WO2023272859A1 - 三元复合导电胶及其制备方法、浆料以及锂电池 - Google Patents
三元复合导电胶及其制备方法、浆料以及锂电池 Download PDFInfo
- Publication number
- WO2023272859A1 WO2023272859A1 PCT/CN2021/109413 CN2021109413W WO2023272859A1 WO 2023272859 A1 WO2023272859 A1 WO 2023272859A1 CN 2021109413 W CN2021109413 W CN 2021109413W WO 2023272859 A1 WO2023272859 A1 WO 2023272859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive adhesive
- ternary composite
- composite conductive
- conductive
- mixing
- Prior art date
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 157
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 157
- 239000011206 ternary composite Substances 0.000 title claims abstract description 155
- 239000002002 slurry Substances 0.000 title claims description 62
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 55
- 229910052744 lithium Inorganic materials 0.000 title claims description 55
- 238000002360 preparation method Methods 0.000 title claims description 23
- 239000006258 conductive agent Substances 0.000 claims abstract description 61
- 239000000835 fiber Substances 0.000 claims abstract description 60
- 230000007704 transition Effects 0.000 claims abstract description 60
- 239000000126 substance Substances 0.000 claims abstract description 51
- 239000002904 solvent Substances 0.000 claims abstract description 45
- 239000011230 binding agent Substances 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims description 109
- 238000002156 mixing Methods 0.000 claims description 101
- 239000004020 conductor Substances 0.000 claims description 85
- 238000003756 stirring Methods 0.000 claims description 48
- 239000000203 mixture Substances 0.000 claims description 40
- 229920000058 polyacrylate Polymers 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- 239000012046 mixed solvent Substances 0.000 claims description 30
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 239000003795 chemical substances by application Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 21
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 16
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 14
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 14
- 239000004917 carbon fiber Substances 0.000 claims description 14
- 239000006232 furnace black Substances 0.000 claims description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 14
- 239000002109 single walled nanotube Substances 0.000 claims description 14
- 239000002033 PVDF binder Substances 0.000 claims description 12
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 12
- 239000003792 electrolyte Substances 0.000 claims description 9
- 239000011149 active material Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 239000005062 Polybutadiene Substances 0.000 claims description 7
- 229920002857 polybutadiene Polymers 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 6
- 239000006229 carbon black Substances 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 5
- 239000006230 acetylene black Substances 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 4
- 239000003273 ketjen black Substances 0.000 claims description 4
- 239000002048 multi walled nanotube Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- QTYUSOHYEPOHLV-UHFFFAOYSA-N octa-1,3-diene Chemical compound CCCCC=CC=C QTYUSOHYEPOHLV-UHFFFAOYSA-N 0.000 claims 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 26
- 229910001416 lithium ion Inorganic materials 0.000 description 26
- 239000006185 dispersion Substances 0.000 description 24
- 238000009826 distribution Methods 0.000 description 10
- 238000009831 deintercalation Methods 0.000 description 9
- 239000002270 dispersing agent Substances 0.000 description 7
- 238000013329 compounding Methods 0.000 description 4
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 4
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 4
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000009775 high-speed stirring Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J109/00—Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
- C09J109/06—Copolymers with styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/16—Solid spheres
- C08K7/18—Solid spheres inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C09D127/16—Homopolymers or copolymers of vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/04—Non-macromolecular additives inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J127/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers
- C09J127/02—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
- C09J127/12—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C09J127/16—Homopolymers or copolymers of vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09J133/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J9/00—Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
- C09J9/02—Electrically-conducting adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2203—Oxides; Hydroxides of metals of lithium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2289—Oxides; Hydroxides of metals of cobalt
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/33—Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/40—Additional features of adhesives in the form of films or foils characterized by the presence of essential components
- C09J2301/408—Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2409/00—Presence of diene rubber
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2427/00—Presence of halogenated polymer
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2433/00—Presence of (meth)acrylic polymer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to a ternary composite conductive adhesive, a preparation method thereof, a slurry and a lithium battery.
- the conductive agent plays the role of assisting the movement of electrons between the positive and negative electrodes of the lithium-ion battery to realize lithium ion intercalation and detachment.
- Crucial role. Therefore, choosing a suitable conductive agent is the key to obtain lithium batteries with high energy density, long cycle life and high battery rate.
- the main problems of using conductive agents in lithium-ion batteries are: (1) The particles of conductive agents are small, generally tens of nanometers, resulting in poor dispersion and complicated dispersion processes. Pay attention to its dispersion procedure, such as: the order of special dispersants and conductive agents added in batches and parts; (2) The conductivity of the conductive agent is not high enough. At present, it is usually achieved by increasing the metal powder content in the conductive agent. improve its electrical conductivity. However, increasing the content of metal powder will not only cause a significant increase in cost, but also reduce the mechanical properties of the conductive agent, which is not conducive to the application of the conductive agent.
- a ternary composite conductive adhesive comprising the following components:
- the conductive agent includes conductive spherical node substances, conductive fiber transition substances and conductive tubular conductive substances.
- a method for preparing a ternary composite conductive adhesive which is used to prepare the ternary composite conductive adhesive described in any of the above embodiments, the preparation method of the ternary composite conductive adhesive includes the following steps:
- the fourth mixing treatment is performed by adding the conductive spherical node material into the peptizing agent after the third mixing treatment.
- a slurry comprising mixed active materials and the ternary composite conductive adhesive prepared by the method for preparing the ternary composite conductive adhesive described in any of the above embodiments.
- a battery comprising the slurry described in any one of the above embodiments.
- Fig. 1 is the step flowchart of the preparation method of the ternary composite conductive adhesive of one embodiment of the present invention
- Figure 2 is the discharge curves of the lithium battery of Example 4 at different discharge rates.
- the ternary composite conductive adhesive of one embodiment includes the following components: binder, solvent and conductive agent, and the conductive agent includes conductive spherical node substances, conductive fiber transition substances and conductive tubular conductive substances.
- the shape of the conductive tubular conductive material is tubular, that is, the conductive tubular conductive material is a conductive material with a tubular structure, and the conductive material with a tubular structure has better electron conductivity and can accelerate the conduction speed of electrons.
- the conductive material of the tubular structure is likely to agglomerate and affect the conductivity of the lithium battery slurry and the energy density of the lithium battery; if the amount of the conductive material of the tubular structure is small, the The conductive electrons in the slurry of the ternary composite conductive adhesive have fewer contact points with the lithium ions embedded in the slurry, which reduces the conductivity of the slurry containing the ternary composite conductive adhesive, and then makes the conductive tubular conductive material separate from the conductive Spherical node substances and conductive fiber transition substances are used in combination to reduce the amount of conductive substances in the tubular structure and increase the contact points between the electrons conducted in the slurry containing the ternary composite conductive adhesive and the lithium ions embedded in the slurry, wherein, The shape of the conductive spherical node material is spherical, that is, the conductive spherical node material is
- the conductive fiber transition material is fibrous in shape, that is, the conductive fiber transition material is a conductive material with a fibrous structure.
- the conductive material with a fibrous structure is softer and can better resist the conductive material with a tubular structure and
- the conductive spherical node material plays a connecting role, which not only realizes the rapid conduction of electrons in the slurry containing the ternary composite conductive adhesive, but also improves the deintercalation ability of lithium ions embedded in the slurry containing the ternary composite conductive adhesive. That is, the conductive spherical node material, the conductive fiber transition material and the conductive tubular conductive material are used for compounding, which effectively improves the conductivity of the ternary composite conductive adhesive.
- a binder and a solvent are used to disperse the conductive agent, wherein the solvent provides enough space for the conductive agent to disperse, and the binder improves the viscosity of the solvent, which avoids further occurrence of the conductive agent after it is dispersed in the solvent. Settling reduces the dispersibility of the conductive agent, effectively improving the dispersion stability of the conductive agent.
- the conductive tubular conductive material is tubular, that is, the conductive tubular conductive material is a conductive material with a tubular structure, and the conductive material with a tubular structure has better electron conductivity and can accelerate the electron conduction speed. Therefore, this In the application for the ternary composite conductive adhesive, in order to improve the conductivity of the ternary composite conductive adhesive, the conductive agent is selected as the conductive tubular conductive material, but the tubular shape of the conductive tubular conductive material makes the conductive tubular conductive material difficult to disperse and easy to agglomerate, making The use of conductive tubular conductive substances has limitations in the amount used.
- the tubular shape of the conductive tubular conductive material makes the distribution of the conductive tubular conductive material sparse in the slurry, which cannot provide more electron conduction for the lithium ions embedded in the slurry.
- the conductive tubular conductive material, conductive spherical node material and conductive fiber transition material are compounded and used, not only the conductive tubular conductive material, conductive spherical node material and conductive fiber transition material Each improves the performance of the ternary composite conductive adhesive, and the overall compounding improves the performance of the ternary composite conductive adhesive.
- the shape of the conductive spherical node material is spherical, that is, the conductive spherical node material is a conductive material with a spherical structure.
