WO2023276970A1 - 搬送システムおよび搬送システムの制御方法 - Google Patents

搬送システムおよび搬送システムの制御方法 Download PDF

Info

Publication number
WO2023276970A1
WO2023276970A1 PCT/JP2022/025611 JP2022025611W WO2023276970A1 WO 2023276970 A1 WO2023276970 A1 WO 2023276970A1 JP 2022025611 W JP2022025611 W JP 2022025611W WO 2023276970 A1 WO2023276970 A1 WO 2023276970A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
control
holding
control means
transport system
Prior art date
Application number
PCT/JP2022/025611
Other languages
English (en)
French (fr)
Inventor
和弘 西川
Original Assignee
株式会社キトー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キトー filed Critical 株式会社キトー
Priority to DE112022003315.0T priority Critical patent/DE112022003315T5/de
Priority to CN202280041580.1A priority patent/CN117480037A/zh
Priority to JP2023531952A priority patent/JP7506452B2/ja
Publication of WO2023276970A1 publication Critical patent/WO2023276970A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0008Balancing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/42Control devices non-automatic
    • B66D1/46Control devices non-automatic electric

Definitions

  • the present invention relates to a transport system and a control method for the transport system.
  • Patent Document 1 discloses a transport system that uses a suspension device for lifting and lowering a load and a robot device.
  • Patent Literature 1 discloses a transport system (1) that transports a work (2) by cooperating a suspension device (3) and a robot (4).
  • a suspension device (3) includes a support mechanism (10), an elevating unit (15), and a suspension jig (16). In such a transport system, the heavy load is borne by the suspension device, thereby reducing the load on the robot device.
  • the hand (26) and the lifting unit (16) are basically synchronized in vertical lifting operation. However, if the vertical movement of the hand (26) and the vertical movement of the lifting unit (16) (mounting mechanism (18)) are out of sync with each other, the roller ball (28) is held. By rolling against the portion (18c), the displacement is absorbed.
  • the transfer system disclosed in Patent Document 1 employs a configuration in which a hand (26) is provided with a roller ball (28) in addition to the suspension jig (16) for suspending the work. Therefore, the provision of the roller ball (28) on the hand (26) complicates the structure and increases the manufacturing cost.
  • the present invention has been devised in view of the above circumstances, and has a simple configuration, a state in which there are few restrictions on movement on the side of the robot device, and a transport that can improve operability when transporting a load. It is an object of the present invention to provide a control method for a system and transport system.
  • a conveying system for conveying a load to a desired position, the load being capable of lifting and lowering the load and detecting a load acting thereon or a change in the load.
  • a hoist equipped with a detection means, a crane to which the hoist is attached and capable of horizontally moving the hoist by applying an external force to the hoist, and a load suspended from the hoist.
  • a robot device comprising: suspension means capable of holding a load or suspension means; holding means capable of holding a load or suspension means; and a robot arm that moves the holding means to a desired position;
  • a first control means capable of performing torque control of the hoist to generate a corresponding torque and height control of the hoist to move the suspension means to a predetermined target height, and the operation of the robot arm.
  • a second control means for controlling, a third control means for controlling the operation of the holding means, a main control means for giving a predetermined control command to the first control means, the second control means and the third control means; and when conveying the suspension means other than when the load is lifted from the loading surface when the ground is cut off or when the load is placed on the loading surface when landing on the floor, the control from the main control means
  • the third control means executes holding control so that the holding means performs holding, and in response to a control command from the main control means, the first control means causes the suspension means to operate based on the detection result of the load detection means.
  • the torque control is executed.
  • the third control means executes release control to release the holding by the holding means
  • the first control means targets the holding means
  • a conveying system is provided, characterized in that it performs height control to operate the hoist to control movement to height.
  • the second control means executes position control to move the holding means to a predetermined target position by the operation of the robot arm, including the vertical direction.
  • the second control means executes position control to move the holding means to a predetermined target position by the operation of the robot arm, including the vertical direction.
  • the second control means perform control to stop the operation of the robot arm in the height control.
  • the suspending means is a chucking device capable of holding a load, and the chucking device is adapted to hoist the load after the hoisting machine is stopped before the load is lifted off the ground. It is preferred that both height control and torque control during machine standstill continue to hold the load.
  • a control method for a conveying system for conveying a load to a desired position the conveying system being capable of lifting and lowering the load.
  • a hoist equipped with a load detecting means for detecting a load or a change in the load, and a crane to which the hoist is attached and capable of horizontally moving the hoist by applying an external force to the hoist.
  • a robot apparatus comprising: hanging means capable of holding a load suspended from a hoisting machine; holding means capable of holding the load or the hanging means; and a robot arm for moving the holding means to a desired position; A first capable of performing torque control of the hoist to generate torque corresponding to the load acting on the hoist, and height control of the hoist to move the suspension means to a predetermined target height.
  • Control means second control means for controlling the operation of the robot arm, third control means for controlling the operation of the holding means, the first control means, the second control means and the third control means, a predetermined a main control means for giving a control command, and when conveying the suspension means other than when the load is lifted from the mounting surface when the load is cut off from the ground or when the load is placed on the mounting surface when the load is landed on the floor.
  • a holding control step in which the third control means executes holding control so that the holding means performs holding according to a control command from the main control means; Based on the detection result of the detection, the first control means performs a torque control step of lowering the suspension means by increasing the load and hoisting it by decreasing the load; or when the load is placed on the placement surface and landed on the floor, the third control means executes release control to release the holding by the holding means according to a control command from the main control means.
  • the first control means executes height control for operating the hoist so as to control the movement of the holding means to the target height in the vertical direction according to the control command from the main control means. and a height control step for controlling a transport system.
  • a transfer system and a control method for the transfer system which have a simple configuration, are in a state in which there are few restrictions on the movement of the robot device, and are capable of improving operability during the transfer of a load. can be provided.
  • FIG. 1 is a schematic diagram showing the overall configuration of a transport system according to one embodiment of the present invention
  • FIG. It is a figure which shows the control-like structure of the winding machine shown in FIG. 2 is a plan view showing the configuration of a robot hand attached to the robot device of the transport system shown in FIG. 1
  • FIG. FIG. 2 is a side view showing the configuration of a chucking device included in the transport system shown in FIG. 1
  • 2 is a block diagram showing a control configuration of the transport system shown in FIG. 1
  • FIG. 2 is a diagram showing, in tabular form, operations performed by respective parts (apparatuses) in steps S1 to S9 of operations in the transport system shown in FIG. 1;
  • FIG. 7 is a diagram showing the state of each component of the transport system in step S1 shown in FIG. 6;
  • FIG. 7 is a diagram showing the state of each component of the transport system in step S2 shown in FIG. 6;
  • FIG. 7 is a diagram showing the state of each component of the transport system in step S3 shown in FIG. 6;
  • FIG. 7 is a diagram showing the state of each component of the transport system in step S4 shown in FIG. 6;
  • FIG. 7 is a diagram showing the state of each component of the transport system in step S5 shown in FIG. 6;
  • FIG. 7 is a diagram showing the state of each component of the transport system in step S6 shown in FIG. 6;
  • FIG. 7 is a diagram showing the state of each component of the transport system in step S7 shown in FIG. 6;
  • FIG. FIG. 7 is a diagram showing the state of each component of the transport system in step S8 shown in FIG. 6;
  • FIG. 7 is a diagram showing the state of each component of the transport system in step S
  • a transport system 10 and a control method for the transport system 10 according to an embodiment of the present invention will be described below with reference to the drawings.
  • FIG. 1 is a schematic diagram showing the overall configuration of the transport system 10. As shown in FIG. As shown in FIG. 1, the transport system 10 includes a hand crane 20, a hoist 30, a robot device 50, and a chucking device 70 as main components.
  • the hand crane 20 has a traveling rail 21 and a traversing rail 22 .
  • the running rail 21 is a long member that is hung from a fixed portion such as the ceiling, and is fixed to the fixed portion so as not to move along with the operator's guidance operation.
  • the hand crane 20 corresponds to a crane.
  • the traversing rail 22 has a pulley (not shown) and enables movement along the traveling rail 21 via the pulley.
  • FIG. 2 is a diagram showing a control configuration of the hoist 30.
  • the hoisting machine 30 includes a hoisting machine main body 31, an upper hook 32, a cylinder operating device 33, a chain bucket 34 for holding the hoisted load chain C1, and a lower hook 36. is the main component.
  • the hoist main body 31 is suspended from the above-described traversing rail 22 via an upper hook 32 and a pulley (not shown). Therefore, the operator can move the hoisting machine body 31 (hoisting machine 30) along the traversing rail 22 by manually pulling the load chain C1.
  • Various components are accommodated in the housing 35 of the hoist main body 31 . Specifically, inside the housing 35, there are a drive motor 40, a speed reduction mechanism 41, a brake mechanism 42, a load sheave 43 for winding up the load chain C1, a load sensor 44, a hoist control unit 45, A driver 46 is provided.
  • a hoist body composed of a rope and a winding drum (not shown) can be used instead of the load chain C1 and the load sheave 43. In this case, since the wound rope is held by the winding drum, the chain bucket 34 becomes unnecessary.
  • the drive motor 40 is a motor that provides driving force for driving the load sheave 43 .
  • the drive motor 40 is a servomotor provided with a detector (encoder 40a) for detecting a position (rotational position of a rotor not shown), preferably an AC servomotor.
  • a detector encoder 40a
  • AC servomotor a synchronous motor is preferable, but an induction motor may be used.
  • the reduction mechanism 41 is a part that reduces the speed of rotation of the drive motor 40 and transmits it to the load sheave 43 side.
  • the brake mechanism 42 is a part capable of releasing the braking force by electromagnetic force when the drive motor 40 is in operation, but even when the drive motor 40 is not in operation, the brake mechanism 42 releases the braking force so as to hold the load P. It is the part that causes
  • the load sheave 43 is a part that winds up and winds down the load chain C1, and is provided with a plurality of chain pockets along its outer periphery into which metal rings of the load chain C1 are inserted.
  • the load sensor 44 is a load sensor that measures the load applied to the upper hook 32 . That is, the load sensor 44 measures and detects the total load of the load of the hoist main body 31, the load of the load chain C1 (the portion not grounded on the floor or the like), and the load of the load P. It is a sensor that By subtracting the weight of the main body and the like from the total load measured and detected using the load sensor 44, the load applied to the load sheave 43 via the load chain C1 can be detected (calculated).
  • the load sensor 44 is attached to, for example, an attachment shaft for attaching the upper hook 32 to the hoist main body 31 .
  • the load sensor 44 corresponds to load detection means.
  • a load cell having a strain gauge can be used as the load sensor 44 described above.
  • the load sensor 44 may be placed between the upper hook 32 and a pulley (not shown), between the lower hook 36 and the load P, between the end of the load chain C1 and the lower hook 36, and so on. Any position is acceptable as long as the load applied to the load sheave 43 by the lowered load chain C1 can be detected and measured.
  • the load sensor 44 can be a crane scale or the like, but it must have accuracy and responsiveness that can be used for balancer control.
  • the hoisting machine control unit 45 can control the driver 46 according to the control mode (height control mode, torque control mode) based on a command from the main control unit 81, which will be described later. , which gives command values such as position (height), speed and torque for each control mode.
  • the hoist control unit 45 and the driver 46 correspond to first control means.
  • the hoisting machine control unit 45 for example, a computer equipped with a CPU (Central Processing Unit), memory (RAM (Random Access Memory), ROM (Read Only Memory), internal storage, external storage device, etc.), an input/output interface, etc. and integrated circuits.
  • the driver 46 adjusts the power supplied from the outside to an appropriate level based on the current value of the drive motor 40, the output of the encoder 40a, the command value for motor drive control given from the hoist control unit 45, and the like. , and supplies the electric power to the drive motor 40 to rotate the drive motor 40 .
  • the cylinder operation device 33 is an operation device that is operated while being held by the operator's hand, and is connected to the lower end side of the load chain C1.
  • a lower hook 36 for hanging the load P is connected to the cylinder operating device 33 .
  • an operation device (pendant switch) suspended by a cable from the hoist body 31 of the hoist 30 or the like may be used, or a wireless remote control device may be used.
  • the grip portion (not shown) of the cylinder operating device 33 is used to operate the cylinder operating device 33.
  • the operator vertically slides this to control the torque of the drive motor 40 according to the change in the load caused by the operator's manual force (external force) as described later (torque control ) operation, and each operation can be switched manually.
  • the chain bucket 34 is a portion that houses the load chain C1 on the non-load side (wound up) located on the opposite side of the lower hook 36 across the load sheave 43 .
  • the robot device 50 includes a leg portion 51, a plurality of joint portions 52 and 53, a plurality of arms 54 and 55, a wrist portion 56, and motors 57a to 57f for driving these.
  • the robot device 50 also includes a robot hand 60 .
  • a robot arm 58 is composed of the joints 52 and 53, the arms 54 and 55, the wrist 56, and the motors 57a to 57f.
  • the leg portion 51 is a portion erected facing the information from an installation surface such as a floor surface, and supports the joint portion 52 so as to be rotatable.
  • a motor 57a is housed in the leg portion 51, and by driving the motor 57a, the joint portion 52 (referred to as the first joint portion 52) is moved along an axis perpendicular to the installation surface (referred to as the S-axis). ) can be rotated.
  • first joint portion 52 is provided at the upper end of the leg portion 51 .
  • An arm 54 (referred to as a first arm 54) is rotatably attached to the first joint portion 52, and a motor 57b is arranged.
  • the motor 57b rotates the first arm 54 about an axis parallel to the installation surface (the axis in the direction perpendicular to the paper surface in FIG. 1; denoted as the L axis). Therefore, the degree of freedom of rotation of the first arm 54 is two.
