amount, and judge whether it has entered a high-grip road surface by the size of the slip rate. If the increased driving force is large and the wheels are still on a low-adhesion road surface, the driving force must be reduced in the next step, which will lead to larger torque fluctuations in the TCS.
  • the docking point information can be obtained in advance by obtaining the road surface information in advance.
  • the driving control parameter set of the docking road surface can be configured for configuring the docking.
  • the increased torque required by road TCS can maximize the use of road adhesion, thereby improving driving performance.
  • FIG 13 is a schematic structural diagram of an embodiment of the vehicle control device of the present application.
  • the vehicle control device 1300 may include: a collection module 1310, a determination module 1320 and a configuration module 1330; wherein,
  • Collection module 1310 used to collect control-related information
  • the determination module 1320 is used to determine the road condition scenario based on the control-related information; and determine the preset braking control parameter set corresponding to the road condition scenario based on the road condition scenario;
  • the configuration module 1330 is configured to perform configuration based on the determined preset brake control parameter set.
  • the above-mentioned vehicle control device 1300 further includes:
  • An information prompt module is configured to send a first information prompt based on a traffic scene, where the first information prompt is used to prompt the user with the identified traffic scene.
  • the above-mentioned information prompt module is also used to send a second information prompt, wherein the second information prompt is used to prompt the user that the configuration of the preset braking control parameter set determined according to the road condition scenario has taken effect.
  • the above-mentioned determination module 1320 is specifically used to determine
  • control-related information from multiple channels, where each channel includes control-related information corresponding to each channel;
  • control-related information includes one or more of weather information, traffic information, road surface information, body interior information, and vehicle information.
  • the above configuration module 1330 is specifically configured to perform configuration based on the determined preset brake control parameter set in response to the detected user's braking operation;
  • the above vehicle control device 1300 also includes:
  • Brake module for performing brake control based on a configured set of preset brake control parameters.
  • the above-mentioned braking module may also be used to perform braking control based on a configured preset braking control parameter set in response to the detected user's braking operation.
  • the above-mentioned braking module can also be used to determine that the vehicle is about to enter the second road surface from the first road surface when the vehicle is driving on the first road surface;
  • the first parameter set is a preset braking control parameter set configured when the vehicle is traveling on the first road surface;
