WO2023273077A1 - 一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途 - Google Patents

一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途 Download PDF

Info

Publication number
WO2023273077A1
WO2023273077A1 PCT/CN2021/127802 CN2021127802W WO2023273077A1 WO 2023273077 A1 WO2023273077 A1 WO 2023273077A1 CN 2021127802 W CN2021127802 W CN 2021127802W WO 2023273077 A1 WO2023273077 A1 WO 2023273077A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
zirconium salt
carbonate
electrolyte material
mixed
Prior art date
Application number
PCT/CN2021/127802
Other languages
English (en)
French (fr)
Inventor
丘勇才
徐庆帅
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2023273077A1 publication Critical patent/WO2023273077A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of negative electrodes of lithium ion batteries, and in particular relates to a synthesis method of a mixed zirconium salt electrolyte material and its application in lithium metal batteries.
  • Li metal anode is considered as the ultimate lithium battery anode material because of its highest theoretical specific capacity (3860 mAh/g), lowest negative electrochemical potential ( ⁇ 3.4 V), and light weight.
  • Li metal batteries can provide higher power and energy density, especially when it is combined with high-nickel LiNi x Co y Mn 1 ⁇ x ⁇ y O 2 (high nickel NMC, Ni ⁇ 60 %) cathodes with high voltage and high specific capacity when combined.
  • the highly active lithium metal anode will undergo continuous side reactions with the existing commercial carbonate electrolytes during charging and discharging, resulting in the decrease of Coulombic efficiency (CE) and accelerated capacity fading of lithium batteries.
  • CE Coulombic efficiency
  • accelerated capacity fading of lithium batteries In addition, the lithium dendrites produced by the side reaction will also bring safety hazards of battery short circuit, which severely limits the practical application of rechargeable lithium metal batteries (LMB).
  • the electrolyte is a very important component of lithium batteries.
  • the existing commercial lithium battery electrolyte mainly uses lithium hexafluorophosphate (LiPF 6 ) as the electrolyte, and uses carbonate organic solvents as the solvent.
  • LiPF 6 lithium hexafluorophosphate
  • this electrolyte cannot form a stable solid interface (SEI) film on the surface of the lithium metal anode of the lithium metal battery, so commercial carbonate electrolytes will have continuous side reactions with the lithium metal anode, accelerating the lithium metal The capacity of the battery fades.
  • SEI stable solid interface
  • the existing lithium battery electrolyte must be improved so that it can form a stable SEI film on the surface of the lithium metal anode and suppress the continuous side reactions between the electrolyte and the lithium metal anode.
  • the invention provides a synthesis method of a mixed zirconium salt electrolyte material and its use in lithium metal batteries. After the synthesized mixed zirconium salt electrolyte material is added to the commercial lithium battery electrolyte containing lithium hexafluorophosphate, it can significantly improve the cycle stability of the lithium metal anode, thereby significantly improving the rate performance and cycle life of the lithium metal battery.
  • the first object of the present invention is to provide a kind of mixed zirconium salt electrolyte material, comprising the following steps:
  • LiPF6 lithium hexafluorophosphate
  • ZrCl4 zirconium chloride
  • LiNO3 lithium nitrate
  • step (2) Centrifuge the yellow turbid electrolyte solution obtained in step (1) with a centrifuge tube, then pour off the supernatant, and remove the lower precipitate;
  • step (3) Wash the precipitate obtained in step (2) with a carbonate solvent in the lithium battery electrolyte, then heat and dry the washed white precipitate, and finally obtain a mixed zirconium salt electrolyte material.
  • the lithium battery electrolyte organic solvent is ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate (PC) and carbonic acid One or more of ethyl methyl ester (EMC).
  • step (3) the precipitate is cleaned with a carbonate solvent
  • the specific method is as follows:
  • step (1) Take medium-quality carbonate electrolyte solvent in step (1) and inject it into the centrifuge tube and the precipitate obtained in step (2) for stirring to mix the solvent and the precipitate thoroughly, then centrifuge to remove the lower layer of precipitate, and then repeat this process 1-3 times again, A pure white precipitate of mixed zirconium salts was obtained.
  • step (3) the specific conditions for heating and drying are: drying at 40°C-60°C for 12-24 hours.
  • the carbonate solvent used for cleaning is diethyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate (PC) and ethyl methyl carbonate (EMC).
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • step (1) the lithium hexafluorophosphate (LiPF6), the organic solvent in the lithium battery electrolyte, zirconium chloride (ZrCl4) and lithium nitrate (LiNO3) are mixed according to the following mass ratio: 1-2:5- 10:0.5-1:0.2-0.4.
  • step (1) the stirring condition is: stirring the mixed solution for 12 hours at 35°C.
  • a mixed zirconium salt electrolyte material with very high crystallinity can be prepared.