  • An electric motor or an air motor can be used as the motors 57a to 57f including the motors 57a and 57b.
  • a joint portion 53 is attached in a rotatable state, and a motor 57c is housed therein. Then, by driving the motor 57c, the joint portion 53 (referred to as the second joint portion 53) is moved along an axis parallel to the installation surface (in FIG. 1, an axis in a direction perpendicular to the paper surface (denoted as U axis)). It is possible to rotate around the An arm 55 (referred to as a second arm 55) is rotatably attached to the second joint portion 53, and a motor 57d is arranged.
  • the motor 57d rotates the second arm 55 around an axis (represented as R axis) perpendicular to the axis (U axis) perpendicular to the plane of FIG. Therefore, the degree of freedom of rotation of the second arm 55 is two.
  • a wrist portion 56 is rotatably attached to the distal end side of the second arm 55, and a motor 57e is housed therein. By driving the motor 57e, the wrist portion 56 can rotate about an axis (referred to as a B axis) perpendicular to the R axis and the S axis.
  • a motor 57f is housed in the wrist portion 56, and the robot hand 60 rotates about an axis (denoted as a T-axis) perpendicular to the B-axis via the motor 57f. can be done.
  • FIG. 3 is a plan view showing the configuration of the robot hand 60.
  • the robot hand 60 includes a mounting portion 61, a cylindrical portion 62, a holding tube 63, and an actuator 64 (see FIG. 5).
  • the attachment portion 61 is a portion attached to the wrist portion 56 described above.
  • An air introduction path (not shown) for supplying air to the holding tube 63 may be built in the attachment portion 61 , but the air introduction path is provided separately from the attachment portion 61 . can be
  • the tubular portion 62 has a tubular appearance and is made of a material that is stronger than the holding tube 63 and does not deform easily.
  • a holding tube 63 is attached to the inner peripheral side of the tubular portion 62 .
  • the holding tube 63 is a member that expands toward the inner diameter side when air is introduced from the air introduction path.
  • the holding tube 63 is made of an airtight and easily expandable material such as rubber.
  • the holding tube 63 is provided with a plurality of (three in total in FIG. 3) expansion portions 63a so that the chucking device 70 can be held when the expansion portions 63a are expanded.
  • the expanded portion 63a is a portion indicated by a two-dot chain line.
  • the actuator 64 can use, for example, a compressor or a pump.
  • a holding tube 63 is directly or indirectly connected to the actuator 64, and it is possible to pressurize air into the holding tube 63 and reduce the pressure of the air being sent.
  • the actuator 64 can be configured to include a pressure adjusting valve or the like.
  • FIG. 4 is a side view showing the configuration of the chucking device 70.
  • the chucking device 70 is a member suspended from the lower hook 36.
  • the chucking device 70 includes a hook engaging portion 71 , a hand holding portion 72 , an air driving portion 73 and an expansion holding portion 74 .
  • the hook hooking portion 71 is provided in a ring shape and is a portion hooked to the lower hook 36 .
  • the hand holding portion 72 is a portion that is gripped by the robot hand 60 described above, and is provided in a rod shape. Therefore, the robot hand 60 can move vertically along the hand holding portion 72 .
  • the length of the hand holding portion 72 is set as follows. That is, when the expansion holding portion 74 is inserted into the insertion hole P1 of the load P or removed from the insertion hole P1, even if the hand holding portion 72 moves in the vertical direction, the robot hand 60 does not move.
  • the length of the hand holding portion 72 is set so that the holding portion 72 can be gripped.
  • the air driving portion 73 is a portion that pressurizes the expansion holding portion 74 to feed air and releases the pressurization.
  • the air driving portion 73 is provided with a larger diameter than the expansion holding portion 74, so that positioning when the expansion holding portion 74 is inserted into the insertion hole P1 of the load P can be performed.
  • the inflatable holding portion 74 is a portion that expands when air is introduced, and is a portion that is inserted into the insertion hole P1 of the load P, like the robot hand 60 described above.
  • the expansion holding portion 74 includes a rod portion 74a and an expansion holding portion 74b.
  • the rod portion 74a is a rod-shaped portion protruding downward from the air driving portion 73 described above.
  • the rod portion 74a is not limited to a rod-shaped portion, and may be a cylindrical portion.
  • the expansion holding portion 74b is a portion that expands toward the outer diameter side when air is introduced from an air introduction passage connected to the air driving portion 73.
  • the inflatable holding portion 74b is made of an easily expandable material such as rubber.
  • the inflatable holding portion 74b has a plurality of inflatable portions (three in total in FIG. 4) along the longitudinal direction, so that the load P can be stably supported.
  • FIG. 5 is a block diagram showing the control configuration of the transport system 10.
  • the control portion of the transport system 10 includes a main control section 81, the hoist control section 45 described above, a chucking control section 82, a hand control section 83, and a robot control section 84. is provided.
  • the main control unit 81, the chucking control unit 82, the hand control unit 83, and the robot control unit 84 include, for example, a CPU (Central Processing Unit), memory (RAM (Random Access Memory), ROM (Read Only Memory), (internal storage, external storage, etc.), computers and integrated circuits equipped with an input/output interface and the like.
  • the main control section 81 corresponds to main control means.
  • the robot control section 84 and the drivers 85a to 85f correspond to the second control means
  • the hand control section 83 corresponds to the third control means
  • the chucking control section 82 corresponds to the fourth control means.
  • the main control section 81 is a section that performs overall control of the transport system 10, and is a section that transmits signals regarding control commands to the respective control sections 45, 82, 83 and 84.
  • the control sections 45, 82 and 83 , 84 to receive a signal corresponding to the end of a predetermined operation.
  • the chucking control section 82 is a section that controls the operation of the chucking device 70 described above.
  • the hand control unit 83 is a part that controls the operation of the robot hand 60 described above.
  • the robot control unit 84 is a part that controls the operations of the motors 57a to 57f of the robot device 50 described above through the drivers 85a to 85f.
  • FIG. 6 is a table showing operations performed by respective parts (apparatuses) in steps S1 to S9.
  • FIG. 7 is a diagram showing the state of each component of the transport system 10 in step S1.
  • the hoist 30 performs torque control (balancer control).
  • the hoisting machine control unit 45 controls the drive motor 40 to apply a constant torque based on the load detection result of the load sensor 44 according to the control command from the main control unit 81. (corresponds to part of the torque control step).
  • a predetermined load is detected by the load sensor 44, and the value of the load is stored in the memory 45a.
  • step S1 the state is before the load P is suspended, so the load detected by the load sensor 44 is much smaller than when the load P is suspended. Therefore, the hoisting machine control unit 45 controls driving of the drive motor 40 so as to perform torque control (balancer control) to maintain such a small load.
  • the chucking control unit 82 operates the air driving unit 73 so that the air driving unit 73 does not pressurize the expansion holding unit 74b. Control. Therefore, the expansion holding portion 74b of the chucking device 70 becomes non-expanded, and the chucking device 70 can be inserted into the insertion hole P1.
  • step S ⁇ b>1 based on a control command from the main control section 81 , the hand control section 83 controls the operation of the actuator 64 of the robot hand 60 so as to hold (grip) the chucking device 70 . Thereby, the robot hand 60 is in a state of holding the hand holding portion 72 of the chucking device 70 (corresponding to part of the holding control step).
  • step S ⁇ b>1 based on a control command from the main control section 81 , the robot control section 84 performs position control of the robot hand 60 (chucking device 70 ). That is, the robot control unit 84 controls the operation of each motor 57a to 57f so that the robot hand 60 (chucking device 70) traces a predetermined path and reaches the target height and position. In such position control, the operation of each motor 57a to 57f is controlled so that the chucking device 70 is positioned above the load P insertion hole P1.
  • FIG. 8 is a diagram showing the state of each component of the transport system 10 in step S2.
  • the main control unit 81 receives a movement completion signal of the robot hand 60 from the robot control unit 84, outputs a predetermined command to the hand control unit 83, and responds to the predetermined command. Based on this, the robot hand 60 releases the holding state of the hand holding portion 72 of the chucking device 70 under the control of the hand control portion 83 .
  • the main control unit 81 receives a release completion signal from the hand control unit 83 and instructs the hoisting machine 30 to stop torque control (balancer control) and switch to height control.
  • the hoisting machine 30 receives a lowering command from the main control unit 81 to a target height below the current position, and performs a lowering operation. That is, in the hoisting machine control unit 45 , the control mode is switched from the torque control (balancer control) mode to the height control mode based on the control command from the main control unit 81 . Then, the hoisting machine control unit 45 controls the drive motor so that the chucking device 70 is lowered to a predetermined target height (chucking height) at which the chucking operation of the load P can be started. 40 (corresponding to part of the height control step). “Floor landing” refers to the state in which the load is placed on the placement surface from the state in which it is suspended in the air. It refers to the height at the moment it is placed (almost the same height as the "ground cutting height” described later).
  • step S2 Also in step S2 when the chucking device 70 is inserted, the non-expanded state of the expansion holding portion 74b of the chucking device 70 is continued in the same manner as in step S1.
  • step S2 based on the control command from the main control unit 81, the hand control unit 83 controls the operation of the actuator 64 of the robot hand 60 so as to continue the state in which the chucking device 70 is released ( part of the release control step).
  • step S2 the robot device 50 is put into a stopped state based on the control command from the robot control section 84.
  • the robot control section 84 stops the operation of the motors 57a to 57f.
  • the robot hand 60 stops, and the chucking device 70 descends relative to the robot hand 60 as the hoisting machine 30 lowers.
  • FIG. 9 is a diagram showing the state of each component of the transport system 10 in step S3.
  • the chucking height which is the predetermined target height in the height control described above, is reached, that is, the chucking operation for holding the load P by the chucking device 70 can be started.
  • the hoisting machine control portion 45 stops driving the drive motor 40 (corresponding to part of the height control step). .
  • step S3 based on a control command from the main control unit 81, the chucking control unit 82 causes the air driving unit 73 to pressurize the expansion holding unit 74b at the timing when the drive motor 40 stops or at a timing after that. , the operation of the air drive unit 73 is controlled. That is, in step S2, the chucking device 70 is brought into a state where the load P is held.
  • step S3 the robot hand 60 continues to release the chucking device 70 (corresponding to part of the release control step).
  • step S3 Also in step S3, the motors 57a to 57f of the robot device 50 continue to stop operating in the same manner as in step S2. That is, the robot apparatus 50 continues to be stopped.
  • FIG. 10 is a diagram showing the state of each component of the transport system 10 in step S4.
  • the hoisting machine 30 performs a hoisting operation. That is, based on a control command from the main control unit 81, the hoisting machine control unit 45 controls driving of the drive motor 40 so as to perform a hoisting operation that raises the chucking device 70 to a predetermined target height. (corresponds to part of the height control step).
  • the load P is lifted higher than the ground clearance height in association with this hoisting operation, the load when the load P is suspended is detected by the load sensor 44, and the load is stored in the memory 45a.
  • “Ground cutting” refers to the state in which the load is placed on the mounting surface and then suspended in the air. Momentary height. Further, by positioning the chucking device 70 at a predetermined target height, the robot hand 60 can hold the portion of the hand holding portion 72 of the chucking device 70, and the load sensor 44 is detected by the robot hand 60. Standby with no load acting.
  • step S4 the chucking device 70 continues to hold the load P in the same manner as in step S3. Therefore, the load P rises with the hoisting operation of the hoisting machine 30 .
  • step S4 Similar to steps S2 and S3, the robot hand 60 continues to release the chucking device 70 (corresponding to part of the release control step). Therefore, the chucking device 70 rises relative to the robot hand 60 as the hoisting machine 30 winds up.
  • step S4 Also in step S4, the motors 57a to 57f of the robot device 50 continue to stop operating in the same manner as in steps S2 and S3. That is, the robot apparatus 50 continues to be stopped.
  • FIG. 11 is a diagram showing the state of each component of the transport system 10 in step S5.
  • torque control balancer control
  • a constant torque is applied to the drive motor 40 based on the load value stored in the memory 45a. Therefore, while the robot device 50 is performing position control for moving the robot hand 60 along a predetermined path, if the robot hand 60 is moved in the direction in which the load P is raised, the load detected by the load sensor 44 is increased.
  • the hoisting machine control unit 45 applies driving force in the hoisting direction to the drive motor 40 in accordance with the amount of change. Further, when the robot device 50 attempts to move the robot hand 60 in the direction in which the load P is lowered, the load detected by the load sensor 44 increases. A driving force is applied to the motor 40 in the lowering direction. As a result, the load of the load P does not directly act on the robot device 50, and the robot hand 60 is moved along a predetermined path to a target position (including a target height) by control of a robot arm 58 of the robot device 50, which will be described later. , and the load P is carried along with it.
  • step S5 Also in step S5, the chucking device 70 continues to hold the load P as in steps S3 and S4. Therefore, the load P moves with the operation of the robot device 50, which will be described later.
  • step S5 based on the control command from the main control unit 81, the hand control unit 83 controls the operation of the actuator 64 of the robot hand 60 so as to grip the chucking device 70 (part of the holding control step). ). Thereby, the robot hand 60 is in a state of holding the hand holding portion 72 of the chucking device 70 .
  • the chucking device 70 holds the load P as described above. Therefore, the load P is conveyed along with the operation of the robot device 50 as will be described later.
  • step S5 based on the control command from the main control section 81, the robot control section 84 controls the operation of the robot arm 58 (position control). That is, the robot control unit 84 controls the operation of each motor 57a-57f so that the robot hand 60 (chucking device 70) reaches the target position (including the target height). In such position control, the operation of each motor 57a-57f is controlled so that the load P moves to the target position.
  • FIG. 12 is a diagram showing the state of each component of the transport system 10 in step S6.
  • step S5 when it is detected that the robot hand 60 has reached the target position, the operation of step S6 similar to step S2 is executed. That is, as shown in FIG. 6, in step S6, the hoisting machine 30 performs a lowering operation.
  • the main control unit 81 receives a release completion signal of the robot hand 60 from the hand control unit 83, and instructs the hoist control unit 45 to change the control mode from the torque control (balancer control) mode to the height control mode. Send a command to switch to a mode.