- the spherical structure of the conductive substance increases the distribution density of the conductive substance, providing more electron conduction contact points for the lithium ions embedded in the slurry containing the ternary composite conductive adhesive
- the shape of the conductive fiber transition substance is fibrous , that is, the conductive fiber transition material is a conductive material with a fibrous structure, and the conductive material with a fibrous structure is softer, which can better connect the conductive material with a tubular structure and the conductive spherical node material, and then realize the three-element
- the rapid conduction of electrons in the slurry of composite conductive adhesive improves the deintercalation ability of lithium ions embedded in the slurry containing ternary composite conductive adhesive, that is, the use of conductive spherical node materials, conductive fiber transition materials and conductive tubular conductive materials Composite use can effectively improve the conductivity of the ternary composite conductive adhesive.
- the shape of the conductive fiber transition material is fibrous, that is, the conductive fiber transition material is a conductive material with a fibrous structure, and the fibrous shape of the conductive fiber transition material makes the conductive fiber transition material difficult to disperse and easy to agglomerate, so that The use of conductive fiber transition materials has limitations in the amount used.
- the fibrous shape of the conductive fiber transition material makes the distribution of the conductive tubular conductive material sparse in the slurry, which cannot provide more electronic conductive contact points for the lithium ions embedded in the slurry , leading to poor deintercalation ability of lithium ions embedded in the slurry, which in turn affects the conductivity of the slurry and the cycle performance of the lithium battery.
- the method of adding a dispersant to the conductive agent is used to improve the conductivity of the conductive fiber If the amount of transition substances used, the use of dispersants will reduce the content of active materials in the slurry, thereby reducing the energy density of lithium batteries, and the use of dispersants will increase the occurrence of side reactions in lithium batteries, thereby affecting the performance of lithium batteries. Use security.
- the conductive tubular conductive material and the conductive spherical node material are used in combination, the conductive tubular conductive material and the conductive spherical node material cannot form a tight three-dimensional network when the amount of the conductive tubular conductive material and the conductive spherical node material is used in a small amount.
- the structure is in full contact with the conductive spherical nodes, which makes the conductive performance of the conductive agent poor.
- the conductivity of the conductive agent is poorer than that of the conductive tubular conductive material and the conductive spherical node material, so that the conductivity of the conductive agent Conductivity is poor.
- the ternary composite conductive adhesive includes the following components by mass: 4-8 parts of binder; 85-96 parts of solvent; 0.5-3 parts of conductive spherical node material; conductive fiber transition 0.1-2 parts of substance; 0.03-1.5 parts of conductive tubular conductive substance. It can be understood that the ternary composite conductive adhesive of the present application is evenly mixed with the active material to directly form the slurry of the lithium battery. In the ternary composite conductive adhesive of the present application, because the conductive tubular conductive material has better electron conductivity, it can accelerate the electron transfer rate.
- the conductive spherical node material is spherical, that is, the conductive spherical node material is a conductive material with a spherical structure, and the conductive material with a spherical structure increases the distribution density of the conductive material.
- the lithium ions in the material provide more contact points for electron conduction, and the shape of the conductive fiber transition material is fibrous, that is, the conductive fiber transition material is a conductive material with a fibrous structure, and the conductive material with a fibrous structure is softer and better.
- the ground plays a role in connecting the conductive material of the tubular structure and the conductive spherical node material, so that in the case of reducing the total amount of the conductive agent, the mass part of the conductive spherical node material of the conductive agent is 0.5 to 3 parts;
- the mass parts of the conductive fiber transition material are 0.1-2 parts and the mass parts of the conductive tubular conductive material are 0.03-1.5 parts, and the percentage of the slurry containing the ternary composite conductive adhesive is 0.63%-6.5%
- the rapid conduction of electrons of the conductive agent and the improvement of the deintercalation ability of lithium ions embedded in the slurry containing the ternary composite conductive adhesive are realized.
- the reduction in the amount of the conductive agent makes the ternary composite conductive adhesive.
- the content of the active material in the slurry is increased, thereby improving the energy density and high-power charge-discharge performance of the lithium battery.
- the binder is at least one of polyvinylidene fluoride, polyacrylate and butylene rubber. It can be understood that polyvinylidene fluoride, acrylate and butadiene rubber all have good adhesiveness, which effectively increases the viscosity of the solvent and avoids further sedimentation of the conductive agent after it is dispersed in the solvent to reduce the conductivity. The dispersibility of the conductive agent can effectively improve the dispersion stability of the conductive agent.
- the binder includes butylene rubber and polyacrylate. It can be understood that since styrene-butadiene rubber can effectively improve the high temperature resistance and aging resistance of the ternary composite conductive agent, and the chain of the styrene-butadiene rubber is longer, it is more conducive to improving the dispersion stability of the conductive agent of the ternary composite conductive adhesive, but The impedance of styrene-butadiene rubber is relatively large.
- acrylate with low impedance and styrene-butadiene rubber for cross-linking reduces the increase in the impedance of the ternary composite conductive adhesive after the addition of the binder, which in turn leads to the increase in the impedance of the ternary composite conductive adhesive.
- acrylate can effectively improve the low temperature resistance of the ternary composite conductive agent.
- the mass ratio of NBR and polyacrylate is 0.3-0.65, which better alleviates the increase of the impedance of the ternary composite conductive adhesive after the binder is added, which in turn leads to the increase of the resistance of the ternary composite conductive adhesive. It solves the problem of reduced electrical conductivity, and better improves the dispersion stability of the conductive agent of the ternary composite conductive adhesive.
- the solvent is an organic solvent or water. It can be understood that the use of an organic solvent or water in combination with a binder can better ensure the dispersion stability of the conductive agent.
- the organic solvent is N-methylpyrrolidone, which better ensures the dispersion stability of the conductive agent.
- the conductive spherical node material is spherical carbon black.
- spherical carbon black has a larger specific surface area, which is beneficial to the adsorption of electrolyte, and the use of spherical carbon black increases the distribution density of conductive substances in the unit composite conductive adhesive, which is a good way to embed the slurry containing the ternary composite conductive adhesive.
- the lithium ions in the material provide more electron conduction contact points, which improves the deintercalation ability of the lithium ions embedded in the slurry containing the ternary composite conductive adhesive, thereby improving the cycle performance and charge-discharge rate performance of the lithium battery.
- the conductive spherical node material is at least one of furnace black, acetylene black and Ketjen black. It can be understood that furnace black, acetylene black and Ketjen black can provide more electron conduction contact points for lithium ions embedded in the slurry containing ternary composite conductive adhesive, and improve the efficiency of the slurry containing ternary composite conductive adhesive. The ability to deintercalate the lithium ions embedded in the battery improves the cycle performance and high rate discharge performance of the lithium battery.
- the conductive fiber transition material is carbon fiber. It can be understood that the fibrous structure of carbon fiber helps to form a conductive network to connect the conductive tubular conductive material and the conductive spherical node material, forming a system of fast electron conduction and lithium ion fast deintercalation, effectively increasing the cycle of lithium batteries performance and high rate discharge performance.
- the conductive tubular material is carbon nanotubes. It can be understood that the carbon nanotubes are hollow inside and have a long columnar shape, which makes the ternary composite conductive adhesive have better conductivity and conductivity speed, and can effectively improve the toughness of the ternary composite material, thereby improving the peeling of the slurry in the lithium battery. Strength, improve the cycle performance of the battery.
- the conductive tubular material is at least one of single-walled carbon nanotubes and multi-walled carbon nanotubes. It can be understood that both single-walled carbon nanotubes and multi-walled carbon nanotubes can make the ternary composite conductive adhesive have better conductivity and conductivity speed, and can effectively improve the toughness of the ternary composite material, thereby improving the viscosity of the lithium battery. The peeling strength of the material improves the cycle performance of the battery.
- the preparation method of the ternary composite conductive adhesive of one embodiment includes the following steps:
- the conductive tubular conductive substance, conductive spherical node substance and conductive fiber transition substance in the agent do not produce sedimentation and aggregation, and when the binder is added to the solvent containing the conductive agent, the conductive agent has a certain adsorption effect on the binder, increasing The dispersion difficulty of the binder is reduced, and then the dispersion uniformity of the ternary composite conductive adhesive is reduced.
- the binder and the solvent are mixed first, which reduces the dispersion difficulty of the adhesive and The dispersion uniformity of the binder is improved, and the dispersion strength during the dispersion process of the conductive agent is reduced, that is, the high-speed stirring and mixing can be stopped after the conductive agent forms a stable system in the solvent, avoiding that the binder is not added to the Before the solvent is added, the solvent needs to be stirred at high speed to ensure that the conductive tubular conductive material, conductive spherical node material and conductive fiber transition material in the conductive agent do not have the problem of sedimentation and aggregation, thereby reducing the preparation cost of the ternary composite conductive adhesive.
- the conductive tubular conductive material is a tubular linear structure material, it is easier to agglomerate than the conductive spherical node material and the conductive fiber transition material. Therefore, the conductive tubular conductive material is first added to the peptizer for dispersion to initially form a network. three-dimensional structure.
- the conductive fiber transition material first added to the peptizer, the conductive fiber transition material first forms a three-dimensional network structure, and due to intermolecular interference, it is difficult for the conductive tubular conductive material to enter the three-dimensional network formed by the conductive fiber transition material. In the network structure, the dispersion uniformity of the conductive substance is reduced, which in turn affects the conductivity of the ternary composite conductive adhesive.