  • Carry out X-ray powder diffraction (XRD) and X-ray photoelectron spectrum (X-ray Photoelectron Spectroscopy) test to the final product that the present invention prepares by the Fig. 1 of XRD test gained, verified final product is mixed zirconium salt crystal, and this mixed The crystallinity of zirconium salt is very high.
  • the XPS analysis results also verified the XRD results.
  • the material is a mixed zirconium salt composed of phosphorus (P), lithium (Li), fluorine (F), and zirconium (Zr).
  • Analysis of the atomic ratio of phosphorus (P), lithium (Li), fluorine (F) and zirconium (Zr) in the zirconium salt is about 4%: 30%: 24%: 24%, which is a mixed element containing zirconium. Salt.
  • the second object of the present invention is to provide a synthesis method of a mixed zirconium salt electrolyte material and its use in lithium metal batteries.
  • the mixed zirconium salt electrolyte material is added into the lithium battery electrolyte containing lithium hexafluorophosphate (LiPF 6 ).
  • the mass ratio of the lithium battery electrolyte to the mixed zirconium salt electrolyte material is 10:0.5-10:1.5.
  • its solvent is ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate (PC) and ethyl methyl carbonate ( One or more of EMC).
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • the present invention has the following advantages and beneficial effects:
  • the synthesis steps are few and the technique is simple.
  • the mixed zirconium salt electrolyte material can be obtained by simple mixing and stirring;
  • Figure 1 is the XRD diffraction pattern of the mixed zirconium salt electrolyte material
  • Figure 2 is the XPS analysis diagram of the mixed zirconium salt electrolyte material
  • Fig. 3 is a performance comparison diagram of a lithium metal battery within 1300 cycles of charging and discharging using the mixed zirconium salt electrolyte electrolyte solution obtained in Example 6 and a commercially available ordinary lithium battery electrolyte solution in a comparative example.
  • a kind of mixed zirconium salt electrolyte material of the present invention comprises the following steps:
  • LiPF6 lithium hexafluorophosphate
  • ZrCl4 zirconium chloride
  • LiNO3 lithium nitrate
  • step (2) Centrifuge the yellow turbid electrolyte solution obtained in step (1) with a centrifuge tube, then pour off the supernatant, and remove the lower precipitate;
  • step (3) Wash the precipitate obtained in step (2) with a carbonate solvent in the lithium battery electrolyte, then heat and dry the washed white precipitate, and finally obtain a mixed zirconium salt electrolyte material;
  • the lithium battery electrolyte organic solvent is ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate (PC) and carbonic acid One or more of ethyl methyl ester (EMC).
  • step (3) the precipitate is cleaned with a carbonate solvent
  • the specific method is as follows:
  • step (1) Take medium-quality carbonate electrolyte solvent in step (1) and inject it into the centrifuge tube and the precipitate obtained in step (2) for stirring to mix the solvent and the precipitate thoroughly, then centrifuge to remove the lower layer of precipitate, and then repeat this process 1-3 times again, A pure white precipitate of mixed zirconium salts was obtained.
  • step (3) the specific conditions for heating and drying are: drying at 40°C-60°C for 12-24 hours.
  • the carbonate solvent used for cleaning is diethyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate (PC) and ethyl methyl carbonate (EMC).
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • step (1) the lithium hexafluorophosphate (LiPF6), the organic solvent in the lithium battery electrolyte, zirconium chloride (ZrCl4) and lithium nitrate (LiNO3) are mixed according to the following mass ratio: 1-2:5- 10:0.5-1:0.2-0.4.
  • step (1) the stirring condition is: stirring the mixed solution for 12 hours at 35°C.
  • step (3) Take the medium-quality EMC solvent from step (1) and pour it into the centrifuge tube for shaking and cleaning, then centrifuge to discard the supernatant in the centrifuge tube, and keep the precipitate. Repeat this step again to ensure that the impurity ions have been removed by the EMC solvent.
  • step (3) The white precipitate obtained in step (3) was vacuum-dried at 50° C. for 24 hours. After natural cooling, it is ground and pulverized to obtain the mixed zirconium salt electrolyte material.
  • Lithium hexafluorophosphate (LiPF 6 ), propylene carbonate (PC), zirconium chloride (ZrCl 4 ) and lithium nitrate (LiNO 3 ) were mixed according to the mass ratio of 1.5:10:0.5:0.3, and then mixed at 35 The mixed solution was stirred for 12 hours under the condition of °C to obtain a yellow turbid solution;
  • step (3) Take the medium-quality propylene carbonate (PC) solvent in step (1) and pour it into the centrifuge tube for shaking and cleaning, then centrifuge to discard the supernatant in the centrifuge tube, and keep the precipitate. Repeat this step again to ensure that impurity ions have been removed by propylene carbonate (PC) solvent.
  • PC propylene carbonate
  • step (3) The white precipitate obtained in step (3) was vacuum-dried at 50° C. for 24 hours. After natural cooling, it is ground and pulverized to obtain the mixed zirconium salt electrolyte material.
  • Lithium hexafluorophosphate LiPF 6