  • the hoisting machine control unit 45 switches to the height control mode and waits until receiving a target height command from the main control unit 81 . Then, the main control unit 81 instructs the hoist control unit 45 to lower the lower hook 36 to the target height (height preset according to the height of the mounting surface) for landing the load P. command.
  • the hoist control unit 45 controls driving of the drive motor 40 so as to perform a lowering operation for landing on the mounting surface (corresponding to part of the height control step).
  • step S6 Also in step S6, the chucking device 70 continues to hold the load P as in steps S3 to S5. Therefore, the load P descends with the lowering operation as described above.
  • step S6 the robot hand 60 performs the same operation as in step S2 described above. That is, in the robot hand 60, based on the control command from the main control unit 81, the hand control unit 83 controls the operation of the actuator 64 so as to release the chucking device 70 (as part of the release control step). correspondence).
  • step S6 the robot device 50 is brought to a halt based on the control command from the robot control section 84, as in step S2 described above. That is, the robot control section 84 stops the operation of the motors 57a to 57f. As a result, the robot hand 60 stops, and the chucking device 70 descends relative to the robot hand 60 as the hoisting machine 30 lowers.
  • FIG. 13 is a diagram showing the state of each component of the transport system 10 in step S7.
  • the hoisting machine control unit 45 stops driving the drive motor 40 (height (corresponds to some of the control steps).
  • the landing may be detected by the detection information of the load sensor 44 provided in the hoisting machine 30, and the hoisting machine control section 45 may notify the main control section 81 of the landing.
  • the transportation of the load P is completed.
  • step S7 At the timing when the drive motor 40 stops or at a timing after that, the chucking control unit 82, based on a control command from the main control unit 81 that determines landing, causes the chucking control unit 82 to The operation of the air driving portion 73 is controlled so as to release the state in which the air driving portion 73 pressurizes the expansion holding portion 74b. That is, in step S7, the state where the chucking device 70 holds the load P is switched to the non-holding state.
  • step S3 similarly to step S6, the robot hand 60 continues to release the chucking device 70 (corresponding to part of the release control step).
  • step S7 Also in step S7, the motors 57a to 57f of the robot device 50 continue to stop operating in the same manner as in step S6. That is, the robot apparatus 50 continues to be stopped.
  • FIG. 14 is a diagram showing the state of each component of the transport system 10 in step S8.
  • step S8 as a preparatory step for starting to take out the chucking device 70 from the load P, a predetermined portion of the hand holding portion 72 is raised to a height at which the robot hand 60 can hold the chucking device 70, as in step S4. Carry out the winding operation. That is, based on a control command from the main control unit 81, the hoisting machine control unit 45 controls driving of the drive motor 40 so as to perform a hoisting operation that raises the chucking device 70 to a predetermined target height.
  • step S4 corresponds to part of the height control step.
  • step S4 only the chucking device 70 is lifted by the lower hook 36 without lifting the load P. Therefore, the load detected by the load sensor 44 becomes a much smaller value than when the load P is suspended. Standby in a state where it is possible to switch to the torque control (balancer control) mode.
  • step S8 Also in step S8, the chucking device 70 continues the non-holding state of the load P as in step S7. Therefore, the chucking device 70 rises with respect to the load P as the hoisting machine 30 hoists.
  • step S8 Similar to steps S6 and S7, the robot hand 60 continues to release the chucking device 70 (corresponding to part of the release control step). Therefore, the chucking device 70 rises relative to the robot hand 60 as the hoisting machine 30 winds up.
  • step S8 Also in step S8, the motors 57a to 57f of the robot device 50 continue to stop operating as in steps S6 and S7. That is, the robot apparatus 50 continues to be stopped.
  • FIG. 15 is a diagram showing the state of each component of the transport system 10 in step S9.
  • step S9 similar to steps S1 and S5, height control is switched to torque control (balancer control).
  • torque control balancer control
  • a constant torque acts on the drive motor 40 based on the load value stored in the memory 45a (the load value when the load P is not suspended). Control. Therefore, when the robot device 50 attempts to move the chucking device 70 up and down, the hoist control unit 45 controls the driving of the drive motor 40 so that the load acting on the robot device 50 is reduced (torque (corresponds to some of the control steps).
  • step S9 the chucking device 70 continues to hold the load P in the same manner as at steps S7 and S8.
  • step S9 the hand control unit 83 controls the robot hand 60 so as to grip the chucking device 70 based on the control command from the main control unit 81 that has confirmed that the mode has been switched to the torque control (balancer control) mode. to control the actuation of the actuator 64 of the .
  • the robot hand 60 is in a state of holding the hand holding portion 72 of the chucking device 70 (corresponding to part of the holding control step). Therefore, the chucking device 70 moves with the operation of the robot device 50 as will be described later.
  • step S ⁇ b>9 based on the control command from the main control section 81 , the robot control section 84 controls the operation of the robot arm 58 (position control). That is, the robot control unit 84 controls the operation of each motor 57a to 57f so that the robot hand 60 (chucking device 70) reaches the target position.
  • position control is to move the chucking device 70 to a position for lifting the next load P along a predetermined path.
  • the transport system 10 can automatically complete a series of transport processes for the load P by executing the above steps S1 to S9.
  • the hoisting machine 30 which is capable of lifting and lowering the load P and which is provided with the load sensor 44 (load detection means) for detecting the applied load, and the hoisting machine 30 are attached.
  • a manual crane 20 capable of horizontally moving the hoisting machine 30 by applying an external force to the hoisting machine 30, and a chucking device capable of holding a load P suspended from the hoisting machine 30.
  • 70 (hanging means), a robot hand 60 (holding means) capable of holding a load P or chucking device 70 (hanging means), and a robot arm 58 for moving the robot hand 60 (holding means) to a desired position.
  • a hoisting machine control unit 45 capable of performing the above
  • a robot control unit 84 second control means that controls the operation of the robot arm 58
  • a hand control that controls the operation of the robot hand 60
  • main control unit 81 main control means
  • the hand control unit 83 executes holding control so that the robot hand 60 (holding means) performs holding according to a control command from the main control unit 81 (main control means).
  • the hoisting machine control section 45 first The control means executes torque control to lower the chucking device 70 (suspension means) when the load increases and to lift it when the load decreases.
  • the hand is controlled by a control command from the main control unit 81 (main control means).
  • the control unit 83 (third control means) executes release control to release the holding by the robot hand 60 (holding means).
  • the hoisting machine control section 45 (first control means) performs control to move the robot hand 60 (holding means) to a target height in the vertical direction in accordance with a control command from the main control section 81 (main control means). height control is performed to operate the hoist 30 so as to perform
  • the position of the hoist 30 is controlled to lift or lower the load P via the chucking device 70 (suspension means). becomes possible.
  • the robot hand 60 releases the chucking device 70 (suspending means), so that the chucking device 70 (suspending means) moves relative to the robot hand 60. Move up and down. Therefore, the vertical movement of the chucking device 70 (hanging means) by the position control of the hoisting machine 30 and the vertical movement of the robot arm 58 of the robot device 50 are out of sync. can be prevented.
  • step S5 when the load P is conveyed (step S5) other than during height control for ground clearance and landing (step S5), the chucking device 70 (hanging means) is moved to the load P before the height control of the hoisting machine 30. (step S1), or when moving the chucking device 70 (suspension means) from the load P after height control (step S9), the "torque control" of the hoisting machine 30 ( balancer control) is performed. Therefore, when the load P is transported, the load of the load P is supported (beared) by the hoisting machine 30 side, and when the robot arm 58 operates, the load P is moved to a desired position by the operation. can be transported.
  • the hoist 30 applies a load (torque) that balances the load P by torque control (balancer control) when the robot arm 58 does not operate, but does not actively move the load P in the vertical direction. Therefore, it is possible to prevent the hoisting machine 30 and the robot arm 58 from being out of synchronization in vertical movement.
  • the height of the hoisting machine 30 is controlled during ground cutting and landing, but the robot hand 60 releases the chucking device 70 (suspension means).
  • the load P is conveyed (step S5) other than when the ground is cleared or landed on the floor
  • the chucking device 70 (hanging means) is moved toward the load P before the height control of the hoist 30 (Step S1), or when the chucking device 70 (hanging means) is moved from the load P after the height control (Step S9)
  • torque control balancer control
  • the robot hand 60 holds the chucking device 70 (hanging means). Since the transfer system 10 performs such sequential control, there is no synchronization deviation between the hoisting machine 30 and the robot arm 58 in the vertical movement.
  • the robot hand 60 has a means for absorbing synchronization deviation between the robot arm 60 and the hoisting machine 30, such as a roller ball as disclosed in Patent Document 1. does not exist. Therefore, since the configuration is simplified by the amount that the roller ball does not exist in the robot arm 60, it is possible to reduce the manufacturing cost compared to the configuration disclosed in Patent Document 1.
  • the torque control (balancer control) of the hoisting machine 30 when the robot arm 58 is operated while the robot arm 60 grips the hand holding portion 72 of the chucking device 70 (suspension means), It becomes possible to move the load P to a desired position. Therefore, the robot device 50 can be placed in a state in which there are few restrictions on movement, and operability during transport of the load P is improved.
  • the chucking device 70 can be moved along a predetermined path while being firmly held by the robot hand 60 while also controlling the attitude of the chucking device 70 .
  • a chucking control unit 82 (secondary control unit) controls holding and releasing of the load P by the chucking device 70 (suspension unit) in accordance with a control command from the main control unit 81 (main control unit). 4 control means).
  • the chucking device 70 (hanging means) is controlled by the chucking control section 82 (fourth control means) in accordance with a control command from the main control section 81 (main control means). Therefore, the load P can be held and released satisfactorily. As a result, the load P can be changed.
  • the robot control unit 84 (second control means) causes the chucking device 70 (suspension means) to move in a predetermined direction by the operation of the robot arm 58 including the vertical direction. position control to move to the target position.
  • the load P can be transported by operating the robot arm 58.
  • the load P can be transported to a desired position by the operation of the robot arm 58 while being supported (loaded) by the upper machine 30 side. Further, even when the load P is moved by the operation of the robot arm 58, the hoisting machine 30 positively (actively) lifts and lowers the load P so as to direct it to the target height position. Therefore, it is possible to prevent the vertical movement of the hoist 30 and the robot arm 58 from being out of sync.
  • the robot control section 84 (second control means) performs control to stop the operation of the robot arm 58.
  • the hoisting machine 30 when the hoisting machine 30 is grounded or landed on the floor, the hoisting machine 30 is moved relative to the robot arm 58 (robot device 50) by the chucking device 70 (hanging device 70) by height control of the hoisting device 30. means) to lift or lower the load P. Therefore, the vertical movement of the chucking device 70 (suspension means) by the height control of the hoisting machine 30 and the vertical movement of the robot arm 58 of the robot device 50 are out of sync. can be prevented from occurring.
  • the suspending means is a chucking device 70 capable of holding the load P, and the chucking device 70 suspends the load P from the stop state of the hoisting machine 30 before the load P is cut off from the ground.
  • the holding of the load P is continued in both height control and torque control during the stop state of the hoisting machine 30 after landing.
  • the load P is held during the period from the stopped state of the hoisting machine 30 before the load P is lifted off the ground to the stopped state of the hoisting machine 30 after the load P has landed on the floor.
  • the chucking device 70 can securely hold the load P.
  • the chucking device 70 is described as the hanging means.
  • the suspending means is not limited to the chucking device 70 .
  • the suspension means may be configured to hold the load P by an electromagnet, or may be configured to hold the load P by an openable and closable support member. good.
  • the robot control section 84 corresponding to the second control means and the hand control section 83 corresponding to the third control means may be one control section.
  • the robot hand 60 as shown in FIG. 3 is described as the holding means.
  • the holding means is not limited to the robot hand 60 as shown in FIG.
  • the robot hand 60 corresponding to the holding means is not limited to the configuration described above.
  • the robot hand may have a plurality of fingers or claws, and may be configured to clamp the chucking device 70 or the like with the plurality of fingers or claws.
  • the holding means may be an end effector that holds the chucking device 70 by vacuum adsorption or magnetic attraction, other than the robot hand.
  • the chucking device 70 is described as the hanging means.
  • the suspending means is not limited to the chucking device 70 .
  • a lifting magnet capable of attracting a work by magnetic force may correspond to the suspension means.
  • a hook member capable of automatically slinging and releasing slinging to the eye provided on the load may correspond to the suspension means.
  • the lower hook 36 of the hoisting machine 30 may correspond to the hanging means.
  • the hand-drawn crane 20 is described as the crane.
  • the crane is not limited to the hand crane 20 .
  • the crane may be configured to include an electric trolley that allows the hoist 30 or the like to be suspended by driving the motor to move along the traveling rail 21 and the traversing rail 22 .
  • the target height may be set for actions other than ground cutting and landing.
  • SYMBOLS 10 Conveyance system, 20... Manual crane (corresponding to a crane), 21... Traveling rail, 22... Traversing rail, 30... Hoisting machine, 31... Hoisting machine body, 32... Top hook, 33...
  • Cylinder operation Device 34 Chain Bucket 35 Housing 36 Lower Hook 40 Drive Motor 40a Encoder 41 Reduction Mechanism 42 Brake Mechanism 43 Load Sheave 44 Load Sensor 45 Hoist Control unit 45a Memory 46 Driver 50 Robot device 51 Leg 52 First joint 53 Second joint 54 First arm 55 Second arm 56 Wrist Parts 57a to 57f Motor 60 Robot hand (corresponding to holding means) 61 Mounting part 62 Cylindrical part 63 Holding tube 63a Expansion part 64 Actuator 70 Chucking device ( 71 Hook hooking portion 72 Hand holding portion 73 Air driving portion 74 Expansion holding portion 74 a Rod portion 74 b Expansion holding portion 81 Main control portion (main 82 Chucking control unit (corresponding to the fourth control unit) 83 Hand control unit (corresponding to the third control unit) 84 Robot control unit (corresponding to the second control unit) 85a ⁇ 85f... driver, C1... load chain, P... load, P1... insertion hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

