WO2023274269A1 - 一种贵金属负载共价有机框架的复合材料及其制备方法 - Google Patents

一种贵金属负载共价有机框架的复合材料及其制备方法 Download PDF

Info

Publication number
WO2023274269A1
WO2023274269A1 PCT/CN2022/102131 CN2022102131W WO2023274269A1 WO 2023274269 A1 WO2023274269 A1 WO 2023274269A1 CN 2022102131 W CN2022102131 W CN 2022102131W WO 2023274269 A1 WO2023274269 A1 WO 2023274269A1
Authority
WO
WIPO (PCT)
Prior art keywords
tpma
preparation
noble metal
organic framework
covalent organic
Prior art date
Application number
PCT/CN2022/102131
Other languages
English (en)
French (fr)
Inventor
赵晓丽
牛琳
吴丰昌
雷啟焘
Original Assignee
广东省科学院生态环境与土壤研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院生态环境与土壤研究所 filed Critical 广东省科学院生态环境与土壤研究所
Publication of WO2023274269A1 publication Critical patent/WO2023274269A1/zh
Priority to US18/135,201 priority Critical patent/US20230264182A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0241Imines or enamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the field of material preparation and environment, and in particular relates to a composite material loaded with a noble metal covalent organic framework and a preparation method thereof.
  • Nitro compounds are common organic pollutants in industrial wastewater, and 4-nitrophenol, as a typical nitro pollutant, is widely used in dyestuff, papermaking, pharmaceutical, pesticide, petroleum and other industries, and it is also the chemical precursor of 4-aminophenol body. 4-Nitrophenol is harmful to plants and animals, and short-term exposure can cause headaches, nausea, and drowsiness in humans. It is listed as one of 114 organic pollutants by the U.S. Environmental Protection Agency, and the maximum allowable content in drinking water is 0.43 ⁇ mol/L. Among many methods such as adsorption, membrane separation, solvent extraction, and catalytic reduction, the catalytic reduction method based on noble metal nanoparticles is considered to be one of the most economical and effective methods.
  • noble metal nanoparticles Due to their unique photoelectric and physical and chemical properties, noble metal nanoparticles have been widely used in the fields of catalysis, energy, electrochemistry, and antibacterial.
  • noble metal nanoparticles with high surface-to-volume ratio and specific surface area such as gold nanoparticles (Au NPs), platinum nanoparticles (Pt NPs), palladium metal nanoparticles (Pd NPs), etc.
  • Au NPs gold nanoparticles
  • Pt NPs platinum nanoparticles
  • Pd NPs palladium metal nanoparticles
  • individual noble metal nanoparticles are easily aggregated due to their high specific surface energy, which easily leads to a decrease in catalytic activity during the catalytic process and affects the recovery and reusability of the catalyst. Therefore, to improve the dispersion of noble metal nanoparticles, loading noble metal nanoparticles on porous substrates is an important strategy to avoid the aggregation of metal nanoparticles.
  • solvothermal method is the most commonly used method for preparing COFs.
  • the experimental conditions of the solvothermal method are relatively harsh, such as high temperature (85-120°C), long preparation time (usually lasting 2-9 days), high consumption of organic solvents, and many operation steps. These harsh experimental conditions limit the industrial application of solvothermal method. Therefore need to find a kind of clean, convenient, efficient preparation method.
  • various preparation methods such as ion thermal method, microwave-assisted method, interfacial synthesis method and mechanical grinding method have been developed.
  • the mechanical grinding method also known as the mechanochemical method, has the advantages of being cleaner, more efficient and simpler.
  • no studies have reported the preparation of COFs by mechanical milling for loading noble metal nanoparticles.
  • the catalytic application is reduced due to the large particle size of the noble metal nanoparticles.
  • the noble metal nanoparticles are easily aggregated due to the large surface energy, resulting in a decrease in catalytic activity. How to effectively balance the particle size and content of noble metal nanoparticles is a difficult point in current research.
  • a strong reducing agent is required, which puts higher requirements on the stability and corrosion resistance of the support.
  • the present invention provides a noble metal-supported covalent organic framework composite material and a preparation method thereof.
  • the prepared gold nanoparticle-supported covalent organic framework material can be used as a catalyst, and is a simple, green and efficient A new type of heterogeneous catalyst, which has high catalytic activity, fast degradation rate, short time, and can catalytically reduce high-concentration pollutants.
  • a composite material of a noble metal supported covalent organic framework the components of the composite material include noble metal nanoparticles and TpMA.
  • the noble metal nanoparticles are one of gold, silver or platinum nanoparticles; preferably gold nanoparticles.
  • the raw materials for preparing the composite material include TpMA and chloroauric acid, and the mass ratio of TpMA and chloroauric acid is 10:1-5.
  • Another object of the present invention is to provide a method for preparing a noble metal-supported covalent organic framework composite material, comprising the following steps:
  • step (2) Add sodium borohydride into the reaction system of step (1), and react for 1-3 hours to obtain it.
  • the mass ratio of TpMA, chloroauric acid and methanol in step (1) is 10:1-5:0.5-1.5.
  • the stirring time in step (1) is more than 20 h; preferably 24-26 h, more preferably 24 h.
  • the mass molar ratio of the chloroauric acid to sodium borohydride is 1-5:0.4g/mol, and the concentration of the sodium borohydride is 1.5-2.5mol/L.
  • the reaction in step (2) takes 1-3 hours. After the reaction is completed, first wash with dichloromethane, then wash with methanol, and finally dry it under vacuum at 60-70°C.