  • mixed carbonate solvent mass ratio EMC:DEC:EC is 5:2:3
  • zirconium chloride ZrCl 4
  • lithium nitrate LiNO 3
  • step (3) Take the medium-quality EMC solvent from step (1) and pour it into the centrifuge tube for shaking and cleaning, then centrifuge to discard the supernatant in the centrifuge tube, and keep the precipitate. Repeat this step again to ensure that the impurity ions have been removed by the EMC solvent.
  • step (3) The white precipitate obtained in step (3) was vacuum-dried at 40° C. for 24 hours. After natural cooling, it is ground and pulverized to obtain the mixed zirconium salt electrolyte material.
  • Lithium hexafluorophosphate LiPF 6
  • mixed carbonate solvent mass ratio EMC:DEC:EC is 5:2:3
  • zirconium chloride ZrCl 4
  • lithium nitrate LiNO 3
  • step (3) Take the medium-quality EMC solvent from step (1) and pour it into the centrifuge tube for shaking and cleaning, then centrifuge to discard the supernatant in the centrifuge tube, and keep the precipitate. Repeat this step again to ensure that the impurity ions have been removed by the EMC solvent.
  • step (3) The white precipitate obtained in step (3) was vacuum-dried at 60° C. for 24 hours. After natural cooling, it is ground and pulverized to obtain the mixed zirconium salt electrolyte material.
  • the mixed zirconium salt electrolyte material prepared in Preparation Example 1 was added to the lithium battery electrolyte containing lithium hexafluorophosphate in a mass ratio of 0.5:10, wherein the solvent in the lithium battery electrolyte was mixed with a carbonate solvent (mass ratio EMC: DEC:EC is 5:2:3), and the molar concentration of lithium hexafluorophosphate in the lithium battery electrolyte is 1mol/L.
  • the mixed zirconium salt electrolyte material prepared in Preparation Example 2 was added to the lithium battery electrolyte containing lithium hexafluorophosphate at a mass ratio of 0.5:10, wherein the solvent in the lithium battery electrolyte was PC, and the lithium battery electrolyte contained The molar concentration of lithium hexafluorophosphate is 1mol/L.
  • the mixed zirconium salt electrolyte material prepared in Preparation Example 1 was added to the lithium battery electrolyte containing lithium hexafluorophosphate according to a mass ratio of 1.5:10, wherein the solvent in the lithium battery electrolyte was mixed with a carbonate solvent (mass ratio EMC: DEC:EC is 5:2:3), and the molar concentration of lithium hexafluorophosphate in the lithium battery electrolyte is 1mol/L.
  • the mixed zirconium salt electrolyte material prepared in Preparation Example 1 was added to the lithium battery electrolyte containing lithium hexafluorophosphate according to a mass ratio of 1:10, wherein the solvent in the lithium battery electrolyte was mixed with a carbonate solvent (mass ratio DEC: EC is 2:3), and the molar concentration of lithium hexafluorophosphate in the lithium battery electrolyte is 1mol/L.
  • the electrolyte used in the comparative example is a commercially available common lithium battery electrolyte, wherein the solvent in the lithium battery electrolyte is mixed with a carbonate solvent (the mass ratio EMC:DEC:EC is 5:2:3), and the lithium hexafluorophosphate in the lithium battery electrolyte
  • the molar concentration is 1mol/L, purchased from Guangzhou Reagent Company.
  • the electrolyte solution containing the mixed zirconium salt prepared in Example 1 was compared with the lithium battery electrolyte solution of the comparative example, and the electrolyte solution of Example 1 and the comparative example were added to the lithium metal button battery according to the ratio of E/C ratio of 3:1 Among them, the anode of the lithium metal button battery is a carbon cloth/lithium metal composite anode, and the positive electrode is a lithium iron phosphate material with an active material loading of 14mg/cm -2 .
  • the performance comparison of the lithium metal button battery is shown in Figure 3.
  • the lithium metal battery injected with the electrolyte prepared in Example 1 can also have a specific capacity of 123mAh/g after 1300 cycles of stable cycles after experiencing a rate charge and discharge cycle.
  • the capacity retention rate is 85%, and there is still a specific capacity of about 95mAh/g when charging and discharging at a high rate of 5C during the rate charging process.
  • the lithium metal button battery using the lithium battery electrolyte of the comparative example is far inferior to the lithium metal battery injected with the electrolyte prepared in Example 1 no matter in the rate charge and discharge process or in the subsequent long cycle process.
  • the mixed zirconium salt electrolyte material prepared by this method is a high-performance lithium battery electrolyte additive material.
  • This mixed zirconium salt electrolyte material can significantly improve the rate performance and cycle life of lithium metal batteries, and is an ideal electrolyte additive material for the preparation of high-energy and high-power lithium metal batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途。所述制备方法包括如下步骤:第一步,以现有商业化的锂电池电解液作为原材料制备含锆混合电解质材料的浑浊液溶液;第二步,将第一步中得到的浑浊溶液离心,取下层沉淀,然后用商业化的碳酸酯类电解液溶剂清洗多余的杂质;第三步,将第二步中清洗后的得到的白色沉淀进行干燥,然后研磨粉碎即得到了一种混合锆盐电解质材料。将这种混合锆盐电解质材料加入含有六氟磷酸锂的锂电池电解液中后,能够非常显著的提高锂金属电池中锂阳极的循环稳定性和倍率充放电性能,从而大幅度提高锂金属电池的电化学性能。