  • the second parameter set is a preset braking control parameter set configured when the vehicle is traveling on the second road surface
  • Braking control is performed based on the second parameter set.
  • the above configuration module 1330 can also be used to
  • Configuration is based on a determined set of preset drive control parameters.
  • the above-mentioned vehicle control device 1300 further includes:
  • the driving module is configured to perform driving control based on a configured preset driving control parameter set in response to the detected user's driving operation.
  • the above-mentioned driving module is also used to determine that the vehicle is about to enter the second road surface from the first road surface when the vehicle is driving on the first road surface;
  • the first parameter set is a preset driving control parameter set configured when the vehicle is traveling on the first road surface
  • the second parameter set is a preset drive control parameter set configured when the vehicle is driving on the second road surface
  • Each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or contribute to the existing technology, or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage device.
  • the medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

提供了一种车辆(100)控制方法、装置、车辆(100)及存储介质,控制方法包括:采集控制相关信息(201);基于控制相关信息确定路况场景(202);基于路况场景确定与路况场景对应的预置制动控制参数集(203);基于确定的预置制动控制参数集进行配置(204),从而提高制动的效率。

Description

车辆控制方法、装置、车辆及存储介质
本申请要求于2022年07月30日提交中国专利局、申请号为202210911511.3、申请名称为“车辆控制方法、装置、车辆及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及智能汽车领域,尤其涉及一种车辆控制方法、装置、车辆及存储介质。
背景技术
随着社会的不断发展,汽车保有量越来越高,城市道路上的车辆也越来越多,由此引发的交通问题也越来越严重。其中,车辆制动系统的各类应用很大程度上保证了汽车行驶过程中的安全性。目前,车辆制动系统主要通过调节、控制制动管路压力,避免车轮在制动过程中抱死而产生滑移,达到防抱死的目的。
其中,车辆控制系统调节、控制制动管路压力的方式通常都是根据制动系统的预设参数进行。目前,车辆控制系统通常会预设一套参数集,该参数集可以包括多个参数。然而,该参数集难以匹配不同的路况场景,由此导致车辆制动效率变差,从而会导致交通事故率上升。
发明内容
本申请实施例提供了一种车辆控制方法、装置、车辆及存储介质,能够提高车辆制动的效率。
第一方面,本申请实施例提供了一种车辆控制方法,包括:
采集控制相关信息;
基于控制相关信息确定路况场景;
基于路况场景确定与路况场景对应的预置制动控制参数集;
基于确定的预置制动控制参数集进行配置。
本申请实施例中,通过在车辆预设多个制动控制参数集,并根据不同的路况场景选取对应的制动控制参数集,由此可以使得车辆制动系统选取与当前路况场景较匹配的参数集,发挥车辆制动系统较优的性能,从而能够提高车辆制动的效率。
其中一种可能的实现方式中,所述基于控制相关信息确定路况场景之后,所述方法还包括:
基于路况场景发送第一信息提示,其中,第一信息提示用于向用户提示已识别的路况场景。
本申请实施例通过信息提示,以提醒用户当前的路况场景,由此可以使得用户可以根据当前的路况场景做出驾驶决策的预判,从而可以提高用户的使用感受。
其中一种可能的实现方式中,所述基于确定的预置制动控制参数集进行配置之后,所述方法还包括:
发送第二信息提示,其中,第二信息提示用于向用户提示根据路况场景确定的预置制动控制参数集的配置已生效。
本申请实施例通过信息提示,已提醒用户参数集配置已生效,由此可以使得用户长时间处于等到参数集配置生效的过程中,从而可以提高用户的体验。
其中一种可能的实现方式中,所述基于控制相关信息确定路况场景包括:
获取多个渠道的控制相关信息,其中,每个渠道包括与每个渠道对应的控制相关信息;
基于多个渠道的控制相关信息确定路况场景。
本申请实施例中,通过综合多个渠道的控制相关信息,可以提高路况场景判断的准确性。
其中一种可能的实现方式中,所述控制相关信息包括天气信息、交通信息、路面信息、车身内部信息及车辆信息中的一种或多种。
其中一种可能的实现方式中,所述基于确定的预置制动控制参数集进行配置包括:
响应于检测到的用户的制动操作,基于确定的预置制动控制参数集进行配置;
所述基于确定的预置制动控制参数集进行配置之后,所述方法还包括:
基于已配置的预置制动控制参数集执行制动控制。
本申请实施例中,通过检测到用户的制动操作后执行参数集的配置,可以避免参数集频繁配置,从而可以节省资源。
其中一种可能的实现方式中,所述基于确定的预置制动控制参数集进行配置之后,所述方法还包括:
响应于检测到的用户的制动操作,基于已配置的预置制动控制参数集执行制动控制。
本申请实施例中,通过用户制动操作之前进行参数集的配置,由此可以尽快响应用户的制动操作,提高车辆的制动性能。
其中一种可能的实现方式中,所述车辆在第一路面上行驶,所述方法还包括:
确定车辆即将从第一路面进入到第二路面;
响应于检测到的用户的制动操作,基于第一参数集执行制动控制;其中,第一参数集为车辆在第一路面上行驶时配置的预置制动控制参数集;
确定第二参数集,其中,第二参数集为车辆在第二路面上行驶时配置的预置制动控制参数集;
响应于监测到的车辆行驶到第一路面与第二路面的对接点,从第一参数集切换至第二参数集;
基于第二参数集执行制动控制。
本申请实施例中,可以有效实现车辆在对接路面行驶时进行参数集的切换,并可以使用不同的参数集在不同的路面执行制动控制,从而可以提高车辆的制动性能。
其中一种可能的实现方式中,所述方法还包括:
基于路况场景确定与路况场景对应的预置驱动控制参数集;
基于确定的预置驱动控制参数集进行配置。