- the dispersion difficulty of the conductive agent in the ternary composite conductive adhesive is solved, and finally the conductive spherical node material is added to the peptizer containing the conductive tubular conductive material and the conductive fiber transition material, which is beneficial to the conductive spherical node material on the perfected three-dimensional network. Filling with the shape structure effectively improves the distribution density of the conductive agent, thereby improving the conductivity of the ternary composite conductive adhesive.
- the binder and the solvent are mixed first, which reduces the difficulty of dispersing the binder and improves the dispersion uniformity of the binder, and reduces the dispersion strength during the dispersion process of the conductive agent.
- the high-speed stirring and mixing can be stopped after the conductive agent forms a stable system in the solvent, avoiding the need for high-speed stirring of the solvent before the binder is added to the solvent to ensure the conductive tubular conductive substance in the conductive agent ,
- the conductive spherical node material and the conductive fiber transition material do not cause the problem of sedimentation and aggregation, thereby reducing the preparation cost of the ternary composite conductive adhesive.
- the conductive tubular conductive material is added to the peptizer containing the peptizer for dispersion to initially form a three-dimensional network structure, and then the conductive fiber transition material is added to the peptizer containing the conductive tubular conductive material to further improve the three-dimensional network structure.
- the conductive spherical node material Effectively improve the connection tightness of the three-dimensional network structure, and then add the conductive spherical node material to the peptizer containing the conductive tubular conductive material and the conductive fiber transition material, which is beneficial to the conductive spherical node material on the perfected three-dimensional network Filling with the shape structure effectively improves the distribution density of the conductive agent, thereby improving the conductivity of the ternary composite conductive adhesive.
- the first mixing operation is performed on the binder and the solvent under the condition that the stirring speed is greater than 350 r/min, so as to ensure the uniformity of mixing of the binder and the solvent.
- the conductive tubular conductive substance is added into the peptizing agent for the second mixing process, so as to ensure the mixing uniformity of the conductive tubular conductive substance and the peptizing agent.
- the conductive fiber transition material is added to the peptizing agent after the second mixing treatment to carry out the third mixing treatment, which ensures that the conductive fiber transition material is mixed with the peptizing agent. mixing uniformity.
- the conductive spherical node material is added to the peptizing agent after the third mixing treatment to carry out the fourth mixing treatment, which ensures that the conductive spherical node material is mixed with the peptizing agent. mixing uniformity.
- the slurry in one embodiment includes mixed active materials and the ternary composite conductive adhesive prepared by the method for preparing the ternary composite conductive adhesive described in any of the above embodiments.
- the preparation method of the ternary composite conductive adhesive includes the following steps: performing the first mixing operation on the binder and the solvent to obtain the peptizing agent; adding the conductive tubular conductive material to the peptizing agent for the second mixing process ; adding the conductive fiber transition material to the peptizing solvent after the second mixing treatment to perform the third mixing treatment; adding the conductive spherical node material to the peptizing solvent after the third mixing treatment to perform the fourth mixing treatment.
- the ternary composite conductive adhesive prepared by the preparation method of the ternary composite conductive adhesive is used.
- the conductive material of the tubular structure in the ternary composite conductive adhesive has better electron conductivity and can accelerate the conduction of electrons. Speed, and make the compound use of conductive tubular conductive material, conductive spherical node material and conductive fiber transition material, not only the conductive tubular conductive material, conductive spherical node material and conductive fiber transition material respectively improve the performance of the slurry, but also The overall compounding improves the performance of the slurry.
- the conductive spherical node material increases the distribution density of the conductive material, providing more electron conduction contact points for the lithium ions embedded in the slurry, and the conductive fiber transition material is softer. , it better connects the conductive material of the tubular structure and the conductive spherical node material, and then not only realizes the rapid conduction of electrons in the slurry, but also improves the deintercalation ability of the lithium ions embedded in the slurry, that is, the use of conductive
- the spherical node material, the conductive fiber transition material and the conductive tubular conductive material are used in combination to effectively improve the conductivity of the slurry.
- a battery according to an embodiment includes the slurry described in any one of the above embodiments.
- the slurry includes mixed active materials and the ternary composite conductive adhesive prepared by the method for preparing the ternary composite conductive adhesive described in any of the above embodiments;
- the preparation method of the ternary composite conductive adhesive includes the following Steps: performing the first mixing operation on the binder and the solvent to obtain the peptizing solvent; adding the conductive tubular conductive material to the peptizing solvent for the second mixing treatment; adding the conductive fiber transition material to the peptizing solvent after the second mixing treatment
- the third mixing treatment is carried out in the middle; the conductive spherical node material is added into the peptizing agent after the third mixing treatment to carry out the fourth mixing treatment.
- the slurry containing the ternary composite conductive adhesive prepared by the preparation method of the ternary composite conductive adhesive is used, and the use of the conductive agent of the ternary composite conductive adhesive in the slurry effectively improves the viscosity of the slurry. Conductive performance, thereby improving the high-rate discharge performance and cycle performance of the battery.
- the present invention has at least the following advantages:
- the shape of the conductive tubular conductive substance is tubular, that is, the conductive tubular conductive substance is a conductive substance with a tubular structure, and the conductive substance with a tubular structure has better electron conductivity and can accelerate the conduction speed of electrons.
- the conductive material of the tubular structure is likely to agglomerate and affect the conductivity of the lithium battery slurry and the energy density of the lithium battery; if the amount of the conductive material of the tubular structure is small, the The conductive electrons in the slurry of the ternary composite conductive adhesive have fewer contact points with the lithium ions embedded in the slurry, which reduces the conductivity of the slurry containing the ternary composite conductive adhesive, and then makes the conductive tubular conductive material separate from the conductive Spherical node substances and conductive fiber transition substances are used in combination to reduce the amount of conductive substances in the tubular structure and increase the contact points between the electrons conducted in the slurry containing the ternary composite conductive adhesive and the lithium ions embedded in the slurry, wherein, The shape of the conductive spherical node material is spherical, that is, the conductive spherical node material is
- the conductive fiber transition material is fibrous in shape, that is, the conductive fiber transition material is a conductive material with a fibrous structure.
- the conductive material with a fibrous structure is softer and can better resist the conductive material with a tubular structure and
- the conductive spherical node material plays a connecting role, which not only realizes the rapid conduction of electrons in the slurry containing the ternary composite conductive adhesive, but also improves the deintercalation ability of lithium ions embedded in the slurry containing the ternary composite conductive adhesive. That is, the conductive spherical node material, the conductive fiber transition material and the conductive tubular conductive material are used for compounding, which effectively improves the conductivity of the ternary composite conductive adhesive.
- a binder and a solvent are used to disperse the conductive agent, wherein the solvent provides enough space for the conductive agent to disperse, and the binder improves the viscosity of the solvent, which avoids further occurrence of the conductive agent after it is dispersed in the solvent. Settling reduces the dispersibility of the conductive agent, effectively improving the dispersion stability of the conductive agent.
- the positive pole piece, the negative pole piece, the diaphragm, and the electrolyte are assembled into a battery, which is then made into a lithium battery after chemical composition and volume reduction.
- the positive pole piece, the negative pole piece, the diaphragm, and the electrolyte are assembled into a battery, which is then made into a lithium battery after chemical composition and volume reduction.
- the positive pole piece, the negative pole piece, the diaphragm, and the electrolyte are assembled into a battery, which is then made into a lithium battery after chemical composition and volume reduction.
- the positive pole piece, the negative pole piece, the diaphragm, and the electrolyte are assembled into a battery, which is then made into a lithium battery after chemical composition and volume reduction.
- the lithium battery of embodiment 1 ⁇ 4 carries out performance test as follows:
- Table 1 shows the discharge capacity and capacity retention of the lithium batteries of Examples 1-4 at different discharge rates:
- Fig. 2 is the discharge curve of the lithium battery of Example 4 at different discharge rates.
