WO2023273538A1 - 一种新能源动力电池用导热结构胶及其制造方法 - Google Patents

一种新能源动力电池用导热结构胶及其制造方法 Download PDF

Info

Publication number
WO2023273538A1
WO2023273538A1 PCT/CN2022/088056 CN2022088056W WO2023273538A1 WO 2023273538 A1 WO2023273538 A1 WO 2023273538A1 CN 2022088056 W CN2022088056 W CN 2022088056W WO 2023273538 A1 WO2023273538 A1 WO 2023273538A1
Authority
WO
WIPO (PCT)
Prior art keywords
telechelic
structural formula
chemical structural
epoxy
polyalkylsiloxane
Prior art date
Application number
PCT/CN2022/088056
Other languages
English (en)
French (fr)
Inventor
胡黎明
肖扬华
陈武洲
缪宗倍
Original Assignee
深圳市金菱通达电子有限公司
东莞金菱通达导热材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市金菱通达电子有限公司, 东莞金菱通达导热材料有限公司 filed Critical 深圳市金菱通达电子有限公司
Priority to EP22734859.6A priority Critical patent/EP4137549A4/en
Priority to JP2022543540A priority patent/JP2023536026A/ja
Priority to KR1020227025157A priority patent/KR20230005110A/ko
Priority to US17/864,309 priority patent/US11949081B2/en
Publication of WO2023273538A1 publication Critical patent/WO2023273538A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J115/00Adhesives based on rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/10Block or graft copolymers containing polysiloxane sequences
    • C09J183/12Block or graft copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J187/00Adhesives based on unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the design and manufacture of polymer-based composite polymer materials, high-strength bonding structural materials, and heat-conducting functional materials, and specifically relates to a heat-conducting structural adhesive for new energy power batteries and a manufacturing method thereof.
  • the power battery module With the accelerated development of new energy vehicle technology, the energy density and battery capacity requirements of power batteries are also getting higher and higher.
  • the power battery module generates more and more heat during work, and long-term high temperature will affect the cruising range of new energy vehicles. , reduce the service life of the power battery, and even cause safety accidents.
  • new energy vehicle power battery modules will be equipped with a water-cooled active cooling system, and thermal interface materials will be used as the heat-conducting link between the battery module and the water-cooling system.
  • the safety, reliability and environmental adaptability of the battery system depend on the weakest and most unstable cell.
  • a qualified battery pack must control the temperature difference of the cell within ⁇ 5°C [1] .
  • Both the traditional car giant General Motors and the new car maker Tesla strive to achieve within ⁇ 2°C.
  • some car companies use snake-shaped thermal silica gel sheets as the heat transfer medium between the batteries. The thermal rate constant is low.
  • it is required that the thermal interface material is easy to flow and easy to pot before forming.
  • the purpose of the present invention is to provide a thermally conductive structural adhesive for new energy power batteries and its manufacturing method.
  • the thermally conductive structural adhesive also has shear bonding strength ⁇ 8MPa, tensile strength ⁇ 13MPa, elongation at break ⁇ 20%, and is easy to pour. Sealing, insulation and other properties.
  • a thermally conductive structural adhesive for new energy power batteries of the present invention calculated in terms of the mass percentage of the material formula, includes: A composition containing a block-polymerized telechelic carboxyl compound and/or At least one (3.3-14)% of the telechelic amino compound, coupling agent and/or modifier (0.1-1.0)%, curing accelerator (0-1.6)%, heat-conducting powder (84-92 )%, flame retardant component (0.3 ⁇ 3.0)%; B composition contains at least one (3.3 ⁇ 14) of block polymerized telechelic isocyanate compound and/or block polymerized telechelic epoxy compound %, coupling agent and/or modifier (0 ⁇ 1.0)%, curing accelerator (0 ⁇ 1.6)%, thermal conductive powder (84 ⁇ 92)%, flame retardant component (0.3 ⁇ 3)%; in use 1 part of composition A and (0.25-2) parts of composition B are uniformly mixed in volume ratio or mass ratio, and cured to form a thermal
  • a method for manufacturing a thermally conductive structural adhesive for a new energy power battery of the present invention includes: step (1) a block polymerization method of a telechelic carboxyl compound and/or a telechelic amine-based compound base material, telechelic Block polymerization method of claw isocyanate compound and/or telechelic epoxy compound base material, the orientation of molecular chain "head-to-head” connection or "head-to-tail” connection is random during block polymerization , the atomic arrangement orientation of the cis-type or trans-molecular segments is also random; step (2) liquid material and powder shear strength control powder modification method; step (3) positive pressure or negative pressure reaction control method and steps (4) Heating and cooling method: at least two of the four steps or combining step (1) and step (2) into one step.
  • the block-polymerized telechelic carboxyl compound also includes: telechelic carboxypolybutadiene having the chemical structural formula (1), isocyanate and telechelic carboxypolybutadiene according to chemical structure
  • telechelic carboxypolybutadiene having the chemical structural formula (1) isocyanate and telechelic carboxypolybutadiene according to chemical structure
  • the product of the reaction of structural formula (2) and removal of carbon dioxide, the product of the reaction of epoxy resin and telechelic carboxypolybutadiene according to chemical structural formula (3), epoxy polyalkylsiloxane and telechelic carboxy polybutadiene Alkenes are at least one of the products of chemical structural formula (4) reaction;
  • z is the number average degree of polymerization between 9 ⁇ 27
  • the number average functionality of the carboxyl group is between 2.1 ⁇ 2.2
  • R 8 is vinyl or cyano
  • the isocyanate OCN-R 1 -NCO The average functionality is 2.0, and R1 is at least one of alkylene, phenylene or substituted phenylene, aryl ring or substituted aryl ring, heterocyclic or substituted heterocyclic, and the phenylene is present in an organic compound molecule
  • the group after the middle carbon-hydrogen bond is split to remove two hydrogen atoms (the "support" below all conform to this definition);
  • the block-polymerized telechelic amine-based compound also includes: telechelic amine-based polypropylene oxide with chemical structural formula (5), amine-based compound with chemical structural formula (6)
  • k is that the number-average degree of polymerization is between 25 and 50, and the number-average functionality of the amine group is between 2.0 and 2.3;
  • the block-polymerized telechelic isocyanate-based compound also includes: isocyanate with chemical structural formula (13), isocyanate and telechelic carboxypolybutadiene according to chemical structural formula (14 ) reaction and removal of carbon dioxide, isocyanate and telechelic aminopolypropylene oxide according to chemical structural formula (15) reaction product, isocyanate and aminopolyalkylsiloxane according to chemical structural formula (16) reaction product at least A sort of;
  • the number-average functionality of the isocyanate group is 2.0, and R is alkylene, phenylene or substituted phenylene, aromatic ring or substituted aromatic ring, heterocyclic or heterocyclic support at least one;
  • the block-polymerized telechelic epoxy compound also includes: an epoxy resin having a chemical structural formula (17), an epoxy resin and a telechelic carboxypolybutadiene According to the product of chemical structural formula (18), epoxy-based resin and telechelic aminopolypropylene oxide react according to chemical structural formula (19), epoxy-based resin and amino polyalkylsiloxane according to chemical structural formula ( 20)
  • the number-average functionality of the epoxy group is 2.0 or 3.0, and also includes: R 7 is conforming to the chemical structural formula (25), conforming to the chemical structural formula (26), alkylene, phenylene or substituted phenyl At least one of arylene, aryl ring or substituted aryl ring, heterocycle or alternative heterocycle;
  • the number-average functionality of the epoxy group is 2.0 or 3.0
  • R 9 is a hydrogen atom, an alkyl group with 1-5 carbon atoms
  • benzene At least one of a group or a substituted phenyl group, an aromatic ring group or a substituted aromatic ring group, a heterocyclic group or a heterocyclic group.
  • the coupling agent and/or modifier includes: hexadecyltrimethoxysilane [CAS: 16415-12-6], hexadecyltriethoxysilane [CAS: 16415-13- 7], ⁇ -(2,3-Glycidoxy)propyltrimethoxysilane[CAS:2530-83-8], ⁇ -(2,3-Glycidoxy)propyltriethoxy ⁇ -Aminopropyltrimethoxysilane[CAS:2602-34-8], ⁇ -Aminopropyltrimethoxysilane[CAS:13822-56-5], ⁇ -Aminopropyltriethoxysilane[CAS:919-30- 2], n-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane [CAS: 1760-24-3], n-( ⁇ -aminoethyl)- ⁇ -aminopropyltriethoxy ⁇ -(meth)
  • the curing accelerator includes: phenol [CAS: 108-95-2], 2,4,6-tris (dimethylaminomethyl) phenol [CAS: 90-72-2], triphenyl At least one of phosphorus [CAS: 603-35-0] and imidazole [CAS: 288-32-4].
  • the thermally conductive powder includes: aluminum oxide [Al 2 O 3 ], magnesium oxide [MgO], silicon oxide [SiO 2 ], aluminum nitride [AlN], boron nitride [BN], zinc oxide [ZnO ], silicon nitride [Si 3 N 4 ], silicon carbide [SiC], boron carbide [B 4 C], and the morphology of the thermally conductive powder includes spherical powder, flake powder, and fibrous powder , At least one of special-shaped powder (irregular powder), hexagonal powder and cubic powder, and the average particle diameter D 50 of the single particle and agglomerated particle of the heat-conducting powder is between (0.16-120) ⁇ m.
  • the flame retardant components include: aluminum hydroxide [Al(OH) 3 ], magnesium hydroxide [Mg(OH) 2 ], melamine cyanurate [CAS: 37640-57-6], ammonium polyphosphate (APP), aluminum hypophosphite [Al(H 2 PO 2 ) 3 ], tricresyl phosphate [CAS: 1330-78-5], diethyl ethyl phosphate [CAS: 682-30-4] at least One; wherein the average particle diameter D 50 of the single particles and aggregated particles of the powder flame retardant component is between (0.3-30) ⁇ m.
  • step (1) block polymerization method of telechelic carboxyl compound and/or telechelic amino compound base material, block of telechelic isocyanate compound and/or telechelic epoxy compound base material Aggregation methods, including:
  • reactor A add any one of isocyanate or epoxy resin or epoxy polyalkylsiloxane in a mass ratio of 1 mole, and add telechelic carboxypolybutadiene in a mass ratio (1.8 to 5) moles , start the stirring device to mix the material composed of isocyanate or epoxy resin or epoxy polyalkylsiloxane and telechelic carboxypolybutadiene evenly, control the temperature of the material between (normal temperature ⁇ 145) ° C, and The holding time is (0.5-6) h, correspondingly between (normal temperature ⁇ 145) °C, the higher the material temperature, the shorter the holding time, and the lower the material temperature, the longer the holding time; if the added material is isocyanate and telechelic carboxyl Polybutadiene then reaction product is obtained by chemical structural formula (2), if the added material is epoxy resin and telechelic carboxyl polybutadiene then reaction product is gained by chemical structural formula (3), if added material is epoxy Based polyalkyls
  • composition A the block polymerization method of the telechelic amino compound base material—
  • reactor A add any one of isocyanate or epoxy resin in a mass ratio of 1 mole, and add telechelic aminopolypropylene oxide or aminopolyalkylsiloxane in a mass ratio (1.8 to 5) moles ; or in another reactor A, add 1 mole of epoxy polyalkylsiloxane in mass ratio, add telechelic aminopolypropylene oxide or aminopolyalkylene in mass ratio (2.8 ⁇ 8) moles Siloxane: Start the stirring device to mix the material composed of isocyanate or epoxy resin or epoxy polyalkylsiloxane and telechelic aminopolypropylene oxide or aminopolyalkylsiloxane evenly, and mix the material The temperature is controlled between (normal temperature ⁇ 145) °C, and the holding time is (0.5 ⁇ 6) h.