本申请实施例中,可以实现车辆的驱动与车辆当前行驶的路况相关联,从而可以提高车辆的架势性能。
其中一种可能的实现方式中,所述方法还包括:
响应于检测到的用户的驱动操作,基于已配置的预置驱动控制参数集执行驱动控制。
本申请实施例中,在用户的驱动操作之前执行参数集的配置,由此可以尽快响应用户的制动操作,提高车辆的驱动性能。
其中一种可能的实现方式中,所述车辆在第一路面上行驶,所述方法还包括:
确定车辆即将从第一路面进入到第二路面;
响应于检测到的用户的驱动操作,基于第一参数集执行制动控制;其中,第一参数集为车辆在所述第一路面上行驶时配置的预置驱动控制参数集;
确定第二参数集,其中,第二参数集为车辆在第二路面上行驶时配置的预置驱动控制参数集;
响应于监测到的车辆行驶到第一路面与第二路面的对接点,从第一参数集切换至第二参数集;
基于第二参数集执行驱动控制。
本申请实施例中,可以有效实现车辆在对接路面行驶时进行参数集的切换,并可以使用不同的参数集在不同的路面执行驱动控制,从而可以提高车辆的驱动性能。
第二方面,本申请实施例提供一种车辆控制装置,包括:
采集模块,用于采集控制相关信息;
确定模块,用于基于控制相关信息确定路况场景;基于路况场景确定与路况场景对应的预置制动控制参数集;
配置模块,用于基于确定的预置制动控制参数集进行配置。
其中一种可能的实现方式中,上述装置还包括:
信息提示模块,用于基于路况场景发送第一信息提示,其中,第一信息提示用于向用户提示已识别的路况场景。
其中一种可能的实现方式中,上述信息提示模块还用于发送第二信息提示,其中,第二信息提示用于向用户提示根据路况场景确定的预置制动控制参数集的配置已生效。
其中一种可能的实现方式中,上述确定模块具体用于
获取多个渠道的控制相关信息,其中,每个渠道包括与每个渠道对应的控制相关信息;
基于多个渠道的控制相关信息确定路况场景。
其中一种可能的实现方式中,控制相关信息包括天气信息、交通信息、路面信息、车身内部信息及车辆信息中的一种或多种。
其中一种可能的实现方式中,上述配置模块具体用于响应于检测到的用户的制动操作,基于确定的预置制动控制参数集进行配置;
上述装置还包括:
制动模块,用于基于已配置的预置制动控制参数集执行制动控制。
其中一种可能的实现方式中,上述制动模块还可以用于响应于检测到的用户的制动操作,基于已配置的预置制动控制参数集执行制动控制。
其中一种可能的实现方式中,上述制动模块还可以用于在车辆在第一路面上行驶时,确定车辆即将从第一路面进入到第二路面;
响应于检测到的用户的制动操作,基于第一参数集执行制动控制;其中,第一参数集为车辆在所述第一路面上行驶时配置的预置制动控制参数集;
确定第二参数集,其中,第二参数集为车辆在第二路面上行驶时配置的预置制动控制参数集;
响应于监测到的车辆行驶到第一路面与第二路面的对接点,从第一参数集切换至第二参数集;
基于第二参数集执行制动控制。
其中一种可能的实现方式中,上述配置模块还可以用于
基于路况场景确定与路况场景对应的预置驱动控制参数集;
基于确定的预置驱动控制参数集进行配置。
其中一种可能的实现方式中,上述装置还包括:
驱动模块,用于响应于检测到的用户的驱动操作,基于已配置的预置驱动控制参数集执行驱动控制。
其中一种可能的实现方式中,上述驱动模块还用于在车辆在第一路面上行驶时,确定车辆即将从第一路面进入到第二路面;
响应于检测到的用户的驱动操作,基于第一参数集执行制动控制;其中,第一参数集为车辆在第一路面上行驶时配置的预置驱动控制参数集;
确定第二参数集,其中,第二参数集为车辆在第二路面上行驶时配置的预置驱动控制参数集;
响应于监测到的车辆行驶到第一路面与第二路面的对接点,从第一参数集切换至第二参数集;
基于第二参数集执行驱动控制。
第三方面,本申请实施例提供一种车辆,包括:处理器和存储器,所述存储器用于存储计算机程序;所述处理器用于运行所述计算机程序,实现如第一方面所述的车辆控制方法。
第四方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机实现如第一方面所述的车辆控制方法。
第五方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当上述计算机程序被计算机执行时,使得计算机实现如第一方面所述的车辆控制方法。
在一种可能的实现方式中,第五方面中的程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储 器上。
附图说明
图1为本申请实施例提供的车辆的硬件结构示意图;
图2为本申请提供的车辆控制方法一个实施例的流程示意图;
图3为本申请实施例提供的信息采集示意图;
图4为本申请实施例提供的权重值变化示意图;
图5为本申请提供的制动控制效果一个实施例的示意图;
图6为本申请提供的驱动控制效果一个实施例的示意图;
图7为本申请提供的车辆控制方法另一个实施例的流程示意图;
图8为本申请提供的制动控制效果另一个实施例的示意图;
图9为本申请实施例提供的应用场景示意图;
图10为现有技术的制动效果示意图;
图11为本申请提供的制动控制效果再一个实施例的示意图;
图12为本申请提供的驱动控制效果另一个实施例的示意图;
图13为本申请实施例提供车辆控制装置的结构示意图。
具体实施方式
本申请实施例中,除非另有说明,字符“/”表示前后关联对象是一种或的关系。例如,A/B可以表示A或B。“和/或”描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,也不能理解为指示或暗示顺序。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。此外,“以下至少一项(个)”或者其类似表达,是指的这些项中的任意组合,可以包括单项(个)或复数项(个)的任意组合。例如,A、B或C中的至少一项(个),可以表示:A,B,C,A和B,A和C,B和C,或A、B和C。其中,A、B、C中的每个本身可以是元素,也可以是包含一个或多个元素的集合。
本申请实施例中,“示例的”、“在一些实施例中”、“在另一实施例中”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中的“的(of)”、“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,所要表达的含义是一致的。本申请实施例中,通信、传输有时可以混用,应当指出的是,在不强调其区别时,其所表达的含义是一致的。例如,传输可以包括发送和/或接收,可以为名词,也可以是动词。
本申请实施例中涉及的等于可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于小于时所采用的技术方案。需要说明的是,当等于与大于连用时,不能与小于连用;当等于与小于连用时,不与大于连用。
随着社会的不断发展,汽车保有量越来越高,城市道路上的车辆也越来越多,由此引发的交通问题也越来越严重。其中,车辆自动系统的各类应用很大程度上保证了汽车行驶过程中的安全性。目前,车辆制动系统主要通过调节、控制制动管路压力,避免车轮在制动过程中抱死而产生滑移,达到防抱死的目的。
其中,车辆控制系统调节、控制制动管路压力的方式通常都是根据制动系统的预设参数进行。目前,车辆控制系统通常会预设一套参数集,该参数集可以包括多个参数。然而,该参数集难以匹配不同的路况场景,由此导致车辆制动效率变差,从而会导致交通事故率上升。