- the discharge rates of the discharge curve in Fig. 2 are 1C, 30C, 40C, 50C, 60C, 70C, 80C, 90C and 100C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
一种三元复合导电胶包括如下组份:粘结剂、溶剂和导电剂,导电剂包括导电球形节点物质、导电纤维过渡物质和导电管状传导物质。
Description
本发明涉及一种三元复合导电胶及其制备方法、浆料以及锂电池。
导电剂作为电池浆料的重要组成部分,在锂离子电池的正、负极之间起着辅助电子移动而实现锂离子嵌脱的作用,导电剂对电池的能量密度、电池倍率和循环效率等存在至关重要的作用。因此,选择合适的导电剂是获得高能量密度、长循环寿命和高电池倍率的锂电池的关键。
目前锂离子电池中使用导电剂的主要问题有:(1)导电剂的颗粒较小,一般为几十纳米,造成其分散性不好,分散工艺繁杂,一般除了要使用机械的操作外还要注意其分散的程序,如:分次、分量加入的专用分散剂、导电剂等的顺序问题;(2)导电剂的导电性不够高,目前,通常是通过增加导电剂中的金属粉含量来提高其导电性能。然而,增加金属粉的含量不仅会造成成本的显著增加,并且会降低导电剂的力学性能,不利于导电剂的应用。
发明内容
本发明的目的是克服现有技术中的不足之处,提供一种具有较好的分散性和较高的导电性的三元复合导电胶及其制备方法、浆料以及锂电池。一种三元复合导电胶,包括如下组份:
粘结剂;
溶剂;
导电剂,所述导电剂包括导电球形节点物质、导电纤维过渡物质和导电管状传导物质。
一种三元复合导电胶的制备方法,用于制备上述任一实施例所述的三元复合导电胶,所述三元复合导电胶的制备方法包括如下步骤:
对粘结剂和溶剂进行第一混合操作,得到含胶溶剂;
将导电管状传导物质加入所述含胶溶剂中进行第二混合处理;
将导电纤维过渡物质加入第二混合处理后的所述含胶溶剂中进行第三混合处理;
将导电球形节点物质加入第三混合处理后的所述含胶溶剂中进行第四混合处理。
一种浆料,包括相混合的活性物质和采用上述任一实施例所述的三元复合导电胶的制备方法制备得到的所述三元复合导电胶。
一种电池,包括上述任一实施例所述的浆料。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本发明一实施方式的三元复合导电胶的制备方法的步骤流程图;
图2为实施例4的锂电池在不同放电倍率下的放电曲线。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
一实施例的三元复合导电胶包括如下组份:粘结剂、溶剂和导电剂,导电剂包括导电球形节点物质、导电纤维过渡物质和导电管状传导物质。
上述的三元复合导电胶中,导电管状传导物质的外形呈管状,即导电管状传导物质为管状结构的导电物质,管状结构的导电物质具有较好的电子传导能力,能够加快电子的传导速度,但是,若管状结构的导电物质的用量较大时,管状结构的导电物质容易发生团聚而影响锂电池浆料的导电性能和锂电池的能量密度;若管状结构的导电物质的用量较小时,含有三元复合导电胶的浆料中传导的电子与嵌入浆料中的锂离子的接触点较少而降低 了含有三元复合导电胶的浆料的导电性能,进而使得导电管状传导物质分别与导电球形节点物质和导电纤维过渡物质复配使用以减少管状结构的导电物质的用量,并增加含有三元复合导电胶的浆料中传导的电子与嵌入浆料中的锂离子的接触点,其中,导电球形节点物质的外形呈球状,即导电球形节点物质为球状结构的导电物质,如此增加了导电物质的分布稠密程度,为嵌入含有三元复合导电胶的浆料中的锂离子提供了更多地电子传导接触点,而导电纤维过渡物质的外形呈纤维状,即导电纤维过渡物质为纤维状结构的导电物质,纤维状结构的导电物质较柔软,能够较好地对管状结构的导电物质和导电球形节点物质起到了连接作用,进而既实现了含有三元复合导电胶的浆料中电子的快速传导,又提高了含有三元复合导电胶的浆料中嵌入的锂离子的脱嵌能力,即采用导电球形节点物质、导电纤维过渡物质和导电管状传导物质进行复配使用,有效地提高了三元复合导电胶的导电性能。此外,采用粘结剂和溶剂对导电剂进行分散,其中,溶剂为导电剂提供了足够的分散空间,而粘结剂提高了溶剂的粘稠度,避免了导电剂在溶剂中分散后进一步发生沉降而降低了导电剂的分散性的问题,有效地提高了导电剂的分散稳定性。
需要说明的是,由于导电管状传导物质的外形呈管状,即导电管状传导物质为管状结构的导电物质,管状结构的导电物质具有较好的电子传导能力,能够加快电子的传导速度,因此,本申请三元复合导电胶中,为了提高三元复合导电胶的导电能力而选定导电剂为导电管状传导物质,但导电管状传导物质的管状外形使得导电管状传导物质不易分散且容易发生团聚,使得导电管状传导物质的使用具有使用量的限制。然而,若导电管状传导物质的使用量较少时,导电管状传导物质的管状外形使得导电管状传导物质于浆料中分布较稀疏,无法为嵌入浆料中的锂离子提供了更多地电子传导接触点,导致浆料中嵌入的锂离子的脱嵌能力较差,进而影响了浆料的导电性能和锂电池的循环性能;此外,若采用向导电剂中的增加分散剂的方法而实现提高导电管状传导物质的使用量,则分散剂的使用会降低浆料中活性物质的含量,进而降低了锂电池的能量密度,并且分散剂的使用会增加锂电池的副反应的发生,进而影响锂电池的使用安全性。基于上述的问题,本申请的三元复合导电胶中,使得导电管状传导物质、导电球形节点物质和导电纤维过渡物质复配使用,不但使得导电管状传导物质、导电球形节点物质和导电纤维过渡物质各自分别对三元复合导电胶的性能进行提升,而且还整体复配对三元复合导电胶的性能进行提升,其中,导电球形节点物质的外形呈球状,即导电球形节点物质为球状结构的导电物质,球状结构的导电物质增加了导电物质的分布稠密程度,为嵌入含有三元复合导电胶的浆料中的锂离子提供了更多地电子传导接触点,而导电纤维过渡物质的外形呈纤维状,即导电纤维过渡物质为 纤维状结构的导电物质,纤维状结构的导电物质较柔软,能够较好地对管状结构的导电物质和导电球形节点物质起到了连接作用,进而既实现了含有三元复合导电胶的浆料中电子的快速传导,又提高了含有三元复合导电胶的浆料中嵌入的锂离子的脱嵌能力,即采用导电球形节点物质、导电纤维过渡物质和导电管状传导物质进行复配使用,有效地提高了三元复合导电胶的导电性能。
还需要说明的是,由于只有相互接触的导电物质才能实现电子的传导,若只使用导电球形节点物质实现电子的传导,需要确保导电球形节点物质的使用量较大,并且通过相连导电球形节点物质实现电子的传导存在迂回传导的现象,进而使得锂电池的能量密度较低,以及使得浆料的导电性较差。
还需要说明的是,导电纤维过渡物质的外形呈纤维状,即导电纤维过渡物质为纤维状结构的导电物质,导电纤维过渡物质的纤维状外形使得导电纤维过渡物质不易分散且容易发生团聚,使得导电纤维过渡物质的使用具有使用量的限制。若导电纤维过渡物质使用量较少时,导电纤维过渡物质的纤维状外形使得导电管状传导物质于浆料中分布较稀疏,无法为嵌入浆料中的锂离子提供了更多地电子传导接触点,导致浆料中嵌入的锂离子的脱嵌能力较差,进而影响了浆料的导电性能和锂电池的循环性能,此外,若采用向导电剂中的增加分散剂的方法而实现提高导电纤维过渡物质的使用量,则分散剂的使用会降低浆料中活性物质的含量,进而降低了锂电池的能量密度,并且分散剂的使用会增加锂电池的副反应的发生,进而影响锂电池的使用安全性。
还需要进一步进行说明的是,若使得导电管状传导物质和导电球形节点物质复合使用,则导电管状传导物质和导电球形节点物质在使用量较少的情况下导电管状传导物质无法形成紧密三维网状结构而与导电球形节点物充分接触,进而使得导电剂的导电性能较差。
还需要进一步进行说明的是,若使得导电纤维过渡物质和导电球形节点物质复合使用,则导电剂的导电能力较导电管状传导物质和导电球形节点物质复配使用的导电能力差,使得导电剂的导电能力较差。
在其中一个实施例中,三元复合导电胶包括如下质量份的各组份:粘结剂4份~8份;溶剂85份~96份;导电球形节点物质0.5份~3份;导电纤维过渡物质0.1份~2份;导电管状传导物质0.03份~1.5份。可以理解,本申请的三元复合导电胶与活性物质混合均匀后直接形成锂电池的浆料,本申请三元复合导电胶中,由于导电管状传导物质具有较好的电子传导能力,能够加快电子的传导速度,而导电球形节点物质的外形呈球状,即导电球 形节点物质为球状结构的导电物质,球状结构的导电物质增加了导电物质的分布稠密程度,为嵌入含有三元复合导电胶的浆料中的锂离子提供了更多地电子传导接触点,而导电纤维过渡物质的外形呈纤维状,即导电纤维过渡物质为纤维状结构的导电物质,纤维状结构的导电物质较柔软,较好地对管状结构的导电物质和导电球形节点物质起到了连接作用,进而使得在减少了导电剂的总量的情况下,即使得导电剂的导电球形节点物质的质量份为0.5份~3份;导电纤维过渡物质的质量份为0.1份~2份和导电管状传导物质的质量份为0.03份~1.5份,占含有三元复合导电胶的浆料的百分比为0.63%~6.5%的情况下,实现了导电剂的电子的快速传导和实现了含有三元复合导电胶的浆料中嵌入的锂离子的脱嵌能力的提高,此外,导电剂的使用量的减少使得含有三元复合导电胶的浆料中活性物质的含量提高,进而提高了锂电池的能量密度和高功率充放电性能。