  • the preparation method of TpMA in step (1) comprises the following steps:
  • step (3) Add 0.1-0.5mL of water to the reaction system of step (2), grind, wash with DMF 2-3 times, and vacuum dry to obtain the final product.
  • the dosage ratio of p-toluenesulfonic acid, melamine and 1,3,5-triformylphloroglucinol is 0.5-1.5mL:320-360mg:370-390mg;
  • the grinding time in step C is 4-6 hours; the vacuum drying temperature is 55-65°C.
  • Another object of the present invention is to provide the application of the above noble metal-supported covalent organic framework composite material in the adsorption and catalytic degradation of pollutants.
  • the loaded TpMA covalent organic framework material prepared by the present invention can effectively balance the particle size and content of noble metal nanoparticles loaded on the surface of the covalent organic framework material, and synthesize ultrafine noble metal nanoparticles ( ⁇ 5nm) and overcome its extreme The disadvantage of easy agglomeration greatly improves the catalytic performance.
  • the TpMA covalent organic framework material prepared by the present invention has excellent stability. As a porous organic material, it provides a stable structural support for the loading of Au NPs, so that Au NPs have good dispersion and stable existence in TpMA. Besides, the intercalation of AuNPs does not disrupt the structure of the covalent organic framework.
  • the particle size and density of Au NPs in the Au@TpMA catalyst can be regulated autonomously by controlling the amount of HAuCl 4 .
  • the optimal dosage of HAuCl 4 was found through research.
  • the present invention conducts in-depth research on the reaction when preparing the TpMA covalent organic framework material.
  • p-toluenesulfonic acid and melamine are mixed to generate a protonation reaction to form p-toluenesulfonic acid-amine salt as a template for the reaction;
  • 1,3,5-triformylphloroglucinol produces a deprotonation process and a condensation reaction based on melamine and 1,3,5-triformylphloroglucinol, and finally forms a covalent organic framework material with excellent stability (COFs).
  • Fig. 1 is the TEM picture of the Au@TpMA prepared in Example 1;
  • Fig. 2 is the TEM picture of the Au@TpMA prepared in Example 2;
  • Fig. 3 is the TEM picture of the Au@TpMA prepared in Example 3;
  • Fig. 4 is the TEM picture of the Au@TpMA prepared in Example 4.
  • Figure 5 is a TEM image of Au@TpMA prepared in Example 5.
  • Figure 6 is the XRD patterns of TpMA and Au@TpMA
  • Figure 7 shows the FTIR spectra of TpMA and Au@TpMA.
  • a planetary ball mill (AM400, Ant Source Scientific Instruments (Beijing) Co., Ltd., Beijing, China) was used. Specific steps are as follows:
  • TpMA prepared by ball milling method
  • HuCl 4 chloroauric acid
  • a planetary ball mill (AM400, Ant Source Scientific Instruments (Beijing) Co., Ltd., Beijing, China) was used. Specific steps are as follows:
  • TpMA prepared by ball milling method
  • HuCl 4 chloroauric acid
  • a planetary ball mill (AM400, Ant Source Scientific Instruments (Beijing) Co., Ltd., Beijing, China) was used. Specific steps are as follows:
  • TpMA prepared by ball milling method
  • HuCl 4 chloroauric acid
  • a planetary ball mill (AM400, Ant Source Scientific Instruments (Beijing) Co., Ltd., Beijing, China) was used. Specific steps are as follows:
  • TpMA prepared by ball milling method
  • HuCl 4 chloroauric acid
  • a planetary ball mill (AM400, Ant Source Scientific Instruments (Beijing) Co., Ltd., Beijing, China) was used. Specific steps are as follows:
  • TpMA prepared by ball milling method
  • HuCl 4 chloroauric acid
  • a planetary ball mill (AM400, Ant Source Scientific Instruments (Beijing) Co., Ltd., Beijing, China) was used. Specific steps are as follows:
  • a planetary ball mill (AM400, Ant Source Scientific Instruments (Beijing) Co., Ltd., Beijing, China) was used. Specific steps are as follows:
  • TpMA prepared by ball milling method
  • HuCl 4 chloroauric acid
  • the particle size of the catalyst Au@TpMA is 2.97 ⁇ 0.68nm.
  • concentration of chloroauric acid is high, the prepared catalyst Au@TpMA has a small particle size, but it is easy to agglomerate, and its catalytic effect is not good.
  • Example 1 The difference between this comparative example and Example 1 is that the consumption and concentration of sodium borohydride are different, and the specific operations are as follows:
  • a planetary ball mill (AM400, Ant Source Scientific Instruments (Beijing) Co., Ltd., Beijing, China) was used. Specific steps are as follows:
  • a planetary ball mill (AM400, Ant Source Scientific Instruments (Beijing) Co., Ltd., Beijing, China) was used. Specific steps are as follows:
  • the covalent organic framework TpMA prepared by the ball milling method is a wrinkled sheet-like structure, which provides abundant sites for the loading of gold nanoparticles.
  • Gold nanoparticles dispersed well on the surface of TpMA, indicating that the introduction of TpMA well avoided the aggregation of gold nanoparticles.
  • the density and particle size of gold nanoparticles can be adjusted according to the amount of HAuCl4 .
  • HAuCl 4 When the amount of HAuCl 4 is 10-50mg, it can effectively balance the particle size and content of the noble metal nanoparticles loaded on the surface of the covalent organic framework material, and synthesize ultrafine noble metal nanoparticles ( ⁇ 5nm) and overcome the shortcomings of easy agglomeration, Greatly improved catalytic performance.
  • the catalytic performance of the composite catalyst was evaluated by the model reaction of catalytic reduction of 4-nitrophenol to 4-aminophenol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本发明属于材料制备及环境领域,具体涉及一种贵金属负载共价有机框架的复合材料及其制备方法。所述复合材料的组分包括贵金属纳米颗粒和TpMA。制备方法包括先将TpMA、氯金酸和甲醇混合;然后将硼氢化钠加入反应,即得。本发明制备得到的贵金属纳米颗粒负载共价有机框架材料可用于催化剂,是一种制备简单、绿色高效的新型非均相催化剂,其催化活性高、降解速率快、时间短、可催化还原高浓度的污染物。