基于上述问题,本申请实施例提出了一种车辆控制方法,应用于车辆。该车辆中可以预设多套用于制动控制的参数集。其中,每套制动控制参数集之间的参数名称和参数总数可以相同,每套制动控制参数集之间的各参数的数值可以不同,由此可以使得每套制动控制参数集可以匹配不同的路况场景,从而使得车辆在制动时可以选取与当前路况较匹配的制动控制参数集,进而可以发挥车辆的较优的制动性能,提高车辆的制动效率。可以理解的是,车辆还可以预设多套用于驱动控制的参数集,用于在不同的路况场景下选取匹配的驱动控制参数集,由此可以使得车辆发挥较优的驱动性能。
下面结合图1首先介绍本申请以下实施例中提供的示例性车辆。图1示出了车辆100的结构示意图。
如图1所示,车辆100包括制动卡钳101,制动摩擦盘102,后置驱动轴103,后置驱动电机104,制动液管105,集成式助力器106,底盘通讯线路107,前置驱动电机108,前置驱动轴109,整车控制器110。其中,
集成式助力器106是制动系统的核心,集成有电子控制单元(electronic control unit,ECU)、踏板行程传感器、制动主缸、电机、推杆机构等。制动踏板与集成式助力器106刚性连接,集成式助力器106通过制动液管105与制动卡钳101连接。
整车控制器110是驱动系统的核心,通过控制器局域网络(controller area network,CAN)通讯分别和前置驱动电机108和后置驱动电机104连接,前置驱动电机108通过前置驱动轴109与车轮相连,后置驱动电机104通过后置驱动轴103与车轮相连。
驱动实现过程中,驾驶员踩下电子油门,整车控制器110采集电子油门的开度,计算前后电机的扭矩指令,通过CAN发送给前置驱动电机108和后置驱动电机104的驱动电机控制器(motor control unit,MCU)。前置驱动电机108和后置驱动电机104发出扭矩,通过前置驱动轴109和后置驱动轴103连接到车轮,驱动车轮向前运行。
制动实现过程中,驾驶员踩下制动踏板,集成式助力器106的推杆机构产生位移,踏板行程传感器检测到推杆机构的位移,并将位移信号发送至ECU,ECU计算出电机应产生的扭矩,再由电机的传动机构将扭矩转化为制动力。制动力与制动踏板通过推杆机构产生的推杆力一起作用与制动主缸上,在制动主缸内共同转化为液压力,具有液压力的制动液经制动液管105作用在制动卡钳101上。通过夹紧制动摩擦盘102实 现制动。
制动和驱动需要协调的时候可以通过整车控制器110接收集成式助力106的驱动指令,经过计算,分别发送给前置驱动电机108和后置驱动电机104执行修改之后的驱动扭矩。
现结合图2-图12对本申请实施例提供的车辆控制方法进行示例性说明。
如图2所示为本申请提供的车辆控制方法一个实施例的流程示意图,具体包括以下步骤:
步骤201,采集控制相关信息。
具体地,车辆100可以在行驶过程中采集控制相关信息。其中,控制相关信息可以用于确定路况场景,路况场景用于确定制动控制参数集。其中,路况场景可以是车辆100当前所处的场景,示例性的,路况场景可以是冰面、雪面、湿滑路面、水泥路面、沥青路面等。可以理解的是,上述示例仅示例性的示出了路况场景的多个类型,但并不构成对本申请实施例的限定,在一些实施例中,还可以包括其他类型的路况场景。制动控制参数集可以是用于对车辆100的制动控制系统的各项参数进行配置的参数集,制动控制参数集可以包括多项参数,示例性的,参数可以包括:目标增压梯度(IncPreTar)、目标减压梯度(DecPreTar)、滑移率门限(SlipThre)、对接路面检测确认时间(tCntMueJump)、分离路面检测确认时间(tCntSplit)、低附路面检测确认时间(tCntLowMue)。可以理解的是,上述示例仅示例性的示出了参数集中的多项参数的名称,但并不构成对本申请实施例的限定,在一些实施例中,还可以包括其他参数。控制相关信息可以是车辆100通过各种渠道采集获得的相关信息,示例性的,控制相关信息可以包括天气信息、交通信息、路面信息、车身内部信息及车辆信息等。可以理解的是,上述采集的渠道可以是通过摄像头采集,也可以是通过传感器采集,也可以通过互联网获得,也可以直接通过CAN获取车辆本身的信息,本申请对此不作特殊限定。
现结合图3对车辆100采集控制相关信息的过程进行示例性说明。如图3所示,例如,车辆100可以通过互联网(例如,高清地图软件、车载云或车联网等)获取天气信息、交通信息及路面信息等控制相关信息。其中,天气信息可以包括温度、湿度、风速、雨、雪、霜雾等信息。交通信息可以包括地理位置、道路标识等信息。路面信息可以包括路面类型等信息,例如,水泥路面、沥青路面等。又例如,车辆100还可以通过传感器采集车辆信息等控制相关信息。其中,车辆信息可以包括车速、轮速、方向盘、车辆纵向加速度、车辆横摆角速度、加速踏板、制动踏板、制动主缸与轮岗压力等信息。再例如,车辆100还可以通过车载摄像头采集路面信息等控制相关信息。再例如,车辆100还可以通过CAN采集车身控制器(body control module,BCM)中的车身内部信息等控制相关信息。其中,车身内部信息可以包括雨量传感器信息、雨刮频率信息等。
步骤202,基于控制相关信息确定路况场景。
具体地,车辆100可以将图3所示的多种采集方式进行组合,用于采集控制相关信息,例如,可以通过摄像头+传感器的组合采集方式采集控制相关信息,也可以通过摄像头+传感器+互联网+CAN的组合采集方式采集控制相关信息,也可以通过其他组 合采集方式采集控制相关信息,本申请实施例对此不作特殊限定。
当车辆100采集到控制相关信息后,可以基于控制相关信息确定路况场景。可以理解的是,路况场景的确定主要目的是为了确定轮胎与路面的附着情况,轮胎与路面不同的附着情况意味着不同的路面附着系数。如果在不同的路面附着系数的场景下,车辆采用与当前路面附着系数较匹配的制动控制方案,会使得车辆发挥较优的制动性能。可见,如果每个制动控制方案对应一套制动控制参数集,通过对车辆配置不同的制动控制参数集,可以使得车辆根据已配置的制动控制参数集进行制动控制的参数配置,由此可以使得车辆在制动时可以根据已配置的制动控制参数进行制动控制,进而可以发挥车辆较优的制动性能。由此,可以预先设置多个路况场景与多个制动控制参数集,并可以设置路况场景与制动控制参数集之间的映射关系,例如,一个路况场景与一套制动控制参数集对应。在具体实现时,可以在车辆100中预先存储多个路况场景与多套制动控制参数集,并可以将该多个路况场景与多套制动控制参数集一一对应。表1示例性的示出了路况场景与制动控制参数集之间的映射关系,其中,N为大于1的正整数。
表1
需要说明的是,参数集之间的参数可以相同,也可以不相同,本申请实施例对此不作特殊限定。当参数集之间的各项参数均相同的情况下,可以调整参数值用于区分不同的参数集。示例性的,以参数集1和参数集2为例,参数集1和参数集2均包含参数1,参数集1中的参数1的值为x,参数集2中的参数1的值为y,其中x和y不同。
接着,以摄像头+传感器+互联网+CAN的组合采集方式为例,对路况场景的确定方式进行示例性说明。
车辆100通过互联网采集到控制相关信息A后,可以根据控制相关信息A识别车辆100当前运行的外界环境,从而识别车辆轮胎与路面的附着情况,进而可以确定第一路面信息。其中,该第一路面信息用于表征车辆100根据控制相关信息A确定的路面信息。示例性的,车辆100可以根据控制相关信息A中的地理位置信息辨别南北方路面的差异,路面材料可以用于区分不同路面与轮胎的附着差异,并可以结合控制相关信息A中的天气信息得到天气影响后的附着情况。例如,通常情况下干燥水泥路面附着系数约为0.8,湿水泥路面附着系数约为0.7,干沥青路面附着系数约为0.9,湿沥青路面附着系数约为0.8,抛光冰面附着系数约为0.2,压实积雪路面附着系数约为0.5。可以理解的是,上述示例仅示例性的示出了不同路况场景下的路面附着系数值,但并不构成对本申请实施例的限定。