構成が簡単であり、ロボット装置側での移動の制約が少ない状態であると共に、荷の搬送時の操作性を良好にすることが可能な搬送システム及び搬送システムの制御方法を提供する。 搬送システム10は、荷Pが載置面から持ち上げられる地切りの際以外、または荷Pが載置面に載置される着床の際以外で吊下げ手段70を搬送する際には、第3制御手段は保持手段による保持を行うように保持制御を実行し、かつ、荷重検出手段44での作用する荷重の変化の検出結果に基づいて第1制御手段は吊下げ手段70を荷重の増加で巻下げ、荷重の減少で巻上げるトルク制御を実行し、上記の地切りの際、または荷Pが載置面に載置される着床の際には、第3制御手段は保持手段60による保持を解除するように解除制御を実行し、かつ、第1制御手段は上下方向において保持手段60を目標高さに移動させる制御を行うように巻上機30を作動させる高さ制御を実行する。

Description

搬送システムおよび搬送システムの制御方法
 本発明は、搬送システムおよび搬送システムの制御方法に関する。
 荷を昇降させる吊り下げ装置と、ロボット装置を用いた搬送システムとしては、たとえば、特許文献1に示すものがある。特許文献1には、吊下げ装置(3)と、ロボット(4)とを協働させてワーク(2)を搬送する搬送システム(1)について開示されている。特許文献1においては、吊下げ装置(3)は、支持機構(10)と、昇降ユニット(15)と、吊下げ治具(16)とを備えている。このような搬送システムでは、大きな荷重を吊下げ装置に負担させることで、ロボット装置の荷重負荷軽減を図っている。
 ところで、上記の搬送システムにおいては、昇降ユニット(15)と、ロボットアーム(21~25)との間で、上下方向の動作を同期させないと、ロボット(4)側のモータ(31~35)または昇降ユニット(15)のサーボモータ(15a)に過負荷が生じて、これらのモータ(装置)を破損してしまう虞がある。そこで、特許文献1に開示の構成では、ロボット(4)が備えるハンド(26)にローラーボール(28)が設けられることで、保持部(18c)の上下方向の相対的な動きを許容している。
 すなわち、特許文献1に開示の構成では、ハンド(26)と昇降ユニット(16)とは、上下方向の昇降動作が基本的には同期する。しかしながら、ハンド(26)の上下方向の動作と、昇降ユニット(16)(取付機構(18))の上下方向の動作の間で、昇降動作のタイミングがずれた場合、ローラーボール(28)が保持部(18c)に対して転動することで、そのずれを吸収する構成となっている。
特許第6071549号公報
 ところで、特許文献1に開示の搬送システムは、ワークを吊り下げる吊下げ治具(16)以外に、ハンド(26)にローラーボール(28)を設ける構成を採用している。そのため、ハンド(26)にローラーボール(28)を設ける分だけ、構成が複雑化し、製造コストが増大してしまう。
 また、特許文献1に開示の搬送システムでは、ハンド(26)にローラーボール(28)が設けられているので、ロボット(4)側では、上下方向における負荷を受け持つことが困難であり、ワーク(2)の保持性が良好ではない。一方、ロボットアームは関節を介して、曲線運動を行うので、ハンド(26)が上下方向に位置変動するのが通常である。しかも、支持機構(10)側においても、巻取ドラム(15c)側を支点としてワイヤ(17)が揺動(回動)可能となっている。したがって、ロボット(4)側では、ハンド(26)を移動させる際に、ワイヤ(17)に吊下げられている保持部(18c)の揺動(回動)に追従させる必要があり、ハンド(26)の移動における制約が大きい。
 また、ハンド(26)が急激に上下動すると、保持部(18c)の保持状態が解除されてしまう虞がある。したがって、ワーク(2)の搬送における操作性が良好ではない。
 本発明は上記の事情に鑑みなされたもので、構成が簡単であり、ロボット装置側での移動の制約が少ない状態であると共に、荷の搬送時の操作性を良好にすることが可能な搬送システムおよび搬送システムの制御方法を提供することを目的とする。
 上記課題を解決するために、本発明の第1の観点によると、荷を所望の位置に搬送する搬送システムであって、荷を昇降可能であると共に作用する荷重または荷重の変化を検出する荷重検出手段を備える巻上機と、巻上機が取り付けられると共に、外力を巻上機に加えることで当該巻上機を水平方向に移動させることが可能なクレーンと、巻上機から垂下され荷を保持可能な吊下げ手段と、荷または吊下げ手段を保持可能な保持手段および当該保持手段を所望の位置に移動させるロボットアームとを備えるロボット装置と、巻上機に対して作用する荷重に応じたトルクを生じさせる巻上機のトルク制御と、吊下げ手段を所定の目標高さに移動させる巻上機の高さ制御を行うことが可能な第1制御手段と、ロボットアームの作動を制御する第2制御手段と、保持手段の作動を制御する第3制御手段と、第1制御手段、第2制御手段および第3制御手段に対して、所定の制御指令を与える主制御手段と、を備え、荷が載置面から持ち上げられる地切りの際以外、または荷が載置面に載置される着床の際以外で吊下げ手段を搬送する際には、主制御手段からの制御指令により、第3制御手段は保持手段による保持を行うように保持制御を実行し、かつ、主制御手段からの制御指令により、荷重検出手段の検出結果に基づいて第1制御手段は吊下げ手段を荷重の増加で巻下げ、荷重の減少で巻上げるトルク制御を実行し、荷が載置面から持ち上げられる地切りの際、または荷が載置面に載置される着床の際には、主制御手段からの制御指令により、第3制御手段は保持手段による保持を解除するように解除制御を実行し、かつ、第1制御手段は主制御手段からの制御指令により、保持手段を目標高さに移動させる制御を行うように巻上機を作動させる高さ制御を実行する、ことを特徴とする搬送システムが提供される。
 また、上述の発明において、トルク制御においては、第2制御手段は、ロボットアームによる上下方向を含む作動によって保持手段を所定の目標位置に移動させる位置制御を実行する、ことが好ましい。
 また、上述の発明において、トルク制御においては、第2制御手段は、ロボットアームによる上下方向を含む作動によって保持手段を所定の目標位置に移動させる位置制御を実行する、ことが好ましい。
 また、上述の発明において、高さ制御においては、第2制御手段は、ロボットアームの作動を停止させる制御を行う、ことが好ましい。
 また、上述の発明において、吊下げ手段は、荷を保持可能なチャッキング装置であり、チャッキング装置は、荷の地切り前の巻上機の停止状態から荷が着床した後の巻上機の停止状態の間の高さ制御およびトルク制御のいずれにおいても、荷の保持を継続する、ことが好ましい。
 また、上記課題を解決するために、本発明の第2の観点によると、荷を所望の位置に搬送する搬送システムの制御方法であって、搬送システムは、荷を昇降可能であると共に作用する荷重または荷重の変化を検出する荷重検出手段を備える巻上機と、巻上機が取り付けられると共に、外力を巻上機に加えることで当該巻上機を水平方向に移動させることが可能なクレーンと、巻上機から垂下され荷を保持可能な吊下げ手段と、荷または吊下げ手段を保持可能な保持手段および当該保持手段を所望の位置に移動させるロボットアームとを備えるロボット装置と、巻上機に対して作用する荷重に応じたトルクを生じさせる巻上機のトルク制御と、吊下げ手段を所定の目標高さに移動させる巻上機の高さ制御を行うことが可能な第1制御手段と、ロボットアームの作動を制御する第2制御手段と、保持手段の作動を制御する第3制御手段と、第1制御手段、第2制御手段および第3制御手段に対して、所定の制御指令を与える主制御手段と、を備え、荷が載置面から持ち上げられる地切りの際以外、または荷が載置面に載置される着床の際以外で吊下げ手段を搬送する際には、主制御手段からの制御指令により、第3制御手段は保持手段による保持を行うように保持制御を実行する保持制御ステップと、保持制御ステップにおいて、主制御手段からの制御指令により、荷重検出の検出結果に基づいて第1制御手段は吊下げ手段を荷重の増加で巻下げ、荷重の減少で巻上げるトルク制御を実行するトルク制御ステップと、荷が載置面から持ち上げられる地切りの際、または荷が載置面に載置される着床の際には、主制御手段からの制御指令により、第3制御手段は保持手段による保持を解除するように解除制御を実行する解除制御ステップと、解除制御ステップにおいて、第1制御手段は主制御手段からの制御指令により、上下方向において保持手段を目標高さに移動させる制御を行うように巻上機を作動させる高さ制御を実行する高さ制御ステップと、を含むことを特徴とする搬送システムの制御方法が提供される。
 本発明によると、構成が簡単であり、ロボット装置側での移動の制約が少ない状態であると共に、荷の搬送時の操作性を良好にすることが可能な搬送システムおよび搬送システムの制御方法を提供することが可能となる。
本発明の一実施の形態に係る搬送システムの全体的な構成を示す概略図である。 図1に示す巻上機の制御的な構成を示す図である。 図1に示す搬送システムのロボット装置に取り付けられるロボットハンドの構成を示す平面図である。 図1に示す搬送システムが備えるチャッキング装置の構成を示す側面図である。 図1に示す搬送システムの制御的な構成を示すブロック図である。 図1に示す搬送システムにおける動作のステップS1~S9において、それぞれの部位(装置)が行う動作を表形式で示す図である。 図6に示すステップS1における搬送システムの各構成要素の状態を示す図である。 図6に示すステップS2における搬送システムの各構成要素の状態を示す図である。 図6に示すステップS3における搬送システムの各構成要素の状態を示す図である。 図6に示すステップS4における搬送システムの各構成要素の状態を示す図である。 図6に示すステップS5における搬送システムの各構成要素の状態を示す図である。 図6に示すステップS6における搬送システムの各構成要素の状態を示す図である。 図6に示すステップS7における搬送システムの各構成要素の状態を示す図である。 図6に示すステップS8における搬送システムの各構成要素の状態を示す図である。 図6に示すステップS9における搬送システムの各構成要素の状態を示す図である。
 以下、本発明の一実施の形態に係る搬送システム10および搬送システム10の制御方法について、図面に基づいて説明する。
<1.搬送システム10の構成について>
 図1は、搬送システム10の全体的な構成を示す概略図である。図1に示すように搬送システム10は、手引クレーン20と、巻上機30と、ロボット装置50と、チャッキング装置70とを主要な構成要素としている。
 手引クレーン20は、走行用レール21と、横行用レール22とを備えている。走行用レール21は、天井等の固定的な部位から吊下げられる長尺状の部材であり、作業者の手引き動作に伴って移動しないように上記の固定的な部位に固定されている。なお、手引クレーン20は、クレーンに対応する。また、横行用レール22は、不図示の滑車を有していて、その滑車を介して走行用レール21に沿った移動を可能としている。
 図2は、巻上機30の制御的な構成を示す図である。図2に示すように、巻上機30は、巻上機本体部31と、上フック32と、シリンダ操作装置33と、巻き上げ済みのロードチェーンC1を保持するチェーンバケット34と、下フック36とを主要な構成要素としている。
 巻上機本体部31は、上フック32および不図示の滑車を介して、上述した横行用レール22に吊り下げられている。そのため、作業者が、ロードチェーンC1を手で引くことにより、巻上機本体部31(巻上機30)を横行用レール22に沿って移動させることが可能となっている。巻上機本体部31は、そのハウジング35の内部に、各種の構成が収納されている。具体的には、ハウジング35の内部には、駆動モータ40と、減速機構41と、ブレーキ機構42と、ロードチェーンC1を巻き上げるロードシーブ43と、負荷センサ44と、巻上機制御部45と、ドライバ46とが設けられている。
 なお、ロードチェーンC1とロードシーブ43に代えて、図示しないロープと巻き取りドラムからなる巻上機本体とすることができる。この場合、巻き取り済みのロープは巻き取りドラムで保持するのでチェーンバケット34は不要となる。
 駆動モータ40は、ロードシーブ43を駆動する駆動力を与えるモータである。本実施の形態では、駆動モータ40は、位置(図示しないロータの回転位置)を検出するための検出器(エンコーダ40a)を備えるサーボモータであり、その中でも交流サーボモータであることが好ましい。なお、交流サーボモータとしては、同期モータが好ましいが、誘導形モータであっても良い。
 また、減速機構41は、駆動モータ40の回転を減速して、ロードシーブ43側に伝達する部分である。また、ブレーキ機構42は、駆動モータ40の作動時には、電磁力によりブレーキ力を解放可能な部分であるものの、駆動モータ40が作動していない状態でも、荷Pを保持するように、ブレーキ力を生じさせる部分である。
 ロードシーブ43は、ロードチェーンC1を巻き上げおよび巻き下げする部分であり、その外周に沿って、ロードチェーンC1の金属環が入り込むチェーンポケットが複数設けられている。
 負荷センサ44は、上フック32に掛かる荷重負荷を測定する負荷センサである。すなわち、負荷センサ44は、巻上機本体部31の荷重負荷と、ロードチェーンC1の荷重負荷(床等に着地していない部分)と、荷Pの荷重負荷との合計荷重負荷を測定・検知するセンサである。この負荷センサ44を用いて測定・検知された合計荷重負荷から、本体自重等を差し引くことで、ロードチェーンC1を介してロードシーブ43に掛かる荷重負荷を検知(算出)することができる。負荷センサ44は、たとえば上フック32を巻上機本体部31に取り付けるための取付軸に取り付けられている。なお、負荷センサ44は、荷重検出手段に対応する。
