WO2023277370A1 - Pvd 방법을 통한 저저항 재료의 비저항 및 결정성 제어 방법 - Google Patents

Pvd 방법을 통한 저저항 재료의 비저항 및 결정성 제어 방법 Download PDF

Info

Publication number
WO2023277370A1
WO2023277370A1 PCT/KR2022/008042 KR2022008042W WO2023277370A1 WO 2023277370 A1 WO2023277370 A1 WO 2023277370A1 KR 2022008042 W KR2022008042 W KR 2022008042W WO 2023277370 A1 WO2023277370 A1 WO 2023277370A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
resistance material
forming
film
layer
Prior art date
Application number
PCT/KR2022/008042
Other languages
English (en)
French (fr)
Inventor
심창민
오도현
강항
정병화
나카야마타카히로
사이토토모히로
Original Assignee
한국알박(주)
가부시키가이샤 아루박
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국알박(주), 가부시키가이샤 아루박 filed Critical 한국알박(주)
Priority to JP2023576230A priority Critical patent/JP2024520855A/ja
Priority to CN202280041318.7A priority patent/CN117461123A/zh
Publication of WO2023277370A1 publication Critical patent/WO2023277370A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers

Definitions

  • the present invention relates to a method for controlling resistivity and crystallinity of a semiconductor substrate film using physical vapor deposition (PVD), and specifically, by using PVD, titanium nitride (TiN) and tantalum nitride ( TaN) or silicon nitride (SiN x ; x>0), after performing an after bias treatment, and then depositing W, Ru, Co, Rh or Mo on the semiconductor substrate. It relates to a method for controlling the resistivity and crystallinity of a film or a method for forming a film of a low-resistance material (W, Ru, Mo, Co, Rh, etc.).
  • PVD physical vapor deposition
  • Ru tungsten
  • Mo molybdenum
  • Co cobalt
  • Rh rhodium
  • Ru ruthenium
  • an amorphous (non-crystalline) like film was deposited on the lower film TiN through a PVD low-temperature (100 ° C or less) high-pressure process, and the roughness of TiN was improved by continuous after bias treatment.
  • Ru was deposited on the TiN layer made by the above process, the effect of improving the void and reducing the resistivity was confirmed.
  • CVD Chemical Vapor Deposition
  • ALD Advanced Layer Deposition
  • PVD Physical Vapor Deposition
  • TiN is deposited through RF Bias application and high-temperature film formation process.
  • the present invention intentionally obtains an amorphous like (high resistivity) film quality through the PVD method for the TiN layer, and through this, the amorphous (amorphous) TiN film increases the grain size of Ru to show the effect of improving crystallinity.
  • amorphous like (high resistivity) film quality through the PVD method for the TiN layer, and through this, the amorphous (amorphous) TiN film increases the grain size of Ru to show the effect of improving crystallinity. The purpose.
  • PVD Physical Vapor Deposition
  • the low-resistance material is characterized in that at least one selected from the group consisting of tungsten (W), ruthenium (Ru), molybdenum (Mo), cobalt (Co) and rhodium (Rh), a method for forming a low-resistance material is provided .
  • the barrier layer may be one or more selected from the group consisting of titanium nitride (TiN), tantalum nitride (TaN), and silicon nitride (SiN x ; x>0).
  • Step c) may include forming a nucleation layer (seed layer) of a low-resistance material and forming a crystal layer of the low-resistance material.
  • a method of forming a low-resistance material such as Ru, W, Mo, Co, and Rh on a semiconductor substrate film obtains an amorphous (non-crystalline) like film quality by using a PVD method for a TiN layer, Through this, there is an effect that crystallinity can be improved by increasing the grain size of Ru or the like.
  • the roughness of the TiN layer can be improved by processing the TiN layer with after bias, and by adjusting the appropriate RF bias and time, the optimal suppression of void generation and crystallinity through the improvement of the roughness of the TiN layer can be achieved. It can show the effect that it can improve, and through this, it is possible to ultimately control the resistivity and crystallinity.
  • nucleation of the first step ( 1st step) is controlled regardless of the stacking conditions of the second step ( 2nd step), , It has the effect of increasing the grain size and lowering the resistivity at the same time.
  • the after-bias effect can be optimally adjusted, and through this, ultimately, the void is improved and the resistivity is reduced. It is possible to provide a semiconductor substrate film that has been processed, and there is an effect that the resistivity and crystallinity of the semiconductor substrate film can be controlled through PVD without using ALD, CVD, or the like.
  • FIG. 1 is a diagram illustrating a TiN and Ru deposition process according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a process for forming a TiN film.
  • FIG 3 is a diagram illustrating a process for forming an after bias and a Ru film.
  • 4B is a diagram showing the results of improved roughness and resistivity when TiN (4 nm) is deposited at high pressure (1 to 40 Pa) and low temperature (100 ° C or less), and Ru (30 nm) is deposited after the after-bias process. to be.
  • FIG. 5 is a view showing results of measuring changes in resistivity of a Ru layer in which Ru is deposited in two steps under the same conditions after after-bias treatment under different conditions (RF power and time).
  • Figure 7a is a view showing the results of measuring the grain size and the resistivity value (10.79 ⁇ cm) after depositing a Ru layer (30nm) on SiO 2 in a single step (1step).
  • Figure 7b is a view showing the results of measuring the grain size and resistivity value (10.50 ⁇ cm) after depositing a Ru layer (26nm / 4nm) on SiO 2 in two steps (2steps).
  • FIG. 7c shows the grain size, number of grains, and resistivity values ( 12.77 ⁇ cm) is a diagram showing the result of measuring.
  • 7f shows after-bias treatment after depositing TiN (4nm) on SiO 2 , depositing a Ru layer on TiN (4nm) in two steps (2 teps), and then showing grain size, number of grains, and resistivity values (11.08 It is a diagram showing the result of measuring ⁇ cm).
  • PVD Physical Vapor Deposition
  • the low-resistance material is characterized in that at least one selected from the group consisting of tungsten (W), ruthenium (Ru), molybdenum (Mo), cobalt (Co) and rhodium (Rh), a method for forming a low-resistance material is provided .
  • the barrier layer formed through step a) may be made of not only titanium nitride (TiN), but also tantalum nitride (TaN) or silicon nitride (SiN x ; x>0), and the thickness of the barrier layer is preferably 4 nm. may be below.
  • Laminating conditions such as TiN according to the magnetron sputtering in step a) may be performed under various conditions, but magnetron sputtering can be used at high pressure and low temperature (100 ° C or less), especially in the existing PVD process. While it is carried out under a pressure of 0.1 to 0.9 Pa, in the present invention there is a feature that can be carried out at a high pressure such as 1 to 40 Pa.
  • the film formation conditions of TiN DC power: 10 ⁇ 30kW, RF power: 200W or less, Ar/N 2 ratio of 1/10 or less, pressure: 1 ⁇ 40Pa, and low temperature conditions (100 °C or less) are most suitable.