Description

一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途 技术领域
本发明属于锂离子电池负极技术领域,具体涉及了一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途。
背景技术
电动汽车和便携式电子产品的快速发展激发了对更高能量密度锂离子电池需求。锂金属阳极因其最高的理论比容量(3860 mAh/g)、最低的负电化学电位(-3.4 V)和较轻的重量而被认为是最终的锂电池阳极材料。锂金属电池可以提供更高的功率和能量密度,特别是当它与高电压和高比容量的高镍LiNi x Co y Mn 1 x y O 2  (高镍NMC,Ni ≥60 %) 阴极结合时。然而,高活性的锂金属阳极在充放电时,会与现有的商业化碳酸酯类电解质发生持续的副反应,导致锂电池库仑效率 (CE) 降低和容量衰减加快。另外副反应产生的锂枝晶还会带来电池短路的安全隐患,这严重限制了可充电锂金属电池 (LMB) 的实际应用。
电解液使锂电池中非常重要的组成部分,现有的商业化的锂电池电解液主要是六氟磷酸锂(LiPF 6)作为电解质,以碳酸酯类有机溶剂作为溶剂。但是这种电解液并不能够在锂金属电池的锂金属阳极表面形成稳定的固体界面(SEI)膜,因此商业化的碳酸酯类电解液会和锂金属阳极发生持续的副反应,加速锂金属电池的容量衰减。如果想要提高锂金属电池的循环寿命,必须改善现有的锂电池电解液,使其能够在锂金属阳极表面形成稳定的SEI膜,抑制电解液和锂金属阳极的持续副反应。
技术解决方案
为了克服现有锂电池电解液技术的缺点,本发明提供了一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途。所合成的混合锆盐电解质材料添加到含有六氟磷酸锂的商业化锂电池电解液中后,能够显著的提高锂金属阳极的循环稳定性,从而显著的提高锂金属电池的倍率性能和循环寿命。
本发明采用的技术方案如下:
本发明的第一目的在于提供一种混合锆盐电解质材料,包括以下步骤:
(1)将六氟磷酸锂(LiPF6)、锂电池电解液中的有机溶剂、氯化锆(ZrCl4)和硝酸锂(LiNO3)进行混合,搅拌,得到黄色混浊的溶液;
(2)用离心管对步骤(1)中得到黄色混浊的电解质溶液进行离心,然后倒掉上层清液,取下层沉淀;
(3)将步骤(2)得到的沉淀用锂电池电解液中的碳酸酯类溶剂进行清洗,然后将洗涤后的白色沉淀进行加热干燥,最后得到混合锆盐电解质材料。
上述方法中,步骤(1)中,所述锂电池电解液有机溶剂为碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸丙烯酯(PC)和碳酸甲乙酯(EMC)中的一种以上。
上述方法中,步骤(3)中,用碳酸酯类溶剂对沉淀进行清洗,具体做法为:
取步骤(1)中等质量的碳酸酯类电解液溶剂注入离心管和步骤(2)得到的沉淀进行搅拌使溶剂和沉淀充分混合,然后离心取下层沉淀,然后再次重复这个过程1-3次,得到纯净的混合锆盐白色沉淀。
上述方法中,步骤(3)中,加热干燥的具体条件为:在40℃- 60℃的条件下干燥12-24小时。
上述方法中,步骤(3)中,清洗所用的碳酸酯类溶剂为碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸丙烯酯(PC)和碳酸甲乙酯(EMC)中的一种。
上述方法中,步骤(1)中,所述六氟磷酸锂(LiPF6)、锂电池电解液中的有机溶剂、氯化锆(ZrCl4)和硝酸锂(LiNO3)按照如下质量比例混合:1-2:5-10:0.5-1:0.2-0.4。
上述方法中,步骤(1)中,所述搅拌的条件为:在35℃的条件下搅拌该混合溶液12小时。
采用本发明提供的制备方法,可以制得结晶度度非常高的混合锆盐电解质材料。对本发明制备得到的最终产品进行X射线粉末衍射(XRD)和X射线光电子能谱(X-ray Photoelectron Spectroscopy)测试,通过XRD测试所得的图1,验证了最终产品是混锆盐晶体,该混锆盐的结晶度非常高。XPS分析结果也验证了XRD的结果,通过XPS测试所得的图2可以看出该材料是磷(P)、锂(Li)、氟(F)、锆(Zr)元素组成的混合锆盐,经过分析该锆盐中磷(P)、锂(Li)、氟(F)、锆(Zr)元素的原子比例约为4%:30%:24%:24%,是一种含有锆元素的混合盐。
