WO2023276264A1 - ロータ、ipmモータ及びロータの製造方法 - Google Patents

ロータ、ipmモータ及びロータの製造方法 Download PDF

Info

Publication number
WO2023276264A1
WO2023276264A1 PCT/JP2022/007648 JP2022007648W WO2023276264A1 WO 2023276264 A1 WO2023276264 A1 WO 2023276264A1 JP 2022007648 W JP2022007648 W JP 2022007648W WO 2023276264 A1 WO2023276264 A1 WO 2023276264A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
core plate
rotor
hole
magnet insertion
Prior art date
Application number
PCT/JP2022/007648
Other languages
English (en)
French (fr)
Inventor
陽介 田中
武 本田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202280039454.2A priority Critical patent/CN117413448A/zh
Publication of WO2023276264A1 publication Critical patent/WO2023276264A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to rotors, IPM motors, and methods of manufacturing rotors.
  • Patent Literature 1 discloses a rotor core configured by laminating electromagnetic steel plates having magnet insertion holes.
  • a first magnetic steel plate which is at least one magnetic steel plate among the magnetic steel plates, protrudes toward the magnet insertion hole from a side surface of the magnet insertion hole and is inserted into the magnet insertion hole. It has a protruding portion that is configured to be bendable in the axial direction by the permanent magnet.
  • the permanent magnet is fixed in the magnet insertion hole by the bending protrusion.
  • a gap may be formed between the bent protruding portion and the inner surface of the magnet insertion hole. If a centrifugal force is applied to the magnets due to the rotation of the rotor while such a gap is present, the protrusions may be pushed in the radial direction of the rotor by the magnets and repeatedly deformed. As a result, there is a possibility that fatigue fracture will occur in the proximal end portion of the protrusion, the protrusion will separate from the core plate, and the protrusion will not be able to hold the magnet in the magnet insertion hole.
  • An object of the present invention is to provide a rotor for an IPM motor that can maintain a state in which magnets are held in magnet insertion holes.
  • a rotor includes a cylindrical rotor core having a plurality of core plates laminated in a thickness direction, magnet insertion holes extending in an axial direction, and magnets inserted into the magnet insertion holes. and a rotor.
  • a part of the plurality of core plates is a first core plate, and the first core plate protrudes toward the inside of the magnet insertion hole of the rotor core, and the inner surface of the magnet insertion hole and the magnet are connected to each other. and a first protrusion extending in the magnet insertion direction, which is the direction in which the magnet is inserted into the magnet insertion hole.
  • a part of the plurality of core plates stacked in the magnet insertion direction with respect to the first core plate is a second core plate, and the second core plate is the magnet insertion hole of the rotor core.
  • the first projecting portion has a distal end located in the magnet insertion direction relative to the base end of the first projecting portion, and at least a part of the first projecting portion is in contact with the magnet and is in contact with the magnet. It is positioned between the second protrusion.
  • An IPM motor has a rotor having the above configuration, and a stator having stator coils and stator cores.
  • a method of manufacturing a rotor according to an embodiment of the present invention is a method of manufacturing a rotor having the above configuration.
  • the rotor core has a caulking hole penetrating from a surface layer core plate positioned at an end in the lamination direction of the rotor core to at least the second core plate, and the second core plate has the caulking hole.
  • the rotor According to the rotor according to one embodiment of the present invention, it is possible to provide a configuration capable of maintaining a state in which the magnets are held within the magnet insertion holes.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an IPM motor according to an embodiment.
  • FIG. 2 is a perspective view of a rotor according to the embodiment.
  • FIG. 3 is a diagram of a part of the rotor core viewed in the axial direction.
  • 4 is a cross-sectional view taken along line IV-IV of FIG. 3.
  • FIG. 5 is a view of the inner surface of the magnet insertion hole viewed from the inside of the magnet insertion hole in the direction A of FIG.
  • FIG. 6A is a diagram illustrating a method for manufacturing a rotor according to the embodiment;
  • FIG. 6B is a diagram illustrating a method for manufacturing the rotor according to the embodiment;
  • FIG. 6C is a diagram illustrating a method of manufacturing the rotor according to the embodiment.
  • FIG. 7 is a view equivalent to FIG. 4 of a rotor according to another embodiment.
  • FIG. 8 is a view corresponding to FIG. 4 of a rotor according to another embodiment.
  • FIG. 9 is a view equivalent to FIG. 4 of a rotor according to another embodiment.
  • FIG. 10 is a view corresponding to FIG. 4 of a rotor according to another embodiment.
  • the direction parallel to the central axis P of the rotor 2 is the "axial direction”
  • the direction orthogonal to the central axis P is the "radial direction”
  • the Each direction is referred to as a "circumferential direction”.
  • this definition is not intended to limit the orientation of the rotor 2 during use.
  • magnet insertion direction the direction which inserts the magnet 22 in the magnet insertion hole 24 is called "magnet insertion direction.”
  • the term “same” includes not only the case of being exactly the same but also the range of substantially the same.
  • “matching” includes not only the case of exact matching, but also the state of substantially matching.
  • FIG. 1 is a diagram showing a schematic configuration of the motor 1.
  • Motor 1 is an IPM motor.
  • Motor 1 includes rotor 2 , stator 3 , housing 4 and shaft 20 .
  • the rotor 2 rotates around the central axis P with respect to the stator 3 .
  • the motor 1 is a so-called inner rotor type motor in which a rotor 2 is rotatably positioned about a central axis P within a cylindrical stator 3 .
  • the rotor 2 includes a rotor core 21 and magnets 22 .
  • the rotor 2 is positioned radially inward of the stator 3 and is rotatable about the central axis P with respect to the stator 3 .
  • the stator 3 is housed within the housing 4 .
  • the stator 3 is cylindrical.
  • the rotor 2 is positioned radially inward of the stator 3 . That is, the stator 3 is positioned to face the rotor 2 in the radial direction.
  • the stator 3 includes a stator core 31 and stator coils 36 .
  • the stator coil 36 is wound around the stator core 31 . Description of the detailed configuration of the stator 3 is omitted.
  • FIG. 2 is a perspective view showing a schematic configuration of the rotor 2.
  • FIG. 3 is a view of the portion enclosed by the dashed line in FIG. 2 viewed in the axial direction.
  • a rotor core 21 of the rotor 2 has a cylindrical shape extending along the central axis P.
  • Rotor core 21 has a through hole 21 a extending along central axis P.
  • a shaft 20 is fixed to the rotor core 21 so as to extend axially through the through hole 21a. Thereby, the rotor core 21 rotates together with the shaft 20 .
  • the rotor core 21 has a plurality of magnet insertion holes 24 positioned at predetermined intervals in the circumferential direction.
  • a plurality of magnet insertion holes 24 penetrate the rotor core 21 in the axial direction.
  • the plurality of magnet insertion holes 24 has a rectangular shape elongated in one direction when viewed in the axial direction.
  • the plurality of magnet insertion holes 24 include magnet insertion holes whose longitudinal direction is along the outer periphery of the rotor core 21 when viewed in the axial direction and magnet insertion holes extending in the radial direction of the rotor core 21 when viewed in the axial direction.
  • a magnet 22 is accommodated in the magnet insertion hole 24 .
  • the rotor core 21 has a plurality of disk-shaped core plates 25 formed in a predetermined shape and laminated in the thickness direction.
  • the multiple core plates 25 are electromagnetic steel plates.
  • the rotor core 21 has a circular caulking hole 26 extending axially along the magnet insertion hole 24 around the magnet insertion hole 24 .
  • the crimping hole 26 is a hole into which a crimping pin M is inserted when the rotor core 21 is manufactured.
  • the shape of some of the plurality of core plates 25 is changed. A change in the shape of the core plate due to the caulking pin M will be described later.
  • the rotor core 21 has two caulking holes 26 positioned radially inward with respect to each magnet insertion hole 24 .
  • the crimped hole may be positioned radially outward with respect to the magnet insertion hole.
  • the crimped hole may be located on one side or the other side in the circumferential direction with respect to the radially extending magnet insertion hole.
  • the rotor core may have one, three, or more than three caulked holes for each magnet insertion hole.
  • the magnet insertion hole 24 has an insertion hole recess 24b recessed toward the crimping hole 26 in a part of the inner surface 24a on the side where the crimping hole 26 is located.
  • the details of the insertion hole concave portion 24b will be described later.
  • the magnet 22 has a rectangular parallelepiped shape extending in the axial direction.
  • the magnet 22 is axially inserted into the magnet insertion hole 24 from the other axial direction of the rotor 2 and accommodated in the magnet insertion hole 24 .
  • the magnet 22 is held in the magnet insertion hole 24 by a first protruding portion 62 of a first convex core plate 60 among the plurality of core plates 25 , which will be described later.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 3.
  • FIG. FIG. 5 is a view of the inner surface 24a of the magnet insertion hole 24 viewed from the inside of the magnet insertion hole 24 in the direction A of FIG.
  • the insertion hole concave portion 24b is hatched for explanation.
  • the rotor core 21 has a plurality of core plates 25 laminated in the thickness direction.
  • the plurality of core plates 25 includes a first basic core plate 50, a first convex core plate 60, a second basic core plate 70, a second convex core plate 80, a caulking hole covering core plate 90, and a third basic core plate 50. and a core plate 55 .
  • the plurality of core plates 25 are composed of a first basic core plate 50, a first convex core plate 60, a second basic core plate 70, and a caulking hole covered core plate 90 from the other axial direction to the one axial direction.
  • the second convex core plate 80, the second basic core plate 70, and the third basic core plate 55 are laminated in this order.
  • the first basic core plate 50 is located at the other axial end of the rotor core 21 .
  • the first basic core plate 50 has openings forming the magnet insertion holes 24 and the caulking holes 26 of the rotor core 21 .
  • a plurality of first basic core plates 50 are laminated from the other axial end of rotor core 21 toward one axial direction.
  • the surface layer core plate positioned at the other axial end of the rotor core 21 is the first basic core plate 50 .
  • the surface layer core plate positioned at one axial end of the rotor core 21 is also the first basic core plate 50 .
  • the first convex core plate 60 is laminated on one side of the first basic core plate 50 in the axial direction.
  • the first convex core plate 60 has openings forming the magnet insertion holes 24 and the caulking holes 26 .
  • the first convex core plate 60 protrudes from the inner surface 24a side of the magnet insertion hole 24 toward the inside of the magnet insertion hole 24 and extends in one axial direction between the inner surface 24a and the magnet 22. It has a first protrusion 62 .