在其中一个实施例中,粘结剂为聚偏氟乙烯、聚丙烯酸酯和丁笨橡胶中的至少一种。可以理解,聚偏氟乙烯、丙烯酸酯和丁笨橡胶均具有较好的胶黏性,有效地提高了溶剂的的粘稠度,避免了导电剂在溶剂中分散后进一步发生沉降而降低了导电剂的分散性的问题,有效地提高了导电剂的分散稳定性。
在其中一个实施例中,粘结剂包括丁笨橡胶和聚丙烯酸酯。可以理解,由于丁苯橡胶能有效提高三元复合导电剂的耐高温和耐老化性能,并且丁笨橡胶的链较长,更加有利于提高三元复合导电胶的导电剂的分散稳定性,但丁苯橡胶的阻抗较大,因此,加入具有阻抗较小的丙烯酸酯与丁苯橡胶进行交联,减轻了粘结剂加入后三元复合导电胶的阻抗增大,进而导致三元复合导电胶的导电性能降低的问题,并且进一步提高了三元复合导电胶的导电剂的分散稳定性。此外,丙烯酸酯能有效提高三元复合导电剂的耐低温性能。
在其中一个实施例中,丁笨橡胶和聚丙烯酸酯的质量比为0.3~0.65,更好地减轻了粘结剂加入后三元复合导电胶的阻抗增大,进而导致三元复合导电胶的导电性能降低的问题,并且更好地提高了三元复合导电胶的导电剂的分散稳定性。
在其中一个实施例中,溶剂为有机溶剂或水。可以理解,有机溶剂或水配合粘结剂使用均能较好地确保导电剂的分散稳定性。
在其中一个实施例中,所述有机溶剂为N-甲基吡咯烷酮,较好地确保导电剂的分散稳定性。
在其中一个实施例中,导电球形节点物质为球形炭黑。可以理解,球形炭黑具有较大的比表面积,有利于电解液的吸附,并且球形炭黑的使用增加了单元复合导电胶中导电物质的分布稠密程度,为嵌入含有三元复合导电胶的浆料中的锂离子提供了更多地电子传导 接触点,提高了含有三元复合导电胶的浆料中嵌入的锂离子的脱嵌能力,进而提高了锂电池的循环性能和充放电倍率性能。
在其中一个实施例中,导电球形节点物质为炉黑、乙炔黑和科琴黑中的至少一种。可以理解,炉黑、乙炔黑和科琴黑均能为嵌入含有三元复合导电胶的浆料中的锂离子提供了更多地电子传导接触点,提高了含有三元复合导电胶的浆料中嵌入的锂离子的脱嵌能力,进而提高了锂电池的循环性能和高倍率放电性能。
在其中一个实施例中,导电纤维过渡物质为碳纤维。可以理解,碳纤维的纤维状结构有助于形成导电网络而将导电管状传导物质和导电球形节点物质连接起来,形成一个电子快速传导和锂离子快速脱嵌的体系,有效地增加了锂电池的循环性能和高倍率放电性能。
在其中一个实施例中,导电管状传导物质为碳纳米管。可以理解,碳纳米管内部中空,呈长柱状,使得三元复合导电胶具有较好的导电能力和导电速度,并且能有效提高三元复合材料的韧性,进而提高了锂电池中浆料的剥脱强度,提高了电池的循环性能。
在其中一个实施例中,导电管状传导物质为单壁碳纳米管和多壁碳纳米管中的至少一种。可以理解,单壁碳纳米管和多壁碳纳米管均能使得三元复合导电胶具有较好的导电能力和导电速度,并且能有效提高三元复合材料的韧性,进而提高了锂电池中浆料的剥脱强度,提高了电池的循环性能。
请参阅图1,一实施方式的三元复合导电胶的制备方法包括如下步骤:
S100、对粘结剂和溶剂进行第一混合操作,得到含胶溶剂。可以理解,若先将导电剂与溶剂分散均匀后,再加入粘结剂对导电剂进行增稠分散,则在未将粘结剂加入至溶剂之前,均需要对溶剂进行高速搅拌,以确保导电剂中的导电管状传导物质、导电球形节点物质和导电纤维过渡物质不产生沉降聚集,并且在将粘结剂加入到含有导电剂的溶剂中,导电剂对粘结剂具有一定的吸附作用,增加了粘结剂的分散难度,进而降低了三元复合导电胶的分散均匀性,因此,在本申请三元复合导电胶中,先将粘结剂和溶剂进行混合,降低了胶粘剂的分散难度和提高了粘结剂的分散均匀性,并且降低了导电剂分散过程中的分散强度,即在导电剂在溶剂中形成稳定体系后即可停止高速搅拌混合,避免了在未将粘结剂加入至溶剂之前,均需要对溶剂进行高速搅拌,以确保导电剂中的导电管状传导物质、导电球形节点物质和导电纤维过渡物质不产生沉降聚集的问题,进而降低了三元复合导电胶的制备成本。
S200、将导电管状传导物质加入含胶溶剂中进行第二混合处理。可以理解,由于导电管状传导物质的为管状线性结构物质,较导电球形节点物质和导电纤维过渡物质容易发生 于团聚,因此,先将导电管状传导物质加入至含胶溶剂中进行分散以初步形成网状三维结构。还可以理解,若先将导电纤维过渡物质加入至含胶溶剂中,导电纤维过渡物质先形成三维网状结构,由于分子间的干扰,使得导电管状传导物质较难进入导电纤维过渡物质形成的三维网状结构内,进而降低了导电物质的分散均匀性,进而影响了三元复合导电胶的导电性能。
S300、将导电纤维过渡物质加入第二混合处理后的含胶溶剂中进行第三混合处理。可以理解,由于导电纤维过渡物质呈纤维状结构,纤维状结构的导电物质较柔软,将导电纤维过渡物质加入至含有导电管状传导物质的含胶溶剂中,导电纤维过渡物质能够进入导电管状传导物质形成的三维网状结构中进一步对三维网状结构进行完善,提高了三维网状结构的连接紧密性,进而提高了三元复合导电胶的导电性能。
S400、将导电球形节点物质加入第三混合处理后的含胶溶剂中进行第四混合处理。可以理解,由于导电球形节点物质较导电管状传导物质和导电纤维过渡物质的分散难度低,因此,最后将导电球形节点物质加入至含有导电管状传导物质和导电纤维过渡物质的含胶溶剂中,降低了三元复合导电胶中导电剂的分散难度,并且最后将导电球形节点物质加入至含有导电管状传导物质和导电纤维过渡物质的含胶溶剂中,有利于导电球形节点物质对完善后的三维网状结构进行填充,有效地提高了导电剂的分布稠密程度,进而提高了三元符合导电胶的导电性能。
上述的三元复合导电胶的制备方法中,先将粘结剂和溶剂进行混合,降低了胶粘剂的分散难度和提高了粘结剂的分散均匀性,并且降低了导电剂分散过程中的分散强度,即在导电剂在溶剂中形成稳定体系后即可停止高速搅拌混合,避免了在未将粘结剂加入至溶剂之前,均需要对溶剂进行高速搅拌,以确保导电剂中的导电管状传导物质、导电球形节点物质和导电纤维过渡物质不产生沉降聚集的问题,进而降低了三元复合导电胶的制备成本。接着,将导电管状传导物质加入至含胶溶剂中进行分散以初步形成网状三维结构,再将导电纤维过渡物质加入至含有导电管状传导物质的含胶溶剂中进一步对三维网状结构进行完善,有效地提高了三维网状结构的连接紧密性,以及再将导电球形节点物质加入至含有导电管状传导物质和导电纤维过渡物质的含胶溶剂中,有利于导电球形节点物质对完善后的三维网状结构进行填充,有效地提高了导电剂的分布稠密程度,进而提高了三元符合导电胶的导电性能。
在其中一个实施例中,在搅拌速度大于350r/min的条件下,对粘结剂和溶剂进行第一混合操作,确保了粘结剂和溶剂的混合均匀性。
在其中一个实施例中,在搅拌速度大于350r/min的条件下,将导电管状传导物质加入含胶溶剂中进行第二混合处理,确保了导电管状传导物质与含胶溶剂中的混合均匀性。
在其中一个实施例中,在搅拌速度大于350r/min的条件下,将导电纤维过渡物质加入第二混合处理后的含胶溶剂中进行第三混合处理,确保了导电纤维过渡物质与含胶溶剂中的混合均匀性。
在其中一个实施例中,在搅拌速度大于350r/min的条件下,将导电球形节点物质加入第三混合处理后的含胶溶剂中进行第四混合处理,确保了导电球形节点物质与含胶溶剂中的混合均匀性。
一实施方式的浆料包括相混合的活性物质和采用上述任一实施例所述的三元复合导电胶的制备方法制备得到的三元复合导电胶。在本实施例中,三元复合导电胶的制备方法包括如下步骤:对粘结剂和溶剂进行第一混合操作,得到含胶溶剂;将导电管状传导物质加入含胶溶剂中进行第二混合处理;将导电纤维过渡物质加入第二混合处理后的含胶溶剂中进行第三混合处理;将导电球形节点物质加入第三混合处理后的含胶溶剂中进行第四混合处理。
上述的浆料中,使用了三元复合导电胶的制备方法制备得到的三元复合导电胶,三元复合导电胶中的管状结构的导电物质具有较好的电子传导能力,能够加快电子的传导速度,并使得导电管状传导物质、导电球形节点物质和导电纤维过渡物质复配使用,不但使得导电管状传导物质、导电球形节点物质和导电纤维过渡物质各自分别对浆料的性能进行提升,而且还整体复配对浆料的性能进行提升,其中,导电球形节点物质增加了导电物质的分布稠密程度,为嵌入浆料中的锂离子提供了更多地电子传导接触点,而导电纤维过渡物质较柔软,较好地对管状结构的导电物质和导电球形节点物质起到了连接作用,进而既实现了浆料中电子的快速传导,又提高了浆料中嵌入的锂离子的脱嵌能力,即采用导电球形节点物质、导电纤维过渡物质和导电管状传导物质进行复配使用,有效地提高了浆料的导电性能。
一实施方式的电池包括上述任一实施例所述的浆料。在本实施例中,浆料包括相混合的活性物质和上述任一实施例所述的三元复合导电胶的制备方法制备得到的三元复合导电胶;三元复合导电胶的制备方法包括如下步骤:对粘结剂和溶剂进行第一混合操作,得到含胶溶剂;将导电管状传导物质加入含胶溶剂中进行第二混合处理;将导电纤维过渡物质加入第二混合处理后的含胶溶剂中进行第三混合处理;将导电球形节点物质加入第三混合处理后的含胶溶剂中进行第四混合处理。