 上記の負荷センサ44としては、歪みゲージを備えるロードセルを用いることができる。負荷センサ44の配置位置は、上記の他に、上フック32と不図示の滑車の間、下フック36と荷Pの間、ロードチェーンC1の端末と下フック36の間など、荷Pを吊り下げるロードチェーンC1によりロードシーブ43に掛かる負荷を検知・測定できる位置であればいずれでも良い。また負荷センサ44は、ロードセルの他、クレーンスケールなどを流用することが可能であるが、バランサ制御に利用可能な精度と応答性を有するものである必要がある。
 また、巻上機制御部45は、後述する主制御部81からの指令に基づいて、ドライバ46に対し、制御モード(高さ制御モード、トルク制御モード)に応じた制御が可能であり、また、それぞれの制御モードに際して、位置(高さ)、速度、トルク等の指令値を与える部分である。この巻上機制御部45とドライバ46とは、第1制御手段に対応する。巻上機制御部45としては、たとえば、CPU(Central Processing Unit)、メモリ(RAM(Random Access Memory)、ROM(Read Only Memory)、内部ストレージ、外部記憶装置等)、入出力インターフェース等を備えるコンピュータや集積回路が挙げられる。
 また、ドライバ46は、駆動モータ40の電流値とエンコーダ40aの出力及び巻上機制御部45から与えられるモータ駆動制御のための指令値などに基づいて、外部から供給される電源を適切な電力にコントロールし、その電力を駆動モータ40に与えて当該駆動モータ40を回転させる部分である。
 また、シリンダ操作装置33は、作業者が手で握った状態で操作を行うための操作装置であり、ロードチェーンC1の下端側に連結されている。また、シリンダ操作装置33には、荷Pを掛けるための下フック36が連結されている。なお、シリンダ操作装置33に代えて、巻上機30の巻上機本体部31等からケーブルで吊り下げられた操作装置(ペンダントスイッチ)を用いても良く、無線式リモコン装置を用いても良い。なお、巻上機30とロボット装置50とが協働せずに巻上機30が単独で作動する場合においては、シリンダ操作装置33の操作には、シリンダ操作装置33の不図示のグリップ部分をスイッチとして作業者がこれを上下スライド移動させることで上下動を行う操作と、後述するような作業者の手動力(外力)による荷重の変化に応じて駆動モータ40のトルクを制御する(トルク制御)操作とがあり、各操作は手動で切り替えできるようになっている。
 また、チェーンバケット34は、ロードシーブ43を挟んで下フック36とは反対側に存在する無負荷側(巻き取り済み)のロードチェーンC1を収納する部分である。
 次に、ロボット装置50について説明する。ロボット装置50は、脚部51と、複数の関節部52,53と、複数のアーム54,55と、手首部56と、これらを駆動させるためのモータ57a~57fとを備えている。また、ロボット装置50は、ロボットハンド60を備えている。なお、関節部52,53と、アーム54,55と、手首部56と、モータ57a~57fとは、ロボットアーム58を構成する。
 これらのうち、脚部51は、床面等の設置面から情報に向かい立設された部位であり、関節部52を回転自在に支持している。なお、脚部51には、モータ57aが収納されていて、そのモータ57aの駆動によって、関節部52(第1関節部52とする)を設置面に対して垂直な軸(S軸と表記する)を中心に回転させることが可能となっている。
 また、第1関節部52は、脚部51の上端に設けられている。この第1関節部52には、アーム54(第1アーム54とする)が回転自在な状態で取り付けられると共に、モータ57bが配置されている。モータ57bは、設置面に対して平行な軸(図1において紙面に垂直な方向の軸;L軸と表記する)を中心として第1アーム54を回転させる。そのため、第1アーム54の回転の自由度は2つとなっている。
 なお、モータ57a,57bを含むモータ57a~57fとしては、電気モータやエアモータを用いることが可能である。
 また、第1アーム54の先端側には、関節部53が回転自在な状態で取り付けられていると共に、モータ57cが収納されている。そして、モータ57cの駆動によって、上記の関節部53(第2関節部53とする)を設置面に対して平行な軸(図1において紙面に垂直な方向の軸(U軸と表記する))を中心に回転させることが可能となっている。また、この第2関節部53には、アーム55(第2アーム55とする)が回転自在な状態で取り付けられると共に、モータ57dが配置されている。モータ57dは、上記の図1において紙面に垂直な方向の軸(U軸)に対し、垂直な軸(R軸と表記する)を中心として第2アーム55を回転させる。そのため、第2アーム55の回転の自由度は2つとなっている。
 また、第2アーム55の先端側には、手首部56が回転自在な状態で取り付けられていると共に、モータ57eが収納されている。そして、モータ57eの駆動によって、手首部56は、上記のR軸およびS軸に対して直交する軸(B軸と表記する)を中心に回転することが可能となっている。また、手首部56には、モータ57fが収納されていて、このモータ57fを介してロボットハンド60が、上記のB軸に対して垂直な軸(T軸と表記する)を中心に回転させることができる。
 また、手首部56の先端側には、ロボットハンド60が取り付けられている。なお、ロボットハンド60は、保持手段に対応する。図3は、ロボットハンド60の構成を示す平面図である。図3に示すように、ロボットハンド60は、取付部61と、筒状部62と、保持チューブ63と、アクチュエータ64(図5参照)とを備えている。取付部61は、上述した手首部56に取り付けられる部分である。なお、取付部61には、保持チューブ63に空気を供給するためのエア導入路(図示省略)が内蔵されていても良いが、エア導入路は、取付部61と別体的に設けられていても良い。
 また、筒状部62は、その外観が筒状に設けられていると共に、保持チューブ63よりも強度が高く容易に変形しない材質から構成されている。この筒状部62は、その内周側に保持チューブ63を取り付けている。また、保持チューブ63は、エア導入路から空気が導入されることで、内径側に向かって膨らむ部材である。この保持チューブ63は、たとえばゴム等のような気密性があり容易に伸縮可能な材質から形成されている。なお、保持チューブ63には、複数(図3では、合計3箇所)の膨張部位63aが設けられていて、その膨張部位63aが膨張した際に、チャッキング装置70を保持可能となっている。なお、図3では、膨張部位63aは、二点鎖線で示す部位となっている。
 また、アクチュエータ64は、たとえばコンプレッサやポンプを用いることが可能である。このアクチュエータ64には保持チューブ63が直接的または間接的に接続され、その保持チューブ63に対して加圧によって空気を送り込んだり、送り込まれている空気を減圧することが可能となっている。なお、アクチュエータ64には、圧力調整用の弁等を備える構成とすることが可能である。
 次に、チャッキング装置70について説明する。なお、チャッキング装置70は、吊下げ手段に対応する。図4は、チャッキング装置70の構成を示す側面図である。図1に示すように、チャッキング装置70は、下フック36に吊下げられる部材である。図4に示すように、チャッキング装置70は、フック掛止部71と、ハンド保持部72と、エア駆動部73と、膨張保持部74とを備えている。フック掛止部71はリング状に設けられることで、下フック36に掛止される部位である。
 また、ハンド保持部72は、上述したロボットハンド60が握る部位であり、ロッド状に設けられている。したがって、ロボットハンド60は、ハンド保持部72に沿って上下方向に移動可能である。なお、ハンド保持部72の長さは、次のように設定されている。すなわち、荷Pの挿入孔P1に膨張保持部74を挿入したり、挿入孔P1から膨張保持部74を抜いた場合に、ハンド保持部72が上下方向に移動しても、ロボットハンド60がハンド保持部72を把持可能となるように、ハンド保持部72の長さが設定されている。
 また、エア駆動部73は、膨張保持部74を加圧して空気を送り込んだり、その加圧を解除する部位である。なお、エア駆動部73は、膨張保持部74よりも大径に設けられることで、荷Pの挿入孔P1に膨張保持部74を挿入した際の位置決めも行うことが可能となっている。
 また、膨張保持部74は、上述したロボットハンド60と同様に、空気が導入されることで膨らむ部分であり、荷Pの挿入孔P1に挿入される部分である。この膨張保持部74は、ロッド部74aと、膨張保持部74bとを備えている。ロッド部74aは、上記のエア駆動部73から下方側に突出している棒状の部分である。なお、ロッド部74aは棒状の部分には限られず、筒状の部分であっても良い。
 また、膨張保持部74bは、エア駆動部73に接続されているエア導入路から空気が導入されることで、外径側に向かって膨らむ部分である。この膨張保持部74bは、保持チューブ63と同様に、たとえばゴム等のような容易に膨張可能な材質から形成されている。なお、膨張保持部74bは、長手方向に沿って複数(図4では、合計3箇所)の膨張部位が存在することで、荷Pを安定的に支持可能となっている。
 次に、搬送システム10の制御的な構成について説明する。図5は、搬送システム10の制御的な構成を示すブロック図である。図5に示すように、搬送システム10の制御部分には、主制御部81と、上述した巻上機制御部45と、チャッキング制御部82と、ハンド制御部83と、ロボット制御部84とが設けられている。
 なお、主制御部81、チャッキング制御部82、ハンド制御部83およびロボット制御部84としては、たとえば、CPU(Central Processing Unit)、メモリ(RAM(Random Access Memory)、ROM(Read Only Memory)、内部ストレージ、外部記憶装置等)、入出力インターフェース等を備えるコンピュータや集積回路が挙げられる。また、主制御部81は、主制御手段に対応する。また、ロボット制御部84およびドライバ85a~85fは、第2制御手段に対応し、ハンド制御部83は第3制御手段に対応し、チャッキング制御部82は、第4制御手段に対応する。
 主制御部81は、搬送システム10の全体的な制御を行う部位であり、各制御部45,82,83,84に制御指令に関する信号を送信する部位であり、各制御部45,82,83,84から所定の動作の終了に対応した信号を受信する部位である。チャッキング制御部82は、上述したチャッキング装置70の作動を制御する部分である。また、ハンド制御部83は、上述したロボットハンド60の作動を制御する部分である。また、ロボット制御部84は、ドライバ85a~85fを介して、上述したロボット装置50の各モータ57a~57fの作動を制御する部分である。
<2.搬送システム10の動作について>
 以上のような搬送システム10において、荷Pを搬送する場合の動作について、図6に基づいて以下に説明する。なお、図6は、ステップS1~S9において、それぞれの部位(装置)が行う動作を表形式で示す図である。
 ステップS1:チャッキング装置70の挿入準備
 [ステップS1における巻上機30]
 図7は、ステップS1における搬送システム10の各構成要素の状態を示す図である。図7に示すように、チャッキング装置70の挿入前のステップS1では、チャッキング装置70は、荷Pの挿入孔P1に向けて、移動させられる。このとき、巻上機30においては、トルク制御(バランサ制御)を行う。かかる制御では、主制御部81からの制御指令により、巻上機制御部45は、負荷センサ44での負荷の検出結果に基づいて、駆動モータ40に一定のトルクが作用するにように制御する(トルク制御ステップの一部に対応)。巻上機30のトルク制御では、負荷センサ44に所定の負荷が検知され、その負荷の値がメモリ45aに記憶される。
 したがって、たとえば荷Pを吊り下げている状態で、荷Pを手(ロボットハンド60)で持ち上げると、負荷センサ44で検出される負荷が軽くなる〈小さくなる〉ので、巻上機制御部45は駆動モータ40に巻き上げ方向に向かう駆動力を与える。それにより、荷Pを持ち上げる向きの力が作用し、その結果、手に作用する荷Pの負荷が非常に軽くなるか、ほとんど負荷を感じない状態となる。
 ここで、ステップS1では、荷Pを吊り下げる前の状態であるので、負荷センサ44で検出される負荷は、荷Pを吊り下げている状態よりも非常に小さい。そのため、巻上機制御部45は、かかる小さな負荷を維持するようなトルク制御(バランサ制御)を行うように、駆動モータ40の駆動を制御する。
 [ステップS1におけるチャッキング装置70]
 また、チャッキング装置70では、主制御部81からの制御指令に基づいて、チャッキング制御部82は、エア駆動部73で膨張保持部74bを加圧しないように、エア駆動部73の作動を制御する。そのため、チャッキング装置70の膨張保持部74bが非膨張状態となり、挿入孔P1にチャッキング装置70を挿入可能となる。
 [ステップS1におけるロボットハンド60]
 また、ステップS1においては、主制御部81からの制御指令に基づいて、ハンド制御部83は、チャッキング装置70を保持する(握る)ように、ロボットハンド60のアクチュエータ64の作動を制御する。それにより、ロボットハンド60は、チャッキング装置70のハンド保持部72を保持する状態となる(保持制御ステップの一部に対応)。
 [ステップS1におけるロボット装置50]
 また、ステップS1においては、主制御部81からの制御指令に基づいて、ロボット制御部84は、ロボットハンド60(チャッキング装置70)の位置制御を行う。すなわち、ロボット制御部84は、ロボットハンド60(チャッキング装置70)が所定の経路を辿って目標高さおよび位置に到達するように、各モータ57a~57fの作動を制御する。かかる位置制御においては、チャッキング装置70が荷Pの挿入孔P1の上方に位置するように、各モータ57a~57fの作動を制御する。
 ステップS2:チャッキング高さへの巻下げ
 [ステップS2における巻上機30]