Description

一种贵金属负载共价有机框架的复合材料及其制备方法 技术领域
本发明属于材料制备及环境领域,具体涉及一种贵金属负载共价有机框架的复合材料及其制备方法。
背景技术
硝基化合物是工业废水中常见的有机污染物,而4-硝基酚作为典型的硝基污染物在染料、造纸、制药、农药、石油等工业中广泛使用,也是4-氨基酚的化学前体。4-硝基酚对动植物具有危害作用,且短期暴露会导致人类头痛、恶心和嗜睡。它被美国环境保护署列为114种有机污染物之一,饮用水中最大允许含量为0.43μmol/L。在吸附法、膜分离法、溶剂萃取法、催化还原法等众多方法中,以贵金属纳米颗粒为主的催化还原法被认为是经济有效的方法之一。
贵金属纳米颗粒由于特有的光电和理化性质,在催化、能源、电化学、抗菌等领域得到广泛应用。尤其,具有高面容比和比表面积的贵金属纳米颗粒,如金纳米颗粒(Au NPs)、铂纳米颗粒(Pt NPs)、钯金属纳米颗粒(Pd NPs)等,在多相催化方面展现出较高的催化活性、稳定性和循环利用性。然而,单独的贵金属纳米颗粒因高的比表面能而极易团聚,这容易导致催化过程中催化活性的降低,影响催化剂的回收与重复利用性。因此,为提高贵金属纳米颗粒的分散性,将贵金属纳米颗粒负载在多孔基质上是避免金属纳米颗粒团聚的重要策略。
因溶剂热法制备的COFs具有优异的晶体结构和形貌,所以溶剂热法是制备COFs最常用的一种方法。然而,溶剂热法的实验条件较为苛刻,例如需要高温(85~120℃)、制备时间长(通常持续2~9d)、有机溶剂消耗量多、操作步骤多等。这些严苛的实验条件限制了溶剂热法的工业应用。因此需要寻找一种清洁、方便、高效的制备方法。目前,发展了离子热法、微波辅助法、界面合成法、机械研磨法等多种制备方法。相比于溶剂热法,机械研磨法又称机械化学法,具有更清洁、更高效、更简便的优点。然而还没有研究报道采用机械研磨法制备COFs用于负载贵金属纳米颗粒。
近年来,COFs材料作为贵金属基质材料的研究受到广泛关注。Lu等以含硫醚的COFs作为贵金属纳米颗粒(Pt NPs和Pd NPs)的生长模板制备了PtNPs@COF和PdNPs@COF,硫醚官能团可作为金属沉积和颗粒生长的成核位点以此实现了对贵金属纳米颗粒的尺寸生长 控制。PtNPs@COF和PdNPs@COF催化剂对铃木-宫浦偶联反应和硝基酚还原反应展现出优异的催化活性。
当贵金属负载在共价有机框架材料表面时,因贵金属纳米颗粒粒径较大而降低了催化应用,同时贵金属纳米颗粒因表面能较大而极易团聚,造成催化活性的下降。如何有效平衡贵金属纳米颗粒的粒径和含量是当前研究中的一个难点。此外,在制备贵金属纳米颗粒时,需要用到强还原剂,这对载体的稳定性和抗腐蚀性提出更高的要求。如何选择稳定牢固的共价有机框架材料作为贵金属纳米颗粒的载体,并且保证当贵金属纳米颗粒嵌入到共价有机框架材料内部时不对其自身结构框架造成破坏是另一个需要突破的难点。
发明内容
针对现有技术存在的不同,本发明提供一种贵金属负载共价有机框架的复合材料及其制备方法,制备的金纳米颗粒负载共价有机框架材料可用于催化剂,是一种制备简单、绿色高效的新型非均相催化剂,其催化活性高、降解速率快、时间短、可催化还原高浓度的污染物。
本发明的目的是通过以下技术方案实现的:
一种贵金属负载共价有机框架的复合材料,复合材料的组分包括贵金属纳米颗粒和TpMA。
优选地,所述贵金属纳米颗粒为金、银或铂的纳米颗粒中的一种;优选为金纳米颗粒。
优选地,所述复合材料的制备原料包括TpMA和氯金酸,所述TpMA和氯金酸的质量比为10:1-5。
本发明的再一目的是提供一种贵金属负载共价有机框架复合材料的制备方法,包括如下步骤:
(1)将TpMA、氯金酸和甲醇混合,在室温下搅拌;
(2)将硼氢化钠加入到步骤(1)的反应体系中,反应1-3h,即得。
优选地,步骤(1)中TpMA、氯金酸和甲醇的质量比为10:1-5:0.5-1.5。
优选地,步骤(1)中所述搅拌的时间为20h以上;优选为24-26h,更优选为24h。
优选地,所述氯金酸和硼氢化钠的质量摩尔比为1-5:0.4g/mol,所述硼氢化钠的浓度为1.5-2.5mol/L。
优选地,步骤(2)中所述反应1-3h,反应完成后,先用二氯甲烷洗涤,然后用甲醇洗涤,最后真空60-70℃烘干即得。
优选地,步骤(1)中TpMA的制备方法包括如下步骤:
A.先将对甲苯磺酸和三聚氰胺混合研磨12-30min;
B.然后将1,3,5-三甲酰间苯三酚加入到步骤(1)的反应体系中,研磨2-4h;
C.加0.1-0.5mL水到步骤(2)的反应体系中,研磨,用DMF洗涤2-3次,真空干燥即得。
优选地,所述对甲苯磺酸、三聚氰胺和1,3,5-三甲酰间苯三酚的用量比为0.5-1.5mL:320-360mg:370-390mg;
优选地,步骤C中所述研磨的时间为4-6h;所述真空干燥的温度为55-65℃。
本发明还有一个目的是提供上述贵金属负载共价有机框架复合材料在污染物吸附催化降解中的应用。
本发明的有益效果:
1)本发明制备得到的负载TpMA共价有机框架材料,有效平衡负载在共价有机框架材料表面的贵金属纳米颗粒的粒径和含量,并且合成超细贵金属纳米颗粒(<5nm)且克服其极易团聚的缺点,极大的提高催化性能。
2)本发明制备得到的TpMA共价有机框架材料稳定性优异,作为多孔有机材料为Au NPs的负载提供了稳定的结构支撑,使其Au NPs在TpMA中分散性良好、稳定存在。除此之外,金纳米颗粒的嵌入也不会破坏共价有机框架的结构。
3)通过控制HAuCl 4的用量可自主调节Au@TpMA催化剂中Au NPs的粒径和密度。经研究发现了最佳的HAuCl 4用量。
4)本发明在制备TpMA共价有机框架材料时,对反应进行深入研究,先将对甲苯磺酸和三聚氰胺混合,产生质子化反应,以形成对甲苯磺酸-胺盐作为反应的模板;再加入1,3,5-三甲酰间苯三酚,产生去质子化过程和基于三聚氰胺和1,3,5-三甲酰基间苯三酚的缩合反应,最后形成稳定性优良的共价有机框架材料(COFs)。
附图说明
图1为实施例1制备得到的Au@TpMA的TEM图;
图2为实施例2制备得到的Au@TpMA的TEM图;
图3为实施例3制备得到的Au@TpMA的TEM图;
图4为实施例4制备得到的Au@TpMA的TEM图;
图5为实施例5制备得到的Au@TpMA的TEM图;
图6为TpMA和Au@TpMA的XRD图谱;
图7为TpMA和Au@TpMA的FTIR光谱。
具体实施方式
下面结合具体实施例进一步阐述本发明。
实施例1
1)共价有机框架材料TpMA的制备方法
使用行星式球磨机(AM400,Ant Source Scientific Instruments(北京)有限公司,中国北京)。具体步骤如下:
(1)在50mL氧化锆研磨罐添加5个5mm直径和15个7mm直径的研磨球。向研磨罐中加入1mL对甲苯磺酸催化剂和340mg三聚氰胺(MA),然后将混合物在300rpm下研磨15min。
(2)将378mg 1,3,5-三甲酰间苯三酚(TP)加入到混合物中,并通过利用研磨球和研磨罐之间的动能继续研磨2.75h。随后,将0.5mL水加入到混合物中并研磨5h。
(3)用DMF洗涤2次,然后在60℃真空干燥,收集TpMA。
2)金纳米颗粒(Au NPs)负载共价有机框架材料的制备方法
(1)称取100mg TpMA(球磨法制备)和氯金酸(HAuCl 4)40mg置于烧杯中,加入10mL甲醇,在室温下搅拌24h。
(2)将配制的硼氢化钠(NaBH 4)溶液(2mL,2mol/L)加入到上述混合液中,继续搅拌2h。
(3)用二氯甲烷和甲醇洗涤,真空(65℃)烘干,收集催化剂(Au@TpMA)。其催化剂Au@TpMA中Au的粒径为3.09±0.75nm。
实施例2
1)共价有机框架材料TpMA的制备方法
使用行星式球磨机(AM400,Ant Source Scientific Instruments(北京)有限公司,中国北京)。具体步骤如下:
(1)在50mL氧化锆研磨罐添加5个5mm直径和15个7mm直径的研磨球。向研磨罐中加入1.5mL对甲苯磺酸催化剂和360mg三聚氰胺(MA),然后将混合物在300rpm下研磨30min。
(2)将390mg 1,3,5-三甲酰间苯三酚(TP)加入到混合物中,并通过利用研磨球和研磨罐之间的动能继续研磨2.75h。随后,将0.2mL水加入到混合物中并研磨6h。
(3)用DMF洗涤3次,然后在65℃真空干燥,收集TpMA。
2)金纳米颗粒(Au NPs)负载共价有机框架材料的制备方法
(1)称取100mg TpMA(球磨法制备)和氯金酸(HAuCl 4)10mg置于烧杯中,加入8mL甲醇,在室温下搅拌22h。
(2)将配制的硼氢化钠(NaBH 4)溶液(3mL,1.5mol/L)加入到上述混合液中,继续搅拌1h。
(3)用二氯甲烷和甲醇洗涤,真空(65℃)烘干,收集催化剂(Au@TpMA)备用。其催化剂Au@TpMA中Au的粒径为4.32±1.39nm。
实施例3
1)共价有机框架材料TpMA的制备方法
使用行星式球磨机(AM400,Ant Source Scientific Instruments(北京)有限公司,中国北京)。具体步骤如下:
(1)在50mL氧化锆研磨罐添加5个5mm直径和15个7mm直径的研磨球。向研磨罐中加入0.5mL对甲苯磺酸催化剂和320mg三聚氰胺(MA),然后将混合物在300rpm下研磨12min。
(2)将370mg1,3,5-三甲酰间苯三酚(TP)加入到混合物中,并通过利用研磨球和研磨罐之间的动能继续研磨2h。随后,将0.5mL水加入到混合物中并研磨4h。
(3)用DMF洗涤2次,然后在55℃真空干燥,收集TpMA。
2)金纳米颗粒(Au NPs)负载共价有机框架材料的制备方法
(1)称取100mg TpMA(球磨法制备)和氯金酸(HAuCl 4)50mg置于烧杯中,加入16mL甲醇,在室温下搅拌26h。
(2)将配制的硼氢化钠(NaBH 4)溶液(2mL,2.5mol/L)加入到上述混合液中,继续搅拌3h。
(3)用二氯甲烷和甲醇洗涤,真空(65℃)烘干,收集催化剂(Au@TpMA)备用。其催化剂Au@TpMA中Au的粒径为2.50±0.55nm。
实施例4
1)共价有机框架材料TpMA的制备方法
使用行星式球磨机(AM400,Ant Source Scientific Instruments(北京)有限公司,中国北京)。具体步骤如下:
(1)在50mL氧化锆研磨罐添加5个5mm直径和15个7mm直径的研磨球。向研磨罐中加入1mL对甲苯磺酸催化剂和340mg三聚氰胺(MA),然后将混合物在300rpm下研磨15min。
(2)将378mg1,3,5-三甲酰间苯三酚(TP)加入到混合物中,并通过利用研磨球和研磨罐之间的动能继续研磨2.75h。随后,将0.3mL水加入到混合物中并研磨5h。
(3)用DMF洗涤2次,然后在60℃真空干燥,收集TpMA。
2)金纳米颗粒(Au NPs)负载共价有机框架材料的制备方法
(1)称取100mg TpMA(球磨法制备)和氯金酸(HAuCl 4)20mg置于烧杯中,加入 10mL甲醇,在室温下搅拌24h。
(2)将配制的硼氢化钠(NaBH 4)溶液(2mL,2mol/L)加入到上述混合液中,继续搅拌2h。
(3)用二氯甲烷和甲醇洗涤,真空(65℃)烘干,收集催化剂(Au@TpMA)备用。其催化剂Au@TpMA中Au的粒径为3.43±0.87nm。
实施例5
1)共价有机框架材料TpMA的制备方法
使用行星式球磨机(AM400,Ant Source Scientific Instruments(北京)有限公司,中国北京)。具体步骤如下:
(1)在50mL氧化锆研磨罐添加5个5mm直径和15个7mm直径的研磨球。向研磨罐中加入1mL对甲苯磺酸催化剂和340mg三聚氰胺(MA),然后将混合物在300rpm下研磨15min。
(2)将378mg1,3,5-三甲酰间苯三酚(TP)加入到混合物中,并通过利用研磨球和研磨罐之间的动能继续研磨2.75h。随后,将0.5mL水加入到混合物中并研磨5h。
(3)用DMF洗涤2次,然后在60℃真空干燥,收集TpMA。
2)金纳米颗粒(Au NPs)负载共价有机框架材料的制备方法
(1)称取100mg TpMA(球磨法制备)和氯金酸(HAuCl 4)33mg置于烧杯中,加入10mL甲醇,在室温下搅拌24h。
(2)将配制的硼氢化钠(NaBH 4)溶液(2mL,2mol/L)加入到上述混合液中,继续搅拌2h。
(3)用二氯甲烷和甲醇洗涤,真空(65℃)烘干,收集催化剂(Au@TpMA)备用。其催化剂Au@TpMA中Au的粒径为3.24±0.69nm。
实施例6
1)共价有机框架材料TpMA的制备方法
使用行星式球磨机(AM400,Ant Source Scientific Instruments(北京)有限公司,中国北京)。具体步骤如下:
(1)在50mL氧化锆研磨罐添加5个5mm直径和15个7mm直径的研磨球。向研磨罐中加入1mL对甲苯磺酸催化剂和340mg三聚氰胺(MA),然后将混合物在300rpm下研磨15min。
(2)将378mg 1,3,5-三甲酰间苯三酚(TP)加入到混合物中,并通过利用研磨球和研磨罐之间的动能继续研磨2.75h。随后,将0.5mL水加入到混合物中并研磨5h。
(3)用DMF洗涤2次,然后在60℃真空干燥,收集TpMA。
2)银纳米颗粒(Ag NPs)负载共价有机框架材料的制备方法
(1)将研磨法制备的100mg TpMA、17.98mg的硝酸银(AgNO 3)置于30mL的甲醇溶液里,在黑暗中混合搅拌24h;
(2)加入硼氢化钠(NaBH 4)(2mol/L,2mL)继续搅拌2h;
(3)随后,收集沉淀,并用二氯甲烷和超纯水清洗2次,真空(65℃)干燥,即得,其催化剂Ag@TpMA中Ag粒径为3.24±0.64nm。
对比例1
本对比例与实施例1的区别是氯金酸的用量不同。具体操作如下:
1)共价有机框架材料TpMA的制备方法
使用行星式球磨机(AM400,Ant Source Scientific Instruments(北京)有限公司,中国北京)。具体步骤如下:
(1)在50mL氧化锆研磨罐添加5个5mm直径和15个7mm直径的研磨球。向研磨罐中加入1mL对甲苯磺酸催化剂和340mg三聚氰胺(MA),然后将混合物在300rpm下研磨15min。
(2)将378mg1,3,5-三甲酰间苯三酚(TP)加入到混合物中,并通过利用研磨球和研磨罐之间的动能继续研磨2.75h。随后,将0.5mL水加入到混合物中并研磨5h。
(3)用DMF洗涤2次,然后在60℃真空干燥,收集TpMA。
2)金纳米颗粒(Au NPs)负载共价有机框架材料的制备方法
(1)称取100mg TpMA(球磨法制备)和氯金酸(HAuCl 4)60mg置于烧杯中,加入10mL甲醇,在室温下搅拌24h。
(2)将配制的硼氢化钠(NaBH 4)溶液(2mL,2mol/L)加入到上述混合液中,继续搅拌2h。
(3)用二氯甲烷和甲醇洗涤,真空(65℃)烘干,收集催化剂(Au@TpMA)备用
其催化剂Au@TpMA的粒径为2.97±0.68nm,氯金酸浓度高时,制得的催化剂Au@TpMA粒径虽小,但是极易团聚,其催化效果不佳。
对比例2
本对比例与实施例1的区别是硼氢化钠的用量、浓度不同,具体操作如下:
1)共价有机框架材料TpMA的制备方法
使用行星式球磨机(AM400,Ant Source Scientific Instruments(北京)有限公司,中国北京)。具体步骤如下:
(1)在50mL氧化锆研磨罐添加5个5mm直径和15个7mm直径的研磨球。向研磨罐中加入1mL对甲苯磺酸催化剂和340mg三聚氰胺(MA),然后将混合物在300rpm下研磨15min。
(2)将378mg1,3,5-三甲酰间苯三酚(TP)加入到混合物中,并通过利用研磨球和研磨罐之间的动能继续研磨2.75h。随后,将0.5mL水加入到混合物中并研磨5h。
(3)用DMF洗涤2次,然后在60℃真空干燥,收集TpMA。
2)金纳米颗粒(Au NPs)负载共价有机框架材料的制备方法
(1)称取100mg TpMA(球磨法制备)和不同质量的氯金酸(HAuCl 4)40mg置于烧杯中,加入10mL甲醇,在室温下搅拌24h。
(2)将配制的硼氢化钠(NaBH 4)溶液(1mL,3mol/L)加入到上述混合液中,继续搅拌2h。
(3)用二氯甲烷和甲醇洗涤,真空(65℃)烘干,收集催化剂(Au@TpMA)备用。其催化剂Au@TpMA的粒径为3.50±0.62nm。
对比例3
本对比例与实施例1的区别是共价有机框架材料TpMA的制备方法不同。具体操作如下:
1)共价有机框架材料TpMA的制备方法
使用行星式球磨机(AM400,Ant Source Scientific Instruments(北京)有限公司,中国北京)。具体步骤如下:
在50mL氧化锆研磨罐添加5个5mm直径和15个7mm直径的研磨球。向研磨罐中加入378mg 1,3,5-三甲酰间苯三酚(TP)和340mg三聚氰胺(MA)混合均匀,然后加入1mL对甲苯磺酸催化剂,通过利用研磨球和研磨罐之间的动能研磨3h,随后,将0.5mL水加入到混合物中并研磨5h。用DMF洗涤2次,然后在60℃真空干燥,收集TpMA。
2)金纳米颗粒(Au NPs)负载共价有机框架材料的制备方法
(1)称取100mg TpMA(球磨法制备)和不同质量的氯金酸(HAuCl 4)40mg置于烧杯中,加入10mL甲醇,在室温下搅拌24h。
(2)将配制的硼氢化钠(NaBH 4)溶液(2mL,2mol/L)加入到上述混合液中,继续搅拌2h。
(3)用二氯甲烷和甲醇洗涤,真空(65℃)烘干,收集催化剂(Au@TpMA)。其催化剂Au@TpMA的粒径为3.09±0.75nm。
试验例1金纳米颗粒负载共价有机框架材料(Au@TpMA)的表征
对实施例1-5制备得到的金纳米颗粒负载共价有机框架材料(Au@TpMA)进行表征, 结果见图1-5,对实施例1进行XRD、FTIR分析,金纳米颗粒的嵌入没有破坏共价有机框架的结构,保证了共价有机框架材料的完整性。结果见图6-7。
由图1-5可以看到,球磨法制备的共价有机框架TpMA是褶皱的片状结构,为金纳米颗粒的负载提供了丰富的位点。金纳米颗粒在TpMA表面分散良好,表明TpMA的引入良好的避免了金纳米颗粒的聚集。金纳米颗粒的密度和粒径可以根据HAuCl4的用量来进行调节,当HAuCl 4用量(10mg、20mg)较低时,Au NPs密度低,分布相对均匀;当HAuCl 4用量(33mg、40mg、50mg)逐渐增加时,Au NPs密度逐渐升高,并且有团聚现象,表明TpMA可负载的金纳米颗粒数量是有限的,过多的团聚会降低Au@TpMA的催化活性。当HAuCl 4用量在10-50mg时,可以有效平衡负载在共价有机框架材料表面的贵金属纳米颗粒的粒径和含量,并且合成超细贵金属纳米颗粒(<5nm)且克服极易团聚的缺点,极大的提高了催化性能。
试验例2贵金属纳米颗粒负载共价有机框架材料的催化性能研究
以4-硝基酚催化还原为4-氨基酚的模型反应评价复合催化剂的催化性能。
将100μL 4-硝基酚(3.53×10 -3mol/L)、0.25mL NaBH 4、3mL去离子水依次加入到石英比色皿中,接着加入500μL Au@TpMA催化剂(1mg/mL)来引发还原反应。随着反应的进行,混合溶液的颜色逐渐从黄色转变为无色,采用紫外可见光分光光度计来监测整个反应过程,在特定的时间点测定混合溶液的紫外可见光光谱。
对水污染中4-硝基酚的去除率结果如下表1所述。
表1水污染中4-硝基酚的去除率
分组 去除率/% 去除时间/min
实施例1 100 7
实施例2 95 7
实施例3 98 7
实施例4 96 7
实施例5 98 7
实施例6 99 7
对比例1 91 7
对比例2 93 7
对比例3 90 7
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本发明的专利保护范围内。

Claims (10)

  1. 一种贵金属负载共价有机框架的复合材料,其特征在于,所述复合材料的组分包括贵金属纳米颗粒和TpMA。
  2. 根据权利要求1所述的复合材料,其特征在于,所述贵金属纳米颗粒为金、银或铂的纳米颗粒中的一种;优选为金纳米颗粒。
  3. 一种权利要求1-2任意一项所述的贵金属负载共价有机框架复合材料的制备方法,其特征在于,包括如下步骤:
    (1)将TpMA、氯金酸和甲醇混合;
    (2)将硼氢化钠加入到步骤(1)的反应体系中反应,即得。
  4. 根据权利要求3所述的制备方法,其特征在于,步骤(1)中TpMA、氯金酸和甲醇的质量比为10:1-5:0.5-1.5。
  5. 根据权利要求3所述的制备方法,其特征在于,步骤(1)中所述搅拌的时间为20h以上。
  6. 根据权利要求3所述的制备方法,其特征在于,所述氯金酸和硼氢化钠的质量摩尔比为1-5g:0.4mol,所述硼氢化钠的浓度为1.5-2.5mol/L。
  7. 根据权利要求3所述的制备方法,其特征在于,步骤(2)中所述反应的时间为1-3h,反应完成后,先用二氯甲烷洗涤,然后用甲醇洗涤,最后真空60-70℃烘干即得。
  8. 根据权利要求3所述的制备方法,其特征在于,步骤(1)中TpMA的制备方法包括如下步骤:
    A.先将对甲苯磺酸和三聚氰胺混合研磨12-30min;
    B.然后将1,3,5-三甲酰间苯三酚加入到步骤(1)的反应体系中,研磨2-4h;
    C.最后加0.1-0.5mL水到步骤(2)的反应体系中,研磨,用DMF洗涤2-3次,真空干燥即得。
  9. 根据权利要求3所述的制备方法,其特征在于,所述对甲苯磺酸、三聚氰胺和1,3,5-三甲酰间苯三酚的用量比为0.5-1.5mL:320-360mg:370-390mg;
    优选地,步骤C中所述研磨的时间为4-6h;所述真空干燥的温度为55-65℃。
  10. 一种权利要求1-2任意一项所述的贵金属负载共价有机框架复合材料或权利要求3-9任意一项所述的贵金属负载共价有机框架复合材料在污染物吸附催化降解中的应用。
PCT/CN2022/102131 2021-06-29 2022-06-29 一种贵金属负载共价有机框架的复合材料及其制备方法 WO2023274269A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/135,201 US20230264182A1 (en) 2021-06-29 2023-04-17 Precious metal loaded covalent organic framework composite material and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110731539.4 2021-06-29
CN202110731539.4A CN113477277B (zh) 2021-06-29 2021-06-29 金属负载共价有机框架的复合材料及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/135,201 Continuation US20230264182A1 (en) 2021-06-29 2023-04-17 Precious metal loaded covalent organic framework composite material and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2023274269A1 true WO2023274269A1 (zh) 2023-01-05

Family

ID=77937826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102131 WO2023274269A1 (zh) 2021-06-29 2022-06-29 一种贵金属负载共价有机框架的复合材料及其制备方法

Country Status (3)

Country Link
US (1) US20230264182A1 (zh)
CN (1) CN113477277B (zh)
WO (1) WO2023274269A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115922859A (zh) * 2023-01-17 2023-04-07 东北林业大学 一种原位生长的木材纤维素基共价有机框架化合物及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477277B (zh) * 2021-06-29 2022-08-16 广东省科学院生态环境与土壤研究所 金属负载共价有机框架的复合材料及其制备方法和应用
CN115178295B (zh) * 2022-05-09 2023-12-19 江西师范大学 烯胺基共价有机框架担载的非贵金属单原子催化剂的一步合成法及其应用
CN115192708B (zh) * 2022-07-07 2024-02-27 安徽医科大学 负载抗肿瘤药物的纳米复合材料、纳米载药体系及制备与应用
CN115582144B (zh) * 2022-08-31 2024-01-16 浙江工业大学 一种多级孔共价有机框架-金属复合结构催化剂及其制备方法与应用
CN116078431B (zh) * 2022-12-13 2024-06-14 湘潭大学 一种基于中空TTI-COF的Au基催化材料及其催化4-硝基苯酚还原的应用
CN117142552B (zh) * 2023-09-19 2024-05-31 郑州大学 一种自组装双功能光热蒸发柱及其制备方法
CN117257969B (zh) * 2023-11-23 2024-04-05 山东海化集团有限公司 一种针状Ag2O/COFs纳米复合材料及其制备方法与在体外抗菌中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150266885A1 (en) * 2012-10-12 2015-09-24 Council Of Scientific & Industrial Research Porous crystalline frameworks, process for the preparation therof and their mechanical delamination to covalent organic nanosheets (cons)
CN108192057A (zh) * 2017-12-29 2018-06-22 中南大学 多孔有机聚合物及其担载金纳米颗粒的固体催化剂;以及制备和应用
CN109232588A (zh) * 2018-10-17 2019-01-18 中国科学院生态环境研究中心 一种共价有机框架材料的机械化学制备方法及应用
CN109876777A (zh) * 2019-02-20 2019-06-14 中国环境科学研究院 一种磁性共价有机框架固相萃取剂的制备方法及其应用
CN113477277A (zh) * 2021-06-29 2021-10-08 赵晓丽 金属负载共价有机框架的复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150266885A1 (en) * 2012-10-12 2015-09-24 Council Of Scientific & Industrial Research Porous crystalline frameworks, process for the preparation therof and their mechanical delamination to covalent organic nanosheets (cons)
CN108192057A (zh) * 2017-12-29 2018-06-22 中南大学 多孔有机聚合物及其担载金纳米颗粒的固体催化剂;以及制备和应用
CN109232588A (zh) * 2018-10-17 2019-01-18 中国科学院生态环境研究中心 一种共价有机框架材料的机械化学制备方法及应用
CN109876777A (zh) * 2019-02-20 2019-06-14 中国环境科学研究院 一种磁性共价有机框架固相萃取剂的制备方法及其应用
CN113477277A (zh) * 2021-06-29 2021-10-08 赵晓丽 金属负载共价有机框架的复合材料及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NIU LIN, ZHAO XIAOLI, WU FENGCHANG, LV HONGZHOU, TANG ZHI, LIANG WEIGANG, WANG XIAOLEI, GIESY JOHN: "Solid-solid reaction synthesis of covalent organic framework as a stable and highly active photo-catalyst for degradation of sulfathiazole in industrial wastewater", CHEMICAL ENGENEERING JOURNAL, vol. 414, 1 June 2021 (2021-06-01), AMSTERDAM, NL , pages 1 - 9, XP093018514, ISSN: 1385-8947, DOI: 10.1016/j.cej.2021.128619 *
NIU LIN; ZHAO XIAOLI; TANG ZHI; WU FENGCHANG; LEI QITAO; WANG JUNYU; WANG XIAOLEI; LIANG WEIGANG; WANG XIA: "Solid-solid synthesis of covalent organic framework as a support for growth of controllable ultrafine Au nanoparticles", SCIENCE OF THE TOTAL ENVIRONMENT, vol. 835, 22 April 2022 (2022-04-22), AMSTERDAM, NL , pages 1 - 8, XP087081931, ISSN: 0048-9697, DOI: 10.1016/j.scitotenv.2022.155423 *
NIU, LIN: "Ball Milling Synthesis of Covalent Organic Framework and Catalytic Performance", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 28 June 2021 (2021-06-28), pages 1 - 107, XP093019335, ISSN: 1674-0246, DOI: 10.27510/d.cnki.gzhky.2021.000036 *
PACHFULE PRADIP, KANDAMBETH SHARATH, DÍAZ DÍAZ DAVID, BANERJEE RAHUL: "Highly stable covalent organic framework–Au nanoparticles hybrids for enhanced activity for nitrophenol reduction", CHEMICAL COMMUNICATIONS, vol. 50, no. 24, 7 January 2014 (2014-01-07), UK , pages 3169 - 3172, XP093019339, ISSN: 1359-7345, DOI: 10.1039/C3CC49176E *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115922859A (zh) * 2023-01-17 2023-04-07 东北林业大学 一种原位生长的木材纤维素基共价有机框架化合物及其制备方法
CN115922859B (zh) * 2023-01-17 2023-10-27 东北林业大学 一种原位生长的木材纤维素基共价有机框架化合物及其制备方法

Also Published As

Publication number Publication date
US20230264182A1 (en) 2023-08-24
CN113477277A (zh) 2021-10-08
CN113477277B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2023274269A1 (zh) 一种贵金属负载共价有机框架的复合材料及其制备方法
Veerakumar et al. Biomass-derived activated carbon supported Fe3O4 nanoparticles as recyclable catalysts for reduction of nitroarenes
Gao et al. Immobilization of nanosilver onto glycine modified lignin hydrogel composites for highly efficient p-nitrophenol hydrogenation
CN102553579B (zh) 一种高分散负载型纳米金属催化剂的制备方法
JP4989457B2 (ja) insituで形成された二酸化白金を還元することによって得られる白金触媒
CN109126819A (zh) 一种高分散性碳载Pt-Ni催化剂的制备方法
CN108906113A (zh) 一种高负载量的贵金属单原子催化剂及其制备方法和应用
CN110649273B (zh) 一种合成小尺寸高分散金属间化合物催化剂材料的方法及应用
CN102989450A (zh) 一种担载型纳米电催化剂的制备方法、结构特征及应用
CN102600835A (zh) 空心碳纳米笼负载铂基纳米粒子复合催化剂的制备方法
CN101417243B (zh) 高比表面积碳化钨微球与负载型催化剂及它们的制备方法
CN113522279A (zh) 一种用于十二氢乙基咔唑放氢的金钯催化剂及其制备方法
CN114453000A (zh) 一种氮掺杂介孔空心碳球负载金属基纳米催化剂及其制备方法
CN109647517A (zh) 一种用于硝基苯及其衍生物加氢催化剂制备方法
CN113707897A (zh) 一种燃料电池用抗反极催化剂及其制备方法
CN112421063A (zh) 一种一维多孔中空低铂纳米链催化剂的制备方法
CN100500335C (zh) 一种含生物质的水溶性纳米银粉的制备方法
CN105810960A (zh) 一种以泡沫镍为基体的复合材料及其制备方法
CN113522363B (zh) 水凝胶中金属离子改性mof微/纳结构的制备方法及应用
CN111326753B (zh) 一种担载型纳米电催化剂及其制备方法与应用
CN111054340B (zh) 一种以秸秆-石墨烯杂合体为载体原位负载零价铜的催化剂及其制备方法与应用
CN114917930B (zh) 铜钯金属负载介孔碳包覆碳纳米管一维纳米纤维材料及其制备方法
CN100467125C (zh) 碳载纳米碳化钨增强的氧还原电催化剂的制备方法
CN113416069B (zh) 羟基磷灰石纳米线烧结多孔陶瓷珠的制备方法和应用
CN113186228B (zh) 一种微生物负载型钯金双金属纳米催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832082

Country of ref document: EP

Kind code of ref document: A1