  • the first convex core plate 60 corresponds to the first core plate of the present invention.
  • the first projecting portion 62 is bent in the magnet insertion direction at a base end portion 63 that is a base end portion of the projection, and extends in one axial direction between the inner surface 24 a and the magnet 22 . That is, the distal end portion 64 of the first projecting portion 62 is located on one side in the axial direction of the base end portion 63 of the first projecting portion 62 in the magnet insertion hole 24 . As shown in FIG. 4 , one surface of the first projecting portion 62 faces the magnet 22 and the other surface of the first projecting portion 62 faces the inner surface 24 a of the magnet insertion hole 24 . As shown in FIG. 5, the first protrusion 62 has a rectangular shape when viewed in the thickness direction.
  • the first projecting portion 62 has a projecting portion 66 projecting toward the magnet 22 on the surface facing the magnet 22 .
  • the projecting portion 66 is located on one side of the central portion of the first projecting portion 62 in the axial direction. Projection 66 is in contact with magnet 22 .
  • the first projecting portion 62 has a recess 67 on the surface facing the inner surface 24 a of the magnet insertion hole 24 .
  • the recess 67 is located at the same position as the protrusion 66 in the axial direction.
  • a second projecting portion 82 of a second projecting core plate 80 to be described later is in contact with the bottom surface of the recess 67 . That is, the first projecting portion 62 is sandwiched between the second projecting portion 82 of the second projecting core plate 80 and the magnet 22 at the position of the projecting portion 66 .
  • the diameter dimension of the crimped hole 26 in the first convex core plate 60 is the same as the diameter dimension of the crimped hole 26 in the first basic core plate 50 .
  • the second basic core plate 70 is laminated on one side of the first convex core plate 60 in the axial direction.
  • the second basic core plate 70 has openings forming the magnet insertion holes 24 and the caulking holes 26 .
  • the radial position P2 of the inner surface 24a of the second basic core plate 70 is closer to the caulking hole 26 than the radial position P1 of the inner surface 24a of the first basic core plate 50 is.
  • the diameter dimension of the crimped hole 26 in the second basic core plate 70 is the same as the diameter dimension of the crimped hole 26 in the first basic core plate 50 .
  • the caulking hole covering core plate 90 is laminated on one side of the second basic core plate 70 in the axial direction.
  • the crimped hole covering core plate 90 has openings forming the magnet insertion holes 24 and the crimped holes 26 of the rotor core 21 .
  • the radial position P2 of the inner surface 24a of the magnet insertion hole 24 in the caulking hole covering core plate 90 is the same as the radial position P2 of the inner surface 24a in the second basic core plate 70 .
  • the crimped hole covering core plate 90 has a covering portion 92 that protrudes into the crimped hole 26 and extends in one axial direction along the inner surface of the crimped hole 26 .
  • the covering portion 92 has a cylindrical shape along the inner surface of the caulking hole 26 .
  • the covering portion 92 covers the inner surface of the crimped hole 26 in the core plate laminated on one side in the axial direction with respect to the crimped hole covering core plate 90 .
  • the caulking hole covering core plate 90 corresponds to the fourth core plate of the present invention.
  • the second convex core plate 80 is laminated on one side of the caulking hole covering core plate 90 in the axial direction.
  • the second convex core plate 80 has openings forming the magnet insertion holes 24 and the caulking holes 26 of the rotor core 21 .
  • the second convex core plate 80 has a second projecting portion 82 that projects toward the inside of the magnet insertion hole 24 from the inner surface 24 a side of the magnet insertion hole 24 .
  • the second protrusion 82 is positioned within the recess 67 of the first protrusion 62 and is in contact with the bottom surface of the recess 67 .
  • the second convex core plate 80 corresponds to the second core plate of the present invention.
  • the diameter dimension of the crimped hole 26 in the second convex core plate 80 is the same as the diameter dimension of the crimped hole 26 in the first basic core plate 50 .
  • the inner surface of the caulked hole 26 in the second convex core plate 80 is covered with the covering portion 92 of the caulked hole covering core plate 90 .
  • the above-described second basic core plate 70 is laminated on one side of the second convex core plate 80 in the axial direction.
  • the third basic core plate 55 is laminated on one side of the second basic core plate 70 in the axial direction.
  • the configuration of the third basic core plate 55 is the same as the configuration of the first basic core plate 50 . That is, the radial position P1 of the inner surface 24 a of the third basic core plate 55 is closer to the magnet 22 than the radial position P2 of the inner surface 24 a of the second basic core plate 70 .
  • the second basic core plate 70 is laminated on the other side of the third basic core plate 55 in the axial direction, the other side of the third basic core plate 55 in the axial direction is partially exposed.
  • the tip of the first protruding portion 62 of the first convex core plate 60 is in contact with the exposed exposed surface 56 .
  • a portion of the third basic core plate 55 having the exposed surface 56 protrudes from the second basic core plate 70 when the rotor core 21 is viewed from the other axial direction. Therefore, the portion of the third basic core plate 55 having the exposed surface 56 functions as a third projecting portion that projects toward the inside of the magnet insertion hole 24 . Therefore, the third basic core plate 55 corresponds to the third core plate of the present invention.
  • an insertion hole formed by the second basic core plate 70 and the crimped hole covering core plate 90 is formed on the inner surface 24a of the magnet insertion hole 24.
  • a recess 24b is located.
  • the first protrusion 62 of the first convex core plate 60 is accommodated in the insertion hole recess 24b. With the first protrusion 62 accommodated in the insertion hole recess 24b, the protrusion 66 of the first protrusion 62 of the first convex core plate 60 protrudes toward the inside of the magnet insertion hole 24, in contact.
  • the second protrusion 82 of the second convex core plate 80 contacts the bottom surface of the recess 67 at the position of the protrusion 66 of the first protrusion 62 in the axial direction. That is, the first projecting portion 62 is held by the second projecting portion 82 . Thereby, the magnet 22 is held in the magnet insertion hole 24 by the first protrusion 62 held by the second protrusion 82 .
  • the inner surface of the crimping hole 26 is covered with the covering portion 92 of the crimping hole covering core plate 90 .
  • movement of the second convex core plate 80 between the magnet insertion hole 24 and the caulked hole 26 toward the caulked hole 26 is restricted. Therefore, even if the first projecting portion 62 is pushed in the radial direction of the rotor 2 by the magnet 22 , the second projecting portion 82 prevents the first projecting portion 62 from moving toward the inner surface 24 a of the magnet insertion hole 24 . As a result, the state in which the magnet 22 is held in the magnet insertion hole 24 by the first projecting portion 62 can be maintained.
  • the rotor 2 includes a cylindrical rotor core 21 having a plurality of core plates 25 stacked in the thickness direction and magnet insertion holes 24 extending in the axial direction. magnets 22 inserted within 24; Some of the core plates 25 are the first convex core plates 60 .
  • the first convex core plate 60 protrudes toward the inside of the magnet insertion hole 24 of the rotor core 21 and extends between the inner surface 24 a of the magnet insertion hole 24 and the magnet 22 in the direction in which the magnet 22 is inserted into the magnet insertion hole 24 . It has a first projecting portion 62 extending in a magnet insertion direction.
  • a part of the core plates 25 stacked in the magnet insertion direction with respect to the first convex core plate 60 is the second convex core plate 80 .
  • the second convex core plate 80 has a second protrusion 82 that protrudes toward the inside of the magnet insertion hole 24 of the rotor core 21 .
  • the first projecting portion 62 has a distal end portion 64 positioned in the magnet insertion direction with respect to a base end portion 63 of the first projecting portion 62 . At least a portion of the first protrusion 62 is in contact with the magnet 22 and located between the magnet 22 and the second protrusion 82 .
  • the rotor 2 has a second projecting portion 82 that projects toward the inside of the magnet insertion hole 24 . Therefore, the size of the gap between the inner surface 24a of the magnet insertion hole 24 and the magnet 22 at the position where the second projecting portion 82 protrudes is smaller than the size of the gap at other portions in the magnet insertion direction. As a result, the first protrusion 62 extending in the magnet insertion direction between the inner surface 24a of the magnet insertion hole 24 and the magnet 22 is positioned on the inner surface 24a of the magnet insertion hole 24 at the position where the second protrusion 82 projects. Movement in the approaching direction is restricted.
  • centrifugal force is applied to the magnets 22 due to the rotation of the rotor 2, and the amount of change in the first protrusions 62 that occurs when the first protrusions 62 are pushed by the magnets 22 can be reduced. Therefore, with the above configuration, fatigue fracture occurring at the base end portion 63 of the first projecting portion 62 can be suppressed. Therefore, it is possible to provide a configuration capable of maintaining the state in which the magnet 22 is held within the magnet insertion hole 24 .
  • the second protrusion 82 is in contact with the first protrusion 62 . Therefore, the movement of the first projecting portion 62 toward the inner surface of the magnet inserting hole 24 in the magnet inserting hole 24 can be more reliably suppressed by the second projecting portion 82 . Therefore, even if centrifugal force is applied to the magnets 22 due to the rotation of the rotor 2 and fatigue fracture occurs in the base end portions 63 of the first projecting portions 62, the first projecting portions 62 are not connected to the magnets 22 and the second projecting portions 82. It is possible to more reliably maintain the state of being sandwiched between. Therefore, the state in which the magnet 22 is held in the magnet insertion hole 24 by the first projecting portion 62 can be maintained more reliably.
  • the first protruding portion 62 of the first convex core plate 60 has a protruding portion 66 that contacts the magnet 22 on the surface facing the magnet 22 , and the side facing the inner surface of the magnet insertion hole 24 . has a concave portion 67 at the same position as the protrusion 66 in the axial direction of the surface of .
  • the second projecting portion 82 of the second convex core plate 80 is located inside the recess 67 .
  • the projecting portion 66 can be pressed against the magnet 22 . Therefore, the magnet 22 can be held in the magnet insertion hole 24 by the first convex core plate 60 .
  • the projecting portion 66 functions as a cushioning material for the magnet 22 . Therefore, the projecting portion 66 can prevent breakage of the magnet while improving the holding force for the magnet.
  • the second projecting portion 82 is positioned inside the recessed portion 67 of the first projecting portion 62 , the projecting portion 66 of the first projecting portion 62 can be moved by the magnet 22 while preventing the positional deviation of the first projecting portion 62 . You can press it securely. Therefore, the state in which the magnet 22 is held within the magnet insertion hole 24 can be maintained.
  • the rotor core 21 includes a crimping hole 26 extending in the axial direction along the magnet insertion hole 24, a covering portion 92 covering the inner surface of the crimping hole 26 of the second convex core plate 80 on the side of the magnet insertion hole 24, have.