上述的电池中,使用了含有三元复合导电胶的制备方法制备得到的三元复合导电胶的浆料,而浆料中的三元复合导电胶的导电剂的使用,有效提高了浆料的导电性能,进而提高了电池的高倍率放电性能和循环性能。
与现有技术相比,本发明至少具有以下优点:
本发明三元复合导电胶中,导电管状传导物质的外形呈管状,即导电管状传导物质为管状结构的导电物质,管状结构的导电物质具有较好的电子传导能力,能够加快电子的传导速度,但是,若管状结构的导电物质的用量较大时,管状结构的导电物质容易发生团聚而影响锂电池浆料的导电性能和锂电池的能量密度;若管状结构的导电物质的用量较小时,含有三元复合导电胶的浆料中传导的电子与嵌入浆料中的锂离子的接触点较少而降低了含有三元复合导电胶的浆料的导电性能,进而使得导电管状传导物质分别与导电球形节点物质和导电纤维过渡物质复配使用以减少管状结构的导电物质的用量,并增加含有三元复合导电胶的浆料中传导的电子与嵌入浆料中的锂离子的接触点,其中,导电球形节点物质的外形呈球状,即导电球形节点物质为球状结构的导电物质,如此增加了导电物质的分布稠密程度,为嵌入含有三元复合导电胶的浆料中的锂离子提供了更多地电子传导接触点,而导电纤维过渡物质的外形呈纤维状,即导电纤维过渡物质为纤维状结构的导电物质,纤维状结构的导电物质较柔软,能够较好地对管状结构的导电物质和导电球形节点物质起到了连接作用,进而既实现了含有三元复合导电胶的浆料中电子的快速传导,又提高了含有三元复合导电胶的浆料中嵌入的锂离子的脱嵌能力,即采用导电球形节点物质、导电纤维过渡物质和导电管状传导物质进行复配使用,有效地提高了三元复合导电胶的导电性能。此外,采用粘结剂和溶剂对导电剂进行分散,其中,溶剂为导电剂提供了足够的分散空间,而粘结剂提高了溶剂的粘稠度,避免了导电剂在溶剂中分散后进一步发生沉降而降低了导电剂的分散性的问题,有效地提高了导电剂的分散稳定性。
以下列举一些具体实施例,若提到%,均表示按重量百分比计。需注意的是,下列实施例并没有穷举所有可能的情况,并且下述实施例中所用的材料如无特殊说明,均可从商业途径得到。
实施例1
对4kg聚偏氟乙烯和85kg水进行混合,搅拌速度为350r/min;
将0.5kg炉黑加入聚偏氟乙烯和水的混合溶剂中进行混合,搅拌速度为350r/min;
将0.1kg碳纤维加入聚偏氟乙烯和水的混合溶剂中进行混合,搅拌速度为350r/min;
将0.03kg单壁碳纳米管加入聚偏氟乙烯和水的混合溶剂中进行混合,搅拌速度为350r/min,得到三元复合导电胶;
称量6kg三元复合导电胶,放入10L的双行星搅拌缸中,第一次加入3.5kg钴酸锂进行混合,公转125HZ,自转3700RPM,时间60min。第二次加入3.5kg钴酸锂进行混合,公转120HZ,自转6000RPM,时间150min。然后将钴酸锂和三元复合导电胶的混合物用200目的筛网过滤后进行正极片涂布,制成正极极片;
称量4kg三元复合导电胶,放入10L的的双行星搅拌缸中,加入3.8kg人造石墨进行混合,公转125HZ,自转5000RPM,时间180min。然后将人造石墨和三元复合导电胶的混合物用200目的筛网过滤后进行负极片涂布,制成负极极片;
把正极极片、负极极片、隔膜、电解液组装成电池,经过化成分容后制作成锂电池。
实施例2
对6kg聚丙烯酸酯和90kgN-甲基吡咯烷酮进行混合,搅拌速度为350r/min;
将2kg炉黑加入聚丙烯酸酯和N-甲基吡咯烷酮的混合溶剂中进行混合,搅拌速度为350r/min;
将1kg碳纤维加入聚丙烯酸酯和N-甲基吡咯烷酮的混合溶剂中进行混合,搅拌速度为350r/min;
将0.8kg单壁碳纳米管加入聚丙烯酸酯和N-甲基吡咯烷酮的混合溶剂中进行混合,搅拌速度为350r/min,得到三元复合导电胶;
称量6kg三元复合导电胶,放入10L的双行星搅拌缸中,第一次加入3.5kg钴酸锂进行混合,公转125HZ,自转3700RPM,时间60min。第二次加入3.5kg钴酸锂进行混合,公转120HZ,自转6000RPM,时间150min。然后将钴酸锂和三元复合导电胶的混合物用200目的筛网过滤后进行正极片涂布,制成正极极片;
称量4kg三元复合导电胶,放入10L的的双行星搅拌缸中,加入3.8kg人造石墨进行混合,公转125HZ,自转5000RPM,时间180min。然后将人造石墨和三元复合导电胶的混合物用200目的筛网过滤后进行负极片涂布,制成负极极片;
把正极极片、负极极片、隔膜、电解液组装成电池,经过化成分容后制作成锂电池。
实施例3
对8kg丁苯橡胶和96kg水进行混合,搅拌速度为350r/min;
将3kg炉黑加入丁苯橡胶和水的混合溶剂中进行混合,搅拌速度为350r/min;
将2kg碳纤维加入丁苯橡胶和水的混合溶剂中进行混合,搅拌速度为350r/min;
将1.5kg单壁碳纳米管加入丁苯橡胶和水的混合溶剂中进行混合,搅拌速度为350r/min,得到三元复合导电胶;
称量6kg三元复合导电胶,放入10L的双行星搅拌缸中,第一次加入3.5kg钴酸锂进行混合,公转125HZ,自转3700RPM,时间60min。第二次加入3.5kg钴酸锂进行混合,公转120HZ,自转6000RPM,时间150min。然后将钴酸锂和三元复合导电胶的混合物用200目的筛网过滤后进行正极片涂布,制成正极极片;
称量4kg三元复合导电胶,放入10L的的双行星搅拌缸中,加入3.8kg人造石墨进行混合,公转125HZ,自转5000RPM,时间180min。然后将人造石墨和三元复合导电胶的混合物用200目的筛网过滤后进行负极片涂布,制成负极极片;
把正极极片、负极极片、隔膜、电解液组装成电池,经过化成分容后制作成锂电池。
实施例4
正极用固体含量为4.55%wt三元复合导电胶的制备:
对1.05kg聚丙烯酸酯、0.45kg丁苯橡胶和95.5kgN-甲基吡咯烷酮进行混合,搅拌速度为350r/min;
将2.5kg炉黑加入聚丙烯酸酯、丁苯橡胶和N-甲基吡咯烷酮的混合溶剂中进行混合,搅拌速度为350r/min;
将0.5kg碳纤维加入聚丙烯酸酯、丁苯橡胶和N-甲基吡咯烷酮的混合溶剂中进行混合,搅拌速度为350r/min;
将0.05kg单壁碳纳米管加入聚丙烯酸酯、丁苯橡胶和N-甲基吡咯烷酮的混合溶剂中进行混合,搅拌速度为350r/min,得到三元复合导电胶;
负极用固体含量为5%wt三元复合导电胶的制备:
对1.5kg聚丙烯酸酯、1kg丁苯橡胶和95kg水进行混合,搅拌速度为350r/min;
将2kg炉黑加入聚丙烯酸酯、丁苯橡胶和水的混合溶剂中进行混合,搅拌速度为350r/min;
将0.47kg碳纤维加入聚丙烯酸酯、丁苯橡胶和水的混合溶剂中进行混合,搅拌速度为350r/min;
将0.03kg单壁碳纳米管加入聚丙烯酸酯、丁苯橡胶和水的混合溶剂中进行混合,搅拌速度为350r/min,得到三元复合导电胶;
称量6kg固体含量为4.55%wt三元复合导电胶,放入10L的双行星搅拌缸中,第一次加入3.5kg钴酸锂进行混合,公转125HZ,自转3700RPM,时间60min。第二次加入3.5kg 钴酸锂进行混合,公转120HZ,自转6000RPM,时间150min。然后将钴酸锂和三元复合导电胶的混合物用200目的筛网过滤后进行正极片涂布,制成正极极片;
称量4kg固体含量为5%wt三元复合导电胶,放入10L的的双行星搅拌缸中,加入3.8kg人造石墨进行混合,公转125HZ,自转5000RPM,时间180min。然后将人造石墨和三元复合导电胶的混合物用200目的筛网过滤后进行负极片涂布,制成负极极片;
把正极极片、负极极片、隔膜、电解液组装成电池,经过化成分容后制作成锂电池。
以下对实施例1~4的锂电池进行性能测试:
表1为实施例1~4的锂电池在不同放电倍率下的放电容量和容量保持量:
表1:实施例1~4的锂电池在不同放电倍率下的放电容量和容量保持量
图2为实施例4的锂电池在不同放电倍率下的放电曲线,于A方向上,图2中的放电曲线的放电倍率依次为1C、30C、40C、50C、60C、70C、80C、90C和100C。
从表1和图2中可以看出,实施例1~4的锂电池均支持100C倍率放电,均具有较好的倍率放电性能,尤其是实施例4的锂电池具有更佳的高倍率放电性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (31)
- 一种三元复合导电胶,包括如下组份:粘结剂;溶剂;导电剂,所述导电剂包括导电球形节点物质、导电纤维过渡物质和导电管状传导物质。
- 根据权利要求1所述的三元复合导电胶,其特征在于,所述粘结剂为聚偏氟乙烯、聚丙烯酸酯和丁笨橡胶中的至少一种。
- 根据权利要求1所述的三元复合导电胶,其特征在于,所述粘结剂包括丁笨橡胶和聚丙烯酸酯。
- 根据权利要求1所述的三元复合导电胶,其特征在于,所述粘结剂包括质量比为0.3~0.65的丁笨橡胶和聚丙烯酸酯。
- 根据权利要求1所述的三元复合导电胶,其特征在于,所述溶剂为有机溶剂或水。
- 根据权利要求1所述的三元复合导电胶,其特征在于,所述导电球形节点物质为球形炭黑。
- 根据权利要求1所述的三元复合导电胶,其特征在于,所述导电球形节点物质为炉黑、乙炔黑和科琴黑中的至少一种。
- 根据权利要求1所述的三元复合导电胶,其特征在于,所述导电纤维过渡物质为碳纤维。
- 根据权利要求1所述的三元复合导电胶,其特征在于,所述导电管状传导物质为碳纳米管。
- 根据权利要求1所述的三元复合导电胶,其特征在于,所述导电管状传导物质为单壁碳纳米管和多壁碳纳米管中的至少一种。
- 根据权利要求11所述的三元复合导电胶,其特征在于,所述粘结剂为聚偏氟乙烯、聚丙烯酸酯和丁笨橡胶中的至少一种。
- 根据权利要求11所述的三元复合导电胶,其特征在于,所述粘结剂包括丁笨橡胶和聚丙烯酸酯。
- 根据权利要求11所述的三元复合导电胶,其特征在于,所述粘结剂包括质量比为0.3~0.65的丁笨橡胶和聚丙烯酸酯。
- 根据权利要求11所述的三元复合导电胶,其特征在于,所述溶剂为有机溶剂或水。
- 根据权利要求11所述的三元复合导电胶,其特征在于,所述导电球形节点物质为球形炭黑。
- 根据权利要求11所述的三元复合导电胶,其特征在于,所述导电球形节点物质为炉黑、乙炔黑和科琴黑中的至少一种。
- 根据权利要求11所述的三元复合导电胶,其特征在于,所述导电纤维过渡物质为碳纤维。
- 根据权利要求11所述的三元复合导电胶,其特征在于,所述导电管状传导物质为碳纳米管。
- 根据权利要求11所述的三元复合导电胶,其特征在于,所述导电管状传导物质为单壁碳纳米管和多壁碳纳米管中的至少一种。
- 一种三元复合导电胶的制备方法,其特征在于,用于制备权利要求1~20中任一项所述的三元复合导电胶,所述三元复合导电胶的制备方法包括如下步骤:对粘结剂和溶剂进行第一混合操作,得到含胶溶剂;将导电管状传导物质加入所述含胶溶剂中进行第二混合处理;将导电纤维过渡物质加入第二混合处理后的所述含胶溶剂中进行第三混合处理;将导电球形节点物质加入第三混合处理后的所述含胶溶剂中进行第四混合处理。
- 根据权利要求21所述的三元复合导电胶的制备方法,其特征在于,在搅拌速度大于350r/min的条件下,对粘结剂和溶剂进行第一混合操作。
- 根据权利要求21所述的三元复合导电胶的制备方法,其特征在于,在搅拌速度大于350r/min的条件下,将导电管状传导物质加入所述含胶溶剂中进行第二混合处理。
- 根据权利要求23所述的三元复合导电胶的制备方法,其特征在于,在搅拌速度大于350r/min的条件下,将导电纤维过渡物质加入第二混合处理后的所述含胶溶剂中进行 第三混合处理。
- 根据权利要求24所述的三元复合导电胶的制备方法,其特征在于,在搅拌速度大于350r/min的条件下,将导电球形节点物质加入第三混合处理后的所述含胶溶剂中进行第四混合处理。
- 一种浆料,其特征在于,包括相混合的活性物质和采用权利要求21~25所述的三元复合导电胶的制备方法制备得到的所述三元复合导电胶。
- 一种电池,其特征在于,包括权利要求26所述的浆料。
- 根据权利要求27所述的电池,其特征在于,所述电池的制备方法包括如下步骤:对4kg聚偏氟乙烯和85kg水进行混合,搅拌速度为350r/min;将0.5kg炉黑加入所述聚偏氟乙烯和所述水的混合溶剂中进行混合,搅拌速度为350r/min;再将0.1kg碳纤维加入所述聚偏氟乙烯和所述水的混合溶剂中进行混合,搅拌速度为350r/min;再将0.03kg单壁碳纳米管加入所述聚偏氟乙烯和所述水的混合溶剂中进行混合,搅拌速度为350r/min,得到三元复合导电胶;称量6kg所述三元复合导电胶,放入10L的双行星搅拌缸中,第一次加入3.5kg钴酸锂进行混合,公转125HZ,自转3700RPM,时间60min;第二次加入3.5kg钴酸锂进行混合,公转120HZ,自转6000RPM,时间150min;然后将两次加入的所述钴酸锂和所述三元复合导电胶的混合物用200目的筛网过滤后进行正极片涂布,制成正极极片;称量4kg所述三元复合导电胶,放入10L的的双行星搅拌缸中,加入3.8kg人造石墨进行混合,公转125HZ,自转5000RPM,时间180min;然后将所述人造石墨和所述三元复合导电胶的混合物用200目的筛网过滤后进行负极片涂布,制成负极极片;把所述正极极片、所述负极极片、隔膜、电解液组装成电池,经过化成分容后制作成电池。
- 根据权利要求27所述的电池,其特征在于,所述电池的制备方法包括如下步骤:对6kg聚丙烯酸酯和90kgN-甲基吡咯烷酮进行混合,搅拌速度为350r/min;将2kg炉黑加入所述聚丙烯酸酯和所述N-甲基吡咯烷酮的混合溶剂中进行混合,搅拌速度为350r/min;再将1kg碳纤维加入所述聚丙烯酸酯和所述N-甲基吡咯烷酮的混合溶剂中进行混合, 搅拌速度为350r/min;再将0.8kg单壁碳纳米管加入所述聚丙烯酸酯和所述N-甲基吡咯烷酮的混合溶剂中进行混合,搅拌速度为350r/min,得到三元复合导电胶;称量6kg所述三元复合导电胶,放入10L的双行星搅拌缸中,第一次加入3.5kg钴酸锂进行混合,公转125HZ,自转3700RPM,时间60min;第二次加入3.5kg钴酸锂进行混合,公转120HZ,自转6000RPM,时间150min;然后将两次加入的所述钴酸锂和所述三元复合导电胶的混合物用200目的筛网过滤后进行正极片涂布,制成正极极片;称量4kg所述三元复合导电胶,放入10L的的双行星搅拌缸中,加入3.8kg人造石墨进行混合,公转125HZ,自转5000RPM,时间180min;然后将所述人造石墨和所述三元复合导电胶的混合物用200目的筛网过滤后进行负极片涂布,制成负极极片;把所述正极极片、所述负极极片、隔膜、电解液组装成电池,经过化成分容后制作成电池。
- 根据权利要求27所述的电池,其特征在于,所述电池的制备方法包括如下步骤:对8kg丁苯橡胶和96kg水进行混合,搅拌速度为350r/min;将3kg炉黑加入所述丁苯橡胶和所述水的混合溶剂中进行混合,搅拌速度为350r/min;再将2kg碳纤维加入所述丁苯橡胶和所述水的混合溶剂中进行混合,搅拌速度为350r/min;再将1.5kg单壁碳纳米管加入所述丁苯橡胶和所述水的混合溶剂中进行混合,搅拌速度为350r/min,得到三元复合导电胶;称量6kg所述三元复合导电胶,放入10L的双行星搅拌缸中,第一次加入3.5kg钴酸锂进行混合,公转125HZ,自转3700RPM,时间60min;第二次加入3.5kg钴酸锂进行混合,公转120HZ,自转6000RPM,时间150min;然后将两次加入的所述钴酸锂和所述三元复合导电胶的混合物用200目的筛网过滤后进行正极片涂布,制成正极极片;称量4kg所述三元复合导电胶,放入10L的的双行星搅拌缸中,加入3.8kg人造石墨进行混合,公转125HZ,自转5000RPM,时间180min;然后将所述人造石墨和所述三元复合导电胶的混合物用200目的筛网过滤后进行负极片涂布,制成负极极片;把所述正极极片、所述负极极片、隔膜、电解液组装成电池,经过化成分容后制作成电池。
- 根据权利要求27所述的电池,其特征在于,所述电池的制备方法包括如下步骤:正极用固体含量为4.55%wt三元复合导电胶的制备:对1.05kg聚丙烯酸酯、0.45kg丁苯橡胶和95.5kgN-甲基吡咯烷酮进行混合,搅拌速度为350r/min;将2.5kg炉黑加入所述聚丙烯酸酯、所述丁苯橡胶和所述水的混合溶剂中进行混合,搅拌速度为350r/min;将0.5kg碳纤维加入所述聚丙烯酸酯、所述丁苯橡胶和所述水的混合溶剂中进行混合,搅拌速度为350r/min;将0.05kg单壁碳纳米管加入所述聚丙烯酸酯、所述丁苯橡胶和所述水的混合溶剂中进行混合,搅拌速度为350r/min,得到三元复合导电胶;负极用固体含量为5%wt三元复合导电胶的制备:对1.5kg聚丙烯酸酯、1kg丁苯橡胶和95kg水进行混合,搅拌速度为350r/min;将2kg炉黑加入所述聚丙烯酸酯、所述丁苯橡胶和所述水的混合溶剂中进行混合,搅拌速度为350r/min;将0.47kg碳纤维加入所述聚丙烯酸酯、所述丁苯橡胶和所述水的混合溶剂中进行混合,搅拌速度为350r/min;将0.03kg单壁碳纳米管加入所述聚丙烯酸酯、所述丁苯橡胶和所述水的混合溶剂中进行混合,搅拌速度为350r/min,得到三元复合导电胶;称量6kg固体含量为4.55%wt的所述三元复合导电胶,放入10L的双行星搅拌缸中,第一次加入3.5kg钴酸锂进行混合,公转125HZ,自转3700RPM,时间60min;第二次加入3.5kg钴酸锂进行混合,公转120HZ,自转6000RPM,时间150min;然后将两次加入的所述钴酸锂和所述三元复合导电胶的混合物用200目的筛网过滤后进行正极片涂布,制成正极极片;称量4kg固体含量为5%wt的所述三元复合导电胶,放入10L的的双行星搅拌缸中,加入3.8kg人造石墨进行混合,公转125HZ,自转5000RPM,时间180min;然后将所述人造石墨和所述三元复合导电胶的混合物用200目的筛网过滤后进行负极片涂布,制成负极极片;把所述正极极片、所述负极极片、隔膜、电解液组装成电池,经过化成分容后制作成电池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/314,829 US20230272250A1 (en) | 2021-06-29 | 2023-05-10 | Ternary Composite Conductive Adhesive and Preparation Method therefor, Slurry and Lithium Battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110732371.9 | 2021-06-29 | ||