 図8は、ステップS2における搬送システム10の各構成要素の状態を示す図である。図8に示すように、ステップS1の後に、ロボット制御部84からのロボットハンド60の移動完了信号を受け、主制御部81はハンド制御部83へ所定の指令を出力し、その所定の指令に基づいて、ハンド制御部83の制御に基づいてロボットハンド60はチャッキング装置70のハンド保持部72を保持する状態を開放する。主制御部81は、ハンド制御部83からの解放完了信号を受け、巻上機30にトルク制御(バランサ制御)を停止し高さ制御に切り替えるように指令する。巻上機30は、主制御部81からの現在位置よりも下方の目標高さへの巻下げ指令を受け、巻下げ動作を行う。すなわち、巻上機制御部45においては、主制御部81からの制御指令に基づいて、制御モードが、トルク制御(バランサ制御)のモードから、高さ制御のモードへと切り替えられる。そして、チャッキング装置70を、荷Pをチャッキングする動作を開始可能な所定の目標高さ(チャッキング高さ)に降下させる巻下げ動作を行うように、巻上機制御部45は駆動モータ40の駆動を制御する(高さ制御ステップの一部に対応)。なお「着床」とは荷が宙吊り状態から着床状態(載置面に載置される状態)とすることをいい、「着床高さ」とは荷が宙吊り状態から載置面に載置される瞬間の高さ(後述する「地切り高さ」とほぼ同じ高さ)をいう。
 [ステップS2におけるチャッキング装置70]
 また、チャッキング装置70の挿入時のステップS2においても、上記のステップS1と同様に、チャッキング装置70の膨張保持部74bの非膨張状態を継続する。
 [ステップS2におけるロボットハンド60]
 また、ステップS2においては、主制御部81からの制御指令に基づいて、ハンド制御部83は、チャッキング装置70を離す状態を継続するように、ロボットハンド60のアクチュエータ64の作動を制御する(解除制御ステップの一部に対応)。
 [ステップS2におけるロボット装置50]
 また、ステップS2においては、ロボット装置50は、ロボット制御部84からの制御指令に基づいて、停止状態となる。すなわち、ロボット制御部84は、各モータ57a~57fの作動を停止させる。それにより、ロボットハンド60が停止するので、巻上機30の巻下げ動作に伴って、チャッキング装置70がロボットハンド60に対して相対的に下降する。
 ステップS3:チャッキング高さでの停止
 [ステップS3における巻上機30]
 図9は、ステップS3における搬送システム10の各構成要素の状態を示す図である。図9に示すように、上述した高さ制御における所定の目標高さであるチャッキング高さに到達した場合、すなわちチャッキング装置70で荷Pを保持するチャッキング動作を開始可能な状態となるように、膨張保持部74の荷Pの挿入孔P1への挿入が完了した場合に、巻上機制御部45は、駆動モータ40の駆動を停止させる(高さ制御ステップの一部に対応)。
 [ステップS3におけるチャッキング装置70]
 また、主制御部81からの制御指令に基づいて、駆動モータ40が停止したタイミング、またはそれよりも後のタイミングで、チャッキング制御部82は、エア駆動部73で膨張保持部74bを加圧するように、エア駆動部73の作動を制御する。すなわち、ステップS2では、チャッキング装置70が荷Pを保持する状態となる。
 [ステップS3におけるロボットハンド60]
 ステップS3においても、ステップS2と同様に、ロボットハンド60がチャッキング装置70を離す状態を継続する(解除制御ステップの一部に対応)。
 [ステップS3におけるロボット装置50]
 ステップS3においても、ステップS2と同様に、ロボット装置50の各モータ57a~57fの作動の停止を継続する。すなわち、ロボット装置50の停止状態を継続する。
 ステップS4:地切りのための巻上げ
 [ステップS4における巻上機30]
 図10は、ステップS4における搬送システム10の各構成要素の状態を示す図である。図10に示すように、巻上機30においては、巻上げ動作を行う。すなわち、主制御部81からの制御指令に基づいて、巻上機制御部45は、チャッキング装置70を所定の目標高さまで上昇させるような巻上げ動作を行うように、駆動モータ40の駆動を制御する(高さ制御ステップの一部に対応)。なお、この巻上げ動作に伴って、荷Pが地切り高さより高く持ち上げられることで、負荷センサ44によって荷Pを吊り下げる際の負荷が検出され、その負荷がメモリ45aに記憶される。なお「地切り」とは荷を載置面に載置した状態から宙吊り状態とすることをいい、「地切り高さ」とは荷が載置面に載置された状態から宙吊り状態になる瞬間の高さをいう。また、チャッキング装置70が所定の目標高さに位置することによって、ロボットハンド60はチャッキング装置70のハンド保持部72の部位を保持可能な状態で、かつ、負荷センサ44にロボットハンド60による負荷が作用しない状態で待機している。
 [ステップS4におけるチャッキング装置70]
 ステップS4においても、上記のステップS3と同様に、チャッキング装置70が荷Pを保持する状態を継続する。したがって、巻上機30の巻上げ動作に伴って、荷Pが上昇する。
 [ステップS4におけるロボットハンド60]
 ステップS4においても、ステップS2,S3と同様に、ロボットハンド60がチャッキング装置70を離す状態を継続する(解除制御ステップの一部に対応)。そのため、巻上機30の巻上げ動作に伴って、チャッキング装置70は、ロボットハンド60に対して相対的に上昇する。
 [ステップS4におけるロボット装置50]
 ステップS4においても、ステップS2,S3と同様に、ロボット装置50の各モータ57a~57fの作動の停止を継続する。すなわち、ロボット装置50の停止状態を継続する。
 ステップS5:荷の搬送
 [ステップS5における巻上機30]
 図11は、ステップS5における搬送システム10の各構成要素の状態を示す図である。図11に示すように、ステップS5においては、ステップS1と同様に、トルク制御(バランサ制御)を行う(トルク制御ステップの一部に対応)。このトルク制御(バランサ制御)では、メモリ45aに記憶されている負荷の値に基づいて、駆動モータ40に一定のトルクが作用するにように制御する。したがって、ロボット装置50がロボットハンド60を所定の経路に沿って移動させる位置制御の実行中は、荷Pを上昇させる方向にロボットハンド60を移動させようとすると、負荷センサ44で検出される負荷が軽くなる(小さくなる)ので、その変化量に応じて巻上機制御部45は駆動モータ40に巻き上げ方向に向かう駆動力を与える。また、ロボット装置50が荷Pを下降させる方向にロボットハンド60を移動させようとすると、負荷センサ44で検出される負荷が大きくなるので、その変化量に応じて巻上機制御部45は駆動モータ40に巻き下げ方向に向かう駆動力を与える。これらにより、ロボット装置50には荷Pの荷重が直接作用することなく、後述のロボット装置50のロボットアーム58の制御によってロボットハンド60を所定の経路に沿って目標位置(目標高さを含む)まで移動させることができ、荷Pはそれに伴って搬送される。
 [ステップS5におけるチャッキング装置70]
 ステップS5においても、上記のステップS3,S4と同様に、チャッキング装置70が荷Pを保持する状態を継続する。したがって、後述するようなロボット装置50の作動に伴って、荷Pが移動する。
 [ステップS5におけるロボットハンド60]
 ステップS5においては、主制御部81からの制御指令に基づいて、ハンド制御部83は、チャッキング装置70を握るように、ロボットハンド60のアクチュエータ64の作動を制御する(保持制御ステップの一部に対応)。それにより、ロボットハンド60は、チャッキング装置70のハンド保持部72を保持する状態となる。上記のように、チャッキング装置70は荷Pを保持している。したがって、後述するようなロボット装置50の作動に伴って、荷Pが搬送される。
 [ステップS5におけるロボット装置50]
 ステップS5においては、主制御部81からの制御指令に基づいて、ロボット制御部84は、ロボットアーム58の作動の制御(位置制御)を行う。すなわち、ロボット制御部84は、ロボットハンド60(チャッキング装置70)が目標位置(目標高さを含む)に到達するように、各モータ57a~57fの作動を制御する。かかる位置制御においては、荷Pが目標位置まで移動するように、各モータ57a~57fの作動を制御する。
 ステップS6:着床のための巻下げ
 [ステップS6における巻上機30]
 図12は、ステップS6における搬送システム10の各構成要素の状態を示す図である。ステップS5において、ロボットハンド60が目標位置に到達したことが検知されると、ステップS2と同様のステップS6の動作を実行する。すなわち、図6に示すように、ステップS6において、巻上機30は巻下げ動作を行う。このとき、主制御部81は、ハンド制御部83からのロボットハンド60の解放完了信号を受信し、巻上機制御部45に制御モードをトルク制御(バランサ制御)のモードから、高さ制御のモードへと切り替える指令を送信する。巻上機制御部45は、高さ制御のモードに切り替わり、主制御部81からの目標高さの指令受信まで待機する。そして、主制御部81は、荷Pを着床させるための下フック36の目標高さ(載置面の高さに応じて予め設定した高さ)まで巻き下げるよう巻上機制御部45に指令する。巻上機制御部45は、かかる載置面に着床させるための巻下げ動作を行うように、駆動モータ40の駆動を制御する(高さ制御ステップの一部に対応)。
 [ステップS6におけるチャッキング装置70]
 ステップS6においても、上記のステップS3~S5と同様に、チャッキング装置70が荷Pを保持する状態を継続する。したがって、上記のような巻下げ動作に伴って、荷Pが降下する。
 [ステップS6におけるロボットハンド60]
 ステップS6においては、ロボットハンド60は、上述したステップS2と同様の動作を行う。すなわち、ロボットハンド60においては、主制御部81からの制御指令に基づいて、ハンド制御部83は、チャッキング装置70を離すように、アクチュエータ64の作動を制御する(解除制御ステップの一部に対応)。
 [ステップS6におけるロボット装置50]
 また、ステップS6においては、上述したステップS2と同様に、ロボット装置50は、ロボット制御部84からの制御指令に基づいて、停止状態となる。すなわち、ロボット制御部84は、各モータ57a~57fの作動を停止させる。それにより、ロボットハンド60が停止するので、巻上機30の巻下げ動作に伴って、チャッキング装置70がロボットハンド60に対して相対的に下降する。
 ステップS7:着床における停止
 [ステップS7における巻上機30]
 図13は、ステップS7における搬送システム10の各構成要素の状態を示す図である。図13に示すように、上述した高さ制御における予め設定した所定の目標高さに下フック36が到達した場合に、巻上機制御部45は、駆動モータ40の駆動を停止させる(高さ制御ステップの一部に対応)。このとき、巻上機30に備えられた負荷センサ44の検知情報により着床を検知し、巻上機制御部45は主制御部81に着床を通知するようにしても良い。これにより荷Pの搬送が完了する。
 [ステップS7におけるチャッキング装置70]
 また、駆動モータ40が停止したタイミング、またはそれよりも後のタイミングで、チャッキング装置70においては、着床を判断した主制御部81からの制御指令に基づいて、チャッキング制御部82は、エア駆動部73で膨張保持部74bを加圧している状態を解除するように、エア駆動部73の作動を制御する。すなわち、ステップS7では、チャッキング装置70が荷Pを保持している状態から、非保持の状態へと切り替えられる。
 [ステップS7におけるロボットハンド60]
 ステップS3においても、上記のステップS6と同様に、ロボットハンド60がチャッキング装置70を離す状態を継続する(解除制御ステップの一部に対応)。
 [ステップS7におけるロボット装置50]
 ステップS7においても、上記のステップS6と同様に、ロボット装置50の各モータ57a~57fの作動の停止を継続する。すなわち、ロボット装置50の停止状態を継続する。
 ステップS8:チャッキング装置の取り出し
 [ステップS8における巻上機30]
 図14は、ステップS8における搬送システム10の各構成要素の状態を示す図である。図14に示すように、ステップS8においては、チャッキング装置70を荷Pから取り出し開始する準備ステップとして、ハンド保持部72の所定の部位をロボットハンド60で保持できる高さまで、ステップS4と同様の巻上げ動作を行う。すなわち、主制御部81からの制御指令に基づいて、巻上機制御部45は、チャッキング装置70を所定の目標高さまで上昇させるような巻上げ動作を行うように、駆動モータ40の駆動を制御する(高さ制御ステップの一部に対応)。なお、この巻上げ動作においては、ステップS4とは異なり、荷Pは持ち上げられずに、チャッキング装置70のみが下フック36により持ち上げられる。そのため、負荷センサ44で検出される負荷は、荷Pを吊り下げている状態よりも非常に小さい値となり、巻上機制御部45は、かかる負荷の値をメモリ45aに記憶させ、制御モードをトルク制御(バランサ制御)のモードに切り替え可能な状態で待機する。
 [ステップS8におけるチャッキング装置70]
 ステップS8においても、上記のステップS7と同様に、チャッキング装置70が荷Pを非保持の状態を継続する。したがって、巻上機30の巻上げ動作に伴って、荷Pに対してチャッキング装置70が上昇する。
 [ステップS8におけるロボットハンド60]
 ステップS8においても、ステップS6,S7と同様に、ロボットハンド60がチャッキング装置70を離す状態を継続する(解除制御ステップの一部に対応)。そのため、巻上機30の巻上げ動作に伴って、チャッキング装置70は、ロボットハンド60に対して相対的に上昇する。
 [ステップS8におけるロボット装置50]
 ステップS8においても、ステップS6,S7と同様に、ロボット装置50の各モータ57a~57fの作動の停止を継続する。すなわち、ロボット装置50の停止状態を継続する。
 ステップS9:チャッキング装置70の移動
 [ステップS9における巻上機30]
 図15は、ステップS9における搬送システム10の各構成要素の状態を示す図である。図15に示すように、ステップS9においては、ステップS1,S5と同様に、高さ制御から切り替えてトルク制御(バランサ制御)を行う。このトルク制御(バランサ制御)では、メモリ45aに記憶されている負荷の値(荷Pを吊り下げていない状態の負荷の値)に基づいて、駆動モータ40に一定のトルクが作用するにように制御する。したがって、ロボット装置50がチャッキング装置70を上下動させようとした場合、巻上機制御部45は、ロボット装置50に作用する負荷が小さくなるように、駆動モータ40の駆動を制御する(トルク制御ステップの一部に対応)。
 [ステップS9におけるチャッキング装置70]
 ステップS9においても、上記のステップS7,S8と同様に、チャッキング装置70が荷Pを非保持の状態を継続する。
 [ステップS9におけるロボットハンド60]
 ステップS9においては、トルク制御(バランサ制御)のモードに切り替わったことを確認した主制御部81からの制御指令に基づいて、ハンド制御部83は、チャッキング装置70を握るように、ロボットハンド60のアクチュエータ64の作動を制御する。それにより、ロボットハンド60は、チャッキング装置70のハンド保持部72を保持する状態となる(保持制御ステップの一部に対応)。そのため、後述するようなロボット装置50の作動に伴って、チャッキング装置70が移動する。
 [ステップS9におけるロボット装置50]
 ステップS9においては、主制御部81からの制御指令に基づいて、ロボット制御部84は、ロボットアーム58の作動の制御(位置制御)を行う。すなわち、ロボット制御部84は、ロボットハンド60(チャッキング装置70)が目標位置に到達するように、各モータ57a~57fの作動を制御する。かかる位置制御の一例としては、チャッキング装置70を、次の荷Pを持ち上げるための位置まで所定の経路に沿って移動させるものがある。
 以上のような各ステップS1~S9を、搬送システム10は実行して、荷Pの一連の搬送工程を自動で完了することができる。
<3.効果について>
 以上のような構成の搬送システム10によると、荷Pを昇降可能であると共に作用する荷重を検出する負荷センサ44(荷重検出手段)を備える巻上機30と、巻上機30が取り付けられると共に、外力を巻上機30に加えることで当該巻上機30を水平方向に移動させることが可能な手引クレーン20(クレーン)と、巻上機30から垂下され荷Pを保持可能なチャッキング装置70(吊下げ手段)と、荷Pまたはチャッキング装置70(吊下げ手段)を保持可能なロボットハンド60(保持手段)および当該ロボットハンド60(保持手段)を所望の位置に移動させるロボットアーム58とを備えるロボット装置50と、巻上機30に対して作用する荷重に応じたトルクを生じさせるトルク制御と、チャッキング装置70(吊下げ手段)を所定の目標高さに移動させる高さ制御を行うことが可能な巻上機制御部45(第1制御手段)と、ロボットアーム58の作動を制御するロボット制御部84(第2制御手段)と、ロボットハンド60の作動を制御するハンド制御部83(第3制御手段)と、巻上機制御部45(第1制御手段)、ロボット制御部84(第2制御手段)およびハンド制御部83(第3制御手段)に対して、所定の制御指令を与える主制御部81(主制御手段)と、を備える。
 そして、荷Pが載置面から持ち上げられる地切りの際以外、または荷Pが載置面に載置される着床の際以外でチャッキング装置70(吊下げ手段)を移動する際、すなわち荷Pを高さ制御時以外で搬送する際、高さ制御の前にチャッキング装置70を荷Pに向けて移動させる際、または高さ制御の後にチャッキング装置70を荷Pから移動させる際には、主制御部81(主制御手段)からの制御指令により、ハンド制御部83(第3制御手段)はロボットハンド60(保持手段)による保持を行うように保持制御を実行する。かかる制御と共に、主制御部81(主制御手段)からの制御指令により、負荷センサ44(荷重検出手段)での作用する荷重の変化の検出結果に基づいて、巻上機制御部45(第1制御手段)はチャッキング装置70(吊下げ手段)を荷重の増加で巻下げ、荷重の減少で巻上げるトルク制御を実行する。
 また、荷Pが載置面から持ち上げられる地切りの際、または荷が載置面に載置される着床の際には、主制御部81(主制御手段)からの制御指令により、ハンド制御部83(第3制御手段)はロボットハンド60(保持手段)による保持を解除するように解除制御を実行する。かかる制御と共に、巻上機制御部45(第1制御手段)は主制御部81(主制御手段)からの制御指令により、上下方向においてロボットハンド60(保持手段)を目標高さに移動させる制御を行うように巻上機30を作動させる高さ制御を実行する。
 このように構成する場合には、荷Pの地切りや着床の際には、巻上機30の位置制御によってチャッキング装置70(吊下げ手段)を介して荷Pを持ち上げたり、降下させることが可能となる。この巻上機30の位置制御では、ロボットハンド60がチャッキング装置70(吊下げ手段)の保持を解除するので、チャッキング装置70(吊下げ手段)は、ロボットハンド60に対して相対的に上下方向に移動する。そのため、巻上機30の位置制御によるチャッキング装置70(吊下げ手段)の上下方向への移動と、ロボット装置50のロボットアーム58の上下方向への移動との間で、同期のずれが生じるのを防止することができる。
 また、地切りや着床のための高さ制御時以外で荷Pを搬送する際(ステップS5)、巻上機30の高さ制御の前にチャッキング装置70(吊下げ手段)を荷Pに向けて移動させる際(ステップS1)、または高さ制御の後にチャッキング装置70(吊下げ手段)を荷Pから移動させる際(ステップS9)には、巻上機30の「トルク制御」(バランサ制御)がなされる。このため、荷Pを搬送する場合には、荷Pの荷重を巻上機30側で支持(負担)しつつ、ロボットアーム58が作動した場合には、その作動によって所望の位置に荷Pを搬送することができる。
 すなわち、巻上機30はトルク制御(バランサ制御)によって、ロボットアーム58が作動しない場合に荷Pと釣り合う負荷(トルク)を与えるものの荷Pを上下方向に積極的には移動させない。したがって、巻上機30とロボットアーム58との間で、上下方向の移動において同期のずれが生じるのを防止することが可能となる。
 いわば、本実施の形態では、地切りや着床の際には、巻上機30の高さ制御を行うものの、ロボットハンド60はチャッキング装置70(吊下げ手段)の保持を解除する。一方、地切りや着床以外で、荷Pを搬送する際(ステップS5)、巻上機30の高さ制御の前にチャッキング装置70(吊下げ手段)を荷Pに向けて移動させる際(ステップS1)、または高さ制御の後にチャッキング装置70(吊下げ手段)を荷Pから移動させる際(ステップS9)には、巻上機30のトルク制御(バランサ制御)がなされるが、ロボットハンド60はチャッキング装置70(吊下げ手段)の保持を行う。このようなシーケンス的な制御を搬送システム10が行うので、巻上機30とロボットアーム58との間で、上下方向の移動において同期のずれが生じることがない。
 また、本実施の形態では、ロボットハンド60には、特許文献1に開示のようなローラーボールのような、ロボットアーム60と巻上機30との間の同期のずれを吸収するための手段が存在していない。したがって、ローラーボールがロボットアーム60に存在しない分だけ構成が簡略化されるので、特許文献1に開示の構成よりも製造コストを低減することが可能となる。また、巻上機30はトルク制御(バランサ制御)においては、ロボットアーム60がチャッキング装置70(吊下げ手段)のハンド保持部72を握った保持状態で、ロボットアーム58が作動することで、荷Pを所望の位置に移動させることが可能となる。したがって、ロボット装置50側での移動の制約が少ない状態とすることができ、また荷Pの搬送時の操作性も良好となる。また、ロボットハンド60でしっかり保持した状態でチャッキング装置70を所定の経路に沿って、かつチャッキング装置70の姿勢もコントロールしながら移動させることが可能となっている。
 また、本実施の形態では、主制御部81(主制御手段)からの制御指令により、チャッキング装置70(吊下げ手段)による荷Pの保持および保持解除を制御するチャッキング制御部82(第4制御手段)をさらに備えている。
 このように構成する場合には、チャッキング装置70(吊下げ手段)は、主制御部81(主制御手段)からの制御指令により、チャッキング制御部82(第4制御手段)での制御に基づいて、荷Pの保持および保持解除を良好に行うことが可能となる。これにより荷Pの持ち換えができるようになる。
 また、本実施の形態では、トルク制御(バランサ制御)においては、ロボット制御部84(第2制御手段)は、ロボットアーム58による上下方向を含む作動によってチャッキング装置70(吊下げ手段)を所定の目標位置に移動させる位置制御を実行する。
 このため、巻上機30のトルク制御(バランサ制御)においては、ロボットアーム58が作動することで、荷Pを搬送することができるが、かかる荷Pの搬送においては、荷Pの荷重を巻上機30側で支持(負担)しつつ、ロボットアーム58の作動によって所望の位置に荷Pを搬送することができる。また、このようなロボットアーム58の作動によって荷Pを移動させる場合でも、巻上機30は積極的(能動的)に目標の高さ位置に荷Pを向かわせるような巻上げおよび巻下げを行わないので、巻上機30とロボットアーム58との間で、上下方向の移動において同期のずれが生じるのを防止することが可能となる。
 また、本実施の形態では、巻上機30の高さ制御においては、ロボット制御部84(第2制御手段)は、ロボットアーム58の作動を停止させる制御を行う。
 このため、地切りや着床の際には、巻上機30の高さ制御によって、ロボットアーム58(ロボット装置50)に対して相対的に、巻上機30がチャッキング装置70(吊下げ手段)を介して荷Pを持ち上げたり、降下させることが可能となる。そのため、巻上機30の高さ制御によるチャッキング装置70(吊下げ手段)の上下方向への移動と、ロボット装置50のロボットアーム58の上下方向への移動との間で、同期のずれが生じるのを防止することができる。
 また、本実施の形態では、吊下げ手段は、荷Pを保持可能なチャッキング装置70であり、チャッキング装置70は、荷Pの地切り前の巻上機30の停止状態から荷Pが着床した後の巻上機30の停止状態の間の高さ制御およびトルク制御のいずれにおいても、荷Pの保持を継続する。
 このため、荷Pの地切りの前の巻上機30の停止状態から荷Pが着床した後の巻上機30の停止状態の間、荷Pが保持されるので、荷Pの搬送直前直後および搬送中は、チャッキング装置70によって荷Pを確実に保持させることが可能となる。
<変形例>
 以上、本発明の各実施の形態について説明したが、本発明はこれ以外にも種々変形可能となっている。以下、それについて述べる。
 上述の実施の形態では、吊下げ手段として、チャッキング装置70について説明している。しかしながら、吊下げ手段は、チャッキング装置70には限られない。たとえば、荷Pが磁力によって吸引保持可能な場合には、吊下げ手段は、電磁石によって荷Pを保持する構成であっても良く、開閉可能な支持部材によって荷Pを保持する構成であっても良い。
 また、第2制御手段に対応するロボット制御部84と、第3制御手段に対応するハンド制御部83とは、1つの制御部であっても良い。
 また、上述の実施の形態では、保持手段として、図3に示すようなロボットハンド60について説明している。しかしながら、保持手段は、図3に示すようなロボットハンド60には限られない。たとえば、保持手段に対応するロボットハンド60は、上述した構成には限られない。たとえば、ロボットハンドは、複数の指または爪を備え、それら複数の指または爪によってチャッキング装置70等をクランプする構成でも良い。また、保持手段は、ロボットハンド以外に、真空吸着や磁着によって、チャッキング装置70を保持するエンドエフェクタであっても良い。
 また、上述の実施の形態では、吊下げ手段として、チャッキング装置70について説明している。しかしながら、吊下げ手段はチャッキング装置70には限られない。たとえば、磁力によってワーク等を吸着可能なリフティングマグネットが吊下げ手段に対応しても良く、その他、例えば荷に設けたアイ部への自動玉掛け・玉掛け解除が可能なフック部材が吊下げ手段に対応しても良く、あるいは巻上機30の下フック36を吊下げ手段に対応しても良い。
 また、上述の実施の形態では、クレーンとして、手引クレーン20について説明している。しかしながら、クレーンは、手引クレーン20には限られない。たとえば、クレーンは、モータの駆動によって吊下げ対象である巻上機30等が、走行用レール21および横行用レール22に沿って移動可能な電動トロリを備える構成としても良い。
 また、上述の実施の形態では、地切りおよび着床以外の動作において、目標高さを設定するようにしても良い。
 10…搬送システム、20…手引クレーン(クレーンに対応)、21…走行用レール、22…横行用レール、30…巻上機、31…巻上機本体部、32…上フック、33…シリンダ操作装置、34…チェーンバケット、35…ハウジング、36…下フック、40…駆動モータ、40a…エンコーダ、41…減速機構、42…ブレーキ機構、43…ロードシーブ、44…負荷センサ、45…巻上機制御部、45a…メモリ、46…ドライバ、50…ロボット装置、51…脚部、52…第1関節部、53…第2関節部、54…第1アーム、55…第2アーム、56…手首部、57a~57f…モータ、60…ロボットハンド(保持手段に対応)、61…取付部、62…筒状部、63…保持チューブ、63a…膨張部位、64…アクチュエータ、70…チャッキング装置(吊下げ手段に対応)、71…フック掛止部、72…ハンド保持部、73…エア駆動部、74…膨張保持部、74a…ロッド部、74b…膨張保持部、81…主制御部(主制御手段に対応)、82…チャッキング制御部(第4制御手段に対応)、83…ハンド制御部(第3制御手段に対応)、84…ロボット制御部(第2制御手段に対応)、85a~85f…ドライバ、C1…ロードチェーン、P…荷、P1…挿入孔

Claims (6)

  1.  荷を所望の位置に搬送する搬送システムであって、
     荷を昇降可能であると共に作用する荷重または荷重の変化を検出する荷重検出手段を備える巻上機と、
     前記巻上機が取り付けられると共に、外力を前記巻上機に加えることで当該巻上機を水平方向に移動させることが可能なクレーンと、
     前記巻上機から垂下され前記荷を保持可能な吊下げ手段と、
     前記荷または前記吊下げ手段を保持可能な保持手段および当該保持手段を所望の位置に移動させるロボットアームとを備えるロボット装置と、
     前記巻上機に対して作用する荷重に応じたトルクを生じさせる前記巻上機のトルク制御と、前記吊下げ手段を所定の目標高さに移動させる前記巻上機の高さ制御を行うことが可能な第1制御手段と、
     前記ロボットアームの作動を制御する第2制御手段と、
     前記保持手段の作動を制御する第3制御手段と、
     前記第1制御手段、前記第2制御手段および前記第3制御手段に対して、所定の制御指令を与える主制御手段と、を備え、
     前記荷が載置面から持ち上げられる地切りの際以外、または前記荷が前記載置面に載置される着床の際以外で前記吊下げ手段を搬送する際には、前記主制御手段からの制御指令により、前記第3制御手段は前記保持手段による保持を行うように保持制御を実行し、
     かつ、前記主制御手段からの制御指令により、前記荷重検出手段の検出結果に基づいて前記第1制御手段は前記吊下げ手段を荷重の増加で巻下げ、荷重の減少で巻上げるトルク制御を実行し、
     前記荷が載置面から持ち上げられる地切りの際、または前記荷が前記載置面に載置される着床の際には、前記主制御手段からの制御指令により、前記第3制御手段は前記保持手段による保持を解除するように解除制御を実行し、
     かつ、前記第1制御手段は前記主制御手段からの制御指令により、前記保持手段を目標高さに移動させる制御を行うように前記巻上機を作動させる高さ制御を実行する、
     ことを特徴とする搬送システム。
  2.  請求項1記載の搬送システムであって、
     前記主制御手段からの制御指令により、前記吊下げ手段による前記荷の保持および保持解除を制御する第4制御手段をさらに備える、
     ことを特徴とする搬送システム。
  3.  請求項1または2記載の搬送システムであって、
     前記トルク制御においては、前記第2制御手段は、前記ロボットアームによる上下方向を含む作動によって前記保持手段を所定の目標位置に移動させる位置制御を実行する、
     ことを特徴とする搬送システム。
  4.  請求項1から3のいずれか1項に記載の搬送システムであって、
     前記高さ制御においては、前記第2制御手段は、前記ロボットアームの作動を停止させる制御を行う、
     ことを特徴とする搬送システム。
  5.  請求項1から3のいずれか1項に記載の搬送システムであって、
     前記吊下げ手段は、前記荷を保持可能なチャッキング装置であり、
     前記チャッキング装置は、前記荷の地切り前の前記巻上機の停止状態から前記荷が着床した後の前記巻上機の停止状態の間の前記高さ制御および前記トルク制御のいずれにおいても、前記荷の保持を継続する、
     ことを特徴とする搬送システム。
  6.  荷を所望の位置に搬送する搬送システムの制御方法であって、
     前記搬送システムは、
     荷を昇降可能であると共に作用する荷重または荷重の変化を検出する荷重検出手段を備える巻上機と、
     前記巻上機が取り付けられると共に、外力を前記巻上機に加えることで当該巻上機を水平方向に移動させることが可能なクレーンと、
     前記巻上機から垂下され前記荷を保持可能な吊下げ手段と、
     前記荷または前記吊下げ手段を保持可能な保持手段および当該保持手段を所望の位置に移動させるロボットアームとを備えるロボット装置と、
     前記巻上機に対して作用する荷重に応じたトルクを生じさせる前記巻上機のトルク制御と、前記吊下げ手段を所定の目標高さに移動させる前記巻上機の高さ制御を行うことが可能な第1制御手段と、
     前記ロボットアームの作動を制御する第2制御手段と、
     前記保持手段の作動を制御する第3制御手段と、
     前記第1制御手段、前記第2制御手段および前記第3制御手段に対して、所定の制御指令を与える主制御手段と、を備え、
     前記荷が載置面から持ち上げられる地切りの際以外、または前記荷が前記載置面に載置される着床の際以外で前記吊下げ手段を搬送する際には、前記主制御手段からの制御指令により、前記第3制御手段は前記保持手段による保持を行うように保持制御を実行する保持制御ステップと、
     前記保持制御ステップにおいて、前記主制御手段からの制御指令により、前記荷重検出手段の検出結果に基づいて前記第1制御手段は前記吊下げ手段を荷重の増加で巻下げ、荷重の減少で巻上げるトルク制御を実行するトルク制御ステップと、
     前記荷が載置面から持ち上げられる地切りの際、または前記荷が前記載置面に載置される着床の際には、前記主制御手段からの制御指令により、前記第3制御手段は前記保持手段による保持を解除するように解除制御を実行する解除制御ステップと、
     前記解除制御ステップにおいて、前記第1制御手段は前記主制御手段からの制御指令により、上下方向において前記保持手段を目標高さに移動させる制御を行うように前記巻上機を作動させる高さ制御を実行する高さ制御ステップと、
     を含むことを特徴とする搬送システムの制御方法。

     
PCT/JP2022/025611 2021-06-30 2022-06-27 搬送システムおよび搬送システムの制御方法 WO2023276970A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022003315.0T DE112022003315T5 (de) 2021-06-30 2022-06-27 Transportsystem und verfahren zum steuern eines transportsystems
CN202280041580.1A CN117480037A (zh) 2021-06-30 2022-06-27 输送系统及输送系统的控制方法
JP2023531952A JP7506452B2 (ja) 2021-06-30 2022-06-27 搬送システムおよび搬送システムの制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-109683 2021-06-30
JP2021109683 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276970A1 true WO2023276970A1 (ja) 2023-01-05

Family

ID=84692997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025611 WO2023276970A1 (ja) 2021-06-30 2022-06-27 搬送システムおよび搬送システムの制御方法

Country Status (4)

Country Link
JP (1) JP7506452B2 (ja)
CN (1) CN117480037A (ja)
DE (1) DE112022003315T5 (ja)
WO (1) WO2023276970A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103299A1 (ja) * 2014-12-25 2016-06-30 川崎重工業株式会社 自動物体搬送方法、及び自動物体搬送システム
JP2019072804A (ja) * 2017-10-17 2019-05-16 ユニパルス株式会社 物品移動装置システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071549B2 (ja) 2012-12-28 2017-02-01 川崎重工業株式会社 搬送システム
WO2021079642A1 (ja) 2019-10-21 2021-04-29 株式会社キトー 巻上機および巻上機の駆動制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103299A1 (ja) * 2014-12-25 2016-06-30 川崎重工業株式会社 自動物体搬送方法、及び自動物体搬送システム
JP2019072804A (ja) * 2017-10-17 2019-05-16 ユニパルス株式会社 物品移動装置システム

Also Published As

Publication number Publication date
JPWO2023276970A1 (ja) 2023-01-05
JP7506452B2 (ja) 2024-06-26
DE112022003315T5 (de) 2024-04-18
CN117480037A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
KR101707091B1 (ko) 반송 시스템 및 반송 시스템의 반송 방법
JP6747325B2 (ja) ワーク搬送装置
WO2015098100A1 (ja) ロボット及びクレーン共同作業システム
WO2021079642A1 (ja) 巻上機および巻上機の駆動制御方法
JP4295784B2 (ja) クレーン
WO2023276970A1 (ja) 搬送システムおよび搬送システムの制御方法
JP6071549B2 (ja) 搬送システム
JP2004107041A (ja) 吊荷装置
JP2018104111A (ja) アシストスーツ
JP4291906B2 (ja) 荷役物運搬機の制御方法
JP6812960B2 (ja) ワーク搬送装置
JP2020026337A (ja) ワーク搬送装置
JP7303697B2 (ja) 吊荷の据付補助装置および吊荷の据付方法
JPH10182100A (ja) エアー式荷役物運搬機の電気制御方法
JP4107128B2 (ja) 昇降装置
JP2825027B2 (ja) 天井クレーン
JP3232320U (ja) 搬送補助装置のワーク保持手段および搬送補助装置
JPH0544343A (ja) 建物躯体の外壁部材取付け方法
JP7376212B2 (ja) チャッキング装置および搬送装置
JPS6320709Y2 (ja)
JPH01271395A (ja) 吊荷の初期振れ抑制制御方法
JP2687170B2 (ja) 扛重装置の荷物支持部に対する操作構造
JPH0664889A (ja) 可動吊り治具装置
JPH09263383A (ja) ドラムハンドリング用吊り具
JP3692350B2 (ja) インセルクレーンの救援装置および救援方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833117

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531952

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280041580.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18574324

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022003315

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22833117

Country of ref document: EP

Kind code of ref document: A1