  • the first projecting portion 62 and the second projecting portion A force may be applied to 82 in a direction opposite to their protruding direction. Then, the second projecting portion 82 may move in the opposite direction. As a result, a gap may occur between the first projecting portion 62 and the second projecting portion 82 , and the force of the first projecting portion 62 to hold the magnet 22 may decrease.
  • the inner surface of the caulking hole 26 of the second convex core plate 80 is covered with the covering portion 92 .
  • the second projecting core plate 80 will remain in the opposite direction. Movement in the direction is suppressed. Therefore, the second protrusion 82 can be held in a state of protruding toward the inside of the magnet insertion hole 24 . That is, at the position of the second projecting portion 82, the state in which the movement of the first projecting portion 62 toward the inner surface of the magnet insertion hole 24 is restricted can be maintained. Therefore, the state in which the magnet 22 is held within the magnet insertion hole 24 can be maintained more reliably.
  • a part of the third basic core plate 55 laminated on one side of the second convex core plate 80 in the axial direction is a core laminated on the other side of the third basic core plate 55 in the axial direction. It protrudes from the plate toward the magnet 22 side. That is, in the present embodiment, part of the core plates laminated in the magnet insertion direction with respect to the second convex core plate 80 among the plurality of core plates 25 is the third basic core plate 55.
  • the plate 55 has a third protrusion that protrudes toward the inside of the magnet insertion hole 24 .
  • the position of the tip of the first protrusion 62 in the magnet insertion direction can be determined by the third protrusion of the third basic core plate 55 . Thereby, for example, even if the base end portion 63 of the first protrusion 62 is fatigue-broken, the movement of the first protrusion 62 in the magnet insertion direction can be restricted by the third protrusion.
  • the motor 1 has a rotor 2 having the above configuration, and a stator 3 having stator coils 36 and stator cores 31 .
  • the motor 1 having the rotor 2 capable of maintaining the state in which the magnets 22 are held within the magnet insertion holes 24 .
  • FIG. 6A a plurality of core plates 25 before manufacturing the rotor 2 will be described.
  • the first convex core plate 60, the caulking hole covering core plate 90, and the second convex core plate 80 change their shape before and after the manufacturing process.
  • reference numeral 160 denotes the first convex core plate 60 before shape change
  • reference numeral 190 denotes the caulking hole covering core plate 90 before deformation
  • reference numeral 180 denotes the second convex core plate 80 before deformation.
  • the structures of the first convex core plate 160, the caulking hole covering core plate 190, and the second convex core plate 180 only the portions whose shape changes will be described, and the description of other structures will be omitted.
  • the first protrusion 162 of the first convex core plate 160 extends in the direction in which the first convex core plate 160 extends. That is, in the first convex core plate 160, the first projecting portion 162 is not bent in the magnet insertion direction.
  • Other configurations of the first convex core plate 160 are the same as those of the first convex core plate 60 .
  • the diameter L3 of the crimped hole 26 in the crimped hole covered core plate 190 is smaller than the diameter of the crimped hole 26 in the crimped hole covered core plate 90 .
  • the outer peripheral portion 192 of the crimped hole 26 extends toward the inside of the crimped hole 26 .
  • the crimped hole covering core plate 190 does not have the covering portion 92 extending along the inner surface of the crimped hole 26 .
  • Other configurations of the crimped hole covering core plate 190 are the same as those of the crimped hole covering core plate 90 .
  • the second convex core plate 180 does not have a second protrusion that protrudes toward the inside of the magnet insertion hole 24 .
  • the diameter dimension L4 of the crimped hole 26 in the second convex core plate 180 is smaller than the diameter dimension of the crimped hole 26 in the second convex core plate 80 .
  • the outer peripheral portion 182 of the crimped hole 26 in the second convex core plate 180 extends toward the inside of the crimped hole 26 .
  • Other configurations of the second convex core plate 180 are the same as those of the second convex core plate 80 .
  • the outer peripheral portion 182 of the crimping hole 26 in the second convex core plate 180 corresponds to the crimping hole protrusion of the present invention.
  • a crimping pin M is inserted into the crimping hole 26 of the rotor core 21 in the manufacturing process of the rotor 2 .
  • the caulking pin M has a cylindrical shape with a diameter L1.
  • the diameter L1 of the crimping pin M is smaller than the diameter L2 of the crimping holes 26 in the first basic core plate 50, the first convex core plate 160, the second basic core plate 70 and the third basic core plate 55.
  • a diameter L1 of the caulking pin M is larger than a diameter L3 of the caulking hole 26 in the caulking hole covering core plate 190 .
  • a diameter L1 of the crimping pin M is larger than a diameter L4 of the crimping hole 26 in the second convex core plate 180 .
  • the manufacturing process of the rotor 2 includes a core plate lamination step S1, a magnet insertion step S2 of inserting the magnets 22 into the magnet insertion holes 24 of the rotor core 21, and a second projection forming step S3 of forming the second projections 82. include.
  • a plurality of core plates 25 are laminated in a predetermined order.
  • the predetermined order is the first basic core plate 50, the first convex core plate 160, the second basic core plate 70, the caulking hole covered core plate 190, and the second convex core plate from the other axial direction to the one axial direction. 180 , the second basic core plate 70 and the third basic core plate 55 .
  • the magnets 22 are inserted into the magnet insertion holes 24 as shown in FIG. 6A.
  • the first projecting portion 162 of the first convex core plate 160 is bent at the position of the base end portion 163 by being pushed by the magnet 22 .
  • the first protruding portion 162 of the first convex core plate 160 moves to the position indicated by the dashed line in FIG. 6A and holds the magnet 22 in the magnet insertion hole 24 . That is, the first convex core plate 60 is formed.
  • the crimping pin M is inserted into the crimping hole 26 with the tip portion 64 of the first projecting portion 62 of the first projecting core plate 60 facing in one direction in the axial direction. do.
  • the diameter L1 of the crimping pin M is larger than the diameter L3 of the crimping hole 26 in the crimping hole covering core plate 190 and the diameter L4 of the crimping hole 26 in the second convex core plate 180 .
  • a caulking hole covering core plate 90 having a covering portion 92 is formed, and a second convex core plate having a second projecting portion 82 projecting toward the inside of the magnet insertion hole 24 is formed. 80 is formed. As a result, the first projecting portion 62 is sandwiched between the second projecting portion 82 and the magnet 22 .
  • the caulking hole 26 penetrates in the axial direction.
  • the crimped hole penetrates from the surface layer core plate positioned at the end of the rotor core 21 in the stacking direction to at least the second convex core plate 80 .
  • the rotor core 21 has the caulking hole 26 penetrating from the surface layer core plate located at the end in the lamination direction of the rotor core 21 to at least the second convex core plate 180 .
  • the second convex core plate 180 has a caulking hole protruding portion that protrudes toward the inside of the caulking hole 26 from the inner surface of the caulking hole 26 on the side of the magnet insertion hole 24 .
  • the method for manufacturing the rotor 2 includes a magnet inserting step S2 and a second protrusion forming step S3.
  • the magnet 22 is inserted into the magnet insertion hole 24 in the magnet insertion step S2.
  • the magnet 22 positions the distal end portion of the first projecting portion 162 in the magnet insertion direction relative to the base end portion 163 of the first projecting portion 162 .
  • the first protrusion 162 is positioned between the magnet 22 and the inner surface of the magnet insertion hole 24 .
  • a crimping pin M is inserted into the crimping hole 26 from the surface layer core plate side.
  • a second projecting portion 82 is formed on the inner surface of the magnet inserting hole 24 by pressing the crimping hole protruding portion of the crimping hole 26 of the second convex core plate 180 toward the magnet inserting hole 24 with the crimping pin M.
  • the second projecting portion 82 can be formed on the inner surface of the magnet inserting hole 24 by pressing the crimping hole projecting portion of the crimping hole 26 toward the magnet inserting hole 24 with the crimping pin M. Therefore, at the position of the second projecting portion 82, it is possible to realize a configuration in which movement of the first projecting portion 62 toward the inner surface of the magnet insertion hole 24 can be restricted.
  • the rotor core 21 has a caulking hole 26 which is located in the direction opposite to the insertion direction of the caulking pin M with respect to the second convex core plate 180 and has a diameter dimension smaller than the diameter of the caulking pin M. It has a coated core plate 190 .
  • a crimping pin M is inserted into the crimping hole 26 to bend the outer peripheral portion 192 of the crimping hole 26 of the crimping hole covering core plate 190 in the direction in which the crimping pin M is inserted.
  • a covering portion 92 is formed along the .
  • the second projecting portion 82 is formed by pressing the caulking hole projecting portion of the caulking hole 26 of the second convex core plate 180 toward the magnet insertion hole 24 by the covering portion 92 .
  • the portion of the second convex core plate 80 moved toward the magnet insertion hole 24 by the crimping pin M is held by the covering portion 92 along the inner surface of the crimping hole 26 . Therefore, even if force is applied to the second projecting portion 82 in a direction opposite to the projecting direction, it is possible to prevent the second projecting portion 82 from returning to the position before projecting. Therefore, the above-described manufacturing method can form the second projecting portion 82 that can restrict the movement of the first projecting portion 62 toward the inner surface of the magnet inserting hole 24 on the inner surface of the magnet inserting hole 24 .
  • the second protrusion 82 contacts the first protrusion 62 .
  • the dimension of the gap between the magnet and the inner surface of the magnet insertion hole at the position where the second protrusion protrudes is larger than the dimension of the gap at other portions in the magnet insertion direction. can be made smaller.
  • the first protrusion extending in the magnet insertion direction between the inner surface of the magnet insertion hole and the magnet moves toward the inner surface of the magnet insertion hole at the position where the second protrusion protrudes. movement is restricted.
  • the protrusion 66 of the first projecting portion 62 of the first convex core plate 60 is located on the one axial side of the portion extending in the one axial direction of the first projecting portion 62 relative to the central portion.
  • the protrusion may be located on any portion of the first protrusion.
  • the first protruding portion 62 of the first convex core plate 60 has the protruding portion 66 protruding toward the magnet 22 and has the concave portion 67 on the inner surface of the magnet insertion hole 24 .
  • the first projecting portion 362 of the first convex core plate 360 may have a projecting portion 366 projecting toward the magnet 22 and not have a recessed portion.
  • the first protruding portion 62 of the first convex core plate 60 has the concave portion 67 at the position of the protruding portion 66 protruding toward the magnet 22 in the axial direction.