  • a low-resistance material such as Ru along with a lower film such as TiN is laminated on top of the SiO 2 wafer and used.
  • a Ru/TiN structure is used. Due to this, a problem in that specific resistance is increased occurs.
  • the resistivity of the semiconductor substrate on which the low-resistance material is finally formed is reduced, which improves the roughness of the surface of the unstable TiN layer that existed when the conventional after-bias was not performed, and impurity in the bond ( oxygen, etc.), the grain size of the low-resistance material (Ru, Mo, W, Co, Rh, etc.) deposited thereon is increased, and the void is reduced, resulting in the final effect of improving the resistivity.
  • the low-resistance material Ru, Mo, W, Co, Rh, etc.
  • this resistivity is finally adjusted by adjusting the RF power and time of step b), and for 50 to 300W and 10 to 100 seconds, preferably 100 to 100W.
  • an RF bias is applied at 300 W and 10 to 100 seconds, more preferably at 100 to 300 W and 10 to 60 seconds, and particularly preferably at 300 W and 10 to 50 seconds, the resistivity is significantly reduced compared to the prior art. It can be seen that the grain size increases and the void decreases.
  • low-resistance materials such as Ru, W, Mo, Co, and Rh are laminated using magnetron sputtering, and when the laminate is laminated to a desired thickness Deposition is carried out until (step c)).
  • the layer thickness of the low-resistance material through step c) may be 10 to 30 nm, and when the desired thickness is deposited, the wafer is removed from the chamber to complete the low-resistance material deposition process.
  • step c) may be deposited in a single step (1 step ), but the first step of forming a nucleation layer, which is a seed layer, and the second step of forming a crystal layer It is also possible to form a double layer by dividing it into (2 nd step) (2 steps).
  • the case of FIGS. 7e and 7f in which the low-resistance material (such as Ru) is formed as a double layer has a larger grain size than the case of FIGS. 7c and 7d deposited in a single step.
  • the number of grains is smaller and the specific resistance is small, so it can be said that forming a low-resistance material into a double layer (2 steps) is more preferable than forming it in a single step (1 step).
  • the number of grains was calculated by directly counting the number of grains in a certain portion (region) of the same size in each SEM image.
  • the resistivity can be reduced regardless of the deposition conditions of the second step, and also, in the crystal layer formation step, the nucleation layer formation step is more Even though a high DC power is applied, it is possible to secure a resistivity equivalent to that in the case of performing the same DC power as in the nucleation layer formation step in a single step, and through this, there is an advantage that the film formation time can be shortened and the distribution can be improved.
  • the Ru layer when the Ru layer is stacked using DC power of 0.5kW, 2kW, and 4kW as a single step (1 step), the grain size decreases as the DC power increases, It can be confirmed that the specific resistance increases (Fig. 6), and the grain size when DC power of 0.5kW is used as a single step is almost the same as the grain size when 0.5kW is used as the first step and 2kW is used as the second step. The same can be confirmed (Fig. 6).
  • DC power when deposition is performed in a single step (1 step), DC power may be 2 to 8kW and RF power may be 50W as the film-forming condition of the low-resistance material.
  • RF power When the DC power is lower than 2 kW, the film formation time becomes longer, adversely affecting mass production, and the distribution of film formation may be deteriorated. can cause
  • DC power may be 0.3 to 1 kW, and in this case, RF power is not applied.
  • the DC power is lower than 0.3 kW, discharge may be difficult, and when the DC power exceeds 1 kW, a problem in that the specific resistance value may increase may occur.
  • the film formation time may be longer, which may adversely affect mass production, and the film formation distribution may be deteriorated.
  • 2 to 10 kW is preferable, and in this case, the RF power may be 50 W.
  • the thickness of the nucleation layer is preferably 4 nm or more in that nucleation does not occur well when it is less than 4 nm, and the sum of the thicknesses of the nucleation layer and the crystal layer is 10 to 30 nm it is desirable
  • the thicker the nucleation layer formed at low power the larger the grain size, which can go in the direction of improving the resistivity.
  • the thickness of the nucleation layer is considered to be 4 nm in that the film formation process takes a long time.
  • a semiconductor substrate manufactured by the above-described method, on which a barrier layer such as TiN and a low-resistance material such as Ru, W, Mo, Co, or Rh are deposited, can be used in a next-generation wiring structure according to miniaturization of semiconductor devices, In particular, it is suitable for use for micropatterns with a pitch of less than 28 nm.
  • Film formation was performed based on a physical vapor deposition (PVD) system using an experimental equipment called ENTRON-EX. TiN and Ru films were formed in different process chambers, and a SiO 2 substrate was used as the substrate.
  • PVD physical vapor deposition
  • the substrate is transferred to the TiN chamber via the load lock chamber, the substrate is fixed, power is applied to the ESC, and Ar/N 2 gas is supplied into the chamber for the substrate temperature suitable for film formation.
  • DC is applied to the target part for discharge in the chamber, and RF is applied to the substrate stage part, so that the deposition material from the target is directed to the substrate to form a film.
  • RF plays a role in controlling the film quality and distribution by pulling ions toward the stage, and the TiN film formation conditions are as follows:
  • Pressure 1 to 40 Pa (high pressure);
  • the substrate is moved to the Ru chamber.
  • Ar gas is supplied into the chamber, RF Bias is applied to the stage, and Ar ions are attracted to the substrate to process, and the after bias conditions are as follows:
  • Ru was deposited under film formation conditions of DC power of 2 kW, RF power of 50 W, Ar flow rate of 170 sccm, 470 ° C. for 65 seconds. As a result, a Ru film consisting of a single layer with a thickness of 30 nm was obtained.
  • Step 1 DC 0.5kW, RF 0W, Ar 170sccm, 76sec, 470°C, 4nm (film thickness)
  • Step 2 DC 2kW, RF 50W, Ar 170sccm, 56sec, 470°C, 26nm (film formation thickness)
  • the wafer After the formation of the Ru film, the wafer passes through the Transfer Chamber and returns to the Foup, and this experiment is finished.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은, 물리 기상 증착(Physical Vapor Deposition; PVD)을 이용하여 반도체 기판 상에 성막하는 저저항 재료의 성막 방법으로서, a) SiO2 웨이퍼 상에 1 내지 40 Pa 의 압력, 저온 마그네트론 스퍼터링을 이용하여 배리어층을 적층하는 단계; b) 상기 배리어층 적층 후, DC 전력을 인가하지 않고 Ar 가스 분위기 하에서 RF 바이어스(RF bias)를 인가하여 배리어층의 표면을 개질하는 단계; 및 c) 배리어층 상에 마그네트론 스퍼터링을 이용하여 저저항 재료를 적층하는 단계; 를 포함하고, 상기 저저항 재료는 텅스텐(W), 루테늄(Ru), 몰리브덴(Mo), 코발트(Co) 및 로듐(Rh)으로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는, 저저항 재료의 성막 방법에 관한 것이다.