  • reactor B add mass ratio (1.8 ⁇ 5) molar isocyanate, add mass ratio 1 mole telechelic carboxyl polybutadiene and/or telechelic aminopolypropylene oxide, start stirring device to make isocyanate and telechelic Mix the materials composed of claw carboxypolybutadiene and/or telechelic aminopolypropylene oxide evenly, control the temperature of the materials between (normal temperature ⁇ 145) °C, and keep the temperature for (0.5 ⁇ 6) h, correspondingly in (Normal temperature ⁇ 145) ° C, the higher the material temperature, the shorter the holding time, and the lower the material temperature, the longer the holding time;
  • the reaction product is according to the chemical structural formula (14) and/or according to the chemical structural formula (15) obtained, if the added material is isocyanate and amino polyalkylsiloxane, then the reaction product is obtained according to chemical structural formula (16); in chemical structural formula (14) ⁇ (15), if the quality of isocyanate and Telechelic carboxyl polybutadiene and/or telechelic amine-based polypropylene oxide are added with a molar ratio greater than 2, there will be excess unreacted isocyanate; in chemical structural formula (16), if the quality of isocyanate and If the molar ratio of amino polyalkylsiloxane added to mass is greater than 3, there will be excess unreacted isocyanate;
  • reactor B add mass ratio (1.8 ⁇ 5) molar epoxy resin and/or epoxy polyalkylsiloxane, add mass ratio 1 mole telechelic carboxyl polybutadiene and/or telechelic polybutadiene Claw amine-based polypropylene oxide; in another B reactor, add mass ratio (2.8 ⁇ 8) mole of epoxy resin and/or epoxy polyalkylsiloxane, add mass ratio of 1 mole of amine base polyalkylsiloxane; start the stirring device to make epoxy resin and/or epoxy polyalkylsiloxane and telechelic carboxypolybutadiene and/or telechelic aminopolypropylene oxide constitute a material Mix uniformly, mix the material composed of epoxy resin and/or epoxy polyalkylsiloxane and amino polyalkylsiloxane uniformly, control the temperature of the material between (normal temperature ⁇ 145) ° C, and The holding time is (0.5 ⁇ 6)h, correspondingly (normal temperature ⁇ 145)°C,
  • step (2) liquid material and powder shear strength control powder modification method includes:
  • a reactor A with high-speed stirring and/or high-shear dispersing device according to the material formula of one of the objects of the present invention, add the telechelic carboxyl compound and/or telechelic amino compound base material according to step (1) At least one of, coupling agent and/or modifier, curing accelerator, thermal conductive powder, flame retardant component;
  • telechelic isocyanate compound and/or telechelic epoxy group At least one compound base material, coupling agent and/or modifier, curing accelerator, heat conducting powder, flame retardant component;
  • Reactor A and Reactor B respectively, according to the average particle size D 50 of the raw material powder, it is divided into three or more batches of "fine ⁇ medium ⁇ coarse", and the finest D 50 powder is added in turn.
  • V the rotational linear velocity of the outer diameter of the rotor, or the relative rotational linear velocity of an adjacent pair of rotor outer diameters, the unified or converted unit is "meter/second" or m/s,
  • the minimum gap between adjacent stators and rotors, or between adjacent rotors and rotors, the unified or converted unit is "meter” or m;
  • the high-shear dispersion device can be omitted, and the heat-conducting powder and the powder in the flame-retardant component can be added at one time, and mixed evenly with a high-speed stirring device , Control the speed of the high-speed stirring device to 100-1000r/min.
  • step (3) positive pressure or negative pressure reaction control method includes:
  • Described pressure is gauge pressure; Described positive pressure is to maintain reactor internal pressure (0.0 ⁇ 0.1) MPa; Described negative pressure is to maintain reactor internal pressure (-0.01 ⁇ -0.1) MPa, to remove air, carbon dioxide, Moisture and the hidden low-molecular matter of the raw material itself; said reaction also includes at least one of the subsequent chemical reactions of chemical structural formulas (2) to (4), (7) to (12) in the A composition, and in the B composition According to at least one of chemical structural formula (14) to (16), according to chemical structural formula (18) to (20), according to chemical structural formula (22) to (24) chemical reaction in the substance; while carrying out step (2), Or start the vacuum pump later and slowly reduce the pressure to -0.1MPa.
  • step (4) heating and cooling method includes:
  • step (1), step (2) and step (3) While performing step (1), step (2) and step (3), fill the jacket of the reactor with a heat transfer medium, use fluid circulation equipment to drive heating and cooling, and use a heat conduction oil furnace or electric heating as the heat source;
  • the heat transfer medium includes any one of heat transfer oil, water or cooling liquid;
  • the circulation equipment includes any one of a mold temperature controller, a magnetic drive pump, a reciprocating plunger pump, a peristaltic pump, and a centrifugal pump.
  • the reactor includes: at least one of a kneader with or without a jacket, a planetary mixer, and a chemical reaction kettle; the material of the reactor includes at least one of metal, enamel, glass, and ceramics;
  • the inner cavity shape of the device includes any one of cuboid, cylinder, ellipsoid, and sphere, or a combination of any two of cuboid, cylinder, ellipsoid, and sphere connected.
  • the ratio of the hard segment and soft segment of the molecular chain can be adjusted in a wide range, and the bonding strength, tensile strength and secant modulus of a wide range of end-cured products can be flexibly obtained;
  • reaction conditions are mild, which can be realized in the temperature range of (normal temperature to 145) °C and the pressure range of (-0.1 to 0.1) MPa;
  • the thermal conductivity can reach 11W/(mK), the shear bond strength can reach 14MPa, the flame retardancy V-0 is extinguished immediately after fire, and the density is less than 2.89g/cm 3 , which can meet the requirements of CTP battery packs during normal service and even in the whole world.
  • a material formulation embodiment of a thermally conductive structural adhesive for a new energy power battery of the present invention a total of forty-six examples, of which:
  • the embodiment of the method for manufacturing a thermally conductive structural adhesive for new energy power batteries in the present invention is carried out in conjunction with the forty-six material formulation embodiments, which can be regarded as a typical process within the boundaries of the present invention.
  • Embodiment 47 step (1):
  • reactor A add any one of isocyanate or epoxy resin or epoxy polyalkylsiloxane, telechelic carboxypolybutadiene according to the mass ratio in Table 1, start the stirring device to make isocyanate or epoxy Base resin or epoxy-based polyalkylsiloxane and telechelic carboxypolybutadiene are mixed uniformly; when the added material is isocyanate and telechelic carboxypolybutadiene, the temperature of the material is controlled at (25-45 )°C, and the holding time is 6h, the reaction product is obtained according to the chemical structural formula (2); when the added material is epoxy resin and telechelic carboxy polybutadiene, the temperature of the material is controlled between (75 ⁇ 135)°C Between, and holding time 4.0h, reaction product is gained according to chemical structural formula (3); When adding material is epoxy polyalkyl siloxane and telechelic carboxyl polybutadiene, material temperature is controlled at (75 ⁇ 135 )°C, and the holding time is
  • any one of isocyanate or epoxy resin, telechelic aminopolypropylene oxide or aminopolyalkylsiloxane is added according to the mass ratio of Table 1; in another A reactor, Add epoxy polyalkylsiloxane, telechelic aminopolypropylene oxide or aminopolyalkylsiloxane according to the mass ratio in Table 1; start the stirring device to make isocyanate or epoxy resin or epoxy polyalkylene Alkyl siloxane and telechelic aminopolypropylene oxide or aminopolyalkylsiloxane are mixed uniformly; when the added material is isocyanate and telechelic aminopolypropylene oxide, the temperature of the material is controlled at Between (60 ⁇ 85) °C, and holding time 1.5h, reaction product is gained according to chemical structural formula (7); )°C, and the holding time is 2h, the reaction product is obtained according to the chemical structural formula (8); when the added material is epoxy resin and telechelic aminopolypropylene oxide or
  • Composition B the block polymerization process of telechelic isocyanate-based compounds——
  • reactor B add isocyanate, telechelic carboxypolybutadiene and/or telechelic aminopolypropylene oxide according to the mass ratio in Table 2, start the stirring device to make isocyanate and telechelic carboxypolybutadiene and/or The materials composed of telechelic aminopolypropylene oxide are mixed evenly; in another B reactor, add isocyanate and aminopolyalkylsiloxane according to the mass ratio in Table 2, and start the stirring device to make the isocyanate and aminopolyalkylene Mix the materials composed of silicone-based siloxane evenly; when the added materials are isocyanate and telechelic carboxypolybutadiene and/or telechelic amine-based polypropylene oxide, the temperature of the materials is controlled between (25-45) ° C, And the holding time is 5.5h, the reaction product is obtained according to the chemical structural formula (14) and/or according to the chemical structural formula (15); when the added material is isocyanate and amino polyalky
  • the reaction product contains chemical structure formula (18) and/or formula (19) and/or (22) And/or obtained in (23); when the added material is epoxy resin and/or epoxy polyalkylsiloxane and amino polyalkylsiloxane, the temperature of the material is controlled between (45 ⁇ 65)°C Between, and incubation time 4.5h, reaction product is gained according to chemical structural formula (20) and/or (24); Due to the quality of epoxy resin and/or epoxy polyalkylsiloxane and telechelic carboxypolybutylene The molar ratio of diene and/or telechelic aminopolypropylene oxide is close to 2, and the excess amount of unreacted epoxy resin and/or epoxy polyalkylsiloxane can be ignored; The ratio of the mass of oxy resin and/or epoxy polyalkylsiloxane to the molar ratio of amino polyalkylsiloxane is close to 3, and the unreacted epoxy resin and/or epoxy The polyalkylsiloxane excess
  • a reactor A with high-speed stirring and high-shear dispersing device according to Table 1, at least one of the telechelic carboxyl compound and/or telechelic amino compound base material, coupling agent and /or modifiers, curing accelerators, thermally conductive powders, flame retardant components;
  • a B reactor with a high-speed stirring and high-shear dispersing device first add at least one of the telechelic isocyanate-based compound and/or the telechelic epoxy-based compound according to step (1), Coupling agent and/or modifier, curing accelerator, thermal conductive powder, flame retardant components;
  • Reactor A and Reactor B respectively, according to the average particle size D 50 of the powder, it is divided into three batches of "fine ⁇ medium ⁇ coarse", and the powder with the finest D 50 specification is added first ⁇ the next fine D 50 Specification powder ⁇ thicker powder of D 50 specification; each time a powder of D 50 specification is added, replace the stator and rotor diameter of the high-shear dispersing device or adjust the speed to control the shear strength at (1200-5000 )s -1 , the temperature of the slurry is controlled within the range of (5-155)°C and maintained for 0.25h; the shear strength is calculated according to equation (27); the speed of the high-speed stirring device is controlled at 100-1000r/min.
  • step (2) Start the vacuum pump at the same time or at the later stage of step (2), slowly reduce the pressure in the reactor to -0.1MPa, and maintain the pressure at -0.1MPa for (0.25-1.5) hours.
  • step (1), step (2) and step (3) While performing step (1), step (2) and step (3), fill the jacket of the reactor with a heat transfer medium, and use a fluid circulation device to drive heating and cooling;
  • the heat transfer medium is heat transfer oil, and a power supply is used Heating to control the temperature of the material in the reactor;
  • the circulation equipment uses a mold temperature controller.
  • the ratio of the hard segment and the soft segment of the molecular chain can be flexibly adjusted to obtain a wide range of physical, chemical and electrical properties of the end-cured product:
  • composition A When the volume ratio of composition A to composition B is 1:(0.25 ⁇ 2)——