本发明第二目的在于提供一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途。将所述的混合锆盐电解质材料加入含有六氟磷酸锂(LiPF 6)的锂电池电解液中。
优选的,在所述锂电池电解液中,锂电池电解液和混合锆盐电解质材料的质量比为10:0.5—10:1.5。
优选的,在所述锂电池电解液中,其溶剂为碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸丙烯酯(PC)和碳酸甲乙酯(EMC)中的一种或几种。
有益效果
与现有技术相比,本发明具有如下优点和有益效果:
(1)合成步骤少,技术简单。通过简单的混合搅拌就能够得到混合锆盐电解质材料;
(2)该混合锆盐电解质材料加入现有的锂电池电解液中能够显著提高锂金属电池的循环寿命和倍率性能。在实施例中的对比例1和实施例9证明了这一结论。
附图说明
图1 为混合锆盐电解质材料的XRD衍射图;
图2 为混合锆盐电解质材料的XPS分析图;
图3 为使用含有实施例6得到的混合锆盐电解质电解液与对比例市售普通锂电池电解液,在锂金属电池中,循环充放电1300次内的性能对比图。
本发明的实施方式
下面结合具体实施例对本发明作进一步地具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。
本发明一种混合锆盐电解质材料,包括以下步骤:
(1)将六氟磷酸锂(LiPF6)、锂电池电解液中的有机溶剂、氯化锆(ZrCl4)和硝酸锂(LiNO3)进行混合,搅拌,得到黄色混浊的溶液;
(2)用离心管对步骤(1)中得到黄色混浊的电解质溶液进行离心,然后倒掉上层清液,取下层沉淀;
(3)将步骤(2)得到的沉淀用锂电池电解液中的碳酸酯类溶剂进行清洗,然后将洗涤后的白色沉淀进行加热干燥,最后得到混合锆盐电解质材料;
上述方法中,步骤(1)中,所述锂电池电解液有机溶剂为碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸丙烯酯(PC)和碳酸甲乙酯(EMC)中的一种以上。
上述方法中,步骤(3)中,用碳酸酯类溶剂对沉淀进行清洗,具体做法为:
取步骤(1)中等质量的碳酸酯类电解液溶剂注入离心管和步骤(2)得到的沉淀进行搅拌使溶剂和沉淀充分混合,然后离心取下层沉淀,然后再次重复这个过程1-3次,得到纯净的混合锆盐白色沉淀。
上述方法中,步骤(3)中,加热干燥的具体条件为:在40℃- 60℃的条件下干燥12-24小时。
上述方法中,步骤(3)中,清洗所用的碳酸酯类溶剂为碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸丙烯酯(PC)和碳酸甲乙酯(EMC)中的一种。
上述方法中,步骤(1)中,所述六氟磷酸锂(LiPF6)、锂电池电解液中的有机溶剂、氯化锆(ZrCl4)和硝酸锂(LiNO3)按照如下质量比例混合:1-2:5-10:0.5-1:0.2-0.4。
上述方法中,步骤(1)中,所述搅拌的条件为:在35℃的条件下搅拌该混合溶液12小时。
实施例1
(1)将六氟磷酸锂(LiPF 6)、混合碳酸酯溶剂(质量比EMC:DEC:EC为5:2:3)、氯化锆(ZrCl 4)和硝酸锂(LiNO 3)按照质量比为1.5:10:0.5:0.3的比例进行混合,然后在35℃的条件下搅拌该混合溶液12小时,得到黄色混浊的溶液;
(2)然后用离心管对得到黄色混浊的电解质溶液进行离心,倒掉上层清液,留下沉淀;
(3)取步骤(1)中等质量EMC溶剂注入离心管中进行震荡清洗,然后再离心倒掉离心管中上层清液,留取沉淀。再次重复本步骤,确保杂质离子已经被EMC溶剂去除。
(4)将步骤(3)中得到的白色沉淀在50℃的条件下真空干燥24小时。自然冷却后研磨粉碎,即得到混合锆盐电解质材料。