可以理解的是,上述通过互联网采集控制相关信息A的方式会受到带宽的影响, 由此会导致控制相关信息A的更新速度与实时环境产生差异,也就是说,信息的滞后会导致采集的信息与车辆当前所处的环境不完全一致。可见,通过互联网采集到的控制相关信息A主要提供一种全局的信息,该控制相关信息A的粒度相对较为粗略,由此会导致第一路面信息并不准确。在具体实现时,可以给第一路面信息设置权重a。其中,该权重a的值可以随着信息更新周期T内的时长t变化,例如,在信息更新周期T内随着时长t的增加,权重a的值随之降低。图4示例性的示出了权重a的值随时长t变化的示意图。
车辆100通过传感器采集到控制相关信息B后,可以根据控制相关信息B识别车辆100当前所处的路面,也就是获得第二路面信息。其中,该第二路面信息用于表征车辆100根据控制相关信息B确定的路面信息。示例性的,车辆100可以通过方向盘、侧向加速度及横摆角速度等信息得到车辆100的横向运动状态,其中,横向运动状态可以包括转弯、变道等状态。车辆100也可以根据车轮速度、车速、纵向加速度获得车辆100的纵向运动状态,其中,纵向运动状态可以包括加速、减速、紧急制动等状态。接着,综合车辆100的横向运动状态及纵向运动状态,可以识别车辆100当前所处的路面;例如,可以结合车轮速度的波动规律,识别特殊路面,例如,搓衣板路面。又例如,还可以结合加速度信息,识别越野路面、粗糙路面及砾石路面等。再例如,还可以根据主缸与轮缸压力识别对接路面、对开路面及棋盘路面等。
可以理解的是,上述通过传感器采集控制相关信息B的方式是一种被动检测的方式,信息的获取和处理需要一定的时间,因此,第二路面信息具有滞后性。在具体实现时,也可以给第二路面信息设置权重b。
车辆100通过摄像头采集到控制相关信息C后,可以根据控制相关信息C识别车辆100当前所处的路面,也就是获得第三路面信息。其中,该第三路面信息用于表征车辆100根据控制相关信息C确定的路面信息。示例性的,车辆100可以通过摄像头采集车辆100周边的图像信息,并可以将采集到的图像信息输入预置的神经网络模型进行识别,用于确定车辆100当前所处的路面。其中,上述预置的神经网络模型可以预先训练,例如,可以预先采集大量的路面数据集对神经网络模型进行训练,该神经网络模型可以用于根据车辆周边环境确定车辆所处路面。
可选地,在车辆100进行图像识别过程中,还可以结合天气信息及BCM的反馈信息,对图像识别结果进行修正,也就是对第三路面信息进行修正,用于获得较精确的第三路面信息。在具体实现时,由于车辆100通过摄像头拍摄得到的图像受天气影响较大,因此,可以根据天气信息给第三路面信息设置权重c。示例性的,表2为天气类型与权重c的值之间的映射关系。
表2
此外,由于夜晚视线较差,在夜晚拍摄的图像可信度较低,也就是说,车辆100通过摄像头拍摄得到的图像也会受时间影响。因此,还可以根据时间设置时间系数d。例如,在白天,时间系数d的值较高,在夜晚,时间系数d的值较低。
进一步地,当车辆100得到上述第一路面信息、第二路面信息及第三路面信息后,可以综合上述第一路面信息、第二路面信息、第三路面信息、以及各路面信息对应的权重系数确定路况场景。其中,该路况场景可以是车辆100当前所处的路面,例如,该路况场景可以包括:冰面、雪面、湿滑路面、水泥路面、沥青路面等。
可选地,在车辆100确定当前的路况场景后,还可以向用户(例如,驾驶员)发送第一信息提示,其中,该第一信息提示用于向驾驶员提示已识别的路况场景。例如,可以在车辆100的仪表盘上通过文字和/或符号的方式显示第一信息提示,用于提示驾驶员已识别的路况场景。又例如,也可以通过语音提示的方式发送第一信息提示,用于提示驾驶员已识别的路况场景。
步骤203,基于路况场景确定与路况场景对应的预置制动控制参数集。
具体地,当车辆100确定当前的路况场景后,可以基于当前的路况场景确定与当前的路况场景对应的预置制动控制参数集,由此可以使得车辆100能根据确定的预置制动控制参数集进行配置。
可以理解的是,车辆通常都行驶在较好的路面上,例如,城市的街道、高架、高速公路等。多数路况场景下路面附着相对较好,因此,车辆100可以预先配置与上述较好路面对应的预置制动控制参数集,当车辆100在行驶过程中,确定新的路况场景后,可以更新为与新的路况场景对应的预置制动控制参数集。
步骤204,基于确定的预置制动控制参数集进行配置。
具体地,配置的过程可以是车辆100根据确定的预置制动控制参数集中的参数进行配置,使得车辆100中的制动系统的多项功能发挥较优的性能,例如,制动系统的功能可以包括:防抱死制动系统(antilock brake system,ABS)、车身电子稳定性控制系统(electronic stability controller,ESC)、牵引力控制系统(traction control system,TCS)及附加功能(value added function,VAF)等。可以理解的是,本步骤204中的配置也可以理解为配置更新,例如,在初始状态(例如,用户启动车辆时)下,车辆100具有初始的预置制动控制参数集的配置,当车辆100在行驶过程中根据当前路面确定新的路况场景,进而确定新的预置制动控制参数集后,可以根据新的预置制动控制参数集进行配置更新。
在具体实现时,可以通过以下两种方式对车辆100的预置制动控制参数集进行配置。
方式1,在用户进行制动操作前进行配置
具体地,当车辆100确定与当前路况场景对应的预置制动控制参数集后,立即根据确定的预置制动控制参数集对车辆100的制动系统的各项参数进行配置,从而可以使得车辆100在监测到用户的制动操作(例如,踩刹车)后,可以立即根据已配置的制动控制参数集执行制动控制,由此可以使得预置制动控制参数集快速切换,进而可以使得车辆能尽快根据切换后的预置制动控制参数集执行制动控制,提高制动控制的执行效率。
可选地,在车辆100进行预置制动控制参数集的配置之后,还可以发送第二信息提示,其中,该第二信息提示用于向用户提示根据当前路况场景确定的预置制动控制参数集的配置已生效,车辆根据用户的制动操作采取的制动控制是根据上述已生效的配置进行的。第二信息提示的发送方式具体可以参考上述第一信息提示的发送方式,在此不再赘述。
方式2,在用户进行制动操作后进行配置
具体地,当车辆100确定与当前路况场景对应的预置制动控制参数集后,由于用户并不马上执行制动操作,在一些实际场景中,例如,在第一时间段的行驶过程中,车辆100在识别到第一时间段的路况场景后,用户都没有采取制动措施,而在第二时间段的行驶过程中,路况场景发生了变化,此时,用户仍没有采取制动措施,若车辆100在确定与当前路况场景对应的预置制动控制参数集后执行配置操作,有可能会使得车辆100频繁的进行预置制动控制参数集的切换,增加了车辆100的处理负担。由此可见,车辆100可以不根据当前确定的预置制动控制参数集对车辆100的制动系统的各项参数进行配置,由于车辆100可以在行驶过程中根据采集到的控制相关信息更新当前的路况场景,因此,车辆100可以在检测到用户的制动操作后,基于当前确定的预置制动控制参数集进行配置,从而可以使得车辆100在进行预置制动控制参数集的配置后进行制动控制,进而可以发挥车辆100的制动系统较优的制动性能,同时也能降低车辆的处理负担。
图5为均一低附着路况场景下的制动效果示意图,也就是车辆在低附着路面行驶时的制动效果示意图。如图5所示,上方图表为现有技术的制动效果示意曲线,可以理解的是,当驾驶员踩下制动踏板后,ABS功能介入。而控制器是根据车轮抱死情况分别路面的,因此,只有车轮先趋于抱死,控制器才能识别当前路面,在这种场景下,该方式是被动式的。为了保证鲁棒性,一般要经过多个周期的确认,所以,ABS首个循环的抱死率较大,经过几个周期得到轮速反馈后,才会进入低附目标滑移率进行压力调节。下方图表为本申请实施例的制动效果示意曲线。基于本申请的构想,能够提前获取路面信息,在已知路面的情况下,可以获取当面路面的抱死压力,因此,通过配置对应路面的制动控制参数集,控制四个轮岗压力在抱死压力附近,压力调节波动较小,由此能够实现最大限度的利用路面附着,从而可以减少制动距离。