  • the first convex core plate may have the protrusion and the recess at different positions in the axial direction.
  • the first projecting portion 62 of the first convex core plate 60 has the projecting portion 66 and the recessed portion 67 .
  • the first projecting portion 462 of the first convex core plate 460 may have neither the projecting portion nor the recessed portion.
  • the second projecting portion 82 may project toward the linearly extending portion of the first projecting portion 462 .
  • the tip 464 of the first protrusion 462 be positioned between the magnet 22 and the second protrusion 82 .
  • the magnet 22 is held at the distal end portion 464 remote from the proximal end portion 463 of the first projection portion 462 having no projection portion. Therefore, the gap between the first projecting portion 462 and the inner surface 24a of the magnet insertion hole 24 is larger at the distal end portion 464 of the first projecting portion 462 than at the proximal end portion 463 of the first projecting portion 462 in the axial direction.
  • the distal end portion 464 of the first projecting portion 462 in which the amount of movement toward the inner surface 24a of the magnet insertion hole 24 increases, approaches the inner surface 24a. You can restrict movement in any direction. Therefore, it is possible to provide a configuration that can more easily maintain the state in which the magnet 22 is held within the magnet insertion hole 24 .
  • the first protruding portion 62 of the first convex core plate 60 has a protruding portion 66 contacting the magnet 22 on the surface facing the magnet 22, thereby A contact area with a magnet can be made small. Therefore, it is possible to increase the surface pressure of the portion where the first projecting portion contacts the magnet. Therefore, it is possible to improve the holding force of the first protrusion with respect to the magnet.
  • the protrusion functions as a cushioning material for the magnet. Therefore, the projecting portion can prevent breakage of the magnet while improving the holding force for the magnet.
  • the first projecting portion 62 of the first projecting core plate 60 has a recess 67 on the surface facing the inner surface of the magnet insertion hole 24 .
  • the second projecting portion 82 of the second convex core plate 80 is located inside the recess 67 .
  • the second protruding portion 82 of the second convex core plate 80 is pushed toward the magnet insertion hole 24 by the crimping pin M inserted into the crimping hole 26 , so that the second protruding portion 82 is positioned inside the magnet insertion hole 24 . protrude towards.
  • the second convex core plate may have a second protrusion that protrudes toward the inside of the magnet insertion hole without being pushed by the crimping pin M. In this case, the rotor core may not have caulking holes.
  • the caulking pin M is inserted from the axial end of the rotor core 21 on the side where the magnet 22 is inserted.
  • the caulking pin M may be inserted from the end opposite to the side where the magnet 22 is inserted.
  • the caulking hole covering core plate may be laminated on one side of the second convex core plate in the axial direction. That is, the caulking hole covering core plate may be laminated on the side opposite to the insertion direction of the caulking pin M with respect to the second convex core plate.
  • the outer peripheral portion 192 of the crimping hole 26 in the crimping hole covering core plate 190 is pushed by the crimping pin M, thereby forming the covering portion 92 extending in the insertion direction of the crimping pin M.
  • the outer peripheral portion 182 of the crimped hole 26 in the second convex core plate 180 is pushed outward in the radial direction of the crimped hole 26 by the covering portion 92 , thereby forming the second projecting portion 82 .
  • the rotor core 521 does not have a crimped hole covering core plate, and the crimping pin M pushes the outer peripheral portion of the crimped hole 26 in the second convex core plate 580, causing the second projecting portion 582 to It may be a configuration that is formed.
  • the rotor 2 has the third basic core plate 55 with which the tip of the first convex core plate 60 contacts.
  • the rotor may not have the third elementary core plate.
  • the magnet insertion hole 24 has an insertion hole concave portion 24b that is concave toward the caulking hole 26. As shown in FIG. However, the magnet insertion hole may not have the insertion hole recess. That is, the radial position of the inner surface of the magnet insertion hole in the second basic core plate and the caulking hole covering core plate may be the same as in the first basic core plate.
  • the rotor 2 is manufactured using the first convex core plate 160 in which the first projecting portion of the first convex core plate is not bent at the base end position.
  • the rotor may be manufactured using the first core plate in which the first protrusions are bent in advance.
  • the present invention is applicable to rotors of IPM motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

ロータは、厚み方向に積層された複数のコア板と、軸線方向に延びる磁石挿入孔と、を有する円柱状のロータコアと、前記磁石挿入孔内に挿入される磁石と、を備えるロータである。前記複数のコア板のうち一部のコア板は第1コア板であり、前記第1コア板は、前記ロータコアの前記磁石挿入孔の内部に向かって突出し、前記磁石挿入孔の内面と前記磁石との間を磁石挿入方向に延びる第1突出部を有する。前記複数のコア板のうち前記第1コア板に対して前記磁石挿入方向に積層されるコア板の一部は第2コア板であり、前記第2コア板は、前記ロータコアの前記磁石挿入孔の内部に向かって突出する第2突出部を有する。前記第1突出部は、先端部が該第1突出部の基端部よりも前記磁石挿入方向に位置し、前記第1突出部の少なくとも一部が、前記磁石と接触するとともに、前記磁石と前記第2突出部との間に位置する。