CN202110732371.9A CN113471438B (zh) | 2021-06-29 | 2021-06-29 | 三元复合导电胶及其制备方法、浆料以及锂电池 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/314,829 Continuation US20230272250A1 (en) | 2021-06-29 | 2023-05-10 | Ternary Composite Conductive Adhesive and Preparation Method therefor, Slurry and Lithium Battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023272859A1 true WO2023272859A1 (zh) | 2023-01-05 |
Family
ID=77874098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/109413 WO2023272859A1 (zh) | 2021-06-29 | 2021-07-29 | 三元复合导电胶及其制备方法、浆料以及锂电池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230272250A1 (zh) |
CN (1) | CN113471438B (zh) |
WO (1) | WO2023272859A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104900844A (zh) * | 2015-06-18 | 2015-09-09 | 田东 | 一种锂离子电池正极浆料及其制备方法 |
CN109841834A (zh) * | 2017-11-28 | 2019-06-04 | 横店集团东磁股份有限公司 | 一种复合导电剂、其制备方法及在正极浆料的应用 |
CN111244455A (zh) * | 2020-01-15 | 2020-06-05 | 上海电气集团股份有限公司 | 一种锂离子电池硅碳复合负极材料复合导电剂、负极片及其制备方法 |
CN111725500A (zh) * | 2020-06-22 | 2020-09-29 | 惠州亿纬锂能股份有限公司 | 一种正极片及其制备方法和用途 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101393978B (zh) * | 2007-09-19 | 2012-11-28 | 深圳市比克电池有限公司 | 一种锂离子电池电极用浆料及其制备方法 |
CN104658757B (zh) * | 2014-12-17 | 2017-09-29 | 宁波中车新能源科技有限公司 | 一种锂离子电容器电极浆料中复合导电剂的分散方法 |
CN105428657A (zh) * | 2015-11-17 | 2016-03-23 | 天津市捷威动力工业有限公司 | 一种高能量密度快充型聚合物锂离子电池及其制备方法 |
JP2018045820A (ja) * | 2016-09-13 | 2018-03-22 | ライオン・スペシャリティ・ケミカルズ株式会社 | 炭素導電材スラリー |
CN106207092A (zh) * | 2016-09-20 | 2016-12-07 | 广东国光电子有限公司 | 一种导电剂组合型锂离子电池正极极片及其制作方法 |
CN111816871A (zh) * | 2020-06-03 | 2020-10-23 | 银隆新能源股份有限公司 | 锂离子电池、正极浆料、正极极片及其制备方法 |
-
2021
- 2021-06-29 CN CN202110732371.9A patent/CN113471438B/zh active Active
- 2021-07-29 WO PCT/CN2021/109413 patent/WO2023272859A1/zh active Application Filing
-
2023
- 2023-05-10 US US18/314,829 patent/US20230272250A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104900844A (zh) * | 2015-06-18 | 2015-09-09 | 田东 | 一种锂离子电池正极浆料及其制备方法 |
CN109841834A (zh) * | 2017-11-28 | 2019-06-04 | 横店集团东磁股份有限公司 | 一种复合导电剂、其制备方法及在正极浆料的应用 |
CN111244455A (zh) * | 2020-01-15 | 2020-06-05 | 上海电气集团股份有限公司 | 一种锂离子电池硅碳复合负极材料复合导电剂、负极片及其制备方法 |
CN111725500A (zh) * | 2020-06-22 | 2020-09-29 | 惠州亿纬锂能股份有限公司 | 一种正极片及其制备方法和用途 |
Also Published As
Publication number | Publication date |
---|---|
CN113471438B (zh) | 2022-04-22 |
US20230272250A1 (en) | 2023-08-31 |
CN113471438A (zh) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108091839B (zh) | 一种锂硫电池正极浆料的制备方法 | |
CN101752548B (zh) | 导电剂分散液和电极浆料和电极与电池及其制备方法 | |
CN112331380B (zh) | 一种复合导电浆料及其制备方法和应用 | |
WO2017031885A1 (zh) | 一种锂电池负极浆料的制备方法 | |
WO2017031884A1 (zh) | 一种锂电池正极浆料的制备方法 | |
CN105552367B (zh) | 一种含cnt的锂离子电池水性正极浆料及其制备方法 | |
WO2017031943A1 (zh) | 一种高容量硅粉掺杂锂电池负极浆料的制备方法 | |
WO2017032154A1 (zh) | 一种锂电池石墨负极浆料的制备方法 | |
WO2017032166A1 (zh) | 一种锡粉掺杂锂电池负极浆料的制备方法 | |
WO2016169289A1 (zh) | 一种锂离子电池负极浆料的制备方法 | |
WO2020134765A1 (zh) | 一种降低锂离子电池阻抗的负极片及其制备方法 | |
WO2017032155A1 (zh) | 一种锂电池钛酸锂负极浆料的制备方法 | |
WO2017032165A1 (zh) | 一种锰酸锂正极浆料的制备方法 | |
WO2023142666A1 (zh) | 锂离子电池预锂化剂及其制备方法和应用 | |
CN112271285A (zh) | 一种锂离子电池正极浆料的制备工艺 | |
CN112072113B (zh) | 电极增稠剂及使用了其的负极浆料 | |
CN111430708A (zh) | 锂离子电池正极浆料及其制备方法和应用 | |
CN112582612A (zh) | 一种锂离子电池正极浆料及其制备方法 | |
CN112366318A (zh) | 一种负极浆料及其制备方法和用途 | |
CN114447338A (zh) | 正极极片浆料及其制备方法、锂离子电池、以及车辆 | |
WO2021184222A1 (zh) | 一种基于石墨烯量子点及其衍生物的导电涂层材料及其应用 | |
CN111525105B (zh) | 一种磷酸铁锂电池的负极材料及负极极片制备方法 | |
CN113659107A (zh) | 电池极片及其制备方法、二次电池 | |
WO2023272859A1 (zh) | 三元复合导电胶及其制备方法、浆料以及锂电池 | |
CN109817984B (zh) | 高功率石墨负极浆料制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21947801 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21947801 Country of ref document: EP Kind code of ref document: A1 |