上文通过图2-图5对车辆在均一路面行驶时进行制动的场景进行了说明。接着,通过图6对车辆在均一路面行驶时进行加速的场景进行说明。可以理解的是,加速场景与制动场景配置的参数集可以是不同的,例如,制动场景下配置的参数集为制动控制参数集,加速场景下配置的参数集可以为驱动控制参数集,但并不构成对本申请实施例的限定。其中,驱动控制参数集也可以和路况场景一一对应,驱动控制参数集的配置方式可以具体参考制动控制参数集的配置方式,在此不再赘述。图6为均一低附着场景下的加速效果示意图。如图6所示,上方图表为现有技术的加速效果示意曲线,可以理解的是,当驾驶员踩下加速踏板后,驱动轮打滑,TCS功能介入。由于控制器是根据车轮打滑情况分辨路面,因此,只有车轮先打滑,控制器才能识别当前路面,在这种场景下,该方式是被动式的。为了保证鲁棒性,要经过多个周期的确认,所以TCS首个循环的打滑率较大,经过多个周期得到轮速反馈后,才会进入低附目标滑移 率进行TCS控制。下方图表为本申请实施例的加速效果示意曲线。基于本申请的构想,能够提前获取路面信息,在已知路面的情况下,可以获取当面路面的附着情况,根据当前路面的附着系数,可以得到当面路面刚好要打滑又不打滑时的驱动力。通过配置对应路面的驱动控制参数集,控制驱动力在满足上述理想打滑情况下的目标值,由此可以既满足车轮不打滑,又能提高附着利用率,从而能够提高驱动性能。
接着,下文进一步通过图7和图8,对车辆在对接路面行驶的场景进行说明。其中,对接路面指的是前后两侧车轮所接触的路面附着差异较大的路面。现以前侧车轮在水泥路面,后侧车轮在冰面为例进行示例性说明,也就是说,该场景可以是车辆100从冰面驶向水泥路面的场景。
在本申请实施例中,车辆100从冰面行驶到水泥路面的过程中,可以提前获取水泥路面的路面信息,从而可以提前确定水泥路面的预置制动控制参数集,并在进入到水泥路面时,及时进行水泥路面的预置制动控制参数集的配置,由此使得车辆100在进入水泥路面后能及时根据水泥路面的路况场景进行制动控制,进而可以提高车辆的制动性能及制动效率。
如图7所示为本申请提供的车辆控制方法另一个实施例的流程示意图,具体包括以下步骤:
步骤701,监测到冰面到水泥路面的对接路面。
具体地,车辆100在冰面上行驶时,可以获取周边的环境信息,例如,可以通过摄像头进行实时监测。此外,车辆100还可以通过采集到的周边环境信息确定即将从冰面行驶到水泥路面。示例性的,车辆100可以通过摄像头拍摄到的图像进行识别,由此可以识别到车辆100即将从当前的冰面进入水泥路面。
步骤702,响应于检测到的用户的制动操作,确定水泥路面的预置制动控制参数集。
具体地,车辆100在冰面上行驶时,可以配置与冰面对应的预置制动控制参数集。为说明方便,下文将与冰面对应的预置制动控制参数集称为“第一参数集”。此时,用户可以进行制动操作,例如,踩下刹车踏板。响应于检测到的用户(例如,驾驶员)的制动操作,车辆100可以使用已配置的第一参数集进行制动控制,并可以确定与水泥路面对应的预置制动控制参数集。为说明方便,下文将与水泥路面对应的预置制动控制参数集称为“第二参数集”。此时,车辆100可以缓存该第二参数集,由此可以使得车辆100在进入水泥路面后配置该第二参数集。
步骤703,响应于监测到的车辆100进入水泥路面,将当前配置的第一参数集切换为第二参数集。
具体地,当车辆100行驶到冰面与水泥路面的对接点时,车辆100可以确定进入水泥路面。例如,当车辆100的前轮到达冰面与水泥路面的对接点时,可以认为车辆100行驶到冰面与水泥路面的对接点。在具体实现时,车辆100可以通过摄像头拍摄到的图像进行识别,由此可以识别到车辆100进入到水泥路面。响应于监测到的车辆100进入水泥路面,由于路面发生了变化,路面的附着系数随之变化,此时,车辆100可以将当前配置的第一参数集切换为第二参数集,也就是说,车辆100在冰面上行驶是配置的是第一参数集,而车辆100行驶到冰面与水泥路面的对接点时,可以配置为 第二参数集,由此可以使得车辆100使用第二参数集进行制动控制,例如,可以将车辆100的前轮按照第二参考集的配置进行制动,从而使得车辆100的制动性能匹配水泥路面,进而可以较好的发挥车辆100的制动性能,缩短制动距离。图8为本申请实施例的制动效果示意图。如图8所示,上方图表为现有技术的制动效果示意曲线,下方图表为本申请的制动效果示意曲线。由两个图表的比较可知,当车辆100行驶到冰面与水泥路面的对接点P时,现有技术需要经过几个周期才能根据滑移率确定当前路面已变化,由此会延误车辆100使用较优的制动方案进行制动,使得制动距离变大,给车辆带来安全隐患。而在本申请中,当车辆100行驶到冰面与水泥路面的对接点P时,可以立即将当前的制动控制参数集切换至与水泥路面对应的制动控制参数集,也就是切换至第二参数集,由此可以使得车辆100发挥较优的制动性能,缩短制动距离,进而可以提高车辆的安全。
需要说明的是,上述示例仅示例性的示出了对接路面为冰面及水泥路面的场景,但并不构成对本申请实施例的限定,在一些实施例中,也可以是其他对接路面,例如,对接路面可以是冰面及柏油路面、或者对接路面可以是水泥路面及柏油路面、又或者对接路面可以是砾石路面及水泥路面等。
接着,通过图9-图11对车辆在对开路面行驶的场景进行进一步说明。其中,对开路面指的是左右两侧车轮所接触的路面附着差异较大的路面,也可以称之为分离路面。图9为本申请实施例的对开路面的应用场景示意图,如图9所示,车辆100的左侧车轮在冰面上,右侧车轮在沥青路面上。车辆100在制动时,由于冰面与左侧车轮间的摩擦力较小,而沥青路面与右侧车轮间的摩擦力较大,车辆100瞬间产生一个顺时针的横摆力矩。当左右车轮压力差异越大时,产生的横摆力矩的就越大。在整车层面会产生一个较大的横摆角速度,如果驾驶员反应不及,车辆100会朝一个方向偏离,极端情况车辆100瞬间会掉头,极其危险。图10为现有技术的制动效果示意图。如图10所示,由于车辆制动后,左右轮差异较大,车辆会产生一个较大的横摆角速度,由此会给驾驶带来安全隐患。图11为本申请的制动效果示意图。如图11所示,当提前识别到对接路面的情况后,通过限制左右轮压力差增加的斜率,由此可以限制横摆力矩的斜率,从而可以减小车辆上产生的横摆角速度,进而可以给驾驶员足够的反应时间,维持车辆的稳定。
上文通过图7-图11对车辆在对接路面及对开路面行驶时进行制动的场景进行了说明。接着,通过图12对车辆在对接路面行驶时进行加速的场景进行说明。现以从低附路面到高附路面为例进行说明,例如,可以是从冰面驶向沥青路面。可以理解的是,上述对接路面的驱动控制参数集的配置方式具体可以参考上述制动控制参数集的配置方式,在此不再赘述。如图12所示,上方图表为现有技术的驱动效果示意曲线,当前轮到达对接点Q时,车轮由低附到高附,以低附的驱动力进入高附路面,车轮的滑移率较小,由此导致控制器本身无法确认是在低附路面还是在高附路面,因此,只能少量增加驱动力,并且通过滑移率的大小判断是否已进入高附路面。如果增加的驱动力较大,车轮还处于低附路面,下一步还得减小驱动力,反而会导致TCS的力矩波动较大。如果增加的驱动力较小,车轮已处于高附路面,则需要较长的时间才能确认车轮已处于高附路面,由此会导致滞后性严重,从而会损失部分驱动性能。下方图表为本 申请的驱动效果示意曲线,在本申请实施例中,通过提前获取路面信息,能够提前获取对接点信息,在识别到高附路面后,可以通过配置对接路面的驱动控制参数集,用于配置对接路面TCS所需增加的力矩,由此能够实现最大限度的利用路面附着,从而能够提高驱动性能。
图13为本申请车辆控制装置一个实施例的结构示意图,如图13所示,上述车辆控制装置1300可以包括:采集模块1310、确定模块1320及配置模块1330;其中,
采集模块1310,用于采集控制相关信息;
确定模块1320,用于基于控制相关信息确定路况场景;基于路况场景确定与路况场景对应的预置制动控制参数集;
配置模块1330,用于基于确定的预置制动控制参数集进行配置。
其中一种可能的实现方式中,上述车辆控制装置1300还包括:
信息提示模块,用于基于路况场景发送第一信息提示,其中,第一信息提示用于向用户提示已识别的路况场景。
其中一种可能的实现方式中,上述信息提示模块还用于发送第二信息提示,其中,第二信息提示用于向用户提示根据路况场景确定的预置制动控制参数集的配置已生效。
其中一种可能的实现方式中,上述确定模块1320具体用于
获取多个渠道的控制相关信息,其中,每个渠道包括与每个渠道对应的控制相关信息;
基于多个渠道的控制相关信息确定路况场景。
其中一种可能的实现方式中,控制相关信息包括天气信息、交通信息、路面信息、车身内部信息及车辆信息中的一种或多种。
其中一种可能的实现方式中,上述配置模块1330具体用于响应于检测到的用户的制动操作,基于确定的预置制动控制参数集进行配置;
上述车辆控制装置1300还包括:
制动模块,用于基于已配置的预置制动控制参数集执行制动控制。
其中一种可能的实现方式中,上述制动模块还可以用于响应于检测到的用户的制动操作,基于已配置的预置制动控制参数集执行制动控制。
其中一种可能的实现方式中,上述制动模块还可以用于在车辆在第一路面上行驶时,确定车辆即将从第一路面进入到第二路面;
响应于检测到的用户的制动操作,基于第一参数集执行制动控制;其中,第一参数集为车辆在所述第一路面上行驶时配置的预置制动控制参数集;
确定第二参数集,其中,第二参数集为车辆在第二路面上行驶时配置的预置制动控制参数集;
响应于监测到的车辆行驶到第一路面与第二路面的对接点,从第一参数集切换至第二参数集;
基于第二参数集执行制动控制。
其中一种可能的实现方式中,上述配置模块1330还可以用于
基于路况场景确定与路况场景对应的预置驱动控制参数集;
基于确定的预置驱动控制参数集进行配置。
其中一种可能的实现方式中,上述车辆控制装置1300还包括:
驱动模块,用于响应于检测到的用户的驱动操作,基于已配置的预置驱动控制参数集执行驱动控制。
其中一种可能的实现方式中,上述驱动模块还用于在车辆在第一路面上行驶时,确定车辆即将从第一路面进入到第二路面;
响应于检测到的用户的驱动操作,基于第一参数集执行制动控制;其中,第一参数集为车辆在第一路面上行驶时配置的预置驱动控制参数集;
确定第二参数集,其中,第二参数集为车辆在第二路面上行驶时配置的预置驱动控制参数集;
响应于监测到的车辆行驶到第一路面与第二路面的对接点,从第一参数集切换至第二参数集;
基于第二参数集执行驱动控制。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种车辆控制方法,应用于车辆,其特征在于,所述方法包括:
    采集控制相关信息;
    基于所述控制相关信息确定路况场景;
    基于所述路况场景确定与所述路况场景对应的预置制动控制参数集;
    基于所述确定的预置制动控制参数集进行配置。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述控制相关信息确定路况场景之后,所述方法还包括:
    基于所述路况场景发送第一信息提示,其中,所述第一信息提示用于向用户提示已识别的路况场景。
  3. 根据权利要求1或2所述的方法,其特征在于,所述基于所述确定的预置制动控制参数集进行配置之后,所述方法还包括:
    发送第二信息提示,其中,所述第二信息提示用于向用户提示根据所述路况场景确定的预置制动控制参数集的配置已生效。
  4. 根据权利要求1所述的方法,其特征在于,所述基于所述控制相关信息确定路况场景包括:
    获取多个渠道的控制相关信息,其中,每个渠道包括与所述每个渠道对应的控制相关信息;
    基于所述多个渠道的控制相关信息确定路况场景。
  5. 根据权利要求4所述的方法,其特征在于,所述控制相关信息包括天气信息、交通信息、路面信息、车身内部信息及车辆信息中的一种或多种。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述基于所述确定的预置制动控制参数集进行配置包括:
    响应于检测到的用户的制动操作,基于所述确定的预置制动控制参数集进行配置;
    所述基于所述确定的预置制动控制参数集进行配置之后,所述方法还包括:
    基于所述已配置的预置制动控制参数集执行制动控制。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述基于所述确定的预置制动控制参数集进行配置之后,所述方法还包括:
    响应于检测到的用户的制动操作,基于所述已配置的预置制动控制参数集执行制动控制。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述车辆在第一路面上行驶,所述方法还包括:
    确定所述车辆即将从所述第一路面进入到第二路面;
    响应于检测到的用户的制动操作,基于第一参数集执行制动控制;其中,所述第一参数集为所述车辆在所述第一路面上行驶时配置的预置制动控制参数集;
    确定第二参数集,其中,所述第二参数集为所述车辆在所述第二路面上行驶时配置的预置制动控制参数集;
    响应于监测到的所述车辆行驶到所述第一路面与所述第二路面的对接点,从所述第一参数集切换至所述第二参数集;
    基于所述第二参数集执行制动控制。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于所述路况场景确定与所述路况场景对应的预置驱动控制参数集;
    基于所述确定的预置驱动控制参数集进行配置。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    响应于检测到的用户的驱动操作,基于所述已配置的预置驱动控制参数集执行驱动控制。
  11. 根据权利要求9或10所述的方法,其特征在于,所述车辆在第一路面上行驶,所述方法还包括:
    确定所述车辆即将从所述第一路面进入到第二路面;
    响应于检测到的用户的驱动操作,基于第一参数集执行制动控制;其中,所述第一参数集为所述车辆在所述第一路面上行驶时配置的预置驱动控制参数集;
    确定第二参数集,其中,所述第二参数集为所述车辆在所述第二路面上行驶时配置的预置驱动控制参数集;
    响应于监测到的所述车辆行驶到所述第一路面与所述第二路面的对接点,从所述第一参数集切换至所述第二参数集;
    基于所述第二参数集执行驱动控制。
  12. 一种车辆控制装置,其特征在于,包括:
    采集模块,用于采集控制相关信息;
    确定模块,用于基于所述控制相关信息确定路况场景;基于所述路况场景确定与所述路况场景对应的预置制动控制参数集;
    配置模块,用于基于所述确定的预置制动控制参数集进行配置。
  13. 一种车辆,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序;所述处理器用于运行所述计算机程序,实现如权利要求1-11任一所述的车辆控制方法。
  14. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在所述车辆上运行时,使得所述车辆执行如权利要求1-11中任一项所述的车辆控制方法。
PCT/CN2023/093428 2022-07-30 2023-05-11 车辆控制方法、装置、车辆及存储介质 WO2024027262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210911511.3A CN117508111A (zh) 2022-07-30 2022-07-30 车辆控制方法、装置、车辆及存储介质
CN202210911511.3 2022-07-30

Publications (1)

Publication Number Publication Date
WO2024027262A1 true WO2024027262A1 (zh) 2024-02-08

Family

ID=89755525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093428 WO2024027262A1 (zh) 2022-07-30 2023-05-11 车辆控制方法、装置、车辆及存储介质

Country Status (2)

Country Link
CN (1) CN117508111A (zh)
WO (1) WO2024027262A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069993A1 (en) * 2007-09-06 2009-03-12 Toyota Jidosha Kabushiki Kaisha Running road determination device, vehicle running control apparatus and vehicle running control method
US20190031161A1 (en) * 2017-07-28 2019-01-31 Hyundai Mobis Co., Ltd. Emergency braking preparation apparatus for vehicle
CN110316167A (zh) * 2018-03-28 2019-10-11 株式会社斯巴鲁 车辆的控制装置及车辆的控制方法
CN111137263A (zh) * 2019-12-26 2020-05-12 的卢技术有限公司 一种车辆制动稳定控制方法及系统
CN113479177A (zh) * 2021-07-07 2021-10-08 的卢技术有限公司 车辆制动控制方法、系统、计算机设备和存储介质
CN114194155A (zh) * 2021-12-29 2022-03-18 阿波罗智联(北京)科技有限公司 车辆控制方法及装置、设备、介质和产品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069993A1 (en) * 2007-09-06 2009-03-12 Toyota Jidosha Kabushiki Kaisha Running road determination device, vehicle running control apparatus and vehicle running control method
US20190031161A1 (en) * 2017-07-28 2019-01-31 Hyundai Mobis Co., Ltd. Emergency braking preparation apparatus for vehicle
CN110316167A (zh) * 2018-03-28 2019-10-11 株式会社斯巴鲁 车辆的控制装置及车辆的控制方法
CN111137263A (zh) * 2019-12-26 2020-05-12 的卢技术有限公司 一种车辆制动稳定控制方法及系统
CN113479177A (zh) * 2021-07-07 2021-10-08 的卢技术有限公司 车辆制动控制方法、系统、计算机设备和存储介质
CN114194155A (zh) * 2021-12-29 2022-03-18 阿波罗智联(北京)科技有限公司 车辆控制方法及装置、设备、介质和产品

Also Published As

Publication number Publication date
CN117508111A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2019129091A1 (zh) 一种车辆控制方法及装置
CN107415945B (zh) 用于评估车道换道的自动驱动系统及其使用方法
JP6292200B2 (ja) 車両の自動減速制御装置
US20150336587A1 (en) Driving assist device
WO2023284787A1 (zh) 爬行控制方法、装置、车辆及存储介质
US8483925B2 (en) Device for determining a driving state and method for the driving-state-dependent operation of a combined vehicle brake system
US20210009095A1 (en) System and method for operating redundancy braking in case of breakdown of main brake for autonomous vehicle
US11703875B2 (en) Braking control behaviors for autonomous vehicles
US10173674B2 (en) Traction based systems and methods
WO2018233265A1 (zh) 车辆控制方法及系统
CN107021100B (zh) 用于上坡速度辅助的系统和方法
JP7081423B2 (ja) 情報処理システム
WO2019024402A1 (zh) 复合制动方法、装置和自适应巡航控制器
US20180362039A1 (en) Method for adaptively controlling a vehicle speed in a vehicle, and speed control system for carrying out the method
CN111791892B (zh) 智能车辆控制方法、装置、车辆以及存储介质
BRPI0808303A2 (pt) Dispositivo e método de ajuste de direção de um veículo automotor
JP6170348B2 (ja) 車両の回生制動制御装置
WO2024027262A1 (zh) 车辆控制方法、装置、车辆及存储介质
CN116674558A (zh) 一种确定全地形驾驶模式的方法、车辆和存储介质
JP5169539B2 (ja) 降坂路走行速度制御装置
CN111433100B (zh) 路面状态判定方法以及路面状态判定装置
JP2021142910A (ja) 車両制御装置
WO2023102731A1 (zh) 制动控制方法及相关装置
CN114670648B (zh) 电动汽车能量回收方法及电子设备
CN115140061B (zh) 附着系数确定方法、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848973

Country of ref document: EP

Kind code of ref document: A1