Description

PVD 방법을 통한 저저항 재료의 비저항 및 결정성 제어 방법
본 발명은 물리 기상 증착(Physical Vapor Deposition; PVD)을 이용한 반도체 기판 막의 비저항 및 결정성 제어 방법에 관한 것으로서, 구체적으로, PVD 를 이용하여, SiO2 웨이퍼 상에 질화티탄(TiN), 질화탄탈륨(TaN) 또는 질화규소(SiNx; x>0)로 이루어진 배리어층을 적층하고, 애프터 바이어스(After Bias) 처리를 실시한 후, W, Ru, Co, Rh 또는 Mo 을 적층하는 단계를 포함하는, 반도체 기판 막의 비저항 및 결정성 제어 방법 또는 저저항 재료(W, Ru, Mo, Co, Rh 등)의 성막 방법에 관한 것이다.
반도체 소자의 미세화에 따라 차세대 배선 구조에서 텅스텐(W), 몰리브덴(Mo), 코발트(Co), 로듐(Rh), 루테늄(Ru)과 같은 비저항이 낮은 재료들이 검토되고 있으며, 그 중 Ru 는 Cu 의 대체 재료로 활발히 연구 개발되고 있는 물질 중 하나다. Ru 는 접착(Adhesion) 및 배리어층(Barrier layer)으로 TiN(TaN, SiNx)과 함께 적층되어 사용되며, 하부층(TiN)에 Ru 를 적층하였을 때 TiN 의 Orientation 에 기인하여 Void 발생 및 결정성이 저하되는 문제점이 발생하였다.
이를 해결하기 위해, 본 발명에서는 하부막 TiN 을 PVD 저온(100℃ 이하) 고압 Process 를 통하여 Amorphous(비결정성) like 막을 증착하고, 연속적으로 애프터 바이어스(After Bias) 처리를 하여 TiN 의 Roughness 를 개선하였다. 상기 프로세스로 만들어진 TiN 층에 Ru 를 적층하였을 경우, Void 개선 및 비저항이 감소하는 효과를 확인하였다.
- 선행기술문헌(특허문헌)
(1) 대한민국 공개특허공보 제10-2019-0051082호 (2019.05.14.)
TiN 의 경우 막밀도, 저항 등의 막질을 개선하기 위해서 CVD(Chemical Vapor Deposition; 화학 기상 증착법) 및 ALD(Atomic Layer Deposition; 원자층 증착법) 공정을 사용하며, PVD(Physical Vapor Deposition; 물리 기상 증착법) 공정에서는 RF Bias 인가 및 고온 성막 Process를 통하여 TiN 을 증착하게 된다. 그러나, 본 발명은 TiN 층을 PVD 공법을 통해 의도적으로 Amorphous like(비저항 높은) 막질을 얻고, 이를 통해, Amorphous(비결정성) TiN 막이 Ru 의 Grain size 를 증가시켜 결정성을 개선시키는 효과를 나타내는 것을 목적으로 한다.
또한, Ru 를 성막하기 전에 Amorphous like 막의 TiN 에 After Bias(Treatment, Bombardment)를 인가함으로써 TiN 의 Roughness 를 개선시키고, Ru 의 Void 생성을 억제하며, 결정성을 향상시킬 뿐만 아니라, TiN 층 위에 Ru 를 성막함으로써 비저항이 낮은 Ru 막을 얻는 것을 목적으로 한다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따르면, 물리 기상 증착(Physical Vapor Deposition; PVD)을 이용하여 반도체 기판 상에 성막하는 저저항 재료의 성막 방법으로서,
a) SiO2 웨이퍼 상에 1 내지 40 Pa 의 압력, 저온(100℃ 이하) 마그네트론 스퍼터링을 이용하여 배리어층을 적층하는 단계;
b) 상기 배리어층 적층 후, DC 전력을 인가하지 않고 Ar 가스 분위기 하에서 RF 바이어스(RF bias)를 인가하여 배리어층의 표면을 개질하는 단계; 및
c) 배리어층 상에 마그네트론 스퍼터링을 이용하여 저저항 재료를 적층하는 단계;
를 포함하고,
상기 저저항 재료는 텅스텐(W), 루테늄(Ru), 몰리브덴(Mo), 코발트(Co) 및 로듐(Rh)으로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는, 저저항 재료의 성막 방법이 제공된다.
상기 배리어층은 질화티탄(TiN), 질화탄탈륨(TaN) 및 질화규소(SiNx; x>0)로 이루어진 군으로부터 선택된 하나 이상일 수 있다.
상기 단계 c) 는, 저저항 재료의 핵형성층(시드층)을 형성하는 단계 및 상기 저저항 재료의 결정층을 형성하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른, 반도체 기판 막의 Ru, W, Mo, Co, Rh 와 같은 저저항 재료의 성막 방법은, TiN 층을 PVD 공법을 이용하여 Amorphous(비결정성) like 막질을 얻고, 이를 통해, Ru 등의 Grain size 를 증가시킴으로써 결정성을 개선시킬 수 있다는 효과가 있다. 또한, 상기 TiN 층에 애프터 바이어스(After Bias)를 처리함으로써 TiN 층의 Roughness 를 개선시킬 수 있으며, 적정의 RF 바이어스와 시간을 조절함으로써 TiN 층의 Roughness 개선을 통한 최적의 Void 생성 억제 및 결정성을 향상시킬 수 있다는 효과를 나타낼 수 있고, 이를 통해, 궁극적으로 비저항 및 결정성을 제어할 수 있다.
또한, TiN 층 상에 Ru 층을 2단계(2steps)로 적층함으로써, 제2단계(2nd step)의 적층 조건과 관계없이, 제1단계(1st step)의 핵형성(Nucleation)을 제어하여, Grain size를 크게 함과 동시에 비저항을 낮출 수 있는 효과가 있다.
나아가, TiN 의 성막 조건(DC 전압, RF 전압, Ar, N2 유량, 압력 등)을 조절함으로써, 애프터 바이어스의 효과를 최적으로 조절할 수 있으며, 이를 통해, 궁극적으로, Void 가 개선되고 비저항이 감소된 반도체 기판 막을 제공할 수 있고, ALD, CVD 등을 이용하지 않고, PVD 를 통해 반도체 기판 막의 비저항 및 결정성 제어할 수 있다는 효과가 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1 은 본 발명의 일 실시예에 따른 TiN 및 Ru 적층 공정 프로세스를 나타낸 도면이다.
도 2 는 TiN 막을 형성하기 위한 공정을 나타낸 도면이다.
도 3 은 애프터 바이어스(After Bias) 및 Ru 막을 형성하기 위한 공정을 나타낸 도면이다.
도 4a 는 TiN(4nm) 적층 후, 별도 처리 없이 Ru(30nm)를 적층한 경우, TiN 표면의 불안정, TiN 결정화 및 TiN 표면의 Roughness에 의해, Ru 결정성의 랜덤화가 이루어지고 Grain size 가 감소되며 비저항이 상승되는 결과를 나타낸 도면이다.
도 4b 는 고압(1 ~ 40 Pa) 및 저온(100℃ 이하)에서 TiN(4nm)을 성막하고, 애프터 바이어스 처리 이후, Ru(30nm)를 적층한 경우, Roughness 및 비저항이 개선된 결과를 나타낸 도면이다.
도 5 는 서로 다른 조건(RF 전력, 시간)의 애프터 바이어스 처리 후, Ru 를 동일 조건으로 2단계(2steps) 증착한 Ru 층의 비저항 값의 변화를 측정한 결과를 나타낸 도면이다.
도 6 은 Ru 층을 DC 전력(0.5kW, 2kW, 4kW)별로 1단계(1step) 증착을 실시하여 Grain size 및 비저항의 변화를 나타낸 결과와, Ru 층의 제1층(1st layer) 을 0.5kW DC 전력으로 증착을 실시한 후, 제2층(2nd layer)을 2kW DC 전력으로 증착을 실시하였을 경우에의 Grain size 및 비저항을 나타낸 결과를 비교한 도면이다.
도 7a 는 SiO2 상에 Ru 층(30nm)을 단일 단계(1step)로 증착한 후, Grain size 및 비저항 값(10.79μΩ㎝)을 측정한 결과를 나타낸 도면이다.
도 7b 는 SiO2 상에 Ru 층(26nm/4nm)을 2단계(2steps)로 증착한 후, Grain size 및 비저항 값(10.50μΩ㎝)을 측정한 결과를 나타낸 도면이다.
도 7c 는 SiO2 상에 TiN(4nm)을 적층한 후, 애프터 바이어스 처리하지 않고, TiN(4nm) 상에 Ru 층을 단일 단계(1step)로 증착한 후, Grain size, Grain 수 및 비저항 값(12.77μΩ㎝)을 측정한 결과를 나타낸 도면이다.
도 7d 는 SiO2 상에 TiN(4nm)을 적층한 후, 애프터 바이어스 처리하고, TiN(4nm) 상에 Ru 층을 단일 단계(1step)로 증착한 후, Grain size, Grain 수 및 비저항 값(11.67μΩ㎝)을 측정한 결과를 나타낸 도면이다.
도 7e 는 SiO2 상에 TiN(4nm)을 적층한 후, 애프터 바이어스 처리하지 않고, TiN(4nm) 상에 Ru 층을 2단계(2steps)로 증착한 후, Grain size, Grain 수 및 비저항 값(12.15μΩ㎝)을 측정한 결과를 나타낸 도면이다.
도 7f 는 SiO2 상에 TiN(4nm)을 적층한 후, 애프터 바이어스 처리하고, TiN(4nm) 상에 Ru 층을 2단계(2teps)로 증착한 후, Grain size, Grain 수 및 비저항 값(11.08μΩ㎝)을 측정한 결과를 나타낸 도면이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명의 일 실시예에 따르면, 물리 기상 증착(Physical Vapor Deposition; PVD)을 이용하여 반도체 기판 상에 성막하는 저저항 재료의 성막 방법으로서,
a) SiO2 웨이퍼 상에 1 내지 40 Pa 의 압력, 저온(100℃ 이하) 마그네트론 스퍼터링을 이용하여 배리어층을 적층하는 단계;
b) 상기 배리어층 적층 후, DC 전력을 인가하지 않고 Ar 가스 분위기 하에서 RF 바이어스(RF bias)를 인가하여 배리어층의 표면을 개질하는 단계; 및
c) 배리어층 상에 마그네트론 스퍼터링을 이용하여 저저항 재료를 적층하는 단계;
를 포함하고,
상기 저저항 재료는 텅스텐(W), 루테늄(Ru), 몰리브덴(Mo), 코발트(Co) 및 로듐(Rh)으로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는, 저저항 재료의 성막 방법이 제공된다.
상기 단계 a) 를 통해 형성되는 배리어층은 질화티탄(TiN) 뿐만 아니라, 질화탄탈륨(TaN) 또는 질화규소(SiNx; x>0) 로 이루어지는 것일 수 있으며, 배리어층의 두께는 바람직하게는 4 nm 이하일 수 있다.
한편, 4 nm 를 초과하게 되는 경우, Ru/TiN 성막시 Ru 와 같은 저저항 재료의 비저항이 높아짐에 따라, 신호 지연 및 전압 하강의 문제가 발생할 수 있으며, 디바이스 성능이 저하되는 문제가 발생할 수 있다.
상기 단계 a) 에서의 마그네트론 스퍼터링의 실시에 따른 TiN 등의 적층 조건은 다양한 조건 하에서 실시될 수 있으나, 고압 및 저온(100℃ 이하)에서 마그네트론 스퍼터링을 이용할 수 있고, 특히, 기존의 PVD Process 에서는 보통 0.1 내지 0.9 Pa 의 압력 하에서 실시되는데 반하여, 본 발명에서는 1 내지 40 Pa 과 같은 고압에서 실시될 수 있는 특징이 있다.