实施例2
(1)将六氟磷酸锂(LiPF 6)、碳酸丙烯酯(PC)、氯化锆(ZrCl 4)和硝酸锂(LiNO 3)按照质量比为1.5:10:0.5:0.3的比例进行混合,然后在35℃的条件下搅拌该混合溶液12小时,得到黄色混浊的溶液;
(2)然后用离心管对得到黄色混浊的电解质溶液进行离心,倒掉上层清液,留下沉淀;
(3)取步骤(1)中等质量碳酸丙烯酯(PC)溶剂注入离心管中进行震荡清洗,然后再离心倒掉离心管中上层清液,留取沉淀。再次重复本步骤,确保杂质离子已经被碳酸丙烯酯(PC)溶剂去除。
(4)将步骤(3)中得到的白色沉淀在50℃的条件下真空干燥24小时。自然冷却后研磨粉碎,即得到混合锆盐电解质材料。
实施例3
(1)将六氟磷酸锂(LiPF 6)、混合碳酸酯溶剂(质量比EMC:DEC:EC为5:2:3)、氯化锆(ZrCl 4)和硝酸锂(LiNO 3)按照质量比为1:10:0.5:0.2的比例进行混合,然后在35℃的条件下搅拌该混合溶液12小时,得到黄色混浊的溶液;
(2)然后用离心管对得到黄色混浊的电解质溶液进行离心,倒掉上层清液,留下沉淀;
(3)取步骤(1)中等质量EMC溶剂注入离心管中进行震荡清洗,然后再离心倒掉离心管中上层清液,留取沉淀。再次重复本步骤,确保杂质离子已经被EMC溶剂去除。
(4)将步骤(3)中得到的白色沉淀在40℃的条件下真空干燥24小时。自然冷却后研磨粉碎,即得到混合锆盐电解质材料。
实施例4
(1)将六氟磷酸锂(LiPF 6)、混合碳酸酯溶剂(质量比EMC:DEC:EC为5:2:3)、氯化锆(ZrCl 4)和硝酸锂(LiNO 3)按照质量比为2:10:1:0.4的比例进行混合,然后在35℃的条件下搅拌该混合溶液12小时,得到黄色混浊的溶液;
(2)然后用离心管对得到黄色混浊的电解质溶液进行离心,倒掉上层清液,留下沉淀;
(3)取步骤(1)中等质量EMC溶剂注入离心管中进行震荡清洗,然后再离心倒掉离心管中上层清液,留取沉淀。再次重复本步骤,确保杂质离子已经被EMC溶剂去除。
(4)将步骤(3)中得到的白色沉淀在60℃的条件下真空干燥24小时。自然冷却后研磨粉碎,即得到混合锆盐电解质材料。
实施例5
将制备实施例1制备得到的混合锆盐电解质材料按照质量比为0.5:10的比例加入到含有六氟磷酸锂的锂电池电解液中,其中锂电池电解液中的溶剂混合碳酸酯溶剂(质量比EMC:DEC:EC为5:2:3),锂电池电解液中的六氟磷酸锂的摩尔浓度为1mol/L。
实施例6
将制备实施例2制备得到的混合锆盐电解质材料按照质量比为0.5:10的比例加入到含有六氟磷酸锂的锂电池电解液中,其中锂电池电解液中的溶剂为PC,锂电池电解液中的六氟磷酸锂的摩尔浓度为1mol/L。
实施例7
将制备实施例1制备得到的混合锆盐电解质材料按照质量比为1.5:10的比例加入到含有六氟磷酸锂的锂电池电解液中,其中锂电池电解液中的溶剂混合碳酸酯溶剂(质量比EMC:DEC:EC为5:2:3),锂电池电解液中的六氟磷酸锂的摩尔浓度为1mol/L。
实施例8
将制备实施例1制备得到的混合锆盐电解质材料按照质量比为1:10的比例加入到含有六氟磷酸锂的锂电池电解液中,其中锂电池电解液中的溶剂混合碳酸酯溶剂(质量比DEC:EC为2:3),锂电池电解液中的六氟磷酸锂的摩尔浓度为1mol/L。
对比例1
对比例使用的电解液为市售普通锂电池电解液,其中锂电池电解液中的溶剂混合碳酸酯溶剂(质量比EMC:DEC:EC为5:2:3),锂电池电解液中的六氟磷酸锂的摩尔浓度为1mol/L,购买于广州试剂公司。
实施例9
将实施例1制备的含有混合锆盐的电解液与对比例锂电池电解液作对比,将实施例1和对比例电解液,按照E/C比为3:1的比例加入锂金属扣式电池中,锂金属扣式电池的阳极为碳布/锂金属复合阳极,正极为活性物质载量为14mg/cm -2的磷酸铁锂材料。扣式锂金属电池以先按照0.3C、1C、2C、5C、3C(1C=170 mAh/g)的倍率充放电速率分别循环8次,然后以1C的倍率循环1300圈。
锂金属扣式电池的性能对比如图3所示,注入施例1制备的电解液的锂金属电池在经历倍率充放电循环后,还能在稳定循环1300圈后拥有123mAh/g的比容量,容量保持率为85%,在倍率充电过程中以5C的高倍率充放电时依然有大约95mAh/g的比容量。使用对比例锂电池电解液的锂金属扣式电池,无论在倍率充放电过程中,还是在后续的长循环过程中都远远不如注入实施例1制备的电解液的锂金属电池。
通过实践证明,通过此法制备的混合锆盐电解质材料,是一种高性能的锂电池电解液添加材料。这种混合锆盐电解质材料,能够显著提高锂金属电池的倍率性能和循环寿命,是制备高能量和大功率锂金属电池非常理想的电解液添加材料。
上述实验例1为本发明较佳的实施方式,但本发明的实施方式并不受上述实验例1的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种混合锆盐电解质材料的合成方法,其特征在于,包括如下步骤:
    (1)将六氟磷酸锂LiPF 6、锂电池电解液中的有机溶剂、氯化锆ZrCl 4和硝酸锂LiNO 3进行混合,搅拌,得到黄色混浊的溶液;
    (2)用离心管对步骤(1)中得到黄色混浊的溶液进行离心,然后倒掉上层清液,取下层沉淀;
    (3)将步骤(2)得到的沉淀用锂电池电解液中的碳酸酯类溶剂进行清洗,然后将洗涤后的白色沉淀进行加热干燥,最后得到混合锆盐电解质材料。
  2. 根据权利要求1所述混合锆盐电解质材料的合成方法,其特征在于,步骤(1)中,所述锂电池电解液有机溶剂为碳酸乙烯酯EC、碳酸二乙酯DEC、碳酸二甲酯DMC、碳酸丙烯酯PC和碳酸甲乙酯EMC中的一种以上。
  3. 根据权利要求1所述混合锆盐电解质材料的合成方法,其特征在于,步骤(3)中,用碳酸酯类溶剂对沉淀进行清洗,具体做法为:
    取步骤(1)中等质量的碳酸酯类电解液溶剂注入离心管和步骤(2)得到的沉淀进行搅拌使溶剂和沉淀充分混合,然后离心取下层沉淀,然后再次重复这个过程1-3次,得到纯净的混合锆盐白色沉淀。
  4. 根据权利要求1所述混合锆盐电解质材料的合成方法,其特征在于,步骤(3)中,加热干燥的具体条件为:在40℃- 60℃的条件下干燥12-24小时。
  5. 根据权利要求1所述混合锆盐电解质材料的合成方法,其特征在于,步骤(3)中,清洗所用的碳酸酯类溶剂为碳酸二乙酯DEC、碳酸二甲酯DMC、碳酸丙烯酯PC和碳酸甲乙酯EMC中的一种。
  6. 根据权利要求1所述混合锆盐电解质材料的合成方法,其特征在于,步骤(1)中,所述六氟磷酸锂LiPF 6、锂电池电解液中的有机溶剂、氯化锆ZrCl 4和硝酸锂LiNO 3按照如下质量比例混合:1-2:5-10:0.5-1:0.2-0.4。
  7. 根据权利要求1所述混合锆盐电解质材料的合成方法,其特征在于,步骤(1)中,所述搅拌的条件为:在35℃的条件下搅拌该混合溶液12小时。
  8. 一种权利要求1-7任一项制备方法制备得到的混合锆盐电解质材料在锂金属电池中的用途,其特征在于,将所述的混合锆盐电解质材料加入含有六氟磷酸锂(LiPF 6)的锂电池电解液中。
  9. 根据权利要求7所述的混合锆盐电解质材料在锂金属电池中的用途,其特征在于,在所述锂电池电解液中,锂电池电解液和混合锆盐电解质材料的质量比为10:0.5—10:1.5。
  10. 根据权利要求7所述的混合锆盐电解质材料在锂金属电池中的用途,其特征在于,在所述锂电池电解液中,其溶剂为碳酸乙烯酯EC、碳酸二乙酯DEC、碳酸二甲酯DMC、碳酸丙烯酯PC和碳酸甲乙酯EMC中的一种以上。
PCT/CN2021/127802 2021-06-29 2021-10-31 一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途 WO2023273077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110730158.4 2021-06-29
CN202110730158.4A CN113422110B (zh) 2021-06-29 2021-06-29 一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途

Publications (1)

Publication Number Publication Date
WO2023273077A1 true WO2023273077A1 (zh) 2023-01-05

Family

ID=77717955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127802 WO2023273077A1 (zh) 2021-06-29 2021-10-31 一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途

Country Status (2)

Country Link
CN (1) CN113422110B (zh)
WO (1) WO2023273077A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422110B (zh) * 2021-06-29 2022-03-29 华南理工大学 一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281073A (ja) * 2003-03-12 2004-10-07 Mitsubishi Chemicals Corp 非水電解液及び非水電解液電池
CN103227326A (zh) * 2013-04-12 2013-07-31 北京石磊乾坤含氟新材料研究院有限责任公司 六氟锆酸锂的合成方法及其新用途
CN109088101A (zh) * 2018-09-21 2018-12-25 中南大学 一种电解液及其应用
CN110931876A (zh) * 2019-12-21 2020-03-27 中南大学 一种高压锂离子电池电解液及锂离子电池
CN111477957A (zh) * 2020-04-22 2020-07-31 浙江大学 一种含复合添加剂的锂金属电池电解液及其制备方法
CN113422110A (zh) * 2021-06-29 2021-09-21 华南理工大学 一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080067050A (ko) * 2007-01-15 2008-07-18 제일모직주식회사 리튬 2차전지용 비수성 전해액 및 이를 포함하는 리튬2차전지
US20210119264A1 (en) * 2019-10-21 2021-04-22 Energizer Brands, Llc Additives for improving battery performance via cation adsorption

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281073A (ja) * 2003-03-12 2004-10-07 Mitsubishi Chemicals Corp 非水電解液及び非水電解液電池
CN103227326A (zh) * 2013-04-12 2013-07-31 北京石磊乾坤含氟新材料研究院有限责任公司 六氟锆酸锂的合成方法及其新用途
CN109088101A (zh) * 2018-09-21 2018-12-25 中南大学 一种电解液及其应用
CN110931876A (zh) * 2019-12-21 2020-03-27 中南大学 一种高压锂离子电池电解液及锂离子电池
CN111477957A (zh) * 2020-04-22 2020-07-31 浙江大学 一种含复合添加剂的锂金属电池电解液及其制备方法
CN113422110A (zh) * 2021-06-29 2021-09-21 华南理工大学 一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, JIE ET AL.: "ZrO(NO3)2 as a functional additive to suppress the diffusion of polysulfides in lithium - Sulfur batteries", JOURNAL OF POWER SOURCES, vol. 442, 7 October 2019 (2019-10-07), XP085889404, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2019.227232 *

Also Published As

Publication number Publication date
CN113422110B (zh) 2022-03-29
CN113422110A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
CN101855755B (zh) 非水电解液二次电池用Li-Ni类复合氧化物颗粒粉末及其制造方法,和非水电解质二次电池
JP3978881B2 (ja) 非水電解液およびそれを用いたリチウム二次電池
CN108390022A (zh) 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池
CN105226285B (zh) 一种多孔硅碳复合材料及其制备方法
CN110168785A (zh) 镍基活性物质前驱体及其制备方法、镍基活性物质以及锂二次电池
KR101488043B1 (ko) 고용량 리튬이차전지의 활성화 방법
CN1941490A (zh) 一种锂二次电池用电解质的制备方法
CN105552360A (zh) 一种改性的镍钴锰酸锂正极材料及其制备方法
CN106602024B (zh) 一种表面原位修饰型富锂材料及其制备方法
CN104891570B (zh) 一种液相合成Zr4+掺杂氟化铋锂离子电池正极材料及其制备方法
CN106784790A (zh) 一种镍钴锰酸锂三元正极材料的制备方法
CN113428912B (zh) 一种四元正极材料及其制备方法和应用
CN105977460A (zh) 一种石墨烯复合材料、其制备方法及应用
CN106450279B (zh) 一种石墨烯包覆镍钴锰锂离子电池正极材料的制备方法
JP3978882B2 (ja) 非水電解液およびそれを用いたリチウム二次電池
CN106104860B (zh) 非水电解质二次电池用正极以及非水电解质二次电池
CN107492648B (zh) 棉花基碳纤维/MnO/C材料、制备方法及应用
WO2023273077A1 (zh) 一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途
CN113066988A (zh) 一种负极极片及其制备方法和用途
CN113725408A (zh) 一种负极材料及其制备方法、负极片以及电池
CN102009998A (zh) 一种锂离子电池负极材料钛酸锂的制备方法
CN105826515A (zh) 一种锂离子电池负极材料及其应用
JP2013069567A (ja) 電極活物質及びその製造方法並びにリチウムイオン電池
CN114975987A (zh) 一种铌酸镍负极材料及其制备方法与应用
CN106299341A (zh) 一种锂离子电池正极材料化学共生多孔纳米/亚微米多级LiMn2O4/LiNi0.5Mn1.5O4立方体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948004

Country of ref document: EP

Kind code of ref document: A1