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本发明公开了一种新能源动力电池用导热结构胶及其制造方法,包括:A组份含嵌段聚合遥爪羧基、嵌段聚合遥爪胺基化合物至少一种3~14%,B组份含嵌段聚合遥爪异氰酸基、嵌段聚合遥爪环氧基化合物至少一种3~14%;偶联剂和改性剂0.1~1%,固化促进剂0~1.6%,导热粉体84~92%,阻燃成分0.3~3%;遥爪羧基、遥爪胺基、遥爪异氰酸基、遥爪环氧基化合物嵌段聚合方法;A组份与B组份按0.25~2份比例混合固化,实测导热系数6~11W/(m.K)、拉伸强度44~16MPa、断裂伸长率11~78%、剪切粘结强度0.7~15MPa可连续调控、阻燃性V0离火即灭;可满足CTP电池包所需导热结构强度要求。

Description

一种新能源动力电池用导热结构胶及其制造方法 技术领域
本发明属于聚合物基复合高分子材料、高强度粘接结构材料、导热功能材料交集领域的设计与制造,具体涉及一种新能源动力电池用导热结构胶及其制造方法。
背景技术
随着新能源汽车技术的加速发展,对动力电池的能量密度与电池容量要求也越来越高,动力电池模组在工作时发热量越来越大,长期高温会影响新能源汽车的续航里程,降低动力电池的使用寿命,甚至引发安全事故。
目前,新能源汽车动力电池模组均会配备水冷主动冷却系统,采用导热界面材料作为电池模组与水冷系统的导热链接。
电池系统的安全性、可靠性和环境适应性取决于最弱的、最不稳定的一个电芯,合格的电池组要将电芯温度差异控制在±5℃以内 [1]。传统车企巨头通用汽车和造车新势力特斯拉都力争做到±2℃以内。对于电芯之间为了保证其温度的稳定性,部分车企采用蛇形导热硅胶片做为电芯与电芯之间的传热介质,其电芯外壳与导热硅胶片并不能完全接触,传热速率常数较低,为了进一步提高传热效率,这就要求导热界面材料在成形前易于流动便于灌封。
中国专利202010452609.8“一种应用于新能源汽车动力电池组的导热结构胶”揭示了一种双组分导热硅胶用于新能源汽车动力电池组,双组分导热硅胶相比导热硅胶片而言,最大优点是导热硅胶能够满足新能源汽车动力电池及电池模组安装的自动化生产线需求,提高电芯与电芯之间的传热效率;对于组装成电池模组而言,还需要螺栓等固定构件才能实现,受目前动力电池包的体积、重量和结构的限制,超越现行续航里程期望值的有效途径是往CTP电池方向发展,如果能够取消这些紧固构件,简化电池包结构——设计开发一种安全可靠的导热结构胶体系,将电池芯直接粘接成电池包,可以提高(15-20)%的体积利用率、电池包零件数量减少约40%、生产效率提高近50%,可大幅提高动力电池包的可靠性、安全性和环境适应性,将显著提高电池模组在单位体积内的能量,并大幅降低制造成本。
中国专利201911307211.9“一种导热结构胶及其制备方法”公开了一种通过导热基料的改性,制备的双组分导热结构胶其在金属间的粘接强度为(4~6.5)MPa,其本体拉伸强度在(2~5.5)MPa。
基于汽车电池包“12m自由落体、45倾斜冲击,不短路燃烧”或25G减速度撞击的要求,经过DFEAM分析表明,按导热结构胶路况服役和退役贮能使用寿命25年设计,其剪切粘接强度应该≥8MPa、拉伸强度应该≥13MPa,显然上述专利技术无法满足取代新能汽车动力电池模组固定构件的要求,其原因是有机硅、聚氨酯体系的导热胶剪切粘接强度和拉伸强度太低的固有缺陷。
对于纯环氧树脂体系导热结构胶而言,虽然其剪切粘接强度和拉伸强度都能满足新能源电池模组导热结构胶的要求,但因环氧树脂本体脆裂的特性在汽车使用长期冲击环境下会有粘结面断裂失效的风险。
因此,发明一种剪切粘接强度≥8MPa、拉伸强度应该≥13MPa、断裂伸长率≥20%,同时便于灌封的绝缘导热结构胶是必要的。
参考文献
[1]张剑波,卢兰光,李哲.车用动力电池系统的关键技术与学科前沿[J].汽车安全与节能学报,2012,3(2):87-104
发明内容
本发明的目的在于提供一种新能源动力电池用导热结构胶及其制造方法,导热结构胶同时具备剪切粘接强度≥8MPa、拉伸强度≥13MPa,断裂伸长率≥20%、便于灌封、绝缘等性能。
为达上述目的之一,本发明的一种新能源动力电池用导热结构胶,以构成材料配方的质量百分比计算,包括:A组合物含有嵌段聚合的遥爪羧基化合物和/或嵌段聚合的遥爪胺基化合物的至少一种(3.3~14)%、偶联剂和/或改性剂(0.1~1.0)%、固化促进剂(0~1.6)%、导热粉体(84~92)%、阻燃成分(0.3~3.0)%;B组合物含有嵌段聚合的遥爪异氰酸基化合物和/或嵌段聚合的遥爪环氧基化合物的至少一种(3.3~14)%、偶联剂和/或改性剂(0~1.0)%、固化促进剂(0~1.6)%、导热粉体(84~92)%、阻燃成分(0.3~3)%;在使用时,将A组合物1份与B组合物(0.25~2)份的体积比例或质量比例混合均匀、固化成终端用途的导热结构胶或粘结材料。
为达上述目的之二,本发明的一种新能源动力电池用导热结构胶制造方法,包括:步骤(一)遥爪羧基化合物和/或遥爪胺基化合物基料的嵌段聚合方法、遥爪异氰酸基化合物和/或遥爪环氧基化合物基料的嵌段聚合方法,嵌段聚合时分子链的”头-头”相接或“头-尾”相接的取向是随机的,顺式或反式分子链段的原子排列取向也是随机的;步骤(二)液料与粉体剪切强度控制粉体改性方法;步骤(三)正压或负压反应控制方法和步骤(四)加热与冷却方法;四个步骤的至少两个或者将步骤(一)和步骤(二)合并为一个步骤。
进一步地,在所述A组合物中,所述嵌段聚合的遥爪羧基化合物还包括:具有化学结构式(1)的遥爪羧基聚丁二烯、异氰酸酯与遥爪羧基聚丁二烯按化学结构式(2)反应并脱除二氧化碳的产物、环氧基树脂与遥爪羧基聚丁二烯按化学结构式(3)反应的产物、环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯按化学结构式(4)反应的产物的至少一种;
其中化学结构式(1)——
Figure PCTCN2022088056-appb-000001
且在化学结构式(1)中,x=1,y=0~1.0是相对x的摩尔数之比值,z为数均聚合度在9~27之间,羧基的数均官能度在2.1~2.2之间,R 8为乙烯基或氰基;
其中化学结构式(2)——
Figure PCTCN2022088056-appb-000002
且在化学结构式(2)中,异氰酸酯OCN-R 1-NCO
Figure PCTCN2022088056-appb-000003
均官能度为2.0,R 1为烷撑、苯撑或取代苯撑、芳环撑或取代芳环撑、杂环撑或取杂环撑的至少一种,所述撑是在一个有机化合物分子中碳氢键均裂去除两个氢原子后的基团(下文的“撑”均符合此定义);
其中化学结构式(3)——
Figure PCTCN2022088056-appb-000004
且在化学结构式(3)中,环氧基化合物符合化学结构式(17)的定义;
其中化学结构式(4)——
Figure PCTCN2022088056-appb-000005
且在化学结构式(4)中,环氧基化合物符合化学结构式(21)的定义。
进一步地,在所述A组合物中,所述嵌段聚合的遥爪胺基化合物还包括:具有化学结构式(5)的遥爪胺基聚环氧丙烷、具有化学结构式(6)的胺基聚烷基硅氧烷、异氰酸酯与遥爪胺基聚环氧丙烷按化学结构式(7)反应的产物、异氰酸酯与胺基聚烷基硅氧烷按化学结构式(8)反应的产物、环氧基树脂与遥爪胺基聚环氧丙烷按化学结构式(9)反应的产物、环氧基树脂与胺基聚烷基硅氧烷按化学结构式(10)反应的产物、环氧基聚烷基硅氧烷与遥爪胺基聚环氧丙烷按化学结构式(11)反应的产物、环氧基聚烷基硅氧烷与胺基聚烷基硅氧烷按化学结构式(12)反应的产物的至少一种;
其中化学结构式(5)——
Figure PCTCN2022088056-appb-000006
且在化学结构式(5)中,k为数均聚合度在25~50之间,胺基的数均官能度在2.0~2.3之间;
其中化学结构式(6)——
Figure PCTCN2022088056-appb-000007
且在化学结构式(6)中,数均聚合度为m=0~1、n=8~22,胺基的数均官能度在2.9~3.3之间,R 2为碳原子为2~5的烷撑,R 3、R 4、R 5和R 6为烷基、苯基或取代苯基、芳环基或取代芳环基、杂环基或取杂环基的至少一种;
其中化学结构式(7)——
Figure PCTCN2022088056-appb-000008
其中化学结构式(8)——
Figure PCTCN2022088056-appb-000009
其中化学结构式(9)——
Figure PCTCN2022088056-appb-000010
其中化学结构式(10)——
Figure PCTCN2022088056-appb-000011
其中化学结构式(11)——
Figure PCTCN2022088056-appb-000012
其中化学结构式(12)——
Figure PCTCN2022088056-appb-000013
进一步地,在所述B组合物中,所述嵌段聚合的遥爪异氰酸基化合物还包括:具有化学结构式(13)的异氰酸酯、异氰酸酯与遥爪羧基聚丁二烯按化学结构式(14)反应并脱除二氧化碳的产物、异氰酸酯与遥爪胺基聚环氧丙烷按化学结构式(15)反应的产物、异氰酸酯 与胺基聚烷基硅氧烷按化学结构式(16)反应的产物的至少一种;
其中化学结构式(13)——
OCN-R 1-NCO                     (13)
且在化学结构式(13)中,异氰酸基的数均官能度为2.0,R 1为烷撑、苯撑或取代苯撑、芳环撑或取代芳环撑、杂环撑或取杂环撑的至少一种;
其中化学结构式(14)——
Figure PCTCN2022088056-appb-000014
其中化学结构式(15)——
Figure PCTCN2022088056-appb-000015
其中化学结构式(16)——
Figure PCTCN2022088056-appb-000016
进一步地,在所述B组合物中,所述嵌段聚合的遥爪环氧基化合物还包括:具有化学结构式(17)的环氧基树脂、环氧基树脂与遥爪羧基聚丁二烯按化学结构式(18)反应的产物、环氧基树脂与遥爪胺基聚环氧丙烷按化学结构式(19)反应的产物、环氧基树脂与胺基聚烷基硅氧烷按化学结构式(20)反应的产物、具有化学结构式(21)的环氧基聚烷基硅氧烷、环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯按化学结构式(22)反应的产物、环氧基聚烷基硅氧烷与遥爪胺基聚环氧丙烷按化学结构式(23)反应的产物、环氧基聚烷基硅氧烷与胺基聚烷基硅氧烷按化学结构式(24)反应的产物的至少一种;
其中化学结构式(17)——
Figure PCTCN2022088056-appb-000017
且在化学结构式(17)中,环氧基的数均官能度在2.0或3.0,还包括:R 7为符合化学结构式(25)、符合化学结构式(26)、烷撑、苯撑或取代苯撑、芳环撑或取代芳环撑、杂环撑或取杂环撑的至少一种;
其中化学结构式(18)——
Figure PCTCN2022088056-appb-000018
其中化学结构式(19)——
Figure PCTCN2022088056-appb-000019
其中化学结构式(20)——
Figure PCTCN2022088056-appb-000020
其中化学结构式(21)——
Figure PCTCN2022088056-appb-000021
且在化学结构式(21)中,烷基硅氧烷的数均聚合度为m≥0、n=5~50,环氧基的数均官能度在2.8~3.0之间,R 2为碳原子为2~5的烷撑,R 3、R 4、R 5和R 6为烷基、苯基或取代苯基、芳环基或取代芳环基、杂环基或取杂环基的至少一种;
其中化学结构式(22)——
Figure PCTCN2022088056-appb-000022
其中化学结构式(23)——
Figure PCTCN2022088056-appb-000023
其中化学结构式(24)——
Figure PCTCN2022088056-appb-000024
其中化学结构式(25)——
Figure PCTCN2022088056-appb-000025
且在化学结构式(25)中,数均聚合度为q=1~2,环氧基的数均官能度在2.0或3.0,R 9为氢原子、碳原子为1~5的烷基、苯基或取代苯基、芳环基或取代芳环基、杂环基或取杂环基的至少一种;
其中化学结构式(26)——
Figure PCTCN2022088056-appb-000026
且在化学结构式(26)中,数均聚合度为q=1~2,环氧基的数均官能度在2.0或3.0,R 9为氢原子、碳原子为1~5的烷基、苯基或取代苯基、芳环基或取代芳环基、杂环基或取杂环基的至少一种。
进一步地,所述偶联剂和/或改性剂包括:十六烷基三甲氧基硅烷[CAS:16415-12-6]、十六烷基三乙氧基硅烷[CAS:16415-13-7]、γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷[CAS:2530-83-8]、γ-(2,3-环氧丙氧基)丙基三乙氧基硅烷[CAS:2602-34-8]、γ-胺基丙基三甲氧基硅烷[CAS:13822-56-5]、γ-胺基丙基三乙氧基硅烷[CAS:919-30-2]、n-(β-氨乙基)-γ- 氨丙基三甲氧基硅烷[CAS:1760-24-3]、n-(β-氨乙基)-γ-氨丙基三乙氧基硅烷[CAS:5089-72-5]、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷[CAS:2530-85-0]、γ-(甲基丙烯酰氧)丙基三乙氧基硅烷[CAS:21142-29-0]、γ-二乙烯三胺丙基甲基二甲氧基硅烷[CAS:99740-64-4]的至少一种;或者异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯[CAS:61417-49-0]、异丙基三(二辛基磷酸酰氧基)钛酸酯[CAS:65345-34-8]、三异硬酯酸钛酸异丙酯[CAS:61417-49-0]、双(二辛氧基焦磷酸酯基)乙撑钛酸酯[CAS:65467-75-6]、四异丙基二(二辛基亚磷酸酰氧基)钛酸酯[CAS:65460-52-8]中的至少一种;或者油酸[CAS:112-80-1]、月桂酸[CAS:143-07-7]、辛酸[CAS:124-07-2]、蓖麻油酸[CAS:141-22-0]、松香酸[CAS:514-10-3]、水杨酸[CAS:69-72-7]、苯甲酸[CAS:65-85-0]、十二烷基苯磺酸[CAS:27176-87-0]、苯骈三氮唑[CAS:95-14-7]、甲基苯骈三氮唑[CAS号29385-43-1]的至少一种。
进一步地,所述固化促进剂包括:苯酚[CAS:108-95-2]、2,4,6—三(二甲胺基甲基)苯酚[CAS:90-72-2]、三苯基磷[CAS:603-35-0]、咪唑[CAS:288-32-4]的至少一种。
进一步地,所述导热粉体包括:氧化铝[Al 2O 3]、氧化镁[MgO]、氧化硅[SiO 2]、氮化铝[AlN]、氮化硼[BN]、氧化锌[ZnO]、氮化硅[Si 3N 4]、碳化硅[SiC]、碳化硼[B 4C]的至少一种,导热粉体的形貌包括球形粉体、片状粉体、纤维状粉体、异形型粉体(不规则粉体)、六方型粉体和立方粉体中的至少一种,导热粉体单一颗粒、团聚颗粒的平均粒径D 50在(0.16~120)μm之间。
进一步地,所述阻燃成分包括:氢氧化铝[Al(OH) 3]、氢氧化镁[Mg(OH) 2]、三聚氰胺氰尿酸盐[CAS:37640-57-6]、聚磷酸铵(APP)、次磷酸铝[Al(H 2PO 2) 3]、磷酸三甲苯酯[CAS:1330-78-5]、乙基磷酸二乙酯[CAS:682-30-4]中的至少一种;其中粉体阻燃成分单一颗粒、团聚颗粒的平均粒径D 50在(0.3~30)μm之间。
进一步地,所述步骤(一)遥爪羧基化合物和/或遥爪胺基化合物基料的嵌段聚合方法、遥爪异氰酸基化合物和/或遥爪环氧基化合物基料的嵌段聚合方法,包括:
在所述A组合物中,所述遥爪羧基化合物基料的嵌段聚合方法——
在A反应器中,加入质量比例1摩尔的异氰酸酯或环氧基树脂或环氧基聚烷基硅氧烷的任意一种、加入质量比例(1.8~5)摩尔的遥爪羧基聚丁二烯,启动搅拌装置使异氰酸酯或环氧基树脂或环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯构成的物料混合均匀,将物料温度控制在(常温~145)℃之间,并保温时间(0.5~6)h,相应地在(常温~145)℃之间物料温度越高则保温时间越短、物料温度越低则保温时间越长;如果所加物料为异氰酸酯和遥爪羧基聚丁二烯则反应产物按化学结构式(2)所得,如果所加物料为环氧基树脂和遥爪羧基聚丁二烯则反应产物按化学结构式(3)所得,如果所加物料为环氧基聚烷基硅氧烷和遥爪羧基聚丁二烯则反应产物按化学结构式(4)所得;如果遥爪羧基聚丁二烯入的质量与异氰酸酯或环氧基树脂加入质量的摩尔数之比大于2、遥爪羧基聚丁二烯入的质量与环氧基聚烷基硅氧烷加入质量的摩尔数之比大于3会有未反应的遥爪羧基聚丁二烯过剩;
在所述A组合物中,所述遥爪胺基化合物基料的嵌段聚合方法——
在A反应器中,加入质量比例1摩尔的异氰酸酯或环氧基树脂的任意一种、加入质量比例(1.8~5)摩尔的遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷;或在另一次A反应器中,加入质量比例1摩尔的环氧基聚烷基硅氧烷、加入质量比例(2.8~8)摩尔的遥爪胺基聚环氧 丙烷或胺基聚烷基硅氧烷;启动搅拌装置使异氰酸酯或环氧基树脂或环氧基聚烷基硅氧烷与遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷构成的物料混合均匀,将物料温度控制在(常温~145)℃之间,并保温时间(0.5~6)h,相应地在(常温~145)℃之间物料温度越高则保温时间越短、物料温度越低则保温时间越长;如果所加物料为异氰酸酯和遥爪胺基聚环氧丙烷则反应产物按化学结构式(7)所得,如果所加物料为异氰酸酯和胺基聚烷基硅氧烷时则反应产物按化学结构式(8)所得,如果所加物料为环氧基树脂和遥爪胺基聚环氧丙烷则反应产物按化学结构式(9)所得,如果所加物料为环氧基树脂和胺基聚烷基硅氧烷时则反应产物按化学结构式(10)所得,如果所加物料为环氧基聚烷基硅氧烷和遥爪胺基聚环氧丙烷则反应产物按化学结构式(11)所得,如果所加物料为环氧基聚烷基硅氧烷和胺基聚烷基硅氧烷时则反应产物按化学结构式(12)所得;在化学结构式(7)~(10)中,如果遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷入的质量与异氰酸酯或环氧基树脂加入质量的摩尔数之比大于2,会有未反应的遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷过剩;在化学结构式(11)~(12)中,如果遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷入的质量与环氧基聚烷基硅氧烷加入质量的摩尔数之比大于3,会有未反应的遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷过剩;
在所述B组合物中,所述遥爪异氰酸基化合物的嵌段聚合方法方法——
在B反应器中,加入质量比例(1.8~5)摩尔的异氰酸酯、加入质量比例1摩尔的遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷,启动搅拌装置使异氰酸酯与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷构成的物料混合均匀,将物料温度控制在(常温~145)℃之间,并保温时间(0.5~6)h,相应地在(常温~145)℃之间物料温度越高则保温时间越短、物料温度越低则保温时间越长;
在另一次B反应器中,加入质量比例(2.8~8)摩尔的异氰酸酯、加入质量比例1摩尔的胺基聚烷基硅氧烷,启动搅拌装置使异氰酸酯与胺基聚烷基硅氧烷构成的物料混合均匀,将物料温度控制在(常温~145)℃之间,并保温时间(0.5~6)h,相应地在(常温~145)℃之间物料温度越高则保温时间越短、物料温度越低则保温时间越长;如果所加物料为异氰酸酯与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷则反应产物按化学结构式(14)和/或按化学结构式(15)所得,如果所加物料为异氰酸酯与胺基聚烷基硅氧烷时则反应产物按化学结构式(16)所得;在化学结构式(14)~(15)中,如果异氰酸酯入的质量与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷加入质量的摩尔数之比大于2,会有未反应的异氰酸酯过剩;在化学结构式(16)中,如果异氰酸酯入的质量与胺基聚烷基硅氧烷加入质量的摩尔数之比大于3,会有未反应的异氰酸酯过剩;
在所述B组合物中,所述遥爪环氧基化合物基料的嵌段聚合方法——
在B反应器中,加入质量比例(1.8~5)摩尔的环氧基树脂和/或环氧基聚烷基硅氧烷、加入质量比例1摩尔的遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷;在另一次B反应器中,加入质量比例(2.8~8)摩尔的环氧基树脂和/或环氧基聚烷基硅氧烷、加入质量比例1摩尔的胺基聚烷基硅氧烷;启动搅拌装置使环氧基树脂和/或环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷构成的物料混合均匀、使环氧基树脂和/或环氧基聚烷基硅氧烷与胺基聚烷基硅氧烷构成的物料混合均匀,将物料温度控制在(常温~145)℃之间,并保温时间(0.5~6)h,相应地(常温~145)℃物料温度越高则保温时间越短、物料温度越低 则保温时间越长;如果所加物料为环氧基树脂和/或环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷,则反应产物包含按化学结构式(18)和/或式(19)和/或(22)和/或(23)所得;如果所加物料为环氧基树脂和/或环氧基聚烷基硅氧与胺基聚烷基硅氧烷,则反应产物按化学结构式(20)和/或(24)所得;在化学结构式(18)、(19)、(22)、(23)中,如果环氧基树脂和/或环氧基聚烷基硅氧烷入的质量与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷加入质量的摩尔数之比大于2,会有未反应的环氧基树脂和/或环氧基聚烷基硅氧烷过剩;在化学结构式(20)、(24)中,如果环氧基树脂和/或环氧基聚烷基硅氧烷入的质量与胺基聚烷基硅氧烷加入质量的摩尔数之比大于3,会有未反应的环氧基树脂和/或环氧基聚烷基硅氧烷过剩。
进一步地,所述步骤(二)液料与粉体剪切强度控制粉体改性方法包括:
在一个带高速搅拌和/或高剪切分散装置的A反应器中,按照本发明目的之一的材料配方,加入按照步骤(一)的遥爪羧基化合物和/或遥爪胺基化合物基料的至少一种、偶联剂和/或改性剂、固化促进剂、导热粉体、阻燃成分;
在一个带高速搅拌和/或高剪切分散装置的B反应器中,按照本发明目的之一的材料配方,加入按照步骤(一)遥爪异氰酸基化合物和/或遥爪环氧基化合物基料的至少一种、偶联剂和/或改性剂、固化促进剂、导热粉体、阻燃成分;
分别在A反应器中和B反应器中,按照原料粉体平均粒径D 50规格分为“细→中→粗”三批次或更多批次,依次先加入最细D 50规格的粉体→次细D 50规格的粉体→中级D 50规格的粉体→较粗D 50规格的粉体,类推,直至最粗D 50规格的粉体;每加入一个D 50规格的粉体,更换高剪切分散装置的定子、转子的直径或者调节转速,将剪切强度控制在(1200~233000)s -1之间,将浆料温度控制在(0~145)℃范围内并维持(0.1~4)h;所述剪切强度按照方程式(27)控制,
Figure PCTCN2022088056-appb-000027
在式(27)中,
S s—剪切强度,统一或换算后的单位是“1/秒”或s -1
V—转子外径的旋转线速度,或者相邻一对转子外径的相对旋转线速度,统一或者换算后的单位是“米/秒”或m/s,
δ—相邻定子和转子之间,或者相邻转子和转子之间的最小间隙,统一或者换算后的单位是“米”或m;
当导热粉体和阻燃成分中粉体的D 50规格大于1.0μm时,高剪切分散装置可以缺省,导热粉体和阻燃成分中粉体可以一次性加入,用高速搅拌装置混合均匀,控制高速搅拌装置转速为100~1000r/min。
进一步地,所述步骤(三)正压或负压反应控制方法包括:
所述压力为表压;所述正压是维持反应器内压力(0.0~0.1)MPa;所述负压是维持反应器内压力(-0.01~-0.1)MPa,以脱除空气、二氧化碳、水分和原材料自身隐含的低分子物;所述反应还包括在A组合物中按化学结构式(2)至(4)、(7)至(12)后继化学反应的至少一种,在B组合物中按化学结构式(14)至(16)、按化学结构式(18)至(20)、按化学结构式(22)至(24)化学反应的至少一种;在进行步骤(二)的同时,或后期启动真空泵,缓慢将压力降低到-0.1MPa。
进一步地,所述步骤(四)加热与冷却方法包括:
在进行步骤(一)、步骤(二)、步骤(三)的同时,在反应器的夹套中充入传热介质,用流体循环设备驱动加热与冷却,热源采用导热油炉或电加热;所述传热介质包括导热油、水或冷却液的任意一种;所述循环设备包括模温机、磁力驱动泵、往复柱塞泵、蠕动泵、离心泵的任意一种。
进一步地,所述反应器包括:带夹套或不带夹套的捏合机、行星搅拌机、化学反应釜的至少一种;反应器的材质包括金属、搪瓷、玻璃、陶瓷的至少一种;反应器的内腔形状包括长方体、圆柱体、椭球体、球体的任意一种,或者长方体、圆柱体、椭球体、球体的任意两种相连接而成的组合体。
本发明的一种新能源动力电池用导热结构胶及其制造方法,其有益技术效果在于:
①采用嵌段合成法,可以在较宽范围内调节分子链硬段和软段的比例、灵活获得终点固化产物较宽范围的粘结强度、拉伸强度和正割模量;
②反应条件温和,在(常温~145)℃温度范围、在(-0.1~0.1)MPa压力范围可以实现;
③导热系数可达11W/(m.K)、剪切粘结强度可达14MPa、阻燃性V-0离火即灭、密度小于2.89g/cm 3,可以满足CTP电池包在正常服役期间乃至全寿命周期内所需要的导热和结构强度要求。
附图说明
图1是本发明实施例7与实施例19组合实施例,以Va:Vb=1:(0.25~2.0)体积比,混合固化后的剪切粘结强度测试结果。
具体实施方式
为详细说明本发明的一种新能源动力电池用导热结构胶及其制造方法的技术内容、所实现目的和效果,以下结合实施例进一步说明。
1)材料配方实施例
本发明一种新能源动力电池用导热结构胶的材料配方实施例,共有四十六例,其中:
a)A组合物典型配方十二例,见表1;
b)B组合物典型配方十二例,见表2;
c)A组合物与B组合物以Va:Vb=1:1体积比,混合固化后理化电气性能测试结果十二例,见表3;
d)实施例7与实施例19组合,以Va:Vb=1:(0.25~2.0)体积比,混合固化后的剪切粘结强度测试结果十例,见表4和图1。
从表1至表4看到,构成材料配方的四十六个实施例,可以视为本发明边界内较宽范围的典型配方。
2)制造方法实施例
本发明一种新能源动力电池用导热结构胶制造方法的实施例,是配合四十六个材料配方实施例进行的,可以视为本发明边界内的典型工艺。
实施例47,步骤(一):
A组合物,遥爪羧基化合物基料的嵌段聚合工艺——
在A反应器中,按照表1加入质量比例的异氰酸酯或环氧基树脂或环氧基聚烷基硅氧烷 的任意一种、遥爪羧基聚丁二烯,启动搅拌装置使异氰酸酯或环氧基树脂或环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯构成的物料混合均匀;所加物料为异氰酸酯和遥爪羧基聚丁二烯时,将物料温度控制在(25~45)℃之间,并保温时间6h,反应产物按化学结构式(2)所得;所加物料为环氧基树脂和遥爪羧基聚丁二烯时,将物料温度控制在(75~135)℃之间,并保温时间4.0h,反应产物按化学结构式(3)所得;所加物料为环氧基聚烷基硅氧烷和遥爪羧基聚丁二烯时,将物料温度控制在(75~135)℃之间,并保温时间3.5h,反应产物按化学结构式(4)所得;由于遥爪羧基聚丁二烯入的质量与异氰酸酯或环氧基树脂加入质量的摩尔数之比接近2、遥爪羧基聚丁二烯入的质量与环氧基聚烷基硅氧烷加入质量的摩尔数之比接近3,未反应的遥爪羧基聚丁二烯过剩量可以忽略不计;
A组合物,遥爪胺基化合物基料的嵌段聚合工艺——
在A反应器中,按照表1加入质量比例的异氰酸酯或环氧基树脂的任意一种、遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷;在另一次A反应器中,按照表1加入质量比例的环氧基聚烷基硅氧烷、遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷;启动搅拌装置使异氰酸酯或环氧基树脂或环氧基聚烷基硅氧烷与遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷构成的物料混合均匀;所加物料为异氰酸酯和遥爪胺基聚环氧丙烷时,将物料温度控制在(60~85)℃之间,并保温时间1.5h,反应产物按化学结构式(7)所得;所加物料为异氰酸酯和胺基聚烷基硅氧烷时,将物料温度控制在(60~85)℃之间,并保温时间2h,反应产物按化学结构式(8)所得;所加物料为环氧基树脂和遥爪胺基聚环氧丙烷时,将物料温度控制在(65~90)℃之间,并保温时间1.5h,反应产物按化学结构式(9)所得;所加物料为环氧基树脂和胺基聚烷基硅氧烷时,将物料温度控制在(65~90)℃之间,并保温时间2.0h,反应产物按化学结构式(10)所得;所加物料为环氧基聚烷基硅氧烷和遥爪胺基聚环氧丙烷时,将物料温度控制在(55~75)℃之间,并保温时间3.5h,反应产物按化学结构式(11)所得;所加物料为环氧基聚烷基硅氧烷和胺基聚烷基硅氧烷时,将物料温度控制在(50~70)℃之间,并保温时间5.5h,反应产物按化学结构式(12)所得;由于遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷入的质量与异氰酸酯或环氧基树脂加入质量的摩尔数之比接近2,未反应的遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷过剩量可以忽略不计;由于遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷入的质量与环氧基聚烷基硅氧烷加入质量的摩尔数之比接近3,未反应的遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷过剩量可以忽略不计;
B组合物,遥爪异氰酸基化合物的嵌段聚合工艺——
在B反应器中,按照表2加入质量比例的异氰酸酯、遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷,启动搅拌装置使异氰酸酯与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷构成的物料混合均匀;在另一次B反应器中,按照表2加入质量比例的异氰酸酯、胺基聚烷基硅氧烷,启动搅拌装置使异氰酸酯与胺基聚烷基硅氧烷构成的物料混合均匀;所加物料为异氰酸酯与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷时,将物料温度控制在(25~45)℃之间,并保温时间5.5h,反应产物按化学结构式(14)和/或按化学结构式(15)所得;所加物料为异氰酸酯与胺基聚烷基硅氧烷时,将物料温度控制在(60~85)℃,并保温时间1.0h,反应产物按化学结构式(16)所得;由于异氰酸酯加入的质量与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷加入质量的摩尔数之比接近2,未反应的异氰酸酯过剩量可以忽略不计;由于异氰 酸酯加入的质量与胺基聚烷基硅氧烷加入质量的摩尔数之比接近3,未反应的异氰酸酯过剩量可以忽略不计;
B组合物,遥爪环氧基化合物基料的嵌段聚合工艺——
在B反应器中,按照表2加入质量比例的环氧基树脂和/或环氧基聚烷基硅氧烷、遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷;在另一次B反应器中,按照表2加入质量比例的环氧基树脂和/或环氧基聚烷基硅氧烷、胺基聚烷基硅氧烷;启动搅拌装置使环氧基树脂和/或环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷构成的物料混合均匀、使环氧基树脂和/或环氧基聚烷基硅氧烷与胺基聚烷基硅氧烷构成的物料混合均匀;所加物料为环氧基树脂和/或环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷时,将物料温度控制在(55~75)℃之间,并保温时间3.5h,反应产物包含按化学结构式(18)和/或式(19)和/或(22)和/或(23)所得;所加物料为环氧基树脂和/或环氧基聚烷基硅氧与胺基聚烷基硅氧烷时,将物料温度控制在(45~65)℃之间,并保温时间4.5h,反应产物按化学结构式(20)和/或(24)所得;由于环氧基树脂和/或环氧基聚烷基硅氧烷入的质量与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷加入质量的摩尔数之比接近2,未反应的环氧基树脂和/或环氧基聚烷基硅氧烷过剩量可以忽略不计;由于环氧基树脂和/或环氧基聚烷基硅氧烷入的质量与胺基聚烷基硅氧烷加入质量的摩尔数之比接近3,未反应的环氧基树脂和/或环氧基聚烷基硅氧烷过剩量可以忽略不计。
实施例,48步骤(二):
在一个带高速搅拌和高剪切分散装置的A反应器中,按照表1先加入按照步骤(一)遥爪羧基化合物和/或遥爪胺基化合物基料的至少一种、偶联剂和/或改性剂、固化促进剂、导热粉体、阻燃成分;
在一个带高速搅拌和高剪切分散装置的B反应器中,按照表2先加入按照步骤(一)遥爪异氰酸基化合物和/或遥爪环氧基化合物基料的至少一种、偶联剂和/或改性剂、固化促进剂、导热粉体、阻燃成分;
分别在A反应器中和B反应器中,按照粉体平均粒径D 50规格分为“细→中→粗”三批次,依次先加入最细D 50规格的粉体→次细D 50规格的粉体→较粗D 50规格的粉体;每加入一个D 50规格的粉体,更换高剪切分散装置的定子、转子的直径或者调节转速,将剪切强度控制在(1200~5000)s -1之间,将浆料温度控制在(5~155)℃范围内并维持0.25h;剪切强度按照方程式(27)计算;控制高速搅拌装置转速为100~1000r/min。
实施例49,步骤(三):
在进行步骤(二)的同时或后期启动真空泵,缓慢将反应器内的压力降低到-0.1MPa,并维持压力-0.1MPa累计达(0.25~1.5)h。
实施例50,步骤(四):
在进行步骤(一)、步骤(二)、步骤(三)的同时,在反应器的夹套中充入传热介质,用流体循环设备驱动加热与冷却;传热介质为导热油,采用电源加热,以控制反应器内的物料温度;循环设备采用模温机。
通过材料配方四十六个实施例和四个制造方法实施例,从表1至表4可以看到本发明的一种新能源动力电池用导热结构胶及其制造方法,其有益技术效果已经达到:
①采用嵌段聚合法,可灵活调节分子链硬段和软段的比例,获得终点固化产物较宽范围的理化电气性能:
当A组合物与B组合物的体积比在1:1时——
密度         2.41~2.89g/cm 3
导热系数     5.90~10.82W/(m.K),
拉伸强度     4.0~15.5MPa,
断裂伸长率   11~78%,
正割模量     11~320MPa,
剪切粘结强度 4.5~11.3MPa,
击穿强度     19.0~22.3kV/mm,
体积电阻率   1.8×10 14~4.8×10 14
阻燃性       V 0~离火即灭;
当A组合物与B组合物的体积比在1:(0.25~2)时——
剪切粘结强度(0.7~14.9)MPa,连续可调可控;
②可以满足CTP电池包在正常服役期间乃至全寿命周期内所需要的导热和结构强度要求。
Figure PCTCN2022088056-appb-000028
Figure PCTCN2022088056-appb-000029
Figure PCTCN2022088056-appb-000030
表4不同体积比剪切粘结强度的测试结果
Figure PCTCN2022088056-appb-000031

Claims (14)

  1. 一种新能源动力电池用导热结构胶,以构成材料配方的质量百分比计算,其特征在于包括:A组合物含有嵌段聚合的遥爪羧基化合物和/或嵌段聚合的遥爪胺基化合物的至少一种(3.3~14)%、偶联剂和/或改性剂(0.1~1.0)%、固化促进剂(0~1.6)%、导热粉体(84~92)%、阻燃成分(0.3~3.0)%;B组合物含有嵌段聚合的遥爪异氰酸基化合物和/或嵌段聚合的遥爪环氧基化合物的至少一种(3.3~14)%、偶联剂和/或改性剂(0~1.0)%、固化促进剂(0~1.6)%、导热粉体(84~92)%、阻燃成分(0.3~3)%;在使用时,将A组合物1份与B组合物(0.25~2)份的体积比例或质量比例混合均匀、固化成终端用途的导热结构胶或粘结材料。
  2. 一种新能源动力电池用导热结构胶制造方法,其特征在于包括:步骤(一)遥爪羧基化合物和/或遥爪胺基化合物基料的嵌段聚合方法、遥爪异氰酸基化合物和/或遥爪环氧基化合物基料的嵌段聚合方法,嵌段聚合时分子链的”头-头”相接或“头-尾”相接的取向是随机的,顺式或反式分子链段的原子排列取向也是随机的;步骤(二)液料与粉体剪切强度控制粉体改性方法;步骤(三)正压或负压反应控制方法和步骤(四)加热与冷却方法;四个步骤的至少两个或者将步骤(一)和步骤(二)合并为一个步骤。
  3. 根据权利要求1所述的导热结构胶,其特征在于在所述A组合物中所述嵌段聚合的遥爪羧基化合物还包括:具有化学结构式(1)的遥爪羧基聚丁二烯、异氰酸酯与遥爪羧基聚丁二烯按化学结构式(2)反应并脱除二氧化碳的产物、环氧基树脂与遥爪羧基聚丁二烯按化学结构式(3)反应的产物、环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯按化学结构式(4)反应的产物的至少一种;
    其中化学结构式(1)——
    Figure PCTCN2022088056-appb-100001
    且在化学结构式(1)中,x=1,y=0~1.0是相对x的摩尔数之比值,z为数均聚合度在9~27之间,羧基的数均官能度在2.1~2.2之间,R 8为乙烯基或氰基;
    其中化学结构式(2)——
    Figure PCTCN2022088056-appb-100002
    且在化学结构式(2)中,异氰酸酯OCN-R 1-NCO
    Figure PCTCN2022088056-appb-100003
    均官能度为2.0,R 1为烷撑、苯撑或取代苯撑、芳环撑或取代芳环撑、杂环撑或取杂环撑的至少一种,所述撑是在一个有机化合物分子中碳氢键均裂去除两个氢原子后的基团(下文的“撑”均符合此定义);
    其中化学结构式(3)——
    Figure PCTCN2022088056-appb-100004
    且在化学结构式(3)中,环氧基化合物符合化学结构式(17)的定义;
    其中化学结构式(4)——
    Figure PCTCN2022088056-appb-100005
    且在化学结构式(4)中,环氧基化合物符合化学结构式(21)的定义。
  4. 根据权利要求1所述的导热结构胶,其特征在于在所述A组合物中所述嵌段聚合的遥爪胺基化合物还包括:具有化学结构式(5)的遥爪胺基聚环氧丙烷、具有化学结构式(6)的胺基聚烷基硅氧烷、异氰酸酯与遥爪胺基聚环氧丙烷按化学结构式(7)反应的产物、异氰酸酯与胺基聚烷基硅氧烷按化学结构式(8)反应的产物、环氧基树脂与遥爪胺基聚环氧丙烷按化学结构式(9)反应的产物、环氧基树脂与胺基聚烷基硅氧烷按化学结构式(10)反应的产物、环氧基聚烷基硅氧烷与遥爪胺基聚环氧丙烷按化学结构式(11)反应的产物、环氧基聚烷基硅氧烷与胺基聚烷基硅氧烷按化学结构式(12)反应的产物的至少一种;
    其中化学结构式(5)——
    Figure PCTCN2022088056-appb-100006
    且在化学结构式(5)中,k为数均聚合度在25~50之间,胺基的数均官能度在2.0~2.3之间;
    其中化学结构式(6)——
    Figure PCTCN2022088056-appb-100007
    且在化学结构式(6)中,数均聚合度为m=0~1、n=8~22,胺基的数均官能度在2.9~3.3之间,R 2为碳原子为2~5的烷撑,R 3、R 4、R 5和R 6为烷基、苯基或取代苯基、芳环基或取代芳环基、杂环基或取杂环基的至少一种;
    其中化学结构式(7)——
    Figure PCTCN2022088056-appb-100008
    其中化学结构式(8)——
    Figure PCTCN2022088056-appb-100009
    其中化学结构式(9)——
    Figure PCTCN2022088056-appb-100010
    其中化学结构式(10)——
    Figure PCTCN2022088056-appb-100011
    其中化学结构式(11)——
    Figure PCTCN2022088056-appb-100012
    其中化学结构式(12)——
    Figure PCTCN2022088056-appb-100013
  5. 根据权利要求1所述的导热结构胶,其特征在于在所述B组合物中所述嵌段聚合的遥爪异氰酸基化合物还包括:具有化学结构式(13)的异氰酸酯、异氰酸酯与遥爪羧基聚丁二烯按化学结构式(14)反应并脱除二氧化碳的产物、异氰酸酯与遥爪胺基聚环氧丙烷 按化学结构式(15)反应的产物、异氰酸酯与胺基聚烷基硅氧烷按化学结构式(16)反应的产物的至少一种;
    其中化学结构式(13)——
    OCN-R 1-NCO  (13)
    且在化学结构式(13)中,异氰酸基的数均官能度为2.0,R 1为烷撑、苯撑或取代苯撑、芳环撑或取代芳环撑、杂环撑或取杂环撑的至少一种;
    其中化学结构式(14)——
    Figure PCTCN2022088056-appb-100014
    其中化学结构式(15)——
    Figure PCTCN2022088056-appb-100015
    其中化学结构式(16)——
    Figure PCTCN2022088056-appb-100016
  6. 根据权利要求1所述的导热结构胶,其特征在于在所述B组合物中所述嵌段聚合的遥爪环氧基化合物还包括:具有化学结构式(17)的环氧基树脂、环氧基树脂与遥爪羧基聚丁二烯按化学结构式(18)反应的产物、环氧基树脂与遥爪胺基聚环氧丙烷按化学结构式(19)反应的产物、环氧基树脂与胺基聚烷基硅氧烷按化学结构式(20)反应的产物、具有化学结构式(21)的环氧基聚烷基硅氧烷、环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯按化学结构式(22)反应的产物、环氧基聚烷基硅氧烷与遥爪胺基聚环氧丙烷按化学结构式(23)反应的产物、环氧基聚烷基硅氧烷与胺基聚烷基硅氧烷按化学结构式(24)反应的产物的至少一种;
    其中化学结构式(17)——
    Figure PCTCN2022088056-appb-100017
    且在化学结构式(17)中,环氧基的数均官能度在2.0或3.0,还包括:R 7为符合化学结构式(25)、符合化学结构式(26)、烷撑、苯撑或取代苯撑、芳环撑或取代芳环撑、杂环撑或取杂环撑的至少一种;
    其中化学结构式(18)——
    Figure PCTCN2022088056-appb-100018
    其中化学结构式(19)——
    Figure PCTCN2022088056-appb-100019
    其中化学结构式(20)——
    Figure PCTCN2022088056-appb-100020
    其中化学结构式(21)——
    Figure PCTCN2022088056-appb-100021
    且在化学结构式(21)中,烷基硅氧烷的数均聚合度为m≥0、n=5~50,环氧基的数均官能度在2.8~3.0之间,R 2为碳原子为2~5的烷撑,R 3、R 4、R 5和R 6为烷基、苯基或取代苯基、芳环基或取代芳环基、杂环基或取杂环基的至少一种;
    其中化学结构式(22)——
    Figure PCTCN2022088056-appb-100022
    其中化学结构式(23)——
    Figure PCTCN2022088056-appb-100023
    其中化学结构式(24)——
    Figure PCTCN2022088056-appb-100024
    其中化学结构式(25)——
    Figure PCTCN2022088056-appb-100025
    且在化学结构式(25)中,数均聚合度为q=1~2,环氧基的数均官能度在2.0或3.0,R 9为氢原子、碳原子为1~5的烷基、苯基或取代苯基、芳环基或取代芳环基、杂环基或取杂环基的至少一种;
    其中化学结构式(26)——
    Figure PCTCN2022088056-appb-100026
    且在化学结构式(26)中,数均聚合度为q=1~2,环氧基的数均官能度在2.0或3.0,R 9为氢原子、碳原子为1~5的烷基、苯基或取代苯基、芳环基或取代芳环基、杂环基或取杂环基的至少一种。
  7. 根据权利要求1所述的导热结构胶,其特征在于所述偶联剂和/或改性剂包括:十六烷基三甲氧基硅烷[CAS:16415-12-6]、十六烷基三乙氧基硅烷[CAS:16415-13-7]、γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷[CAS:2530-83-8]、γ-(2,3-环氧丙氧基)丙基三乙氧基硅烷[CAS:2602-34-8]、γ-胺基丙基三甲氧基硅烷[CAS:13822-56-5]、γ-胺基丙基三乙氧基 硅烷[CAS:919-30-2]、n-(β-氨乙基)-γ-氨丙基三甲氧基硅烷[CAS:1760-24-3]、n-(β-氨乙基)-γ-氨丙基三乙氧基硅烷[CAS:5089-72-5]、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷[CAS:2530-85-0]、γ-(甲基丙烯酰氧)丙基三乙氧基硅烷[CAS:21142-29-0]、γ-二乙烯三胺丙基甲基二甲氧基硅烷[CAS:99740-64-4]的至少一种;或者异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯[CAS:61417-49-0]、异丙基三(二辛基磷酸酰氧基)钛酸酯[CAS:65345-34-8]、三异硬酯酸钛酸异丙酯[CAS:61417-49-0]、双(二辛氧基焦磷酸酯基)乙撑钛酸酯[CAS:65467-75-6]、四异丙基二(二辛基亚磷酸酰氧基)钛酸酯[CAS:65460-52-8]中的至少一种;或者油酸[CAS:112-80-1]、月桂酸[CAS:143-07-7]、辛酸[CAS:124-07-2]、蓖麻油酸[CAS:141-22-0]、松香酸[CAS:514-10-3]、水杨酸[CAS:69-72-7]、苯甲酸[CAS:65-85-0]、十二烷基苯磺酸[CAS:27176-87-0]、苯骈三氮唑[CAS:95-14-7]、甲基苯骈三氮唑[CAS号29385-43-1]的至少一种。
  8. 根据权利要求1所述的导热结构胶,其特征在于所述固化促进剂包括:苯酚[CAS:108-95-2]、2,4,6—三(二甲胺基甲基)苯酚[CAS:90-72-2]、三苯基磷[CAS:603-35-0]、咪唑[CAS:288-32-4]的至少一种。
  9. 根据权利要求1所述的导热结构胶,其特征在于所述导热粉体包括:氧化铝[Al 2O 3]、氧化镁[MgO]、氧化硅[SiO 2]、氮化铝[AlN]、氮化硼[BN]、氧化锌[ZnO]、氮化硅[Si 3N 4]、碳化硅[SiC]、碳化硼[B 4C]的至少一种,导热粉体的形貌包括球形粉体、片状粉体、纤维状粉体、异形型粉体(不规则粉体)、六方型粉体和立方粉体中的至少一种,导热粉体单一颗粒、团聚颗粒的平均粒径D 50在(0.16~120)μm之间。
  10. 根据权利要求1所述的导热结构胶,其特征在于所述阻燃成分包括:氢氧化铝[Al(OH) 3]、氢氧化镁[Mg(OH) 2]、三聚氰胺氰尿酸盐[CAS:37640-57-6]、聚磷酸铵(APP)、次磷酸铝[Al(H 2PO 2) 3]、磷酸三甲苯酯[CAS:1330-78-5]、乙基磷酸二乙酯[CAS:682-30-4]中的至少一种;其中粉体阻燃成分单一颗粒、团聚颗粒的平均粒径D 50在(0.3~30)μm之间。
  11. 根据权利要求2所述的导热结构胶制造方法,其特征在于所述步骤(一)遥爪羧基化合物和/或遥爪胺基化合物基料的嵌段聚合方法、遥爪异氰酸基化合物和/或遥爪环氧基化合物基料的嵌段聚合方法,包括:
    在所述A组合物中,所述遥爪羧基化合物基料的嵌段聚合方法——
    在A反应器中,加入质量比例1摩尔的异氰酸酯或环氧基树脂或环氧基聚烷基硅氧烷的任意一种、加入质量比例(1.8~5)摩尔的遥爪羧基聚丁二烯,启动搅拌装置使异氰酸酯或环氧基树脂或环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯构成的物料混合均匀,将物料温度控制在(常温~145)℃之间,并保温时间(0.5~6)h,相应地在(常温~145)℃之间物料温度越高则保温时间越短、物料温度越低则保温时间越长;如果所加物料为异氰酸酯和遥爪羧基聚丁二烯则反应产物按化学结构式(2)所得,如果所加物料为环氧基树脂和遥爪羧基聚丁二烯则反应产物按化学结构式(3)所得,如果所加物料为环氧基聚烷基硅氧烷和遥爪羧基聚丁二烯则反应产物按化学结构式(4)所得;如果遥爪羧基聚丁二烯入的质量与异氰酸酯或环氧基树脂加入质量的摩尔数之比大于2、遥爪羧基聚丁二烯入的质量与环氧基聚烷基硅氧烷加入质量的摩尔数之比大于3会有未反应的遥爪羧基聚丁二烯过剩;
    在所述A组合物中,所述遥爪胺基化合物基料的嵌段聚合方法——
    在A反应器中,加入质量比例1摩尔的异氰酸酯或环氧基树脂的任意一种、加入质量比例(1.8~5)摩尔的遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷;或在另一次A反应器 中,加入质量比例1摩尔的环氧基聚烷基硅氧烷、加入质量比例(2.8~8)摩尔的遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷;启动搅拌装置使异氰酸酯或环氧基树脂或环氧基聚烷基硅氧烷与遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷构成的物料混合均匀,将物料温度控制在(常温~145)℃之间,并保温时间(0.5~6)h,相应地在(常温~145)℃之间物料温度越高则保温时间越短、物料温度越低则保温时间越长;如果所加物料为异氰酸酯和遥爪胺基聚环氧丙烷则反应产物按化学结构式(7)所得,如果所加物料为异氰酸酯和胺基聚烷基硅氧烷时则反应产物按化学结构式(8)所得,如果所加物料为环氧基树脂和遥爪胺基聚环氧丙烷则反应产物按化学结构式(9)所得,如果所加物料为环氧基树脂和胺基聚烷基硅氧烷时则反应产物按化学结构式(10)所得,如果所加物料为环氧基聚烷基硅氧烷和遥爪胺基聚环氧丙烷则反应产物按化学结构式(11)所得,如果所加物料为环氧基聚烷基硅氧烷和胺基聚烷基硅氧烷时则反应产物按化学结构式(12)所得;在化学结构式(7)~(10)中,如果遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷入的质量与异氰酸酯或环氧基树脂加入质量的摩尔数之比大于2,会有未反应的遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷过剩;在化学结构式(11)~(12)中,如果遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷入的质量与环氧基聚烷基硅氧烷加入质量的摩尔数之比大于3,会有未反应的遥爪胺基聚环氧丙烷或胺基聚烷基硅氧烷过剩;
    在所述B组合物中,所述遥爪异氰酸基化合物的嵌段聚合方法方法——
    在B反应器中,加入质量比例(1.8~5)摩尔的异氰酸酯、加入质量比例1摩尔的遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷,启动搅拌装置使异氰酸酯与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷构成的物料混合均匀,将物料温度控制在(常温~145)℃之间,并保温时间(0.5~6)h,相应地在(常温~145)℃之间物料温度越高则保温时间越短、物料温度越低则保温时间越长;
    在另一次B反应器中,加入质量比例(2.8~8)摩尔的异氰酸酯、加入质量比例1摩尔的胺基聚烷基硅氧烷,启动搅拌装置使异氰酸酯与胺基聚烷基硅氧烷构成的物料混合均匀,将物料温度控制在(常温~145)℃之间,并保温时间(0.5~6)h,相应地在(常温~145)℃之间物料温度越高则保温时间越短、物料温度越低则保温时间越长;如果所加物料为异氰酸酯与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷则反应产物按化学结构式(14)和/或按化学结构式(15)所得,如果所加物料为异氰酸酯与胺基聚烷基硅氧烷时则反应产物按化学结构式(16)所得;在化学结构式(14)~(15)中,如果异氰酸酯入的质量与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷加入质量的摩尔数之比大于2,会有未反应的异氰酸酯过剩;在化学结构式(16)中,如果异氰酸酯入的质量与胺基聚烷基硅氧烷加入质量的摩尔数之比大于3,会有未反应的异氰酸酯过剩;
    在所述B组合物中,所述遥爪环氧基化合物基料的嵌段聚合方法——
    在B反应器中,加入质量比例(1.8~5)摩尔的环氧基树脂和/或环氧基聚烷基硅氧烷、加入质量比例1摩尔的遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷;在另一次B反应器中,加入质量比例(2.8~8)摩尔的环氧基树脂和/或环氧基聚烷基硅氧烷、加入质量比例1摩尔的胺基聚烷基硅氧烷;启动搅拌装置使环氧基树脂和/或环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷构成的物料混合均匀、使环氧基树脂和/或环氧基聚烷基硅氧烷与胺基聚烷基硅氧烷构成的物料混合均匀,将物料温度控制在(常温~145)℃之间,并保温时间(0.5~6)h,相应地(常温~145)℃物料温度越高则保 温时间越短、物料温度越低则保温时间越长;如果所加物料为环氧基树脂和/或环氧基聚烷基硅氧烷与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷,则反应产物包含按化学结构式(18)和/或式(19)和/或(22)和/或(23)所得;如果所加物料为环氧基树脂和/或环氧基聚烷基硅氧与胺基聚烷基硅氧烷,则反应产物按化学结构式(20)和/或(24)所得;在化学结构式(18)、(19)、(22)、(23)中,如果环氧基树脂和/或环氧基聚烷基硅氧烷入的质量与遥爪羧基聚丁二烯和/或遥爪胺基聚环氧丙烷加入质量的摩尔数之比大于2,会有未反应的环氧基树脂和/或环氧基聚烷基硅氧烷过剩;在化学结构式(20)、(24)中,如果环氧基树脂和/或环氧基聚烷基硅氧烷入的质量与胺基聚烷基硅氧烷加入质量的摩尔数之比大于3,会有未反应的环氧基树脂和/或环氧基聚烷基硅氧烷过剩。
  12. 根据权利要求2所述的导热结构胶制造方法,其特征在于所述步骤(二)液料与粉体剪切强度控制粉体改性方法包括:
    在一个带高速搅拌和/或高剪切分散装置的A反应器中,按照本发明目的之一的材料配方,加入按照步骤(一)的遥爪羧基化合物和/或遥爪胺基化合物基料的至少一种、偶联剂和/或改性剂、固化促进剂、导热粉体、阻燃成分;
    在一个带高速搅拌和/或高剪切分散装置的B反应器中,按照本发明目的之一的材料配方,加入按照步骤(一)遥爪异氰酸基化合物和/或遥爪环氧基化合物基料的至少一种、偶联剂和/或改性剂、固化促进剂、导热粉体、阻燃成分;
    分别在A反应器中和B反应器中,按照原料粉体平均粒径D 50规格分为“细→中→粗”三批次或更多批次,依次先加入最细D 50规格的粉体→次细D 50规格的粉体→中级D 50规格的粉体→较粗D 50规格的粉体,类推,直至最粗D 50规格的粉体;每加入一个D 50规格的粉体,更换高剪切分散装置的定子、转子的直径或者调节转速,将剪切强度控制在(1200~233000)s -1之间,将浆料温度控制在(0~145)℃范围内并维持(0.1~4)h;所述剪切强度按照方程式(27)控制,
    Figure PCTCN2022088056-appb-100027
    在式(27)中,
    S s—剪切强度,统一或换算后的单位是“1/秒”或s -1
    V—转子外径的旋转线速度,或者相邻一对转子外径的相对旋转线速度,统一或者换算后的单位是“米/秒”或m/s,
    δ—相邻定子和转子之间,或者相邻转子和转子之间的最小间隙,统一或者换算后的单位是“米”或m;
    当导热粉体和阻燃成分中粉体的D 50规格大于1.0μm时,高剪切分散装置可以缺省,导热粉体和阻燃成分中粉体可以一次性加入,用高速搅拌装置混合均匀,控制高速搅拌装置转速为100~1000r/min。
  13. 根据权利要求1所述的导热结构胶制造方法,其特征在于所述步骤(三)正压或负压反应控制方法包括:所述压力为表压;所述正压是维持反应器内压力(0.0~0.1)MPa;所述负压是维持反应器内压力(-0.01~-0.1)MPa,以脱除空气、二氧化碳、水分和原材料自身隐含的低分子物;所述反应还包括在A组合物中按化学结构式(2)至(4)、(7)至(12)后继化学反应的至少一种,在B组合物中按化学结构式(14)至(16)、按化学结构式(18)至(20)、按化学结构式(22)至(24)化学反应的至少一种;在进行步骤(二)的同时,或后期启动真空泵,缓慢将压力降低到-0.1MPa。
  14. 根据权利要求1所述的导热结构胶制造方法,其特征在于,所述步骤(四)加热与冷却方法包括:在进行步骤(一)、步骤(二)、步骤(三)的同时,在反应器的夹套中充入传热介质,用流体循环设备驱动加热与冷却,热源采用导热油炉或电加热;所述传热介质包括导热油、水或冷却液的任意一种;所述循环设备包括模温机、磁力驱动泵、往复柱塞泵、蠕动泵、离心泵的任意一种。
PCT/CN2022/088056 2021-06-29 2022-04-21 一种新能源动力电池用导热结构胶及其制造方法 WO2023273538A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22734859.6A EP4137549A4 (en) 2021-06-29 2022-04-21 THERMALLY CONDUCTIVE STRUCTURAL ADHESIVE FOR A BATTERY WITH NEW ENERGY AND PRODUCTION PROCESS THEREOF
JP2022543540A JP2023536026A (ja) 2021-06-29 2022-04-21 新エネルギー動力電池用熱伝導性構造用接着剤及びその製造方法
KR1020227025157A KR20230005110A (ko) 2021-06-29 2022-04-21 신 에너지 동력 배터리용 열전도 구조 접착제 및 그 제조 방법
US17/864,309 US11949081B2 (en) 2021-06-29 2022-07-13 Thermally-conductive structural adhesive for new energy power battery and method of preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110765837.5A CN113528056A (zh) 2021-06-29 2021-06-29 一种新能源动力电池用导热结构胶及其制造方法
CN202110765837.5 2021-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/864,309 Continuation US11949081B2 (en) 2021-06-29 2022-07-13 Thermally-conductive structural adhesive for new energy power battery and method of preparing same

Publications (1)

Publication Number Publication Date
WO2023273538A1 true WO2023273538A1 (zh) 2023-01-05

Family

ID=78097909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088056 WO2023273538A1 (zh) 2021-06-29 2022-04-21 一种新能源动力电池用导热结构胶及其制造方法

Country Status (2)

Country Link
CN (1) CN113528056A (zh)
WO (1) WO2023273538A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113528056A (zh) * 2021-06-29 2021-10-22 深圳市金菱通达电子有限公司 一种新能源动力电池用导热结构胶及其制造方法
EP4137549A4 (en) 2021-06-29 2024-01-03 Shenzhen Goldlink Tongda Electronics Co., Ltd. THERMALLY CONDUCTIVE STRUCTURAL ADHESIVE FOR A BATTERY WITH NEW ENERGY AND PRODUCTION PROCESS THEREOF
CN116265558B (zh) * 2023-02-20 2023-09-22 有行鲨鱼(珠海)新材料科技有限公司 一种低比重高导热的聚氨酯结构胶及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2202279A1 (en) * 1994-10-11 1996-04-18 David John St. Clair Pressure sensitive structural adhesives and sealants based on telechelic/heterotelechelic polymers with dual cure systems
CN1160416A (zh) * 1994-10-11 1997-09-24 国际壳牌研究有限公司 基于有双固化体系的遥爪/杂遥爪聚合物的压敏结构粘合剂和密封胶
CN113461901A (zh) * 2021-06-29 2021-10-01 深圳市金菱通达电子有限公司 一簇遥爪活性官能团组合物及其制造方法与用途
CN113528056A (zh) * 2021-06-29 2021-10-22 深圳市金菱通达电子有限公司 一种新能源动力电池用导热结构胶及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623368B2 (ja) * 1986-02-28 1994-03-30 横浜ゴム株式会社 エポキシ樹脂接着組成物
CN101928539A (zh) * 2010-09-10 2010-12-29 烟台德邦科技有限公司 一种耐高温单组分环氧结构胶及其制备方法和使用方法
CN106905894B (zh) * 2015-12-22 2019-02-26 比亚迪股份有限公司 一种耐高温密封胶组合物及耐高温密封胶带及其制备方法
CN110938404A (zh) * 2019-12-18 2020-03-31 佛山市三水金戈新型材料有限公司 一种导热结构胶及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2202279A1 (en) * 1994-10-11 1996-04-18 David John St. Clair Pressure sensitive structural adhesives and sealants based on telechelic/heterotelechelic polymers with dual cure systems
CN1160416A (zh) * 1994-10-11 1997-09-24 国际壳牌研究有限公司 基于有双固化体系的遥爪/杂遥爪聚合物的压敏结构粘合剂和密封胶
US5910542A (en) * 1994-10-11 1999-06-08 Shell Oil Company Adhesives and sealants based on telechelic polymers and heterotelechelic block polymers with dual cure systems
CN113461901A (zh) * 2021-06-29 2021-10-01 深圳市金菱通达电子有限公司 一簇遥爪活性官能团组合物及其制造方法与用途
CN113528056A (zh) * 2021-06-29 2021-10-22 深圳市金菱通达电子有限公司 一种新能源动力电池用导热结构胶及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG JIANBOLU LANGUANGLI ZHE: "Key technologies and subject frontiers of automotive power battery systems [J", JOURNAL OF AUTOMOTIVE SAFETY AND ENERGY, vol. 3, no. 2, 2012, pages 87 - 104

Also Published As

Publication number Publication date
CN113528056A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2023273538A1 (zh) 一种新能源动力电池用导热结构胶及其制造方法
CN111303636B (zh) 一种低导热阻燃防火硅橡胶复合材料及其制备方法
JP5074012B2 (ja) 機能強化型窒化ホウ素組成物及びそれで作った組成物
JP5558885B2 (ja) 樹脂複合組成物及びその用途
KR101361396B1 (ko) 강화된 질화붕소 조성물 및 그를 이용하여 제조된 조성물
TWI598291B (zh) Hexagonal boron nitride powder, a method for producing the same, a resin composition and a resin sheet
JP5867426B2 (ja) 窒化ホウ素粉末の製造方法
JP5707052B2 (ja) 樹脂複合組成物及びその用途
CN102516926B (zh) 汽车控制系统的电子部件用的灌封胶及其制备方法
CN114032063B (zh) 高导热低粘度双组分有机硅灌封胶及其制备方法
CN115058229B (zh) 动力电池灌封胶及其制备方法
Bao et al. Multifunctional boron nitride nanosheets cured epoxy resins with highly thermal conductivity and enhanced flame retardancy for thermal management applications
CN113322037B (zh) 一种抗热冲击的高导热环氧灌封胶及制备方法
CN112679962A (zh) 一种有机硅阻燃剂和安全锂电池组用阻燃有机硅橡胶及其制备方法
CN113461901A (zh) 一簇遥爪活性官能团组合物及其制造方法与用途
CN108440969A (zh) 动力电池包用低密度导热阻燃有机硅材料
CN112521782A (zh) 一种高韧性水性耐磨陶瓷涂料的制备方法
KR20200098778A (ko) 전기자동차 배터리 패키징용 방열패드의 제조방법
CN115975596B (zh) 双组分有机硅灌封胶及其制备方法
CN111363368A (zh) 流体状高导热有机硅凝胶及其制备方法和应用
CN114621726A (zh) 一种低密度超高流动性导热灌封胶及其制备方法
EP4137549A1 (en) Thermally conductive structural adhesive for new energy power battery and manufacturing method therefor
CN115093826A (zh) 一种高导热低比重粘接胶及其制备方法
Mominul Alam et al. Preparation and characterization of rigid polyimide-clay-polydimethylsiloxane hybrid
US20200071489A1 (en) Thermally-conductive material, production method therefor, and thermally-conductive composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022543540

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022734859

Country of ref document: EP

Effective date: 20220711

NENP Non-entry into the national phase

Ref country code: DE