또한, TiN 등의 성막 조건에 따라 애프터 바이어스(After bias)의 효과가 일부 다르게 나타나고, 최적화된 성막 조건에서 Amorphous화된 TiN 등에서 가장 좋은 결과(낮은 비저항성)를 나타낸다는 점에서, TiN 의 성막 조건은 DC 전력 : 10 ~ 30kW, RF 전력 : 200W 이하, Ar/N2 의 비율이 1/10 이하, 압력 : 1 ~ 40 Pa 및 저온(100℃ 이하)의 조건이 가장 적합하다.
한편, 접착(Adhesion) 및 배리어(Barrier)를 위해서는, SiO2 웨이퍼 상에, TiN 등의 하부막과 더불어 Ru 와 같은 저저항 재료가 그 상부에 적층되어 사용되는데, 이 경우, Ru/TiN 구조로 인하여, 비저항이 상승되는 문제점이 발생한다.
이러한 문제점을 해결하기 위하여, 본 발명의 일 실시예에 따라, 단계 a) 의 배리어층 적층 후, 저저항 재료의 적층 이전에, Ar 가스 분위기 하에서 RF 바이어스(RF bias)를 인가하여 애프터 바이어스를 실시함으로써 TiN 표면을 개질시킬 수 있다.
단계 b) 의 애프터 바이어스를 통해 저저항 재료가 최종 성막된 반도체 기판의 비저항성은 감소되는데, 이는 기존 애프터 바이어스를 실시하지 않는 경우에 존재하였던 불안정한 TiN 층의 표면의 Roughness 를 개선하고, 결합내 불순물(산소 등)을 제거함으로써, 그 위에 성막된 저저항 재료(Ru, Mo, W, Co, Rh 등)의 Grain size 가 증대되고 Void 가 감소하여 최종적으로 비저항이 개선되는 효과를 낳게되는 것이다.
한편, 도 5 에 나타낸 바와 같이, 상기 단계 b) 의 RF 전력 및 시간을 조절함으로써, 이러한 비저항성이 최종적으로 조절되는 것을 확인할 수 있고, 50 내지 300W 및 10 내지 100초 동안, 바람직하게는 100 내지 300W 및 10 내지 100초 동안, 보다 바람직하게는 100 내지 300W 및 10 내지 60초 동안, 특히 바람직하게는, 300W 및 10초 내지 50초 동안 RF 바이어스를 인가하였을 경우, 비저항성이 기존에 비해 현저히 감소되고, Grain size 증가 및 Void 가 감소한다는 것을 알 수 있다.
본 발명의 일 실시예에 따라 상기 단계 b) 의 애프터 바이어스를 실시한 이후에는, Ru, W, Mo, Co, Rh 와 같은 저저항 재료를 마그네트론 스퍼터링을 이용하여 적층하며, 원하는 두께만큼 적층이 될 때까지 증착을 실시한다(단계 c)).
이 경우, 상기 단계 c) 를 통한 저저항 재료의 적층 두께는 10 내지 30 nm 일 수 있으며, 원하는 두께만큼 증착이 이루어지는 경우, 챔버로부터 웨이퍼를 제거하여, 저저항 재료 성막 공정을 완료한다.
한편, 상기 단계 c) 는 앞서 기술한 바와 같이, 단일 단계(1step)로 증착이 이루어질 수 있으나, 시드층인 핵형성층을 형성하는 제1단계(1st step)와 결정층을 형성하는 제2단계(2nd step)로 나누어 이중층으로 형성(2steps)하는 것 또한 가능하다.
이 경우, 도 7 에 나타낸 바와 같이, 저저항 재료(Ru 등)가 이중층으로 형성된 도 7e 및 도 7f 의 경우가, 단일 단계로 증착된 도 7c 및 도 7d 의 경우에 비해, Grain Size 가 더 크고, Grain 수가 더 적으며, 비저항이 작은 것을 확인할 수 있는바, 저저항 재료를 이중층으로 형성(2steps)하는 것이 단일 단계(1step)로 형성하는 것에 비해 더욱 바람직하다고 할 수 있다. 여기서, Grain 의 수는 각각의 SEM 이미지에 있어서, 동일한 크기의 일정 부분(구역)의 Grain 수를 직접 카운팅하여 계산하였다.
한편, 제1단계의 실시 조건을 달리하여, 핵형성(Nucleation)을 제어함으로써, 제2단계의 증착 조건과는 관계없이 비저항을 저하시킬 수 있으며, 또한, 결정층 형성 단계에서 핵형성층 형성 단계보다 높은 DC 전력을 인가하였음에도, 핵형성층 형성 단계에서와 동일한 DC 전력을 단일 단계로 실시하는 경우와 동등한 정도의 비저항이 확보 가능하며, 이를 통해 성막 시간 단축 및 분포가 개선될 수 있다는 장점이 있다.
일 실시예로, 예를 들어, 단일 단계(1step)로서 0.5kW, 2kW 및 4kW 의 DC 전력을 각각 사용하여, Ru 층을 적층한 경우에는, DC 전력이 증가함에 따라, Grain size 가 작아지고, 비저항이 커지는 것을 확인할 수 있으며(도 6), 단일 단계로서 0.5kW 의 DC 전력을 사용한 경우의 Grain size 가, 제1단계로서 0.5kW 를 사용하고 제2단계로서 2kW 를 사용한 경우의 Grain size 와 거의 동일한 것을 확인할 수 있다(도 6).
한편, 저저항 재료를 성막함에 있어서, 단일 단계(1step)로 증착이 이루어질 경우, 저저항 재료의 성막 조건은 DC 전력이 2 내지 8kW 일 수 있고, RF 전력이 50W 일 수 있다. 상기 DC 전력이 2 kW 보다 낮은 경우, 성막 시간이 길어져 양산에 악영항을 미칠 뿐만 아니라, 성막 분포도가 나빠질 수 있으며, 8kW 를 초과하는 경우에는, Grain size 가 너무 작게 형성되어 비저항 값이 커지는 결과를 초래할 수 있다.
또한, 시드층인 핵형성층을 형성하는 제1단계(1st step)와 결정층을 형성하는 제2단계(2nd step)로 나누어 이중층으로 저저항 재료의 막을 형성(2steps)하는 경우에는, 제1단계 성막시, DC 전력은 0.3 내지 1kW 일 수 있고, 이 경우, RF 전력은 인가되지 않는다. DC 전력이 0.3kW 보다 낮은 경우에는, 방전이 어려울 수 있으며, 1kW 를 초과하게 되면 비저항 값이 커지게 되는 문제점이 발생할 수 있다. 아울러, 제2단계 성막시, DC 전력이 2kW 보다 낮게 되면, 성막시간이 길어져 양산에 악영향을 미칠 수 있고, 성막 분포도가 나빠질 수 있으며, 10kW 를 초과하게 되는 경우, Grain size 가 작게 형성되어 비저항 값이 커지게 되는 결과를 초래하게 되므로, 2 내지 10kW 가 바람직하며, 이 경우 RF 전력은 50W 일 수 있다.
또한, 상기 핵형성층(시드층)의 두께는 4 nm 미만인 경우에는 핵형성(Nucleation)이 잘 되지 않는다는 점에서 4 nm 이상인 것이 바람직하며, 핵형성층 및 결정층의 두께의 합은 10 내지 30 nm 인 것이 바람직하다. 한편, 저 파워로 성막되는 핵형성층이 두꺼울수록 Grain size 를 크게 할 수 있고, 이는 곧 비저항을 개선하는 방향으로 갈 수 있다는 점에서, 핵형성층의 두께의 상한은 크게 존재하지 않으며, 양산 측면을 고려하였을 때, 핵형성층을 두껍게 하는 경우, 성막 공정이 장시간 소요된다는 점에서, 핵형성층의 두께는 4 nm 가 적당한 것으로 생각된다.
이상 기술한 바와 같은 방법으로 제조된, TiN 등의 배리어층과 Ru, W, Mo, Co, Rh 와 같은 저저항 재료가 성막된 반도체 기판은 반도체 소자의 미세화에 따라 차세대 배선 구조에 사용될 수 있으며, 특히 28 nm 미만의 피치(pitch)의 미세패턴용으로 사용되기에 적합하다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하기로 한다. 하기 실시예는 본 발명을 예시하기 위한 목적으로 기술된 것으로서, 본 발명의 범위가 이에 한정되는 것은 아니다.
<실시예>
1) TiN 의 적층 방법
ENTRON-EX 라는 실험 장비를 사용하여, 물리 기상 증착(PVD) 시스템을 기반으로 성막을 진행하였다. TiN 과 Ru 성막은 서로 다른 공정 챔버에서 이루어지고, 기판은 SiO2 기판을 사용하였다.
기판은 Load lock 챔버를 거쳐, TiN 챔버로 전달되고, 기판을 고정하고, 성막에 적합한 기판 온도를 위해, ESC 에 power 를 인가, 챔버 내 Ar/N2 가스를 공급한다. 챔버내 방전을 위해 target부에 DC 를 인가하고, 기판 stage부에 RF 를 인가하여, Target으로부터 증착 물질이 기판으로 향하도록 하여 성막이 이루어진다. 여기서 RF 는 이온들을 Stage 쪽으로 당김으로써 막질 및 분포를 제어하는 역할을 하게되며, TiN 의 성막 조건은 다음과 같다:
DC : 10 kW ~ 30 kW;
RF : 200W 이하;
Ar/N2 비율 : 1/10 이하;
압력 : 1 ~ 40 Pa(고압);
온도 : 저온(100℃ 이하)
2) 애프터 바이어스(After bias) 처리 방법
애프터 바이어스 처리를 위해, TiN 증착이 완료된 후, 기판을 Ru 챔버로 이동한다. 챔버 내 Ar 가스를 공급하고, Stage에 RF Bias를 인가하여, Ar 이온을 기판에 끌어당김으로써 처리를 하게 되며, 애프터 바이어스 조건은 하기와 같다:
DC : 0 kW;
Ar : 170 sccm;
RF : 300W;
시간 및 온도 : 10sec, 200℃ 이상의 고온
3) 저저항 재료(Ru)의 증착 방법
- 단일 단계(1 step) 성막 방법
애프터 바이어스 처리 후, 동일한 Ru 챔버 내에서, 애프터 바이어스 처리된 TiN 막 상에 Ru 막을 증착하기 위해, DC 전력 2kW, RF 전력 50W, Ar 유량 170 sccm, 470℃, 65초 동안의 성막 조건으로 Ru 를 성막하였으며, 그 결과, 30 nm 두께의 단일층으로 이루어진 Ru 막을 얻었다.
- 2단계(2 steps) 성막 방법
상기 단일 성막 단계에서와 유사하게, 애프터 바이어스 처리 후, 동일한 Ru 챔버 내에서 애프터 바이어스 처리된 TiN 막 상에 Ru 막을 30nm 증착한다. 이 때, Ru 의 성막은, 저(低)파워조건 제1단계와, 고(高)파워조건 제2단계를 순서대로 적용하여 증착하였으며, 해당 단계에서의 실시한 조건과 성막 두께는 하기와 같다:
제1단계 : DC 0.5kW, RF 0W, Ar 170sccm, 76sec, 470℃, 4nm(성막 두께)
제2단계: DC 2kW, RF 50W, Ar 170sccm, 56sec, 470℃, 26nm(성막 두께)
한편, Grain size 가 커질수록 비저항은 개선되는데, 이는 저파워로 진행하였을 때 Grain size 가 더 커지는 경향을 보인다. 다만, 양산을 고려하였을 때, 시간적인 부분도 중요하기 때문에 고파워 성막으로 시간을 단축시킬 필요가 있으므로, 상기와 같이 2단계(2steps)로 나누어 성막을 진행하게 된다.
즉, Ru 성막 제1단계에서 Grain size의 영향을 받아, 제2단계에서는 고파워로 진행하여도 큰 Grain size 를 가지게 되며, 이로 인해 비저항 및 양산성이 부분 개선되는 결과를 낳는다.
Ru 성막 이후, 웨이퍼는 Transfer Chamber를 지나 Foup 으로 돌아오게 되며, 본 실험을 종료하였다.
이상과 같이 실시예가 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (14)

  1. 물리 기상 증착(Physical Vapor Deposition; PVD)을 이용하여 반도체 기판 상에 성막하는 저저항 재료의 성막 방법으로서,
    a) SiO2 웨이퍼 상에 1 내지 40 Pa 의 압력, 저온 마그네트론 스퍼터링을 이용하여 배리어층을 적층하는 단계;
    b) 상기 배리어층 적층 후, DC 전력을 인가하지 않고 Ar 가스 분위기 하에서 RF 바이어스(RF bias)를 인가하여 배리어층의 표면을 개질하는 단계; 및
    c) 배리어층 상에 마그네트론 스퍼터링을 이용하여 저저항 재료를 적층하는 단계;
    를 포함하고,
    상기 저저항 재료는 텅스텐(W), 루테늄(Ru), 몰리브덴(Mo), 코발트(Co) 및 로듐(Rh)으로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는, 저저항 재료의 성막 방법.
  2. 제1항에 있어서,
    상기 배리어층은 질화티탄(TiN), 질화탄탈륨(TaN) 및 질화규소(SiNx; x>0)로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는, 저저항 재료의 성막 방법.
  3. 제1항에 있어서,
    상기 배리어층의 두께는 4 nm 이하인 것을 특징으로 하는, 저저항 재료의 성막 방법.
  4. 제1항에 있어서,
    상기 배리어층은 TiN 층이고,
    상기 단계 a) 에서의 마그네트론 스퍼터링의 실시 조건은 DC 10 내지 30kW, RF 200W 이하, Ar/N2 비율이 1/10 이하, 및 압력 1 내지 40Pa 인 것을 특징으로 하는, 저저항 재료의 성막 방법.
  5. 제1항에 있어서,
    상기 단계 b) 는, 100 내지 300W 및 10 내지 60초 동안 RF 바이어스를 인가하는 것을 특징으로 하는, 저저항 재료의 성막 방법.
  6. 제1항에 있어서,
    상기 단계 b) 는, 300W 및 10초 동안 RF 바이어스를 인가하는 것을 특징으로 하는, 저저항 재료의 성막 방법.
  7. 제1항에 있어서,
    상기 단계 c) 에서의 적층 두께는 10 내지 30 nm 인 것을 특징으로 하는, 저저항 재료의 성막 방법.
  8. 제1항에 있어서,
    상기 단계 c) 는, 저저항 재료의 핵형성층(시드층)을 형성하는 단계 및 상기 저저항 재료의 결정층을 형성하는 단계를 포함하는 것을 특징으로 하는, 저저항 재료의 성막 방법.
  9. 제8항에 있어서,
    상기 핵형성층(시드층)의 두께는 4 nm 이상인 것을 특징으로 하는, 저저항 재료의 성막 방법.
  10. 제8항에 있어서,
    상기 결정층 형성 단계는 핵형성층 형성 단계보다 높은 DC 전력을 인가하는 것을 특징으로 하는, 저저항 재료의 성막 방법.
  11. 제8항에 있어서,
    상기 핵형성층 형성 단계의 RF 는 0W 인 것을 특징으로 하는, 저저항 재료의 성막 방법.
  12. 제9항에 있어서,
    상기 핵형성층(시드층) 및 결정층 두께의 합이 10 내지 30 nm 인 것을 특징으로 하는, 저저항 재료의 성막 방법.
  13. 제1항 또는 제8항에 있어서,
    상기 저저항 재료는 루테늄(Ru)인 것을 특징으로 하는, 저저항 재료의 성막 방법.
  14. 제1항에 있어서,
    상기 배리어층과 저저항 재료가 성막된 반도체 기판은, 28nm 미만의 피치(pitch)의 미세패턴용인 것을 특징으로 하는, 저저항 재료의 성막 방법.
PCT/KR2022/008042 2021-06-30 2022-06-08 Pvd 방법을 통한 저저항 재료의 비저항 및 결정성 제어 방법 WO2023277370A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023576230A JP2024520855A (ja) 2021-06-30 2022-06-08 Pvd方法に基づいた低抵抗材料の比抵抗及び結晶性の制御方法
CN202280041318.7A CN117461123A (zh) 2021-06-30 2022-06-08 通过pvd法控制低电阻材料的电阻率和结晶度的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0085404 2021-06-30
KR1020210085404A KR20230003836A (ko) 2021-06-30 2021-06-30 Pvd 방법을 통한 저저항 재료의 비저항 및 결정성 제어 방법

Publications (1)

Publication Number Publication Date
WO2023277370A1 true WO2023277370A1 (ko) 2023-01-05

Family

ID=84692835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008042 WO2023277370A1 (ko) 2021-06-30 2022-06-08 Pvd 방법을 통한 저저항 재료의 비저항 및 결정성 제어 방법

Country Status (5)

Country Link
JP (1) JP2024520855A (ko)
KR (1) KR20230003836A (ko)
CN (1) CN117461123A (ko)
TW (1) TW202303763A (ko)
WO (1) WO2023277370A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180033483A (ko) * 2013-12-31 2018-04-03 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 반도체 디바이스용 인터커넥트 구조
US20200161175A1 (en) * 2018-11-19 2020-05-21 International Business Machines Corporation Top via back end of the line interconnect integration
KR20200112671A (ko) * 2019-03-20 2020-10-05 가부시키가이샤 스크린 홀딩스 기판 처리 방법 및 기판 처리 장치
US20200350159A1 (en) * 2019-05-03 2020-11-05 Applied Materials, Inc. Methods and apparatus for filling a feature disposed in a substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI717554B (zh) 2016-10-03 2021-02-01 美商應用材料股份有限公司 使用pvd釕的方法與裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180033483A (ko) * 2013-12-31 2018-04-03 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 반도체 디바이스용 인터커넥트 구조
US20200161175A1 (en) * 2018-11-19 2020-05-21 International Business Machines Corporation Top via back end of the line interconnect integration
KR20200112671A (ko) * 2019-03-20 2020-10-05 가부시키가이샤 스크린 홀딩스 기판 처리 방법 및 기판 처리 장치
US20200350159A1 (en) * 2019-05-03 2020-11-05 Applied Materials, Inc. Methods and apparatus for filling a feature disposed in a substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIMON DANIEL K.; TRöGER DAVID; SCHENK TONY; DIRNSTORFER INGO; FENGLER FRANZ P. G.; JORDAN PAUL M.; KRAUSE ANDREAS; MIKOLAJICK: "Comparative study of ITO and TiN fabricated by low-temperature RF biased sputtering", JOURNAL OF VACUUM SCIENCE, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 34, no. 2, 1 January 1901 (1901-01-01), 2 Huntington Quadrangle, Melville, NY 11747, XP012202962, ISSN: 0734-2101, DOI: 10.1116/1.4936257 *

Also Published As

Publication number Publication date
CN117461123A (zh) 2024-01-26
JP2024520855A (ja) 2024-05-24
TW202303763A (zh) 2023-01-16
KR20230003836A (ko) 2023-01-06

Similar Documents

Publication Publication Date Title
US5738917A (en) Process for in-situ deposition of a Ti/TiN/Ti aluminum underlayer
KR100402547B1 (ko) 고융점금속막의성막방법
CN112376024B (zh) 一种氧化物薄膜的制备方法
US5582881A (en) Process for deposition of a Ti/TiN cap layer on aluminum metallization and apparatus
WO2019212272A1 (ko) 스퍼터링 방법으로 제조되는 저항변화층을 구비하는 저항변화 메모리 및 그의 제조 방법
WO2023277370A1 (ko) Pvd 방법을 통한 저저항 재료의 비저항 및 결정성 제어 방법
JP3779161B2 (ja) 2層拡散バリアーを析出させる方法
WO2017014343A1 (ko) 신축성이 향상된 메타 계면 구조물 및 그 제조방법
JP2003243497A (ja) 配線構造及びその形成方法
JP3202657B2 (ja) 半導体装置の製造方法
US7135399B2 (en) Deposition method for wiring thin film
JPH07321068A (ja) 金属配線形成方法及びこれに使用されるスパッタリング装置
WO2023249220A1 (ko) Pvd 스퍼터링법을 통한 텅스텐의 비저항 및 응력 제어 방법
JPH05326445A (ja) 半導体装置の製造方法
WO2023219400A1 (ko) 반도체 소자의 전극 형성 방법 및 반도체 소자의 전극
JP7488147B2 (ja) ハードマスク及びハードマスクの製造方法
US20230212736A1 (en) Method of operating a pvd apparatus
WO2024117712A1 (ko) 반도체 소자 및 이의 제조 방법
JP4350480B2 (ja) ドーピング方法、半導体集積回路の作製方法
WO2020256515A1 (ko) 물질막 및 타겟 패턴의 선택적 제조 방법
JP2730499B2 (ja) 半導体装置の製造方法
WO2020141850A1 (ko) 탄화수소 박막, 탄화수소 박막의 제조방법 및 탄화수소 박막을 포함하는 반도체 소자
JPS6042822A (ja) 多層構造の電極形成方法
JPH1032167A (ja) 半導体基板の処理方法及び半導体処理装置
JPH11150086A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280041318.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023576230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE