WO2023284491A1 - 硅酸盐材料zeo-2和硅酸盐分子筛zeo-3,其合成方法及用途 - Google Patents

硅酸盐材料zeo-2和硅酸盐分子筛zeo-3,其合成方法及用途 Download PDF

Info

Publication number
WO2023284491A1
WO2023284491A1 PCT/CN2022/099805 CN2022099805W WO2023284491A1 WO 2023284491 A1 WO2023284491 A1 WO 2023284491A1 CN 2022099805 W CN2022099805 W CN 2022099805W WO 2023284491 A1 WO2023284491 A1 WO 2023284491A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
zeo
silicate
silicate material
alkyl
Prior art date
Application number
PCT/CN2022/099805
Other languages
English (en)
French (fr)
Inventor
陈飞剑
黎建
高子豪
林清芳
林聪�
Original Assignee
安徽泽欧新材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽泽欧新材料技术有限公司 filed Critical 安徽泽欧新材料技术有限公司
Priority to EP22841131.0A priority Critical patent/EP4371939A1/en
Publication of WO2023284491A1 publication Critical patent/WO2023284491A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/86Borosilicates; Aluminoborosilicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the present invention relates to the technical field of inorganic synthesis and its chemical application, specifically a new type of one-dimensional silicate material ZEO-2 and a three-dimensional silicate molecular sieve ZEO-3 obtained by roasting it, and also relates to their synthesis Methods and uses.
  • microporous silicate materials are widely used in the fields of catalysis and adsorption separation.
  • Microporous silicate materials have high specific surface area, smooth pore structure, and excellent thermal stability, so they are good catalytic materials, catalyst supports, or adsorption and separation materials.
  • Crystalline microporous silicate materials are also called zeolite molecular sieves.
  • Their basic framework structure is composed of TO 4 (SiO 4 , AlO 4 , etc.) units.
  • TO 4 shares oxygen atoms in the form of tetrahedrons.
  • the charge balance of AlO 4 is maintained by cations such as H + , Na + , and K + in the pores.
  • zeolite molecular sieve structure there are abundant pore systems with certain pore diameters, and these pore channels are interlaced to form different three-dimensional network structures.
  • microporous zeolite molecular sieves can be divided into small-pore, medium-pore, large-pore and ultra-large-pore molecular sieves, corresponding to the number of window rings with less than 8-membered rings, less than 10-membered rings, less than 12-membered rings and more than 12-membered rings. .
  • zeolite molecular sieves not only have good catalytic activity, good shape selectivity and good selective adsorption performance for various organic reactions; on the other hand, zeolite molecular sieve materials with different pore structure The differences in the materials themselves lead to significant differences in the performance of catalysis and adsorption separation, as well as in the basic physical parameters used to characterize the materials, such as morphology, specific surface area, pore size distribution, and pore volume.
  • the pore size of molecular sieve materials successfully applied in industry is usually below 1nm, which greatly limits the size and shape of substrate molecules in the process of adsorption, separation and catalysis.
  • the development and acquisition of stable ultra-large-pore molecular sieves with a diameter of 1nm to 2nm and a pore ring number greater than 12-membered rings has great application value in the fields of petrochemistry, fine chemicals, and life sciences.
  • a zeolite molecular sieve with a specific structure needs to be further distinguished by powder X-ray diffraction, because different crystal structures make different molecular sieves have different pore structures, and completely different diffraction patterns will be obtained in the powder X-ray diffraction test.
  • a type zeolite molecular sieve referring to US2882243A
  • Y type zeolite molecular sieve referring to US3130007A
  • ZSM-11 zeolite molecular sieve referring to US3709979A
  • ZSM-12 zeolite molecular sieve referring to US3832449A
  • ZSM-23 zeolite molecular sieve See US4076842A
  • ZSM-35 zeolite molecular sieve see US4016245A
  • MCM-42 zeolite molecular sieve see US4954325A
  • silicate zeolite molecular sieve The classic development of silicate zeolite molecular sieve is to mix silicon source, heteroatoms (Al, B, Ti, Sn, Ge, etc.), organic template agent, water and mineralizer to crystallize at high temperature, and then roast at high temperature to remove the organic template agent. owned.
  • zeolite molecular sieve synthesis technology using known silicate materials as precursors and obtaining microporous silicate zeolite molecular sieves through post-treatment has become another important path for the development of new structural molecular sieve materials (see Chem.Soc.Rev ., 2015, 44, 7177-7206; CN105728034A).
  • the precursors of microporous silicate zeolite molecular sieves that can be used to synthesize new structures are all two-dimensional layered structures, which are characterized by hydrogen bonds or van der Waals interactions between layers but not tightly combined, showing structural diversity and plasticity. , which can be used for post-processing and modification of the structure, such as swelling, pillaring, exfoliation, or silicon insertion for hole expansion (see Chem. Rev., 2014, 114, 4807-4837).
  • the preparation of layered silicate precursors can be achieved by direct synthesis by hydrothermal method or post-treatment of three-dimensional silicate zeolite materials (mainly silicon germanate zeolites).
  • microporous silicate zeolite molecular sieves from layered silicate precursors.
  • One method is to roast the layered precursor, remove the organic template agent, dehydrate and condense the interlayer terminal silanol to form a three-dimensional structure of zeolite molecular sieve materials, such as MWW and FER zeolites, which can be calcined respectively by their layered precursor MCM-22P and PREFER directly synthesized (see US4954325A; Micro. Mater. 1996, 6, 259-271).
  • Another method is to insert silicon to expand the pores, that is, to use organosilane reagents as bridging groups to insert them into the interlayer of layered silicate precursor in an orderly and controllable way, which increases the interlayer distance of the original laminate. And the laminates are connected, the organic components in which can be removed by subsequent firing.
  • This method not only realizes the transition from a two-dimensional layered structure to a three-dimensional microporous structure, but also improves the stability and crystallinity of the molecular sieve framework structure.
  • Multiple choices of organosilane reagents can further improve the pore size, shape, and opening of the zeolite molecular sieve product.
  • silicate precursor which is a very important and unique method for the synthesis of microporous silicate zeolite molecular sieves, but the silicate precursors currently available for this type of method Limited to a small number of layered structures, there is no precedent for the synthesis of silicate zeolite molecular sieves through one-dimensional chain precursors.
  • the present invention provides a brand new one-dimensional chain structure silicate material ZEO-2, and a three-dimensional silicate molecular sieve ZEO-3 obtained by roasting ZEO-2.
  • They are two new types of silicate materials that are germanium-free, pure silicon, and have ultra-high thermal stability and hydrothermal stability. They not only have very important practical application value, but also have very important theoretical significance for enriching molecular sieve structure families. .
  • the chains of the one-dimensional chain silicate material ZEO-2 are separated by a template agent with a positive charge. There is no chemical bond between the template agent and the silicate chain, and the chain structure only has silicon hydroxyl groups and infinitely extended silicon oxygen. silicon bond. Although the organic matter exists in the ZEO-2 material, it does not form a bond or strongly interact with the main body of the ZEO-2 material, that is, the one-dimensional chain silicate.
  • the molecular sieve ZEO-3 obtained after roasting is a three-dimensional ultra-macroporous silicate molecular sieve material. The organic matter is completely removed during the roasting process, and the one-dimensional chain silicate structure is topologically condensed to form a three-dimensional molecular sieve.
  • the backbone of ZEO-3 has only infinitely extended silicon-oxygen-silicon bonds.
  • the one-dimensional chain structure silicate material ZEO-2 of the present invention has the powder X-ray diffraction characteristics shown in Table 1:
  • w, mw, m, s, vs represent the diffraction peak intensity, w is weak, mw is moderately weak, m is medium, s is strong, vs is very strong, which is known to those skilled in the art of. Generally speaking, w is less than 10, mw is 10-20, m is 20-40, s is 40-70, and vs is more than 70.
  • the three-dimensional ultra-macroporous silicate molecular sieve ZEO-3 of the present invention has the powder X-ray diffraction characteristics shown in Table 2:
  • w, mw, m, s, vs represent the diffraction peak intensity, w is weak, mw is moderately weak, m is medium, s is strong, vs is very strong, which is known to those skilled in the art of. Generally speaking, w is less than 10, mw is 10-20, m is 20-40, s is 40-70, and vs is more than 70.
  • the present invention also provides a preparation method of the above-mentioned one-dimensional silicate material ZEO-2 and three-dimensional ultra-large pore molecular sieve ZEO-3.
  • the synthesis method of silicate material ZEO-2 includes:
  • organic template has a tetrahedral spatial configuration represented by the following general formula:
  • R 1 is cyclohexyl
  • R 2 and R 3 are phenyl or cyclohexyl
  • R 4 is C 1-8 alkyl, preferably C 1-4 alkyl, more preferably C 1-2 alkyl
  • X is phosphorus or nitrogen, preferably phosphorus.
  • the synthesis method of the molecular sieve ZEO-3 includes: roasting the silicate material ZEO-2 of the present invention to remove the template agent and make the skeleton structure undergo topological condensation, thereby obtaining the three-dimensional ultra-large pore zeolite molecular sieve ZEO-3 of the present invention.
  • the present invention also provides a molecular sieve composition, which comprises the three-dimensional ultra-macroporous silicate molecular sieve ZEO-3 of the present invention and a binder.
  • the one-dimensional silicate material ZEO-2 of the present invention can be used as a silicon source or precursor in the synthesis of molecular sieves; the three-dimensional ultra-macroporous silicate molecular sieve ZEO-3 can be used as a catalyst or an adsorbent.
  • Fig. 1 is a powder X-ray diffraction pattern of the silicate material ZEO-2 of the present invention (the light source is Cu target K ⁇ ray).
  • Fig. 2 is a powder X-ray diffraction pattern of the silicate molecular sieve ZEO-3 of the present invention (the light source is Cu target K ⁇ ray).
  • Fig. 3 is a comparison of the relative intensity of the powder X-ray diffraction patterns of the silicate material ZEO-2 of the present invention and the silicate molecular sieve ZEO-3.
  • Fig. 4 is a scanning electron microscope image (SEM) of the silicate material ZEO-2 of the present invention.
  • Fig. 5 is a scanning electron micrograph (SEM) of the silicate molecular sieve ZEO-3 of the present invention.
  • Fig. 6 is a skeleton structure diagram of the silicate material ZEO-2 after removing the organic template.
  • Fig. 7 is a diagram of the channel structure of the ultra-large pore molecular sieve ZEO-3.
  • the crystal structure of the inorganic framework of the silicate material ZEO-2 of the present invention is shown in FIG. 6 .
  • the crystal structure of the silicate material ZEO-2 has a regular, long-range ordered, one-dimensional silica chain structure, and the chain structure extends infinitely along the c-axis direction.
  • FIG. 7 The crystal structure of the molecular sieve ZEO-3 of the present invention is shown in FIG. 7 . It can be seen from Fig. 7 that there are through 14-membered ring channels in both the (a+b) axis direction and the (a-b) axis direction of the ZEO-3 crystal structure. In addition, there are 16-membered ring channels in the c-axis direction of the ZEO-3 crystal structure. Therefore, the structure is described as a three-dimensional intersecting channel system of 16 ⁇ 14 ⁇ 14-membered rings.
  • the molecular sieve ZEO-3 of the present invention undergoes structural analysis and topology analysis.
  • the molecular sieve skeleton structure has 11 topologically independent T atoms, 20 topologically different edges (adjacent T atoms and lines composed of T atoms), 16 topologically different planes (planes made of T atoms), and 8 topologically different building blocks made of T atoms.
  • the skeleton structure of molecular sieve ZEO-3 has the topological properties (including coordination sequence and vertex symbol) of 11 topologically independent T atoms, and its topological characteristics are shown in Table 3:
  • T1 to T11 represent the 11 topologically different T atoms of the skeleton structure of the ultra-large pore molecular sieve ZEO-3 of the present invention
  • N1 to N12 represent the T atoms from the first layer to the twelfth layer of these T atoms coordination sequence. Due to the different order of naming of T atoms, the 11 topologically independent T atoms named in different orders may not correspond to the coordination sequences and vertex symbols of the order of T atoms in this table, but the structures belonging to the ZEO-3 topology all include And it only contains the coordination sequences and apex symbols of the 11 topologically independent T atoms in this table, and the coordination sequences and apex symbols correspond one-to-one.
  • the chemical composition of the ultra-macroporous silicate molecular sieve ZEO-3 of the present invention is SiO 2 .
  • the specific example of organic template includes but not limited to any one or several shown in Table 4:
  • the organic template is preferably selected from any one or more of template 1, template 6, template 8 and template 10, more preferably selected from any one or more of template 6 and template 10.
  • Step (2) can specifically include: placing the reaction gel under an infrared lamp or in an oven, after removing excess solvent, transferring the reaction gel to a stainless steel reaction kettle, under sealed conditions, React at a temperature of 80-240°C, preferably 120-220°C, for 1-60 days, preferably 2-45 days, for crystallization; the method may also include: (2) washing, centrifuging, and drying the crystallized product , to obtain the silicate material ZEO-2 product.
  • the silicon source can be selected from at least one of silicic acid, silica gel, silica sol, tetraalkyl silicate and water glass, preferably water glass, silica sol or tetraethylorthosilicate.
  • germanium or compounds containing germanium are not used.
  • the crystallization conditions in step (2) may include, for example: the crystallization temperature is 80 to 240°C, preferably 120 to 220°C, more preferably 140 to 210°C; the crystallization time is 1 to 60 days, preferably 2 to 50 days , more preferably 3 to 45 days.
  • washing, centrifuging and drying can be performed in any manner conventionally known in the art.
  • washing can be performed multiple times with water or ethanol; drying can be done by drying.
  • the calcining temperature is 300°C to 1000°C.
  • the binder in the molecular sieve composition of the present invention can be any binder known in the art that can be used in catalysts or adsorbents, as long as it does not adversely affect the molecular sieve ZEO-3 of the present invention.
  • the general synthesis process of the template agent is illustrated.
  • 28.04 g of tricyclohexylphosphine and 150 ml of acetonitrile were mixed in a 250 ml round bottom flask.
  • 21.29 g of methyl iodide was added dropwise to the mixed solution.
  • the system was reacted at room temperature under stirring for two days, and the reaction mixture was removed by rotary evaporation to obtain a crude product, which was recrystallized by ethanol to obtain 40.55 g of the product, with a yield of 96%.
  • the product was characterized by liquid NMR (CDCl3) and electrospray mass spectrometry, and confirmed to be the target compound.
  • the resulting product was dispersed in 400ml deionized water, and the pretreated 717 strong base anion exchange resin (manufacturer: Sinopharm Group) was used for column exchange to exchange the aqueous solution of template agent 6 obtained. Weigh an appropriate amount of this solution, calibrate it with 0.1mol/L hydrochloric acid solution, and use phenolphthalein as indicator. The calibrated structure confirmed the exchange efficiency of iodide salt to hydroxide reached 97%.
  • the general synthesis process of the template agent is described.
  • 28.04 g of tricyclohexylphosphine and 150 ml of acetonitrile were mixed in a 250 ml round bottom flask.
  • 12.20 g of 1,6-dibromohexane was added dropwise to the mixed liquid.
  • the system was refluxed for two days under stirring.
  • the solvent was removed from the reaction mixture by rotary evaporation to obtain a crude product, which was recrystallized from ethanol to obtain 38.23 g of the product with a yield of 95%.
  • the product was characterized by liquid NMR (D2O) and electrospray mass spectrometry, and confirmed to be the target compound.
  • the obtained product was dispersed in 400ml deionized water, and the pretreated 717 strong base anion exchange resin (manufacturer: Sinopharm Group) was used for column exchange to exchange the aqueous solution of template agent 10 obtained. Weigh an appropriate amount of this solution, calibrate it with 0.1mol/L hydrochloric acid solution, and use phenolphthalein as an indicator. The calibrated structure confirmed the exchange efficiency of iodide salt to hydroxide reached 96%.
  • the gel synthesized by molecular sieves is prepared.
  • the general steps are as follows: Weigh 6mmol of the template solution of Example 1 after exchange, and add 12mmol (2.500g) of Tetraethyl orthosilicate, stir overnight at room temperature to completely hydrolyze tetraethyl orthosilicate and volatilize the ethanol of the hydrolyzed product, place the mixed gel under an infrared lamp or an oven at 85°C to remove excess solvent.
  • the final reaction gel was transferred to a 30ml stainless steel reaction kettle with a polytetrafluoroethylene liner, and reacted at 190°C for 30 days under sealed conditions.
  • the product was washed twice with water and twice with ethanol, and dried for use.
  • the product was directly used for X-ray powder diffraction phase identification and confirmed to be ZEO-2.
  • EDS elemental analysis shows that it has silicon, phosphorus, oxygen and carbon elements.
  • Fourier transform infrared spectrum data show that there is Si-OH bond stretching vibration and this peak is a strong peak, indicating that ZEO-2 is a type of silicate material with silanol and has a lot of silanol.
  • Embodiment 7 structure analysis
  • the molecular sieve ZEO-2 of Examples 3-6 was subjected to a continuous rotation electron diffraction test (cRED), and the structural analysis results showed that the ZEO-2 molecular sieve structure has monoclinic symmetry, and is a C2/c space group.
  • the copper target ( Ka) as the light source of powder X-ray ( Figure 1) refinement obtained unit cell parameters are: ⁇ 115.19(9)°.
  • Topological analysis was performed using the crystallographic structure files (CIF files) obtained after cRED testing.
  • the topology analysis software is based on ToposPro5.3.0.2, and the analysis process and method are based on the operation manual given on the official website of the software (see ToposPro official website: https://topospro.com/software/).
  • the crystal structure analysis results of ZEO-3 show that the molecular sieve framework has 11 topologically independent T atoms, 20 topologically different edges, 16 topologically different faces, and 8 topologically different T atoms The building block of atoms.
  • the more specific topological features of the framework structure of ZEO-3 molecular sieve are shown in Table 3 above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种新型结构的一维硅酸盐材料ZEO-2及由ZEO-2焙烧得到的三维硅酸盐分子筛ZEO-3,它们的合成方法及用途,对该两种硅酸盐材料的X射线粉末衍射特征、晶体结构进行了表征。一维硅酸盐ZEO-2可通过简单的方法来合成。分子筛ZEO-3可通过焙烧热处理一维硅酸盐ZEO-2,使其拓扑缩合而成。ZEO-2可作为新型分子筛合成中的硅源或者前驱体使用。ZEO-3分子筛热稳定性好,可作为吸附剂或催化剂使用。

Description

硅酸盐材料ZEO-2和硅酸盐分子筛ZEO-3,其合成方法及用途 技术领域
本发明涉及无机合成及其化工应用技术领域,具体来说是一种新型结构的一维硅酸盐材料ZEO-2及由其焙烧得到的三维硅酸盐分子筛ZEO-3,还涉及它们的合成方法和用途。
背景技术
在工业上,微孔硅酸盐材料被广泛用于催化和吸附分离等领域。微孔硅酸盐材料具有较高的比表面积、畅通的孔道结构、优异的热稳定性,因此是良好的催化材料、催化剂载体或吸附分离材料。
结晶性的微孔硅酸盐材料也称为沸石分子筛,其基本骨架结构由TO 4(SiO 4,AlO 4等)单元组成,结构中TO 4是以四面体方式共享氧原子,骨架四面体如AlO 4的电荷平衡是通过孔道中的H +、Na +、K +等阳离子保持的。沸石分子筛结构中存在着丰富的、孔径一定的孔道体系,这些孔道相互交错,可以形成不同的三维网状结构。根据孔道大小,微孔沸石分子筛可以分为小孔、中孔、大孔和超大孔分子筛,对应分别具有8元环以下、10元环以下、12元环以下和大于12元环的窗口环数。一方面,正是由于上述孔道结构,沸石分子筛不但对多种有机反应具有良好的催化活性、良好的择形性和良好的选择性吸附性能;另一方面,不同孔道结构的沸石分子筛材料由于结构的差别导致材料本身在催化和吸附分离等性能方面有着重大差异,以及在用来表征材料的基本物性参数,如形貌、比表面积、孔径分布和孔体积等也存在着很大差异。
目前,工业中成功应用的分子筛材料,其孔道大小通常都处于1nm以下,这大大限制了吸附、分离、催化过程中底物分子的大小和形状。开发和获取稳定的、具有直径为1nm到2nm、孔道环数大于12元环的超大孔分子筛,对于石油化学、精细化工和生命科学等领域有着巨大的应用价值。
一个特定结构的沸石分子筛还需要通过粉末X射线衍射进一步加以区分,因为晶体结构的不同使得不同分子筛拥有不同的孔道结构,在粉末X射线衍射的测试中会得到完全不同的衍射花样。已有的分子筛,如A型沸石分子筛(参见US2882243A)、Y型沸石分子筛(参见US3130007A)、ZSM-11沸石分子筛(参见US3709979A)、ZSM-12沸石分子筛(参见US3832449A)、ZSM-23沸石分子筛(参见US4076842A)、 ZSM-35沸石分子筛(参见US4016245A)、MCM-42沸石分子筛(参见US4954325A),均具有各自特点的粉末X射线衍射图谱。
此外,不同结构的分子筛材料的独特性同样也表现在它们独特的拓扑学性质上。根据国际分子筛协会的定义和解释,对于特定的分子筛拓扑骨架,配位序列(Coordination Sequences)和顶点符号(Vertex Symbols)结合在一起时是唯一的,即它们可以用于明确区分不同的分子筛骨架结构(参见国际分子筛协会官网https://europe.iza-structure.org/IZA-SC/DatabaseHelp_Structures.html#CS)。
经典的硅酸盐沸石分子筛开发是将硅源、杂原子(Al、B、Ti、Sn、Ge等)、有机模板剂、水和矿化剂混合高温晶化,再高温焙烧脱去有机模板剂得到的。随着沸石分子筛合成技术的发展,以已知硅酸盐材料作为前驱体、通过后处理得到微孔硅酸盐沸石分子筛已经成为开发新型结构分子筛材料的另一重要路径(参见Chem.Soc.Rev.,2015,44,7177-7206;CN105728034A)。
目前可用于合成新型结构的微孔硅酸盐沸石分子筛的前驱体均为二维层状结构,其特点是层间具有氢键或范德华相互作用而结合不紧密,表现出结构的多样性及可塑性,可用于结构的后处理及修饰,如溶胀、柱撑、剥离或插硅扩孔(参见Chem.Rev.,2014,114,4807-4837)。层状硅酸盐前驱体的制备可通过水热法直接合成或三维硅酸盐沸石材料(主要是硅锗酸盐沸石)的后处理实现。
从层状硅酸盐前驱体出发获得微孔硅酸盐沸石分子筛的方法有两种。一种方法是将层状前驱体经过焙烧、除掉有机模板剂、层间末端硅羟基脱水缩合形成三维结构的沸石分子筛材料,如MWW和FER沸石可通过分别煅烧其层状前驱体MCM-22P和PREFER直接合成(参见US4954325A;Micro.Mater.1996,6,259-271)。另一种方法是插硅扩孔,即采用有机硅烷试剂为桥连基团,将其有序可控地插入层状硅酸盐前驱体的层间,这增大了原始层板的层间距并将层板连接起来,其中的有机组分可通过后续焙烧除去。这种方法不仅实现了二维层状到三维微孔结构的转变,提高了分子筛骨架结构的稳定性和结晶性,有机硅烷试剂的多种选择更可对沸石分子筛产物的孔道尺寸、形状、开放性和功能性进行调控,大大扩展了沸石分子筛的结构化学和在大分子参与的多相催化反应中的潜在应用(参见J.Am.Chem.Soc.,2008,130,8178-8187;Angew.Chem.Int.Ed.,2018,130,9659-9663)。
由此可见,从硅酸盐前驱体出发可实现结构与功能的设计,是一种非常重要且独特的微孔硅酸盐沸石分子筛合成方法,但目前可用于这类方法的硅酸盐前驱体仅限于 少量层状结构,还未有通过一维链状前驱体合成硅酸盐沸石分子筛的先例。
因此,开发新型的硅酸盐前驱体材料,尤其是一维链状结构的前驱体,并将其应用于新型沸石分子筛的开发,对于沸石分子筛领域的合成、结构与应用将具有重大的理论意义和重要的应用价值。
发明概述
在第一方面中,本发明提供了一种全新的一维链结构的硅酸盐材料ZEO-2,及由ZEO-2焙烧得到的三维硅酸盐分子筛ZEO-3。它们是两种无锗的、纯硅的、具有超高热稳定和水热稳定性的新型硅酸盐材料,不仅具有非常重要的现实应用价值,而且对丰富分子筛结构家族也具有非常重要的理论意义。
一维链状硅酸盐材料ZEO-2的链间由具有正电荷的模板剂隔开,模板剂和硅酸盐链之间并无化学键,链结构中仅具有硅羟基和无限延展的硅氧硅键。有机物虽然存在于ZEO-2材料中,但是与ZEO-2材料的主体,即一维链状硅酸盐,并无成键或强相互作用。经过焙烧后得到的分子筛ZEO-3则为三维超大孔硅酸盐分子筛材料,有机物在焙烧过程中被全部移除,一维链状硅酸盐结构拓扑缩合生成三维分子筛,其中少量无机物可通过水洗除去。ZEO-3的骨架仅具有无限延展的硅氧硅键。本发明的一维链结构硅酸盐材料ZEO-2具有表1所示的粉末X射线衍射特征:
表1
Figure PCTCN2022099805-appb-000001
在上述数据中,w、mw、m、s、vs代表衍射峰强度,w为弱,mw为中等偏弱,m为中等,s为强,vs为非常强,这是本领域技术人员所知晓的。一般而言,w为小于10,mw为10-20,m为20-40,s为40-70,vs为大于70。
本发明的三维超大孔结构硅酸盐分子筛ZEO-3具有表2所示的粉末X射线衍射特征:
表2
Figure PCTCN2022099805-appb-000002
在上述数据中,w、mw、m、s、vs代表衍射峰强度,w为弱,mw为中等偏弱,m为中等,s为强,vs为非常强,这是本领域技术人员所知晓的。一般而言,w为小于10,mw为10-20,m为20-40,s为40-70,vs为大于70。
在第二方面中,本发明还提供了上述一维硅酸盐材料ZEO-2和三维超大孔分子筛ZEO-3的制备方法。
硅酸盐材料ZEO-2的合成方法包括:
(1)将硅源、有机模板剂和水混合,得到混合物;
(2)对该混合物进行晶化,得到一维硅酸盐材料ZEO-2;
其中该有机模板剂具有以下通式所表示的四面体空间构型:
Figure PCTCN2022099805-appb-000003
其中,R 1为环己基;R 2、R 3为苯基或环己基;R 4为C 1-8烷基,优选C 1-4烷基,更优选C 1-2烷基;n取值3-8,优选5-7,更优选为6;X为磷或氮,优选为磷。
分子筛ZEO-3的合成方法包括:将本发明的硅酸盐材料ZEO-2进行焙烧,以去除模板剂,使骨架结构发生拓扑缩合,从而得到本发明的三维超大孔沸石分子筛ZEO-3。
在第三方面中,本发明还提供了一种分子筛组合物,其包含本发明的三维超大孔硅酸盐分子筛ZEO-3以及粘结剂。
在第四方面中,本发明的一维硅酸盐材料ZEO-2可作为分子筛合成中的硅源或者前驱体使用;三维超大孔硅酸盐分子筛ZEO-3可以用作催化剂或吸附剂。
附图说明
图1为本发明的硅酸盐材料ZEO-2的粉末X射线衍射图(光源为Cu靶Kα射线)。
图2为本发明的硅酸盐分子筛ZEO-3的粉末X射线衍射图(光源为Cu靶Kα射线)。
图3为本发明的硅酸盐材料ZEO-2和硅酸盐分子筛ZEO-3的粉末X射线衍射图的相对强度比较。
图4为本发明的硅酸盐材料ZEO-2的扫描电镜图(SEM)。
图5为本发明的硅酸盐分子筛ZEO-3的扫描电镜图(SEM)。
图6为硅酸盐材料ZEO-2除去有机模板剂后的骨架结构图。
图7为超大孔分子筛ZEO-3的孔道结构图。
具体实施方式
本发明的硅酸盐材料ZEO-2的无机骨架的晶体结构如图6所示。硅酸盐材料ZEO-2的晶体结构中具有规则的、长程有序的、一维的二氧化硅链状结构,该链状结构沿c轴方向无限延展。
本发明的分子筛ZEO-3的晶体结构如图7所示。从图7中可以看出,在ZEO-3 晶体结构的(a+b)轴方向和(a-b)轴方向上,均存在着贯通的14元环孔道。此外,在ZEO-3晶体结构的c轴方向上,还存在着16元环孔道。因此,该结构被描述为16×14×14元环的三维交叉孔道系统。
本发明的分子筛ZEO-3经过结构解析和拓扑学分析,该分子筛骨架结构具有11个拓扑学独立的T原子,20种拓扑学不同的棱(相邻的T原子和T原子组成的线),16种拓扑学不同的面(由T原子构成的平面),和8种拓扑学不同的、由T原子构成的构造单元。其中,分子筛ZEO-3的骨架结构具有的11个拓扑学独立的T原子的拓扑学性质(包括配位序列和顶点符号),其拓扑学特征如表3所示:
表3
  N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 VS
T1 4 11 18 27 34 54 81 113 140 159 181 224 4.5(2).5.5.5.6
T2 4 10 19 27 39 53 80 109 139 166 192 224 4.6.4.14.5.5
T3 4 8 15 26 39 55 73 102 135 169 194 227 4.4.4.5.4.14(5)
T4 4 10 19 28 38 54 77 111 140 166 191 224 4.6.4.14(5).5.5
T5 4 11 18 25 36 54 85 110 134 157 188 230 4.5(2).5.5.5.6
T6 4 12 17 25 38 58 80 113 135 156 192 231 5.5.5.6.5(2).14(3)
T7 4 8 15 26 38 54 76 105 131 165 196 228 4.4.4.5.4.14
T8 4 9 15 24 39 57 80 103 127 156 204 240 4.5.4.5.4.14
T9 4 12 15 22 40 62 84 107 122 152 200 250 5.5.5.5.5(2).16(9)
T10 4 12 19 28 36 52 82 115 144 162 186 218 5.5.5(2).14(6).6.6
T11 4 9 15 25 40 55 77 102 134 163 196 229 4.5.4.5.4.14(5)
从T1到T11,代表着本发明的超大孔分子筛ZEO-3的骨架结构的11个拓扑学不同的T原子;从N1到N12,代表着这些T原子的从第一层到第十二层的配位序列。由于T原子命名顺序不同,按照不同顺序命名的11个拓扑学独立的T原子可能无法与本表T原子顺序的配位序列和顶点符号一一对应,但是同属于ZEO-3拓扑的结构均包含且仅包含此表中11个拓扑学独立的T原子的配位序列和顶点符号,且配位序列和顶点符号一一对应。
本发明的硅酸盐ZEO-2的化学组成为SiO 2.2H 0.4·(OSDA) y,其中OSDA为有机模板剂,y=0.075-0.125。
本发明的超大孔硅酸盐分子筛ZEO-3的化学组成为SiO 2
本发明的硅酸盐材料ZEO-2的合成方法中,有机模板剂的具体例子包括但不仅限于表4所示的任意一种或几种:
表4
Figure PCTCN2022099805-appb-000004
有机模板剂优选选自模板剂1、模板剂6、模板剂8和模板剂10中的任意一种或几种,更优选选自模板剂6和模板剂10中的任意一种或几种。
本发明的硅酸盐材料ZEO-2的合成方法中,步骤(1)可以具体包括:在静态或动态搅拌下,将硅源、有机模板剂和水按比例混合均匀,得到的混合物形成反应凝胶,该反应凝胶的化学组成为rROH:SiO 2:wH 2O,其中R代表有机模板剂的正电荷基团;对应的r和w的取值区间分别为:r=0.05-5.0,w=1-100;步骤(2)可以具体包括:将该反应凝胶置于红外灯下或烘箱中,除去多余的溶剂后,将该反应凝胶转移至不锈钢反应釜中,在密封条件下,在80-240℃,优选120-220℃的温度反应1-60天,优选2-45 天,进行晶化;该方法还可以包括:(2)将晶化后的产物洗涤、离心、干燥后,得到硅酸盐材料ZEO-2产物。
在步骤(1)中,反应凝胶的化学组成rROH:SiO 2:wH 2O中,优选对应的r和w的取值区间分别为:r=0.1-2.0,w=1-30。
硅源可以选自硅酸、硅胶、硅溶胶、硅酸四烷基酯和水玻璃中的至少一种,优选为水玻璃、硅溶胶或正硅酸四乙酯。
在本发明的制备方法中,不使用锗或含锗化合物。
在制备反应凝胶前,可以将所有有机阳离子模板剂通过离子交换树脂交换为氢氧根的形式,其浓度通过0.1M的盐酸溶液标定后待用,也可以直接以氯盐、溴盐或碘盐的形式引入。
在步骤(2)中的晶化条件可以例如包括:晶化温度为80至240℃,优选120至220℃,更优选140至210℃;晶化时间为1至60天,优选2至50天,更优选3至45天。
在步骤(3)中,洗涤、离心和干燥可以按照本领域常规已知的任何方式进行。举例而言,洗涤可以采用水或乙醇进行多次洗涤;干燥可以采用烘干的方式。
本发明的超大孔沸石分子筛ZEO-3的合成方法中,焙烧温度为300℃到1000℃。
本发明的分子筛组合物中的粘结剂可以为本领域中已知能够用于催化剂或吸附剂的任何粘结剂,只要其不对本发明的分子筛ZEO-3产生不利影响即可。
实施例
为了更清楚地说明本发明,列举以下实施例。这些实施例对本发明的保护范围无任何限制。
实施例1模板剂的制备
以模板剂6为例,说明模板剂的一般合成过程。将28.04g三环己基膦和150ml乙腈在250ml的圆底烧瓶中混合。在常温下,向混合液中逐滴滴加碘甲烷21.29g。体系在搅拌状态下常温反应两天,反应混合物经旋转蒸发除去溶剂可得粗产物,经乙醇重结晶可得产物40.55g,产率96%。产物经液体核磁(CDCl3)和电喷雾质谱表征,确认为目标化合物。
将所得产物分散于400ml去离子水中,通过预先处理好的717强碱型阴离子交换树脂(厂商:国药集团)进行柱交换,交换得到的模板剂6的水溶液。称取适量此溶 液,用0.1mol/L的盐酸溶液进行标定,酚酞作为指示剂。标定的结构证实碘盐到氢氧根的交换效率达到97%。
实施例2模板剂的制备
以模板剂10为例,说明模板剂的一般合成过程。将28.04g三环己基膦和150ml乙腈在250ml的圆底烧瓶中混合。混合液中滴加1,6-二溴己烷12.20g。体系在搅拌状态下回流反应两天,反应混合物经旋转蒸发除去溶剂可得粗产物,经乙醇重结晶可得产物38.23g,产率95%。产物经液体核磁(D2O)和电喷雾质谱表征,确认为目标化合物。
将所得产物分散于400ml去离子水中,通过预先处理好的717强碱型阴离子交换树脂(厂商:国药集团)进行柱交换,交换得到的模板剂10的水溶液。称取适量此溶液,用0.1mol/L的盐酸溶液进行标定,酚酞作为指示剂。标定的结构证实碘盐到氢氧根的交换效率达到96%。
实施例3 ZEO-2、ZEO-3的制备
按照摩尔比0.5ROH:SiO 2:10H 2O的比例准备分子筛合成的凝胶。一般的步骤如下:称取适量交换过后的实施例1的模板剂溶液,向其中加入4mmol(0.833g)的正硅酸四乙酯,常温下搅拌约两小时使正硅酸四乙酯完全溶解,然后将混合凝胶置于红外灯下或80℃的烘箱中,除去多余的溶剂。将最后所得反应凝胶转移至5ml带有聚四氟乙烯内衬的不锈钢反应釜中,在密封条件下在175℃反应28天,产物经水洗两次,乙醇洗两次,烘干待用。产物直接用于X射线粉末衍射物相鉴定,确认为ZEO-2。
取适量样品,于马弗炉中在600℃的空气氛围下焙烧2小时除去模板剂,产物经水洗、离心、干燥。产物用于X射线粉末衍射物相鉴定,确认为ZEO-3。EDS元素分析表明其具有硅元素和氧元素,其分子式为SiO 2
实施例4 ZEO-2、ZEO-3的制备
按照摩尔比0.3ROH:SiO 2:5H 2O的比例准备分子筛合成的凝胶。一般的步骤如下:称取适量交换过后的实施例2的模板剂溶液,向其中加入2mmol(0.417g)的正硅酸四乙酯,常温下搅拌约两小时使正硅酸四乙酯完全溶解,然后将混合凝胶置于红外灯下或80℃烘箱中,除去多余的溶剂。将最后所得反应凝胶转移至5ml带有聚四 氟乙烯内衬的不锈钢反应釜中,在密封条件下在175℃反应30天,产物经水洗两次,乙醇洗两次,烘干待用。产物直接用于X射线粉末衍射物相鉴定,确认为ZEO-2。
取适量样品,于马弗炉中在600℃的空气氛围下焙烧2小时除去模板剂,产物经水洗、离心、干燥。产物用于X射线粉末衍射物相鉴定,确认为ZEO-3。EDS元素分析表明其具有硅元素和氧元素,其分子式为SiO 2
实施例5 ZEO-2、ZEO-3的制备
按照摩尔比0.5ROH:SiO 2:10H 2O的比例准备分子筛合成的凝胶。一般的步骤如下:称取适量交换过后的表6的模板剂8溶液,向其中加入1mmol(0.208g)的正硅酸四乙酯,常温下搅拌约两小时使正硅酸四乙酯完全溶解,然后将混合凝胶置于红外灯下或80℃的烘箱中,除去多余的溶剂。将最后所得反应凝胶转移至5ml带有聚四氟乙烯内衬的不锈钢反应釜中,在密封条件下在175℃反应38天,产物经水洗两次,乙醇洗两次,烘干待用。产物直接用于X射线粉末衍射物相鉴定,确认为ZEO-2。
取适量样品,于马弗炉中在600℃的空气氛围下焙烧2小时除去模板剂,产物经水洗、离心、干燥。产物用于X射线粉末衍射物相鉴定,确认为ZEO-3。EDS元素分析表明其具有硅元素和氧元素,其分子式为SiO 2
实施例6 ZEO-2、ZEO-3的制备
按照摩尔比0.5ROH:SiO 2:10H 2O的比例准备分子筛合成的凝胶,一般的步骤如下:称取6mmol交换过后的实施例1的模板剂溶液,向其中加入加入12mmol(2.500g)的正硅酸四乙酯,常温下搅拌过夜使正硅酸四乙酯完全水解和水解产物乙醇的挥发,将混合凝胶置于红外灯下或85℃烘箱中,除去多余的溶剂。将最后所得反应凝胶转移至30ml带有聚四氟乙烯内衬的不锈钢反应釜中,在密封条件下在190℃反应30天,产物经水洗两次,乙醇洗两次,烘干待用。产物直接用于X射线粉末衍射物相鉴定,确认为ZEO-2。EDS元素分析表明其具有硅、磷、氧、碳元素。傅里叶变换红外光谱数据显示具有Si-OH键伸缩振动且此峰为强峰,表明ZEO-2是具有硅羟基的一类硅酸盐材料且硅羟基含量很多。
取适量样品,于马弗炉中在600℃的空气氛围下焙烧2小时除去模板剂,产物经水洗、离心、干燥。产物用于X射线粉末衍射物相鉴定,确认为ZEO-3。EDS元素分析表明其仅具有硅元素和氧元素,其分子式为SiO 2。傅里叶变换红外光谱数据显示 并无Si-OH键伸缩振动、仅由Si-O键伸缩振动,表明ZEO-3是一类没有硅羟基的、无缺陷的硅酸盐材料。
实施例7结构解析
对实施例3-6的分子筛ZEO-2进行了连续旋转电子衍射测试(cRED),其结构解析结果表明,ZEO-2分子筛结构具有单斜对称性,为C2/c空间群,以铜靶(Ka)为光源的粉末X射线(图1)精修得到的晶胞参数为:
Figure PCTCN2022099805-appb-000005
Figure PCTCN2022099805-appb-000006
β=115.19(9)°。
对实施例3-6的分子筛ZEO-3进行了连续旋转电子衍射测试(cRED),其结构解析结果表明,ZEO-3分子筛结构具有单斜对称性,为C2/c空间群,铜靶(Ka)为光源的粉末X射线(图2)精修得到的晶胞参数为:
Figure PCTCN2022099805-appb-000007
Figure PCTCN2022099805-appb-000008
β=108.72(9)°。
使用经cRED测试后得到的晶体学结构文件(CIF文件)进行拓扑学分析。拓扑学分析软件基于ToposPro5.3.0.2,分析流程和方法基于该软件的官方网站上给出的操作手册(参见ToposPro官网:https://topospro.com/software/)。
ZEO-3的晶体结构分析结果显示,该分子筛骨架结构具有11个拓扑学独立的T原子,20种拓扑学不同的棱,16种拓扑学不同的面,和8种拓扑学不同的、由T原子构成的构造单元。ZEO-3分子筛的骨架结构更具体的拓扑学特征如上述表3所示。

Claims (18)

  1. 一种硅酸盐材料,其特征在于该硅酸盐材料具有下表所示的X射线粉末衍射特征:
    Figure PCTCN2022099805-appb-100001
  2. 根据权利要求1所述的硅酸盐材料,其特征在于该硅酸盐材料的晶体结构中具有规则的、长程有序的、一维的二氧化硅链状结构。
  3. 根据权利要求1-2中任一项所述的硅酸盐材料,其特征在于该硅酸盐材料的化学组成为SiO 2.2H 0.4·(OSDA) y,其中OSDA为具有以下通式所表示的四面体空间构型的有机模板剂:
    Figure PCTCN2022099805-appb-100002
    其中,R 1为环己基;R 2、R 3为苯基或环己基;R 4为C 1-8烷基,优选C 1-4烷基,更优选C 1-2烷基;n=3-8,优选5-7,更优选为6;X为磷或氮,优选为磷,
    其中y=0.075-0.125。
  4. 一种硅酸盐分子筛,其特征在于该分子筛具有下表所示的X射线粉末衍射特征:
    Figure PCTCN2022099805-appb-100003
  5. 根据权利要求4所述的分子筛,其特征在于该分子筛的晶体结构中具有16×14×14元环的三维交叉孔道系统。
  6. 根据权利要求4-5中任一项所述的分子筛,其特征在于该分子筛骨架中的T原子具有下表所示的拓扑学特征:
      N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 VS T1 4 11 18 27 34 54 81 113 140 159 181 224 4.5(2).5.5.5.6 T2 4 10 19 27 39 53 80 109 139 166 192 224 4.6.4.14.5.5 T3 4 8 15 26 39 55 73 102 135 169 194 227 4.4.4.5.4.14(5) T4 4 10 19 28 38 54 77 111 140 166 191 224 4.6.4.14(5).5.5 T5 4 11 18 25 36 54 85 110 134 157 188 230 4.5(2).5.5.5.6 T6 4 12 17 25 38 58 80 113 135 156 192 231 5.5.5.6.5(2).14(3) T7 4 8 15 26 38 54 76 105 131 165 196 228 4.4.4.5.4.14 T8 4 9 15 24 39 57 80 103 127 156 204 240 4.5.4.5.4.14 T9 4 12 15 22 40 62 84 107 122 152 200 250 5.5.5.5.5(2).16(9) T10 4 12 19 28 36 52 82 115 144 162 186 218 5.5.5(2).14(6).6.6 T11 4 9 15 25 40 55 77 102 134 163 196 229 4.5.4.5.4.14(5)
    其中T=Si。
  7. 根据权利要求4-6中任一项所述的分子筛,其特征在于该分子筛的化学组成为SiO 2
  8. 根据权利要求1-3中任一项所述的硅酸盐材料的合成方法,该方法包括:
    (1)将硅源、有机模板剂和水混合,得到混合物;
    (2)对该混合物进行晶化,得到硅酸盐材料产物;
    其中该有机模板剂具有以下通式所表示的四面体空间构型:
    Figure PCTCN2022099805-appb-100004
    其中,R 1为环己基;R 2、R 3为苯基或环己基;R 4为C 1-8烷基,优选C 1-4烷基,更优选C 1-2烷基;n=3-8,优选5-7,更优选为6;X为磷或氮,优选为磷。
  9. 根据权利要求8所述的方法,其特征在于该有机模板剂选自以下的任意一种或多种:
    Figure PCTCN2022099805-appb-100005
    Figure PCTCN2022099805-appb-100006
    优选选自以下的任意一种或多种:
    Figure PCTCN2022099805-appb-100007
    更优选选自以下的任意一种或多种:
    Figure PCTCN2022099805-appb-100008
  10. 根据权利要求8或9所述的方法,其特征在于:
    步骤(1)具体包括:在搅拌下将硅源、有机模板剂和水按比例混合均匀,得到的混合物形成反应凝胶,该反应凝胶的化学组成为rROH:SiO 2:wH 2O,其中R代表有机模板剂的正电荷基团;对应的r和w的取值区间分别为:r=0.1-5.0,w=1-100;
    步骤(2)具体包括:将该反应凝胶置于红外灯下或烘箱中,除去多余的溶剂后,将该反应凝胶转移至不锈钢反应釜中,在密封条件下,在80-240℃,优选120-220℃的温度反应1-60天,优选2-45天,进行晶化;
    该方法还包括:(3)将晶化后的产物洗涤、干燥。
  11. 根据权利要求10所述的方法,其特征在于在该反应凝胶的化学组成rROH:SiO 2:wH 2O中,对应的r和w的优选取值区间分别为:r=0.1-2.0,w=1-30。
  12. 根据权利要求8-11中任一项所述的方法,其特征在于该硅源选自硅酸、硅胶、硅溶胶、硅酸四烷基酯和水玻璃中的至少一种。
  13. 根据权利要求8-11中任一项所述的方法,其特征在于步骤(2)中的晶化条件包括:晶化温度为80至240℃,优选120至220℃,更优选140至210℃;晶化时间为1至60天,优选2至50天,更优选3至45天。
  14. 根据权利要求4-7中任一项所述的分子筛的合成方法,该方法包括:将权利要求1-3中任一所述的硅酸盐材料或者根据权利要求8-13中任一项所述的方法合成的硅酸盐材料进行焙烧,以除去该硅酸盐材料中的模板剂,使骨架结构发生拓扑缩合,从而得到分子筛产物。
  15. 根据权利要求14所述的方法,其特征在于焙烧温度为300℃到1000℃。
  16. 根据权利要求1-3中任一项所述的硅酸盐材料作为分子筛合成中的硅源或者前驱体的用途。
  17. 一种分子筛组合物,其包含根据权利要求4-7中任一所述的分子筛或者根据权利要求14-15中任一项所述的方法合成的分子筛,以及粘结剂。
  18. 根据权利要求17所述的分子筛组合物作为催化剂或者吸附剂的用途。
PCT/CN2022/099805 2021-07-16 2022-06-20 硅酸盐材料zeo-2和硅酸盐分子筛zeo-3,其合成方法及用途 WO2023284491A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22841131.0A EP4371939A1 (en) 2021-07-16 2022-06-20 Silicate material zeo-2 and silicate molecular sieve zeo-3 and synthesis method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110806648.8 2021-07-16
CN202110806648.8A CN115611293B (zh) 2021-07-16 2021-07-16 硅酸盐材料zeo-2和硅酸盐分子筛zeo-3,其合成方法及用途

Publications (1)

Publication Number Publication Date
WO2023284491A1 true WO2023284491A1 (zh) 2023-01-19

Family

ID=84855360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099805 WO2023284491A1 (zh) 2021-07-16 2022-06-20 硅酸盐材料zeo-2和硅酸盐分子筛zeo-3,其合成方法及用途

Country Status (3)

Country Link
EP (1) EP4371939A1 (zh)
CN (1) CN115611293B (zh)
WO (1) WO2023284491A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882243A (en) 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
US3130007A (en) 1961-05-12 1964-04-21 Union Carbide Corp Crystalline zeolite y
US3709979A (en) 1970-04-23 1973-01-09 Mobil Oil Corp Crystalline zeolite zsm-11
US3832449A (en) 1971-03-18 1974-08-27 Mobil Oil Corp Crystalline zeolite zsm{14 12
US4016245A (en) 1973-09-04 1977-04-05 Mobil Oil Corporation Crystalline zeolite and method of preparing same
US4076842A (en) 1975-06-10 1978-02-28 Mobil Oil Corporation Crystalline zeolite ZSM-23 and synthesis thereof
US4954325A (en) 1986-07-29 1990-09-04 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis and use
CN104370296A (zh) * 2014-02-13 2015-02-25 南京大学 一种超大孔硅酸盐分子筛nud-1及其制备方法
US20150353368A1 (en) * 2014-06-04 2015-12-10 Chevron U.S.A. Inc. Processes using molecular sieve ssz-100
US20160122193A1 (en) * 2014-11-03 2016-05-05 Exxonmobil Research And Engineering Company Zeolite Synthesis with Dominant and Secondary Templates
CN105728034A (zh) 2016-03-23 2016-07-06 华东师范大学 一种Ti-ECNU-5钛硅分子筛催化剂及其制备方法和应用
CN111871451A (zh) * 2020-08-10 2020-11-03 中触媒新材料股份有限公司 一种新型结构模板剂合成的cha分子筛及其scr催化剂与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN012194A0 (en) * 1994-12-16 1995-01-19 University Of Queensland, The Alumino-silicate derivatives
CN101696019B (zh) * 2009-10-26 2011-06-08 吉林大学 具有高催化活性大块状ts-1分子筛及其合成方法
CN105217651B (zh) * 2014-07-03 2017-07-14 中国石油化工股份有限公司 硅铝分子筛scm‑6、其合成方法及其用途
CN107892309B (zh) * 2017-12-08 2019-10-01 南京大学 一种超大孔硅酸盐分子筛的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882243A (en) 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
US3130007A (en) 1961-05-12 1964-04-21 Union Carbide Corp Crystalline zeolite y
US3709979A (en) 1970-04-23 1973-01-09 Mobil Oil Corp Crystalline zeolite zsm-11
US3832449A (en) 1971-03-18 1974-08-27 Mobil Oil Corp Crystalline zeolite zsm{14 12
US4016245A (en) 1973-09-04 1977-04-05 Mobil Oil Corporation Crystalline zeolite and method of preparing same
US4076842A (en) 1975-06-10 1978-02-28 Mobil Oil Corporation Crystalline zeolite ZSM-23 and synthesis thereof
US4954325A (en) 1986-07-29 1990-09-04 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis and use
CN104370296A (zh) * 2014-02-13 2015-02-25 南京大学 一种超大孔硅酸盐分子筛nud-1及其制备方法
US20150353368A1 (en) * 2014-06-04 2015-12-10 Chevron U.S.A. Inc. Processes using molecular sieve ssz-100
US20160122193A1 (en) * 2014-11-03 2016-05-05 Exxonmobil Research And Engineering Company Zeolite Synthesis with Dominant and Secondary Templates
CN105728034A (zh) 2016-03-23 2016-07-06 华东师范大学 一种Ti-ECNU-5钛硅分子筛催化剂及其制备方法和应用
CN111871451A (zh) * 2020-08-10 2020-11-03 中触媒新材料股份有限公司 一种新型结构模板剂合成的cha分子筛及其scr催化剂与应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 130, 2018, pages 9659 - 9663
CHEM. REV., vol. 114, 2014, pages 4807 - 4837
CHEM. SOC. REV., vol. 44, 2015, pages 7177 - 7206
J. AM. CHEM. SOC., vol. 130, 2008, pages 8178 - 8187
MICRO. MATER., vol. 6, 1996, pages 259 - 271

Also Published As

Publication number Publication date
CN115611293A (zh) 2023-01-17
CN115611293B (zh) 2023-11-07
EP4371939A1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
KR102382437B1 (ko) Itq-55 물질, 제조 방법 및 용도
CN1312036C (zh) 合成的多孔晶体材料itq-12、其合成及应用
CN108745410B (zh) 一种含磷的多级孔zsm-5/y复合分子筛的制备方法
JP6228677B2 (ja) 階層構造を持つベータ型分子篩及びその製造方法
JP4964150B2 (ja) 微孔質結晶性ゼオライト物質(ゼオライトitq−32)、該物質の製造法および該物質の使用
JP2010537938A (ja) 階層的多孔性を有する無定形ケイ素含有材料
CN107892309A (zh) 一种超大孔硅酸盐分子筛的制备方法
JP2021524431A (ja) 有機窒素含有構造化剤存在下での高純度afx構造ゼオライトの合成方法
CN107934982B (zh) 一种大孔硅酸盐分子筛及其制备方法
CN106608636A (zh) 一种euo或nes结构分子筛的制备方法
Deng et al. Green synthesis of low-silica CHA zeolite without organic structural directing agents, fluoride media and seeds
WO2023284491A1 (zh) 硅酸盐材料zeo-2和硅酸盐分子筛zeo-3,其合成方法及用途
CN103332703A (zh) 一种合成zsm-48分子筛的方法
CN101993091A (zh) 一种合成zsm-5沸石的方法
CN111348662B (zh) 一种超大孔硅酸盐分子筛nud-6及其制备方法
WO2011132585A1 (ja) リン含有メソポーラスシリカ及びその製造方法
CN104936898A (zh) Euo-nes-non沸石uzm-43
JP2018062450A (ja) Kfi型ゼオライト及びその製造方法
WO2022111261A1 (zh) 超大孔zeo-1分子筛,其合成方法及用途
CN100569649C (zh) 一种ith结构硅铝分子筛的制备方法
AU605353B2 (en) Process for the preparation of crystalline silicates, crystalline metallosilicates and/or derivatives thereof
CN106946266B (zh) 一种sapo-34/zsm-12复合分子筛及其合成方法
CN109694090B (zh) Scm-13分子筛及其制备方法
JP5820526B2 (ja) ゲルマノケイ酸塩ssz−75
CN114538466B (zh) 超大孔硅酸盐分子筛zeo-1,其合成方法及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024502468

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022841131

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022841131

Country of ref document: EP

Effective date: 20240216