Description

ロータ、IPMモータ及びロータの製造方法
本発明は、ロータ、IPMモータ及びロータの製造方法に関する。
磁石挿入孔内に磁石が挿入されたIPMモータ用のロータにおいて、コア板が有する突出部によって前記磁石を前記磁石挿入孔内に固定する構成が知られている。例えば、特許文献1には、磁石挿入孔を備える電磁鋼板が積層されて構成される回転子コアが開示されている。前記回転子コアでは、前記電磁鋼板のうち少なくとも一の電磁鋼板である第1電磁鋼板は、前記磁石挿入孔の側面に、一部が前記磁石挿入孔に向かって突出し、前記磁石挿入孔に挿入される前記永久磁石によって軸方向に屈曲可能に構成される突出部を有する。前記永久磁石は、屈曲する前記突出部によって前記磁石挿入孔内に固定される。
特開2019-146448
ところで、コア板が有する突出部を屈曲させて磁石を保持する構成では、屈曲した前記突出部と前記磁石挿入孔の内面とに隙間が生じる可能性がある。このような隙間が生じている状態で、ロータの回転によって前記磁石に遠心力が加わると、前記磁石によって前記突出部がロータの径方向に押されて変形を繰り返す可能性がある。そうすると、前記突出部の基端部に疲労破壊が生じて前記突出部が前記コア板から分離し、前記突出部によって前記磁石挿入孔内で前記磁石を保持できなくなる可能性がある。したがって、コア板が有する突出部によって磁石を保持する構成において、ロータの回転によって前記磁石に遠心力が繰り返し加わった場合でも、磁石挿入孔内で前記磁石を保持した状態を維持可能な構成が求められている。 
本発明の目的は、IPMモータ用のロータにおいて、磁石挿入孔内で磁石を保持した状態を維持可能な構成を提供することである。
本発明の一実施形態に係るロータは、厚み方向に積層された複数のコア板と、軸線方向に延びる磁石挿入孔と、を有する円柱状のロータコアと、前記磁石挿入孔内に挿入される磁石と、を備えるロータである。前記複数のコア板のうち一部のコア板は第1コア板であり、前記第1コア板は、前記ロータコアの前記磁石挿入孔の内部に向かって突出し、前記磁石挿入孔の内面と前記磁石との間を前記磁石が前記磁石挿入孔内に挿入される方向である磁石挿入方向に延びる第1突出部を有する。前記複数のコア板のうち前記第1コア板に対して前記磁石挿入方向に積層されるコア板の一部は第2コア板であり、前記第2コア板は、前記ロータコアの前記磁石挿入孔の内部に向かって突出する第2突出部を有する。前記第1突出部は、先端部が該第1突出部の基端部よりも前記磁石挿入方向に位置し、前記第1突出部の少なくとも一部が、前記磁石と接触するとともに、前記磁石と前記第2突出部との間に位置する。 
本発明の一実施形態に係るIPMモータは、上記の構成を有するロータと、ステータコイル及びステータコアを有するステータと、を有する。 
本発明の一実施形態に係るロータの製造方法は、上記の構成を有するロータを製造する方法である。前記ロータにおいて、前記ロータコアは、前記ロータコアの積層方向の端部に位置する表層コア板から、少なくとも前記第2コア板までを貫通するカシメ孔を有し、前記第2コア板は、前記カシメ孔における前記磁石挿入孔側の内面から前記カシメ孔の内部に向かって突出するカシメ孔突出部を有する。前記ロータの製造方法は、前記磁石を前記磁石挿入孔内に挿入することにより、前記磁石によって前記第1突出部の先端部を該第1突出部の基端部よりも前記磁石の挿入方向である磁石挿入方向に位置付けるとともに、前記第1突出部を前記磁石と前記磁石挿入孔の内面との間に位置付ける磁石挿入工程と、前記表層コア板側から前記カシメ孔にカシメピンを挿入して前記第2コア板の前記カシメ孔の前記カシメ孔突出部を前記磁石挿入孔に向かって押すことにより、前記磁石挿入孔の内面に前記第2突出部を形成する、第2突出部形成工程と、を有する。
本発明の一実施形態に係るロータによれば、磁石挿入孔内で磁石を保持した状態を維持可能な構成を提供することができる。
図1は、実施形態に係るIPMモータの概略構成を示す断面図である。 図2は、実施形態に係るロータの斜視図である。 図3は、ロータコアの一部を軸線方向に見た図である。 図4は、図3のIV-IV線断面図である。 図5は、磁石挿入孔の内面を磁石挿入孔の内部から図4のA方向に見た図である。 図6Aは、実施形態に係るロータの製造方法を説明する図である。 図6Bは、実施形態に係るロータの製造方法を説明する図である。 図6Cは、実施形態に係るロータの製造方法を説明する図である。 図7は、その他の実施形態に係るロータの図4相当図である。 図8は、その他の実施形態に係るロータの図4相当図である。 図9は、その他の実施形態に係るロータの図4相当図である。 図10は、その他の実施形態に係るロータの図4相当図である。
以下、図面を参照し、本発明の例示的な実施の形態を詳しく説明する。なお、図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表しているわけではない。 
なお、以下では、モータ1の説明において、ロータ2の中心軸Pと平行な方向を「軸線方向」、中心軸Pに直交する方向を「径方向」、中心軸Pを中心とする円弧に沿う方向を「周方向」とそれぞれ称する。ただし、この定義により、ロータ2の使用時の向きを限定する意図はない。 
また、以下では、磁石挿入孔24内に磁石22を挿入する方向を「磁石挿入方向」と称する。 
また、以下の説明において、「同じ」とは、厳密に同じ場合だけでなく、実質的に同じとみなせる範囲を含む。また、「一致する」とは、厳密に一致する場合だけでなく、実質的に一致しているとみなせる状態を含む。 
また、以下の説明において、“固定”、“接続”及び“取り付ける”等(以下、固定等)の表現は、部材同士が直接、固定等されている場合だけでなく、他の部材を介して固定等されている場合も含む。すなわち、以下の説明において、固定等の表現には、部材同士の直接的及び間接的な固定等の意味が含まれる。 
(実施形態) (モータの構成) 図1は、モータ1の概略構成を示す図である。モータ1は、IPMモータである。モータ1は、ロータ2と、ステータ3と、ハウジング4と、シャフト20とを備える。ロータ2は、ステータ3に対して、中心軸Pを中心として回転する。本実施形態では、モータ1は、筒状のステータ3内に、ロータ2が中心軸Pを中心として回転可能に位置する、いわゆるインナーロータ型のモータである。 
ロータ2は、ロータコア21と、磁石22とを備える。ロータ2は、ステータ3の径方向内方に位置し、中心軸Pを中心としてステータ3に対して回転可能である。 
ステータ3は、ハウジング4内に収容される。本実施形態では、ステータ3は、円筒状である。ステータ3の径方向内方には、ロータ2が位置する。すなわち、ステータ3は、ロータ2に対して径方向に対向して位置する。 
ステータ3は、ステータコア31と、ステータコイル36とを備える。ステータコイル36は、ステータコア31に巻回されている。ステータ3の詳しい構成は説明を省略する。 
図2は、ロータ2の概略構成を示す斜視図である。図3は、図2において破線で囲まれた部分を軸線方向に見た図である。ロータ2のロータコア21は、中心軸Pに沿って延びる円筒状である。ロータコア21は、中心軸Pに沿って延びる貫通孔21aを有する。図1に示すように、ロータコア21には、シャフト20が貫通孔21aを軸線方向に貫通した状態で固定される。これにより、ロータコア21は、シャフト20とともに回転する。 
ロータコア21は、周方向に所定の間隔で位置する複数の磁石挿入孔24を有する。複数の磁石挿入孔24は、ロータコア21を軸線方向に貫通している。複数の磁石挿入孔24は、軸線方向に見て一方向に長い矩形状である。複数の磁石挿入孔24は、軸線方向に見て長手方向がロータコア21の外周に沿う磁石挿入孔と、軸線方向に見てロータコア21の径方向に延びる磁石挿入孔とを含む。磁石挿入孔24内には、磁石22が収納されている。 
ロータコア21は、所定の形状に形成され且つ厚み方向に積層された複数の円盤状のコア板25を有する。複数のコア板25は、電磁鋼板である。 
本実施形態では、ロータコア21は、磁石挿入孔24の周囲に、磁石挿入孔24に沿って軸線方向に貫通する、軸線方向に見て円形のカシメ孔26を有する。カシメ孔26は、ロータコア21の製造時に、カシメピンMが挿入される孔である。本実施形態では、カシメ孔26にカシメピンMを挿入することにより、複数のコア板25のうち一部のコア板の形状が変化する。カシメピンMによるコア板の形状の変化については、後述する。 
図2に示す例では、ロータコア21は、各磁石挿入孔24に対してそれぞれ径方向内方に2つずつ位置するカシメ孔26を有する。なお、カシメ孔は、磁石挿入孔に対して径方向外方に位置してもよい。カシメ孔は、径方向に延びる磁石挿入孔に対して、周方向一方または周方向他方に位置してもよい。ロータコアは、各磁石挿入孔に対して1つ、3つ、または3つより多い数のカシメ孔を有してもよい。 
図3に示すように、磁石挿入孔24は、カシメ孔26が位置する側の内面である内面24aの一部に、カシメ孔26に向かって凹む挿入孔凹部24bを有する。挿入孔凹部24bの詳細については、後述する。 
磁石22は、軸線方向に延びる直方体状である。磁石22は、ロータ2の軸線方向他方から磁石挿入孔24内に軸線方向に挿入され、磁石挿入孔24内に収納されている。磁石22は、磁石挿入孔24内に収納された状態で、複数のコア板25のうち後述する第1凸コア板60の第1突出部62によって保持されている。 
図4は、図3のIV-IV線断面図である。図5は、磁石挿入孔24の内面24aを磁石挿入孔24の内部から図4のA方向に見た図である。なお、図5では、説明のため、挿入孔凹部24bにハッチングを付している。 
図4及び図5に示すように、ロータコア21は、複数のコア板25が厚み方向に積層されている。複数のコア板25は、第1基本コア板50と、第1凸コア板60と、第2基本コア板70と、第2凸コア板80と、カシメ孔被覆コア板90と、第3基本コア板55と、を含む。 
本実施形態では、複数のコア板25は、軸線方向他方から軸線方向一方に向かって、第1基本コア板50、第1凸コア板60、第2基本コア板70、カシメ孔被覆コア板90、第2凸コア板80、第2基本コア板70、第3基本コア板55、の順番で積層されている。 
第1基本コア板50は、ロータコア21の軸線方向他方の端部に位置する。第1基本コア板50は、ロータコア21の磁石挿入孔24及びカシメ孔26を構成する開口を有する。第1基本コア板50は、ロータコア21の軸線方向他方の端部から軸線方向一方に向かって複数枚積層されている。 
なお、本実施形態では、ロータコア21の軸線方向他方の端部に位置する表層コア板は、第1基本コア板50である。図示省略するが、ロータコア21の軸線方向一方の端部に位置する表層コア板も、第1基本コア板50である。 
第1凸コ
ア板60は、第1基本コア板50に対して軸線方向一方に積層されている。第1凸コア板60は、磁石挿入孔24及びカシメ孔26を構成する開口を有する。図4に示すように、第1凸コア板60は、磁石挿入孔24の内面24a側から、磁石挿入孔24の内部に向かって突出し、内面24aと磁石22との間を軸線方向一方に延びる第1突出部62を有する。第1凸コア板60は、本発明の第1コア板に対応する。 
第1突出部62は、突出の基端部分である基端部63で磁石挿入方向に折れ曲がり、内面24aと磁石22との間を軸線方向一方に延びている。すなわち、第1突出部62の先端部64は、磁石挿入孔24内で、第1突出部62の基端部63よりも軸線方向一方に位置している。図4に示すように、第1突出部62の一方の面は磁石22に対向し、第1突出部62の他方の面は磁石挿入孔24の内面24aに対向している。図5に示すように、第1突出部62は、第1突出部62を厚み方向に見て、矩形状である。 
第1突出部62は、磁石22に対向する側の面に磁石22に向かって突起する突起部66を有する。突起部66は、軸線方向において、第1突出部62の中央部分よりも軸線方向一方に位置する。突起部66は、磁石22と接触している。 
第1突出部62は、磁石挿入孔24の内面24aに対向する側の面に凹部67を有する。軸線方向において、凹部67は、突起部66と同じ位置に位置している。凹部67の底面に、後述する第2凸コア板80の第2突出部82が接触している。すなわち、第1突出部62は、突起部66の位置で、第2凸コア板80の第2突出部82と磁石22とに挟まれている。 
第1凸コア板60におけるカシメ孔26の直径寸法は、第1基本コア板50におけるカシメ孔26の直径寸法と同じである。 
第2基本コア板70は、第1凸コア板60に対して軸線方向一方に積層されている。第2基本コア板70は、磁石挿入孔24及びカシメ孔26を構成する開口を有する。第2基本コア板70における内面24aの径方向位置P2は、第1基本コア板50における内面24aの径方向位置P1よりも、カシメ孔26に近い。 
第2基本コア板70におけるカシメ孔26の直径寸法は、第1基本コア板50におけるカシメ孔26の直径寸法と同じである。 
カシメ孔被覆コア板90は、第2基本コア板70に対して軸線方向一方に積層されている。カシメ孔被覆コア板90は、ロータコア21の磁石挿入孔24及びカシメ孔26を構成する開口を有する。カシメ孔被覆コア板90における磁石挿入孔24の内面24aの径方向位置P2は、第2基本コア板70における内面24aの径方向位置P2と、同じである。 
図4に示すように、カシメ孔被覆コア板90は、カシメ孔26の内部に突出し、カシメ孔26の内面に沿って軸線方向一方に延びる被覆部92を有する。被覆部92は、カシメ孔26の内面に沿う円筒状である。被覆部92は、カシメ孔被覆コア板90に対して軸線方向一方に積層されたコア板におけるカシメ孔26の内面を覆っている。カシメ孔被覆コア板90は、本発明の第4コア板に対応する。 
第2凸コア板80は、カシメ孔被覆コア板90に対して軸線方向一方に積層されている。第2凸コア板80は、ロータコア21の磁石挿入孔24及びカシメ孔26を構成する開口を有する。第2凸コア板80は、磁石挿入孔24の内面24a側から、磁石挿入孔24の内部に向かって突出する第2突出部82を有する。本実施形態では、第2突出部82は、第1突出部62の凹部67内に位置し且つ凹部67の底面に接触している。第2凸コア板80は、本発明の第2コア板に対応する。 
第2凸コア板80におけるカシメ孔26の直径寸法は、第1基本コア板50におけるカシメ孔26の直径寸法と同じである。第2凸コア板80におけるカシメ孔26の内面は、カシメ孔被覆コア板90の被覆部92によって覆われている。 
第2凸コア板80の軸線方向一方には、上述した第2基本コア板70が積層されている。 
第3基本コア板55は、第2基本コア板70に対して軸線方向一方に積層されている。第3基本コア板55の構成は、第1基本コア板50の構成と同じである。すなわち、第3基本コア板55における内面24aの径方向位置P1は、第2基本コア板70における内面24aの径方向位置P2よりも、磁石22に近い。これにより、第3基本コア板55の軸線方向他方に第2基本コア板70が積層されている状態で、第3基本コア板55の軸線方向他方の面の一部は露出している。この露出している露出面56に、第1凸コア板60の第1突出部62の先端が接触している。 
第3基本コア板55において露出面56を有する部分は、ロータコア21を軸線方向他方から見て、第2基本コア板70に対して突出している。よって、第3基本コア板55において露出面56を有する部分は、磁石挿入孔24の内部に向かって突出する第3突出部として機能する。よって、第3基本コア板55は、本発明の第3コア板に対応する。 
以上の構成を有する複数のコア板25が上述の順で積層されることにより、磁石挿入孔24の内面24aには、第2基本コア板70及びカシメ孔被覆コア板90によって構成される挿入孔凹部24bが位置する。この挿入孔凹部24b内に、第1凸コア板60の第1突出部62が収容される。第1突出部62が挿入孔凹部24b内に収容された状態で、第1凸コア板60における第1突出部62の突起部66は、磁石挿入孔24の内部に向かって突出し、磁石22に接触している。第2凸コア板80の第2突出部82は、軸線方向において、第1突出部62の突起部66の位置で凹部67の底面に接触している。すなわち、第1突出部62は、第2突出部82によって保持される。これにより、磁石22は、第2突出部82に保持される第1突出部62によって、磁石挿入孔24内で保持される。 
第2凸コア板80は、カシメ孔26の内面をカシメ孔被覆コア板90の被覆部92によって覆われている。これにより、第2凸コア板80において、磁石挿入孔24とカシメ孔26との間の部分がカシメ孔26側に移動することが規制される。よって、第1突出部62は、磁石22によってロータ2の径方向に押されても、第2突出部82によって磁石挿入孔24の内面24aに近づく方向に移動することが抑制される。これにより、第1突出部62によって磁石22を磁石挿入孔24内で保持した状態を維持することができる。 
以上説明したように、本実施形態に係るロータ2は、厚み方向に積層された複数のコア板25と、軸線方向に延びる磁石挿入孔24と、を有する円柱状のロータコア21と、磁石挿入孔24内に挿入される磁石22と、を備えるロータ2である。複数のコア板25のうち一部のコア板は第1凸コア板60である。第1凸コア板60は、ロータコア21の磁石挿入孔24の内部に向かって突出し、磁石挿入孔24の内面24aと磁石22との間を磁石22が磁石挿入孔24内に挿入される方向である磁石挿入方向に延びる第1突出部62を有する。複数のコア板25のうち第1凸コア板60に対して磁石挿入方向に積層されるコア板の一部は第2凸コア板80である。第2凸コア板80は、ロータコア21の磁石挿入孔24の内部に向かって突出する第2突出部82を有する。第1突出部62は、先端部64が第1突出部62の基端部63よりも前記磁石挿入方向に位置している。第1突出部62の少なくとも一部が、磁石22と接触するとともに、磁石22と第2突出部82との間に位置している。 
磁石を磁石挿入孔内で保持する構成として、コア板が前記磁石挿入孔の内部に向かって突出する突出部を有する構成が知られている。前記構成では、前記突出部が前記磁石挿入孔内に挿入される前記磁石によって磁石挿入方向に屈曲されて、屈曲された外側の面が前記磁石と接触することにより、前記磁石が保持される。前記構成では、前記突出部の屈曲された内側の面と前記磁石挿入孔とに隙間が生じている状態で、ロータの回転によって前記磁石に遠心力が加わると、前記突出部が前記磁石によって前記ロータの径方向に押されて変形を繰り返す可能性がある。そうすると、前記突出部に疲労破壊が生じる可能性がある。前記突出部が疲労破壊を生じると、前記突出部によって前記磁石挿入孔内に前記磁石を保持できなくなる可能性がある。 
これに対し、本実施形態に係るロータ2は、磁石挿入孔24の内部に向かって突出する第2突出部82を有する。よって、第2突出部82が突出する位置における磁石挿入孔24の内面24aと磁石22との隙間の寸法は、磁石挿入方向の他の部分における前記隙間の寸法よりも小さい。これにより、磁石挿入孔24の内面24aと磁石22との間を磁石挿入方向に延びている第1突出部62は、第2突出部82が突出する位置で、磁石挿入孔24の内面24aに近づく方向への移動が規制される。したがって、ロータ2の回転によって磁石22に遠心力が加わって、第1突出部62が磁石22に押された際に生じる第1突出部62の変化量を小さくすることができる。よって、上述の構成により、第1突出部62の基端部63で生じる疲労破壊を抑制することができる。したがって、磁石挿入孔24内で磁石22を保持した状態を維持可能な構成を提供することができる。 
本実施形態では、第2突出部82は、第1突出部62に接触している。したがって、磁石挿入孔24内で第1突出部62が磁石挿入孔24の内面に近づく方向に移動するのを第2突出部82によってより確実に抑制することができる。よって、ロータ2の回転によって磁石22に遠心力が加わって第1突出部62の基端部63に疲労破壊が生じた場合でも、第1突出部62が、磁石22と第2突出部82とに挟まれた状態をより確実に維持することができる。したがって、第1突出部62によって磁石22を磁石挿入孔24内で保持した状態をより確実に維持することができる。 
本実施形態では、第1凸コア板60の第1突出部62は、磁石22に対向する側の面に磁石22に接触する突起部66を有し、磁石挿入孔24の内面に対向する側の面のうち軸線方向において突起部66と同じ位置に凹部67を有している。第2凸コア板80の第2突出部82は、凹部67の内側に位置している。 
第1突出部62が突起部66を有することにより、突起部66を磁石22に押し付けることができる。よって、第1凸コア板60によって、磁石挿入孔24内で磁石22を保持することができる。突起部66は、磁石22に対する緩衝材として機能する。したがって、突起部66によって、磁石に対する保持力を向上しつつ、磁石の破損を防止することができる。 
また、第2突出部82が第1突出部62の凹部67の内部に位置することにより、第1突出部62の位置ずれを防止しつつ、第1突出部62の突起部66を磁石22により確実に押し付けることができる。したがって、磁石挿入孔24内で磁石22を保持した状態を維持することができる。 
本実施形態では、ロータコア21は、磁石挿入孔24に沿って軸線方向に延びるカシメ孔26と、第2凸コア板80のカシメ孔26における磁石挿入孔24側の内面を覆う被覆部92と、を有している。 
第1突出部62及び第2突出部82を介して磁石22を磁石挿入孔24に対して保持する構成では、ロータ2に遠心力等が加えられると、第1突出部62及び第2突出部82に、それらの突出方向とは反対方向の力が加えられる場合がある。そうすると、第2突出部82が前記反対方向に移動する可能性がある。その結果、第1突出部62と第2突出部82とに隙間が生じて、第1突出部62による磁石22を保持する力が低下する可能性がある。 
本実施形態では、第2凸コア板80のカシメ孔26の内面は、被覆部92によって覆われている。これにより、ロータ2の遠心力等によって、第2凸コア板80の第2突出部82に対してその突出方向とは反対
方向に力が加わった場合でも、第2凸コア板80が前記反対方向に移動することが抑制される。したがって、第2突出部82を磁石挿入孔24の内部に向かって突出した状態で保持することができる。すなわち、第2突出部82の位置で、第1突出部62の磁石挿入孔24の内面に近づく方向への移動を規制した状態を維持できる。したがって、磁石挿入孔24内で磁石22を保持した状態をより確実に維持することができる。 
本実施形態では、第2凸コア板80に対して軸線方向一方に積層される第3基本コア板55の一部は、該第3基本コア板55に対して軸線方向他方に積層されるコア板よりも磁石22側に突出している。すなわち、本実施形態では、複数のコア板25のうち第2凸コア板80に対して磁石挿入方向に積層されるコア板の一部は、第3基本コア板55であり、第3基本コア板55は、磁石挿入孔24の内部に向かって突出する第3突出部を有している。 
第3基本コア板55の前記第3突出部によって、磁石挿入方向における第1突出部62の先端部の位置を決めることができる。これにより、例えば、第1突出部62の基端部63が疲労破壊した場合でも、第1突出部62の磁石挿入方向への移動を前記第3突出部によって規制することができる。 
本実施形態に係るモータ1は、上述の構成を有するロータ2と、ステータコイル36及びステータコア31を有するステータ3と、を有する。 
これにより、磁石挿入孔24内で磁石22を保持した状態を維持可能なロータ2を有するモータ1を提供することができる。 
(ロータの製造方法) 図6Aから図6Cを参照して、上述の構成を有するロータ2の製造方法について説明する。 
最初に、図6Aを参照して、ロータ2を製造する前の複数のコア板25について説明する。ロータ2のロータコア21を構成する複数のコア板25のうち、第1凸コア板60、カシメ孔被覆コア板90及び第2凸コア板80は、製造工程の前後で形状が変化する。図6Aでは、形状が変化する前の第1凸コア板60を符号160、変形する前のカシメ孔被覆コア板90を符号190、変形する前の第2凸コア板80を符号180で示す。以下では、第1凸コア板160、カシメ孔被覆コア板190及び第2凸コア板180の構成のうち、形状が変化する部分についてのみ説明し、それ以外の構成の説明は省略する。 
第1凸コア板160の第1突出部162は、第1凸コア板160が延びる方向に延びている。すなわち、第1凸コア板160では、第1突出部162は、磁石挿入方向に折れ曲がっていない。第1凸コア板160のそれ以外の構成は、第1凸コア板60と同じである。 
カシメ孔被覆コア板190におけるカシメ孔26の直径寸法L3は、カシメ孔被覆コア板90におけるカシメ孔26の直径寸法よりも小さい。カシメ孔被覆コア板190においてカシメ孔26の外周部192は、カシメ孔26の内部に向かって延びている。カシメ孔被覆コア板190は、カシメ孔26の内面に沿って延びる被覆部92を有していない。カシメ孔被覆コア板190のそれ以外の構成は、カシメ孔被覆コア板90と同じである。 
第2凸コア板180は、磁石挿入孔24の内部に向かって突出する第2突出部を有していない。第2凸コア板180におけるカシメ孔26の直径寸法L4は、第2凸コア板80におけるカシメ孔26の直径寸法よりも小さい。第2凸コア板180においてカシメ孔26の外周部182は、カシメ孔26の内部に向かって延びている。第2凸コア板180のそれ以外の構成は、第2凸コア板80と同じである。第2凸コア板180におけるカシメ孔26の外周部182は、本発明のカシメ孔突出部に対応する。 
ロータコア21のカシメ孔26には、ロータ2の製造工程において、カシメピンMが挿入される。カシメピンMは、直径寸法がL1の円柱状である。カシメピンMの直径寸法L1は、第1基本コア板50、第1凸コア板160、第2基本コア板70及び第3基本コア板55におけるカシメ孔26の直径寸法L2よりも小さい。カシメピンMの直径寸法L1は、カシメ孔被覆コア板190におけるカシメ孔26の直径寸法L3よりも大きい。カシメピンMの直径寸法L1は、第2凸コア板180におけるカシメ孔26の直径寸法L4よりも大きい。 
ロータ2の製造工程は、コア板積層工程S1と、ロータコア21の磁石挿入孔24に磁石22を挿入する磁石挿入工程S2と、第2突出部82を形成する第2突出部形成工程S3とを含む。 
コア板積層工程S1では、図6Aに示すように、複数のコア板25を所定の順番に積層する。前記所定の順番は、軸線方向他方から軸線方向一方に向かって、第1基本コア板50、第1凸コア板160、第2基本コア板70、カシメ孔被覆コア板190、第2凸コア板180、第2基本コア板70、第3基本コア板55の順番である。 
磁石挿入工程S2では、図6Aに示すように、磁石挿入孔24に磁石22を挿入する。第1凸コア板160の第1突出部162は、磁石22に押されることにより基端部163の位置で折れ曲がる。これにより、第1凸コア板160の第1突出部162は、図6Aにおいて破線で示す位置に移動するとともに、磁石22を磁石挿入孔24に対して保持する。すなわち、第1凸コア板60が形成される。 
第2突出部形成工程S3では、図6Bに示すように、第1凸コア板60の第1突出部62の先端部64が軸線方向一方に向いた状態で、カシメピンMをカシメ孔26に挿入する。上述したように、カシメピンMの直径寸法L1は、カシメ孔被覆コア板190におけるカシメ孔26の直径寸法L3及び第2凸コア板180におけるカシメ孔26の直径寸法L4よりも大きい。よって、カシメ孔26にカシメピンMを挿入すると、カシメ孔被覆コア板190におけるカシメ孔26の外周部192は、カシメピンMにカシメピンMの挿入方向に押されて、図6Cに示すように、軸線方向一方に折れ曲がる。 
カシメ孔被覆コア板190におけるカシメ孔の外周部192が、軸線方向一方に折れ曲がることにより、カシメ孔被覆コア板190に対して軸線方向一方に積層された第2凸コア板180におけるカシメ孔26の外周部182が、磁石挿入孔24側に押される。よって、第2凸コア板180において、カシメ孔26と磁石挿入孔24との間に位置するコア板の部分が、磁石挿入孔24に向かって移動する。これにより、図6Cに示すように、被覆部92を有するカシメ孔被覆コア板90が形成されるとともに、磁石挿入孔24の内部に向かって突出する第2突出部82を有する第2凸コア板80が形成される。これにより、第1突出部62は、第2突出部82及び磁石22に挟み込まれる。 
なお、本実施形態では、カシメ孔26は軸線方向に貫通している。しかしながら、カシメ孔は、ロータコア21の積層方向の端部に位置する表層コア板から、少なくとも第2凸コア板80までを貫通していればよい。 
すなわち、本実施形態に係るロータ2の製造方法において、ロータコア21は、ロータコア21の積層方向の端部に位置する表層コア板から、少なくとも第2凸コア板180までを貫通するカシメ孔26を有する。第2凸コア板180は、カシメ孔26における磁石挿入孔24側の内面からカシメ孔26の内部に向かって突出するカシメ孔突出部を有する。 
ロータ2の製造方法は、磁石挿入工程S2と、第2突出部形成工程S3と、を有する。磁石挿入工程S2では、磁石22を磁石挿入孔24内に挿入する。これにより、磁石22によって第1突出部162の先端部を第1突出部162の基端部163よりも磁石挿入方向に位置付ける。さらに、第1突出部162を磁石22と磁石挿入孔24の内面との間に位置付ける。第2突出部形成工程S3では、前記表層コア板側からカシメ孔26にカシメピンMを挿入する。カシメピンMによって第2凸コア板180のカシメ孔26の前記カシメ孔突出部を磁石挿入孔24に向かって押すことにより、磁石挿入孔24の内面に第2突出部82を形成する、 
この製造方法により、カシメピンMによってカシメ孔26の前記カシメ孔突出部を磁石挿入孔24に向かって押すことにより、磁石挿入孔24の内面に第2突出部82を形成することができる。よって、第2突出部82の位置で、第1突出部62の磁石挿入孔24の内面に近づく方向への移動を規制可能な構成を実現できる。 
本実施形態では、ロータコア21は、第2凸コア板180に対してカシメピンMの挿入方向とは反対方向に位置し、且つ、カシメピンMの直径よりも直径寸法が小さいカシメ孔26を有するカシメ孔被覆コア板190を有する。第2突出部形成工程S3では、カシメ孔26内にカシメピンMを挿入してカシメ孔被覆コア板190のカシメ孔26の外周部192をカシメピンMの挿入方向に曲げることにより、カシメ孔26の内面に沿う被覆部92を形成する。被覆部92によって第2凸コア板180のカシメ孔26の前記カシメ孔突出部を磁石挿入孔24に向かって押すことにより、第2突出部82を形成する。 
この製造方法により、第2凸コア板80においてカシメピンMによって磁石挿入孔24に向かって移動した部分がカシメ孔26の内面に沿う被覆部92によって押さえられている。したがって、第2突出部82に対してその突出方向とは反対方向に力が加えられても、第2突出部82が突出する前の位置に戻ることを抑制することができる。したがって、上述の製造方法により、磁石挿入孔24の内面に、第1突出部62の磁石挿入孔24の内面に近づく方向への移動を規制可能な第2突出部82を形成することができる。 
(その他の実施形態) 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 
前記実施形態では、第2突出部82は、第1突出部62に接触している。しかしながら、第2突出部と第1突出部とには隙間があってもよい。この場合でも、第2突出部によって、前記第2突出部が突出する位置における前記磁石挿入孔の内面と前記磁石との隙間の寸法は、磁石挿入方向の他の部分における前記隙間の寸法よりも小さくすることができる。これにより、前記磁石挿入孔の内面と前記磁石との間を磁石挿入方向に延びている第1突出部は、前記第2突出部が突出する位置で、前記磁石挿入孔の内面に近づく方向への移動が規制される。したがって、ロータの回転によって前記磁石に遠心力が加わった際に、前記第1突出部が前記磁石に押されることにより生じる前記第1突出部の変化量を小さくすることができる。よって、前記第1突出部の基端部で生じる疲労破壊を抑制することができる。したがって、磁石挿入孔内で前記磁石を保持した状態を維持することができる。 
前記実施形態では、第1凸コア板60における第1突出部62の突起部66は、第1突出部62の軸線方向一方に延びる部分において中央部分よりも軸線方向一方に位置する。しかしながら、突起部は第1突出部のどの部分に位置してもよい。 
前記実施形態では、第1凸コア板60の第1突出部62は、磁石22に向かって突起する突起部66を有し、磁石挿入孔24の内面側の面に凹部67を有する。しかしながら、図7に示すように、第1凸コア板260の第1突出部262は、突起部を有さず、磁石挿入孔24の内面24a側の面に凹部267を有する構成であってもよい。図8に示すように、第1凸コア板360の第1突出部362は、磁石22に向かって突起する突起部366を有し、凹部を有さない構成であってもよい。 
前記実施形態では、第1凸コア板60の第1突出部62は、軸線方向において、磁石22に向かって突起する突起部66の位置に凹部67を有する。しかしながら、第1凸コア板は、突起部と凹部とを軸線方向の異
なる位置に有してもよい。 
前記実施形態では、第1凸コア板60の第1突出部62は、突起部66及び凹部67を有する。しかしながら、図9に示すように、第1凸コア板460の第1突出部462は、突起部も凹部も有さなくてもよい。この場合、第1突出部462の直線状に延びる部分に向かって、第2突出部82が突出していればよい。なお、第1突出部462が、突起部も凹部も有さない構成では、第1突出部462の先端部464が、磁石22と第2突出部82との間に位置するのが望ましい。 
突起部を有さない第1突出部462では、基端部463から離れている先端部464で磁石22が保持される。よって、第1突出部462と磁石挿入孔24の内面24aとの隙間は、軸線方向において、第1突出部462の基端部463の位置におけるよりも先端部464に位置における方が大きい。第2突出部82を、前記隙間が大きい位置に位置させることにより、第1突出部462のうち、磁石挿入孔24の内面24a方向への移動量が大きくなる先端部464において、内面24aに近づく方向への移動を規制することができる。したがって、磁石挿入孔24内で磁石22を保持した状態をより容易に維持可能な構成を提供することができる。 
なお、前記実施形態におけるように、第1凸コア板60の第1突出部62は、磁石22に対向する側の面に磁石22に接触する突起部66を有することにより、第1突出部と磁石との接触面積を小さくすることができる。よって、第1突出部が磁石に接触する部分の面圧を大きくすることができる。したがって、第1突出部による磁石に対する保持力を向上することができる。また、突起部は、磁石に対する緩衝材として機能する。したがって、突出部によって、磁石に対する保持力を向上しつつ、磁石の破損を防止することができる。 
また、前記実施形態におけるように、第1凸コア板60の第1突出部62は、磁石挿入孔24の内面に対向する側の面に凹部67を有している。第2凸コア板80の第2突出部82は、凹部67の内側に位置している。これにより、第1突出部62の位置ずれを防止することができる。したがって、磁石挿入孔24内で磁石22を保持した状態をより確実に維持することができる。 
前記実施形態では、第2凸コア板80の第2突出部82は、カシメ孔26内に挿入されたカシメピンMによって、磁石挿入孔24に向かって押されることにより、磁石挿入孔24の内部に向かって突出する。しかしながら、第2凸コア板は、カシメピンMに押されない状態で、磁石挿入孔の内部に向かって突出する第2突出部を有していてもよい。この場合、ロータコアは、カシメ孔を有さなくてもよい。 
前記実施形態では、カシメピンMは、ロータコア21の軸線方向の端部のうち、磁石22が挿入される側の端部から挿入される。しかしながら、カシメピンMは、磁石22が挿入される側とは反対側の端部から挿入されてもよい。この場合、カシメ孔被覆コア板は、第2凸コア板に対して軸線方向一方に積層されていればよい。すなわち、カシメ孔被覆コア板は、第2凸コア板に対してカシメピンMの挿入方向とは反対側に積層されていればよい。 
前記実施形態では、カシメピンMによってカシメ孔被覆コア板190におけるカシメ孔26の外周部192が押されることで、カシメピンMの挿入方向に延びる被覆部92が形成される。この被覆部92によって第2凸コア板180におけるカシメ孔26の外周部182がカシメ孔26の径方向外方に向かって押されることにより、第2突出部82が形成される。しかしながら、図10に示すように、ロータコア521はカシメ孔被覆コア板を有さず、カシメピンMによって第2凸コア板580におけるカシメ孔26の外周部が押されることにより、第2突出部582が形成される構成であってもよい。 
前記実施形態では、ロータ2は、第1凸コア板60の先端が接触する第3基本コア板55を有する。しかしながら、ロータは、第3基本コア板を有さなくてもよい。 
前記実施形態では、磁石挿入孔24は、カシメ孔26に向かって凹む挿入孔凹部24bを有する。しかしながら、磁石挿入孔は、挿入孔凹部を有さなくてもよい。すなわち、第2基本コア板及びカシメ孔被覆コア板における磁石挿入孔の内面の径方向位置は、第1基本コア板と同じであってもよい。 
前記実施形態のロータ2の製造方法では、ロータ2は、第1凸コア板の第1突出部が基端部の位置で折れ曲がっていない第1凸コア板160を用いて製造される。しかしながら、ロータは、あらかじめ第1突出部が折れ曲がった状態の第1コア板を用いて製造されてもよい。
本発明は、IPMモータのロータに利用可能である。
1 モータ(IPMモータ)2 ロータ3 ステータ4 ハウジング20 シャフト21、521 ロータコア21a 貫通孔22 磁石24 磁石挿入孔24a 内面24b 挿入孔凹部25 コア板26 カシメ孔31 ステータコア36 ステータコイル50 第1基本コア板55 第3基本コア板(第3コア板)56 露出面60、160、260、360、460 第1凸コア板(第1コア板)62、162、262、362、462 第1突出部63、163、463 基端部64、464 先端部66、366 突起部67、267 凹部70 第2基本コア板80、180、580 第2凸コア板(第2コア板)82、582 第2突出部90、190 カシメ孔被覆コア板(第4コア板)92 被覆部182 外周部(カシメ孔突出部)192 外周部M カシメピンL1 カシメピンの直径寸法L2、L3、L4 カシメ孔の直径寸法

Claims (11)

  1. 厚み方向に積層された複数のコア板と、軸線方向に延びる磁石挿入孔と、を有する円柱状のロータコアと、 前記磁石挿入孔内に挿入される磁石と、を備えるロータであって、 前記複数のコア板のうち一部のコア板は第1コア板であり、 前記第1コア板は、  前記ロータコアの前記磁石挿入孔の内部に向かって突出し、前記磁石挿入孔の内面と前記磁石との間を前記磁石が前記磁石挿入孔内に挿入される方向である磁石挿入方向に延びる第1突出部を有し、 前記複数のコア板のうち前記第1コア板に対して前記磁石挿入方向に積層されるコア板の一部は第2コア板であり、 前記第2コア板は、  前記ロータコアの前記磁石挿入孔の内部に向かって突出する第2突出部を有し、 前記第1突出部は、  先端部が該第1突出部の基端部よりも前記磁石挿入方向に位置し、  前記第1突出部の少なくとも一部が、前記磁石と接触するとともに、前記磁石と前記第2突出部との間に位置する、ロータ。
  2. 請求項1に記載のロータにおいて、 前記第1突出部の先端部が、前記磁石と前記第2突出部との間に位置する、ロータ。
  3. 請求項1または請求項2に記載のロータにおいて、 前記第1突出部は、前記磁石挿入孔の内面に対向する側の面に凹部を有し、 前記第2突出部は、前記凹部の内側に位置する、ロータ。
  4. 請求項1から請求項3のいずれか一つに記載のロータにおいて、 前記第1突出部は、前記磁石に対向する側の面に前記磁石に接触する突起部を有する、ロータ。
  5. 請求項1または請求項2に記載のロータにおいて、 前記第1突出部は、  前記磁石に対向する側の面に前記磁石に接触する突起部を有し、  前記磁石挿入孔の内面に対向する側の面のうち前記磁石挿入方向において前記突起部と同じ位置に凹部を有し、 前記第2突出部は、前記凹部の内側に位置する、ロータ。
  6. 請求項1から請求項5のいずれか一つに記載のロータにおいて、 前記ロータコアは、 前記磁石挿入孔に沿って前記軸線方向に延びるカシメ孔と、 前記第2コア板の前記カシメ孔における前記磁石挿入孔側の内面を覆う被覆部と、を有する、ロータ。
  7. 請求項1から請求項6のいずれか一つに記載のロータにおいて、 前記複数のコア板のうち前記第2コア板に対して前記磁石挿入方向に積層されるコア板の一部は、第3コア板であり、 前記第3コア板は、 前記磁石挿入孔の内部に向かって突出する第3突出部を有する、ロータ。
  8. 請求項1から請求項7のいずれか一つに記載のロータにおいて、 前記第2突出部は、前記第1突出部に接触している、ロータ。
  9. 請求項1から請求項8のいずれか一つに記載のロータと、 ステータコイル及びステータコアを有するステータと、を有する、IPMモータ。
  10. 請求項1から請求項8のいずれか一つに記載のロータを製造する方法であって、 前記ロータコアは、前記ロータコアの積層方向の端部に位置する表層コア板から、少なくとも前記第2コア板までを貫通するカシメ孔を有し、 前記第2コア板は、前記カシメ孔における前記磁石挿入孔側の内面から前記カシメ孔の内部に向かって突出するカシメ孔突出部を有し、 前記磁石を前記磁石挿入孔内に挿入することにより、前記磁石によって前記第1突出部の先端部を該第1突出部の基端部よりも前記磁石の挿入方向である磁石挿入方向に位置付けるとともに、前記第1突出部を前記磁石と前記磁石挿入孔の内面との間に位置付ける磁石挿入工程と、 前記表層コア板側から前記カシメ孔にカシメピンを挿入して前記第2コア板の前記カシメ孔の前記カシメ孔突出部を前記磁石挿入孔に向かって押すことにより、前記磁石挿入孔の内面に前記第2突出部を形成する、第2突出部形成工程と、を有する、ロータの製造方法。
  11. 請求項10に記載のロータの製造方法において、 前記ロータコアは、前記第2コア板に対して前記カシメピンの挿入方向とは反対方向に位置し、且つ、前記カシメピンの直径よりも直径寸法が小さいカシメ孔を有する第4コア板を有し、 前記第2突出部形成工程では、前記カシメ孔内に前記カシメピンを挿入して前記第4コア板の前記カシメ孔の周囲を前記カシメピンの挿入方向に曲げることにより、カシメ孔の内面に沿う被覆部を形成し、前記被覆部によって前記第2コア板の前記カシメ孔の前記カシメ孔突出部を前記磁石挿入孔に向かって押すことにより、前記第2突出部を形成する、ロータの製造方法。
PCT/JP2022/007648 2021-06-30 2022-02-24 ロータ、ipmモータ及びロータの製造方法 WO2023276264A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280039454.2A CN117413448A (zh) 2021-06-30 2022-02-24 转子、ipm马达以及转子的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-109107 2021-06-30
JP2021109107 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276264A1 true WO2023276264A1 (ja) 2023-01-05

Family

ID=84692277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007648 WO2023276264A1 (ja) 2021-06-30 2022-02-24 ロータ、ipmモータ及びロータの製造方法

Country Status (2)

Country Link
CN (1) CN117413448A (ja)
WO (1) WO2023276264A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003748A (ja) * 2012-06-15 2014-01-09 Asmo Co Ltd ロータ及びロータの製造方法
JP2015076956A (ja) * 2013-10-08 2015-04-20 株式会社ジェイテクト ロータコア及び磁石埋込型ロータ
JP2016123143A (ja) * 2014-12-24 2016-07-07 ダイキン工業株式会社 ロータ及びその製造方法、並びにそれを備えた回転電気機械
CN107465284A (zh) * 2016-06-06 2017-12-12 德昌电机(深圳)有限公司 转子及具有该转子的电机、电动工具
JP2019122259A (ja) * 2018-01-10 2019-07-22 ビューラー モーター ゲゼルシャフト ミット ベシュレンクテル ハフツング 永久磁石ロータ
JP2019146448A (ja) * 2018-02-23 2019-08-29 日産自動車株式会社 回転子、及び、回転子を有する回転電機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003748A (ja) * 2012-06-15 2014-01-09 Asmo Co Ltd ロータ及びロータの製造方法
JP2015076956A (ja) * 2013-10-08 2015-04-20 株式会社ジェイテクト ロータコア及び磁石埋込型ロータ
JP2016123143A (ja) * 2014-12-24 2016-07-07 ダイキン工業株式会社 ロータ及びその製造方法、並びにそれを備えた回転電気機械
CN107465284A (zh) * 2016-06-06 2017-12-12 德昌电机(深圳)有限公司 转子及具有该转子的电机、电动工具
JP2019122259A (ja) * 2018-01-10 2019-07-22 ビューラー モーター ゲゼルシャフト ミット ベシュレンクテル ハフツング 永久磁石ロータ
JP2019146448A (ja) * 2018-02-23 2019-08-29 日産自動車株式会社 回転子、及び、回転子を有する回転電機

Also Published As

Publication number Publication date
CN117413448A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN111512527B (zh) 定子的制造方法以及定子
US20130285500A1 (en) Rotor for a motor and a motor
US8058761B2 (en) Rotating electrical machine
JP2021164174A (ja) Ipmモータ用ロータ
WO2018168226A1 (ja) 回転電機のロータおよび回転電機
JP6250149B2 (ja) 回転電機の電機子鉄心および電機子の製造方法
WO2018179736A1 (ja) ロータ及びロータを備えたモータ
WO2023276264A1 (ja) ロータ、ipmモータ及びロータの製造方法
JP2008206318A (ja) 電機子のインシュレータおよび電機子
JP2016123240A (ja) 電動機用ロータ及びその製造方法
US11824405B2 (en) Rotor of rotary electric machine
JP2022129440A (ja) ロータ及びipmモータ
JP2009106004A (ja) 回転電機
WO2024034217A1 (ja) ロータ、それを備えたモータ及びロータの製造方法
WO2023026596A1 (ja) ロータ及びipmモータ
CN112236925B (zh) 旋转电机的定子以及旋转电机
WO2022181057A1 (ja) ロータ及びipmモータ
WO2023026597A1 (ja) ロータ及びipmモータ
WO2024034218A1 (ja) ロータ、それを備えたモータ及びロータの製造方法
WO2024070043A1 (ja) ロータの製造方法、ロータおよび前記ロータを有するipmモータ
JP7447845B2 (ja) ロータ、それを備えたipmモータ及びロータの製造方法
JP4294365B2 (ja) モータ
JP7204027B1 (ja) 回転電機及びそのローター
JP2020114077A (ja) 永久磁石埋設型ロータ及び永久磁石埋設型ロータの製造方法
TWI791292B (zh) 內永磁體馬達用轉子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280039454.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE