WO2023249030A1 - 含水素アルミニウムと鉄を組み合わせたアンモニア合成触媒 - Google Patents

含水素アルミニウムと鉄を組み合わせたアンモニア合成触媒 Download PDF

Info

Publication number
WO2023249030A1
WO2023249030A1 PCT/JP2023/022847 JP2023022847W WO2023249030A1 WO 2023249030 A1 WO2023249030 A1 WO 2023249030A1 JP 2023022847 W JP2023022847 W JP 2023022847W WO 2023249030 A1 WO2023249030 A1 WO 2023249030A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ammonia synthesis
ammonia
iron
aluminum
Prior art date
Application number
PCT/JP2023/022847
Other languages
English (en)
French (fr)
Inventor
亨和 原
真史 服部
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Publication of WO2023249030A1 publication Critical patent/WO2023249030A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase

Definitions

  • the present invention relates to a catalyst for ammonia synthesis, a precursor of the catalyst, and a method for producing ammonia using the same.
  • the Haber-Bosch method which is a typical method for synthesizing ammonia, uses a doubly promoted iron catalyst containing several mass percent of Al 2 O 3 and K 2 O in Fe 3 O 4 . This is a method to synthesize ammonia by directly reacting a mixture of nitrogen and hydrogen under high temperature and high pressure conditions. This technology is still used industrially today, with manufacturing processes that are almost the same as when they were first completed.
  • catalysts using transition metals such as Ru have extremely high activity and can synthesize ammonia under milder reaction conditions than those used in the Haber-Bosch method.
  • the reaction proceeds at low temperatures and pressures ranging from atmospheric pressure to 1.1 MPa at a reaction temperature of 200 to 400°C.
  • Non-Patent Document 1 This catalyst synthesizes ammonia from nitrogen and hydrogen at room temperature using a composite material of ruthenium (Ru) nanoparticles, ⁇ calcium hydrogenated fluoride (CaFH)'', which is a substance that combines abundant calcium with hydrogen and fluorine, and ruthenium (Ru) nanoparticles. can.
  • ruthenium (Ru) nanoparticles
  • CaFH calcium hydrogenated fluoride
  • Ru ruthenium
  • Non-Patent Document 1 is an excellent catalyst that exhibits high catalytic activity even at low temperatures, but it is difficult to handle because the calcium hydride fluoride contained in the catalyst is deactivated in the atmosphere. was difficult.
  • An object of the present invention is to provide a catalyst for ammonia synthesis that is easier to handle.
  • a catalyst for ammonia synthesis characterized by containing iron and aluminum hydride.
  • the raw material gas containing nitrogen and hydrogen is converted into the catalyst for ammonia synthesis according to any one of [1] to [8], or the ammonia synthesis catalyst according to any one of [9] to [12].
  • a method for producing ammonia comprising the step of bringing a precursor of a catalyst into contact with a catalyst for ammonia synthesis produced from the precursor.
  • the present invention provides a novel catalyst for ammonia synthesis.
  • the catalyst of the present invention is an excellent catalyst that is easy to handle and exhibits high activity.
  • FIG. 3 is a diagram showing the ammonia production rate of the catalyst of the present invention.
  • FIG. 3 shows the ammonia production rate of the catalyst of the present invention at various temperatures.
  • FIG. 3 is a diagram showing the ammonia production rate of the catalyst of the present invention under pressure.
  • FIG. 3 is a diagram showing XRD data of the catalyst of the present invention.
  • FIG. 3 is a diagram showing data obtained by hydrogen TPD measurement of the catalyst of the present invention.
  • FIG. 2 is a diagram showing data obtained by FT-IR measurement of the catalyst of the present invention.
  • the present invention will be explained in detail below.
  • (A) Catalyst for Ammonia Synthesis of the present invention is characterized by containing iron and aluminum hydride.
  • the amount of aluminum hydride in the catalyst of the present invention is not particularly limited, but is usually 0.2 to 2.0% by weight, preferably 0.5 to 1.0% by weight.
  • the catalyst of the present invention may contain other substances than iron and aluminum hydride. Examples of other substances include aluminum nitride and potassium. Further, the catalyst of the present invention preferably does not substantially contain aluminum oxide.
  • substantially not containing aluminum oxide means that, for example, when XRD of the catalyst of the present invention is measured, no peak indicating the presence of aluminum oxide is detected in the XRD data.
  • the molar ratio of iron and aluminum in the catalyst is not particularly limited as long as it exhibits catalytic activity, and the molar ratio (aluminum/iron) is usually 1/500 to 1/2, preferably 1/200 to 1/2. 5, more preferably 1/150 to 1/50, even more preferably 1/100 to 1/20.
  • the shape of the catalyst of the present invention is not particularly limited, and may be in any shape such as a lump, a powder, or a film.
  • the particle size of iron in the ammonia synthesis catalyst of the present invention is not particularly limited, but from the viewpoint of improving catalyst function, it is preferably 10 to 1000 nm, more preferably 10 to 500 nm.
  • the specific surface area of the catalyst of the present invention is not particularly limited, and is usually 10 to 200 m 2 g -1 h -1 .
  • the catalyst of the present invention preferably has an absorption peak derived from Al-H stretching vibrations around 1730 cm -1 in Fourier transform infrared spectroscopy.
  • Near 1730 cm -1 means a range that a person skilled in the art can equate to 1730 cm -1 in data obtained by Fourier transform infrared spectroscopy.
  • a range of ⁇ 10 cm -1 centered around 1730 cm -1 , particularly ⁇ 5 cm -1 is "near 1730 cm -1 ".
  • the catalyst of the present invention can be obtained by heat-treating a mixture of iron oxide and aluminum salt (catalyst precursor) in the presence of nitrogen and hydrogen.
  • the heating conditions are not particularly limited as long as the catalyst of the present invention can be produced from the catalyst precursor, and the heating temperature is usually 200 to 600°C, preferably 250 to 500°C.
  • the time is usually 5 to 20 hours, preferably 10 to 20 hours.
  • (B) Precursor of catalyst for ammonia synthesis The precursor of the catalyst for ammonia synthesis of the present invention exhibits catalytic activity by heat treatment in the presence of nitrogen and hydrogen, and contains iron oxide and aluminum. It is characterized by containing salt.
  • Iron oxides are not particularly limited, and include, for example, Fe 2 O 3 (iron oxide (III)), Fe 3 O 4 (iron oxide (II, III)), FeO (iron oxide (II)), FeOOH (oxyhydrous Iron oxide), Fe(OH) 2 (iron (II) hydroxide), Fe(OH) 3 (iron (III) hydroxide), etc.
  • Fe 2 O 3 is preferred.
  • Examples of Fe 2 O 3 include ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , and ⁇ -Fe 2 O 3 .
  • ⁇ -Fe 2 O 3 is preferred from the viewpoint of simplification of preparation.
  • the aluminum salt is not particularly limited as long as it is a water-soluble salt, and examples thereof include aluminum nitrate, aluminum chloride, aluminum acetate, and aluminum formate. Among these aluminum salts, aluminum nitrate is preferred from the viewpoint of easy availability.
  • the molar ratio of iron oxide and aluminum salt in the catalyst precursor is not particularly limited as long as it exhibits catalytic activity, and the molar ratio of aluminum to iron (aluminum/iron) is usually 1/500 to 1/2. It is preferably 1/200 to 1/5, more preferably 1/150 to 1/50, even more preferably 1/100 to 1/20.
  • the shape of the catalyst precursor of the present invention is not particularly limited, and may be in any shape such as a lump, a powder, or a film. Further, the specific surface area of the catalyst precursor of the present invention is not particularly limited, and is usually 10 to 200 m 2 g -1 h -1 .
  • the method for producing the catalyst precursor of the present invention is not particularly limited.
  • the precursor of the catalyst of the present invention in which the iron oxide is Fe 2 O 3 and the aluminum salt is aluminum nitrate, can be produced, for example, by a method including the following steps (1) to (4). Can be done.
  • step (1) iron nitrate and aluminum salt are dissolved in water.
  • the molar ratio of iron nitrate and aluminum salt is not particularly limited, and is usually 1/500 to 1/2, preferably 1/200 to 1/5, and more preferably 1/5. It is 150 to 1/50, and even more preferably 1/100 to 1/20.
  • the aluminum salt is as mentioned above.
  • step (2) an acid containing a fluorine atom is added to the aqueous solution obtained in step (1).
  • Acids containing fluorine atoms include, for example, inorganic acids, organic carboxylic acids, organic sulfonic acids, carboxylic acids in which one or more hydrogen atoms contained in these organic groups are replaced with fluorine atoms, and fluorine atoms contained in these organic groups.
  • examples include one or more compounds selected from sulfonic acids in which at least one hydrogen atom is substituted with a fluorine atom. Examples of these compounds include hydrofluoric acid, trifluoroacetic acid, and trifluoromethanesulfonic acid. These compounds may be used alone or in combination of two or more.
  • step (3) the aqueous solution obtained in step (2) is evaporated to dryness. Evaporation to dryness can be carried out according to a conventional method, for example, by heating (eg, 50 to 90°C) under reduced pressure (eg, 5 to 50 kPa).
  • step (4) the solid obtained in step (3) is fired.
  • the firing temperature is not particularly limited, but is usually 200 to 600°C, preferably 250 to 500°C.
  • the firing time is not particularly limited, but is usually 1 to 20 hours, preferably 5 to 10 hours.
  • the method for producing ammonia of the present invention involves producing a raw material gas containing nitrogen and hydrogen from the above-mentioned catalyst for ammonia synthesis of the present invention or the precursor of the above-mentioned catalyst for ammonia synthesis of the present invention. It is characterized in that it includes a step of bringing it into contact with a catalyst for ammonia synthesis.
  • ammonia is usually produced by heating the catalyst when bringing the raw material gas containing nitrogen and hydrogen into contact.
  • the reaction temperature in the production method of the present invention is not particularly limited, but is usually 100°C or higher, preferably 200°C or higher, more preferably 300°C or higher, and usually 600°C or lower, preferably , 500°C or less, more preferably 400°C or less. Since ammonia synthesis is an exothermic reaction, a low temperature range is more advantageous for ammonia synthesis in terms of chemical equilibrium theory, but in order to obtain a sufficient ammonia synthesis rate, it is preferable to carry out the reaction in the above temperature range.
  • the molar ratio of nitrogen and hydrogen in the raw material gas is not particularly limited, but the molar ratio (hydrogen/nitrogen) is usually 0.4 or more, preferably 0.5 or more, more preferably 1 or more, It is usually 10 or less, preferably 5 or less.
  • the reaction pressure in the production method of the present invention is not particularly limited, but is the pressure of the raw material gas containing nitrogen and hydrogen, usually 0.01 MPa or more, preferably 0.1 MPa or more, usually 20 MPa or less, preferably 15 MPa or less, More preferably, it is 10 MPa or less. Furthermore, in consideration of practical use, it is preferable to carry out the reaction under pressurized conditions of atmospheric pressure or higher.
  • the water content in the nitrogen and hydrogen used in the production method of the present invention is small.
  • the total water content in the raw material gas containing is usually 100 ppm or less, preferably 50 ppm or less.
  • the format of the reaction vessel is not particularly limited, and any reaction vessel that can be commonly used for ammonia synthesis reactions can be used.
  • a specific reaction format for example, a batch reaction format, a closed circulation system reaction format, a flow system reaction format, etc. can be used.
  • the flow system reaction format is preferred from a practical standpoint. Further, it is possible to use one type of reactor filled with a catalyst, a method of connecting a plurality of reactors, or a method of a reactor having a plurality of reaction layers in the same reactor.
  • reactors may be used. For example, specifically, a method may be used in which a plurality of reactors filled with a catalyst are connected in series and an intercooler is installed at the outlet of each reactor to remove heat.
  • the catalyst for ammonia synthesis of the present invention may be used alone or in combination with other known catalysts that can be commonly used for ammonia synthesis.
  • Example 1 Preparation of catalyst for ammonia synthesis
  • iron (III) nitrate nonahydrate manufactured by Kanto Kagaku Co., Ltd., purity 99.9%
  • aluminum nitrate manufactured by Kanto Kagaku Co., Ltd., purity 99.9%
  • trifluoroacetic acid was added.
  • a solution to which 1.14 mL was added was evaporated to dryness at 70°C under reduced pressure (10 kPa).
  • the obtained solid was calcined in the air at 400°C for 10 hours to obtain a mixture of iron oxide and aluminum nitrate as a precursor of a catalyst for ammonia synthesis. After sealing 0.1420 g of the obtained mixture in a quartz glass tube, it was heated at 400°C for 2 hours in a mixed gas atmosphere of nitrogen gas (N 2 ) and hydrogen gas (H 2 ) to form a catalyst for ammonia synthesis (hereinafter referred to as , 50Fe-Al) 0.1 g was obtained.
  • N 2 nitrogen gas
  • H 2 hydrogen gas
  • the constituent components of the ammonia synthesis catalyst were analyzed by high frequency inductively coupled plasma optical emission spectroscopy (ICP optical emission spectroscopy). After dissolving 0.05 g of the catalyst in 10 mL of a mixed solution of 1 M hydrogen chloride aqueous solution and 1 M nitric acid aqueous solution, the resulting aqueous solution was analyzed using a high-frequency inductively coupled plasma optical emission spectrometer (Shimadzu Corporation, ICPS-8100). . The molar ratio of aluminum/iron in 50Fe-Al was 1/49.8.
  • ammonia synthesis reaction A reaction was performed in which N 2 and H 2 were reacted on a catalyst to produce ammonia (NH 3 ) (hereinafter referred to as ammonia synthesis reaction).
  • 0.1 g of the ammonia synthesis catalyst was packed into a glass tube, and the ammonia synthesis reaction was carried out in a fixed bed flow reactor.
  • the moisture concentration of the raw material gases was all below 1 ppm.
  • the flow of raw material gas was set to 15 mL/min for N 2 and 45 mL/min for H 2 , a total of 60 mL/min, the pressure was 0.1 MPa, and the reaction temperature was 400°C.
  • ammonia production rate The gas coming out of the fixed bed flow reactor was bubbled into a 0.005M sulfuric acid aqueous solution to dissolve ammonia in the gas, and the resulting ammonium ions were quantified by ion chromatography using the method described above.
  • the ammonia production rate at 400°C and 0.1 MPa was 5.0 mmolh -1 g -1 20 hours after starting the flow of the raw material gas, and 5.2 mmolh -1 g -1 50 hours after starting the flow of the raw material gas.
  • an industrial iron catalyst iron catalyst containing Al 2 O 3 : 2%, CaO: 2%, K 2 O: 0.5%, Fe industrial in the figure
  • 50Fe-Al exhibited an ammonia production rate approximately twice that of industrial iron catalysts.
  • iron particles were prepared in a similar manner to the preparation of 50Fe-Al. That is, after dissolving 6.0 g of iron (III) nitrate nonahydrate (manufactured by Kanto Kagaku Co., Ltd., purity 99.9%) in 30 mL of pure water, 1.14 mL of trifluoroacetic acid (manufactured by Kanto Kagaku Co., Ltd., purity 99.0%) was dissolved. The added solution was evaporated to dryness at 70° C. under reduced pressure (10 kPa). The obtained solid was calcined in the air at 400°C for 10 hours to obtain iron oxide particles as a precursor of a catalyst for ammonia synthesis.
  • iron (III) nitrate nonahydrate manufactured by Kanto Kagaku Co., Ltd., purity 99.9%
  • trifluoroacetic acid manufactured by Kanto Kagaku Co., Ltd., purity 99.0%
  • Ammonia synthesis reaction was carried out under pressure.
  • 0.1 g of the ammonia synthesis catalyst was packed into a stainless steel tube, and the ammonia synthesis reaction was carried out in a fixed bed flow reactor.
  • the moisture concentration of the raw material gases was all below 1 ppm.
  • the flow of raw material gas was set to N 2 : 15 mL/min, H 2 : 45 mL/min, and a total of 60 mL/min.
  • the pressure was adjusted to 0.1-0.9 MPa using a back pressure valve installed downstream of the stainless steel pipe, and the reaction temperature was 400°C. The results are shown in Figure 3.
  • Example 2 Preparation of catalyst for ammonia synthesis
  • An ammonia synthesis catalyst (hereinafter referred to as 40Fe-Al) was obtained in the same manner as in Example 1, except that the amount of aluminum nitrate added in Example 1 was changed from 0.11 g to 0.14 g.
  • the molar ratio of aluminum/iron in 40Fe-Al analyzed by the same ICP emission spectrometry method as in Example 1 was 1/40.3.
  • ammonia synthesis reaction A reaction for producing ammonia (NH 3 ) (hereinafter referred to as ammonia synthesis reaction) was carried out using the same method and conditions as in Example 1, except that 40Fe-Al was used instead of 50Fe-Al in Example 1. .
  • Example 3 (Preparation of catalyst for ammonia synthesis) An ammonia synthesis catalyst (hereinafter referred to as 20Fe-Al) was obtained in the same manner as in Example 1, except that the amount of aluminum nitrate added in Example 1 was changed from 0.14 g to 0.28 g. The molar ratio of aluminum/iron in 20Fe-Al analyzed by the same ICP emission spectrometry method as in Example 1 was 1/20.2.
  • ammonia synthesis reaction A reaction for producing ammonia (NH 3 ) (hereinafter referred to as ammonia synthesis reaction) was carried out using the same method and conditions as in Example 1, except that 20Fe-Al was used instead of 50Fe-Al in Example 1. .
  • Example 4 (Preparation of catalyst for ammonia synthesis) An ammonia synthesis catalyst (hereinafter referred to as 10Fe-Al) was obtained in the same manner as in Example 1, except that the amount of aluminum nitrate added in Example 1 was changed from 0.11 g to 0.56 g. The molar ratio of aluminum/iron in 10Fe-Al analyzed by the same ICP emission spectrometry method as in Example 1 was 1/9.9.
  • ammonia synthesis reaction A reaction for producing ammonia (NH 3 ) (hereinafter referred to as ammonia synthesis reaction) was carried out using the same method and conditions as in Example 1, except that 10Fe-Al was used instead of 50Fe-Al in Example 1. .
  • Example 5 (Preparation of catalyst for ammonia synthesis) An ammonia synthesis catalyst (hereinafter referred to as 80Fe-Al) was obtained in the same manner as in Example 1, except that the amount of aluminum nitrate added in Example 1 was changed from 0.11 g to 0.07 g. The molar ratio of aluminum/iron in 80Fe-Al analyzed by the same ICP emission spectroscopy method as in Example 1 was 1/80.1.
  • ammonia synthesis reaction A reaction for producing ammonia (NH 3 ) (hereinafter referred to as ammonia synthesis reaction) was carried out using the same method and conditions as in Example 1, except that 80Fe-Al was used instead of 50Fe-Al in Example 1. .
  • Example 6 (Preparation of catalyst for ammonia synthesis) An ammonia synthesis catalyst (hereinafter referred to as 100Fe-Al) was obtained in the same manner as in Example 1, except that the amount of aluminum nitrate added in Example 1 was changed from 0.11 g to 0.06 g. The molar ratio of aluminum/iron in 100Fe-Al analyzed by the same ICP emission spectrometry method as in Example 1 was 1/99.8.
  • ammonia synthesis reaction A reaction for producing ammonia (NH 3 ) (hereinafter referred to as ammonia synthesis reaction) was carried out using the same method and conditions as in Example 1, except that 100Fe-Al was used instead of 50Fe-Al in Example 1. .
  • Example 7 (Preparation of catalyst for ammonia synthesis) After dissolving 6.0 g of iron (III) nitrate nonahydrate, 0.11 g of aluminum nitrate, and 0.03 g of potassium nitrate (manufactured by Kanto Kagaku Co., Ltd., purity 98.0%) in 30 mL of pure water, trifluoroacetic acid (manufactured by Kanto Kagaku Co., Ltd., purity 98.0%) was dissolved in 30 mL of pure water. The solution to which 1.14 mL (purity 99.0%) was added was evaporated to dryness at 70°C under reduced pressure (10 kPa).
  • the obtained solid was calcined in the air at 450°C for 10 hours to obtain a mixture of iron oxide and aluminum nitrate as a precursor of a catalyst for ammonia synthesis.
  • an ammonia synthesis catalyst hereinafter referred to as 50Fe-Al-K
  • the molar ratio of potassium/aluminum/iron in 50Fe-Al-K analyzed by ICP emission spectroscopy similar to Example 1 was 1/1.1/50.1.
  • ammonia synthesis reaction A reaction for producing ammonia (NH 3 ) (hereinafter referred to as ammonia synthesis reaction) was carried out using the same method and conditions as in Example 1, except that 50Fe-Al-K was used instead of 50Fe-Al in Example 1. went.
  • ammonia production rate By the same method as in Example 1, the ammonia production rate at 400° C. and 0.1 MPa was measured. The ammonia production rate was 5.0 mmolh -1 g -1 50 hours after starting the flow of the raw material gas. The results are shown in Table 1. There is no significant performance difference between 50Fe-Al-K and 50Fe-Al at 400°C and 0.1 MPa. Note that the reaction rate of the catalyst at 400°C and 0.9 MPa reached 23.0 mmolh -1 g -1 . On the other hand, 50Fe-Al showed an ammonia production rate of 13.2 mmolh -1 g -1 at 400°C and 0.9 MPa.
  • 50Fe-Al-K exhibits ammonia synthesis activity that far exceeds that of 50Fe-Al. Furthermore, as mentioned above, 50Fe-Al exhibits an ammonia synthesis activity of 0.1 mmolh -1 g -1 at 200°C and 0.1 MPa, but under the same conditions, 50Fe-Al-K synthesizes ammonia of 0.3 mmolh -1 g -1 . It showed activity. This indicates that 50Fe-Al-K exhibits ammonia synthesis activity exceeding that of 50Fe-Al at low temperatures.
  • Example 8 (Preparation of catalyst for ammonia synthesis) An ammonia synthesis catalyst (hereinafter referred to as 50Fe-2Al-K) was obtained in the same manner as in Example 1 except that 0.22 g of aluminum nitrate was added in Example 7. The molar ratio of potassium/aluminum/iron in 50Fe-2Al-K analyzed by ICP emission spectroscopy similar to Example 1 was 1/1.9/50.1.
  • ammonia synthesis reaction A reaction for producing ammonia (NH 3 ) (hereinafter referred to as ammonia synthesis reaction) was carried out using the same method and conditions as in Example 1, except that 50Fe-2Al-K was used instead of 50Fe-Al in Example 1. went.
  • ammonia production rate By the same method as in Example 1, the ammonia production rate at 400° C. and 0.1 MPa was measured. The ammonia production rate was 4.9 mmolh -1 g -1 50 hours after starting the flow of the raw material gas. The results are shown in Table 1. There is no significant performance difference between 50Fe-2Al-K and 50Fe-Al at 400°C and 0.1 MPa. Note that the reaction rate of the catalyst at 400°C and 0.9 MPa reached 20.0 mmolh -1 g -1 . On the other hand, 50Fe-Al showed an ammonia production rate of 13.2 mmolh -1 g -1 at 400°C and 0.9 MPa.
  • 50Fe-Al-K exhibits ammonia synthesis activity that far exceeds that of 50Fe-Al. Furthermore, as mentioned above, 50Fe-Al exhibits ammonia synthesis activity of 0.1 mmolh -1 g -1 at 200°C and 0.1 MPa, but under the same conditions, 50Fe-Al-K synthesizes ammonia of 0.3 mmolh -1 g -1 . It showed activity. This indicates that 50Fe-2Al-K exhibits ammonia synthesis activity exceeding that of 50Fe-Al at low temperatures.
  • Example 9 (Preparation of catalyst for ammonia synthesis) An ammonia synthesis catalyst (hereinafter referred to as 2Fe-Al) was obtained in the same manner as in Example 1, except that the amount of aluminum nitrate added in Example 1 was changed from 0.11 g to 2.75 g.
  • XRD measurement of catalyst after ammonia synthesis reaction XRD of 2Fe-Al was measured after the ammonia synthesis reaction.
  • the measurement conditions are as follows. Ammonia synthesis reaction conditions: 400°C, 50 hours XRD measurement conditions: Equipment (Rigaku Corporation, MiniFleX600C), X-ray (Cu K ⁇ , 45kV, 15mA)
  • the present invention can be used in various industries related to ammonia.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

取り扱いが容易で、高い活性を示すアンモニア合成用触媒として、鉄と水素化アルミニウムとを含むことを特徴とするアンモニア合成用触媒を提供する。

Description

含水素アルミニウムと鉄を組み合わせたアンモニア合成触媒
 本発明は、アンモニア合成用触媒、その触媒の前駆体、及びこれらを用いたアンモニアの製造方法に関する。
 代表的なアンモニアの合成方法であるハーバー・ボッシュ法は、Fe3O4に数質量%のAl2O3とK2Oを含んだ二重促進鉄(doubly promoted iron)触媒を用い、この触媒に窒素と水素の混合気体を高温高圧条件で直接反応させ、アンモニアを合成する方法である。この技術は現在でも、ほぼ完成当時のままの製造工程で工業的に用いられている。
 一方、ハーバー・ボッシュ法の反応温度よりも低い温度でアンモニアを合成する方法が検討されている。窒素及び水素と接触させることでアンモニアを合成することができる触媒が検討され、遷移金属がその触媒活性成分として検討されている。このうち、触媒活性成分としてルテニウム(Ru)を各種担体に担持させてアンモニア合成用触媒として用いる方法が、効率のよい方法として提案されている(例えば、特開2006-231229号公報)。
 Ru等の遷移金属を用いた触媒は、その活性が非常に高いため、ハーバー・ボッシュ法で用いられている反応条件に比べ、より温和な条件でアンモニアを合成することができることが知られている。例えば反応温度200~400℃、反応圧力は大気圧から1.1MPa程度の低温・低圧下で反応が進行することが知られている。
 最近、本発明者は、50℃未満の温度で窒素と水素からアンモニアを合成する新触媒の開発に成功した(非特許文献1)。この触媒は豊富なカルシウムに水素とフッ素が結合した物質「水素化フッ素化カルシウム(CaFH)」とルテニウム(Ru)ナノ粒子の複合材料「Ru/CaFH」で、室温で窒素と水素からアンモニアを合成できる。
Masashi Hattori, Shinya Iijima, Takuya Nakao, Hideo Hosono, Michikazu Hara, Nature Communications, 2020, 11, 2001.
 非特許文献1に記載されている触媒は、低温においても高い触媒活性を示す優れた触媒であるが、触媒中に含まれる水素化フッ素化カルシウムが大気中で失活してしまうため、取り扱いが難しかった。本発明の目的は、より取り扱いが容易なアンモニア合成用触媒を提供することにある。
 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、大気中で取り扱いが可能な鉄酸化物とアルミニウム塩の混合物を、アンモニア合成雰囲気下で加熱処理して得られる触媒が、高い触媒活性を示すことを見出し、本発明を完成するに至った。
 即ち、本発明は、以下の〔1〕~〔13〕を提供するものである。
〔1〕鉄と水素化アルミニウムとを含むことを特徴とするアンモニア合成用触媒。
〔2〕フーリエ変換型赤外分光測定において1730 cm-1付近にAl-H伸縮振動に由来する吸収ピークを有することを特徴とする〔1〕に記載のアンモニア合成用触媒。
〔3〕更に、窒化アルミニウムを含むことを特徴とする〔1〕に記載のアンモニア合成用触媒。
〔4〕アルミニウム/鉄のモル比が1/150~1/50であることを特徴とする〔1〕に記載のアンモニア合成用触媒。
〔5〕鉄の粒子径が10~1000 nmであることを特徴とする〔1〕に記載のアンモニア合成用触媒。
〔6〕窒素及び水素の存在下で、鉄酸化物とアルミニウム塩の混合物を加熱処理することにより得られることを特徴とする〔1〕に記載のアンモニア合成用触媒。
〔7〕鉄酸化物が、Fe2O3であることを特徴とする〔6〕に記載のアンモニア合成用触媒。
〔8〕アルミニウム塩が、硝酸アルミニウムであることを特徴とする〔6〕に記載のアンモニア合成用触媒。
〔9〕窒素及び水素の存在下での加熱処理によって触媒活性を示すようになるアンモニア合成用触媒の前駆体であって、鉄酸化物とアルミニウム塩とを含むことを特徴とするアンモニア合成用触媒の前駆体。
〔10〕鉄酸化物が、Fe2O3であることを特徴とする〔9〕に記載のアンモニア合成用触媒の前駆体。
〔11〕アルミニウム塩が、硝酸アルミニウムであることを特徴とする〔9〕に記載のアンモニア合成用触媒の前駆体。
〔12〕以下の工程(1)~(4)を含む方法によって得られることを特徴とする〔9〕に記載のアンモニア合成用触媒の前駆体、
(1)硝酸鉄とアルミニウム塩を水に溶解させる工程、
(2)工程(1)で得られた水溶液にフッ素原子を含む酸を加える工程、
(3)工程(2)で得られた水溶液を蒸発乾固させる工程、
(4)工程(3)で得られた固体を焼成する工程。
〔13〕窒素と水素を含む原料ガスを、〔1〕乃至〔8〕のいずれか一項に記載のアンモニア合成用触媒、又は〔9〕乃至〔12〕のいずれか一項に記載のアンモニア合成用触媒の前駆体から生成するアンモニア合成用触媒に接触させる工程を含むことを特徴とするアンモニアの製造方法。
 なお、上記〔6〕及び〔12〕では、「アンモニア合成用触媒」及び「アンモニア合成用触媒の前駆体」という「物」を構造や特性ではなく、製造方法によって特定している。これは、「アンモニア合成用触媒」及び「アンモニア合成用触媒の前駆体」は加熱処理などによって製造されているが、このような処理によって生じる構造や特性の変化は極めて複雑であり、これらを完全に特定する作業を行うことは、著しく過大な経済的支出や時間を必要とするからである。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2022-101842の明細書及び/又は図面に記載される内容を包含する。
 本発明は、新規なアンモニア合成用触媒を提供する。本発明の触媒は、取り扱いが容易で、高い活性を示す優れた触媒である。
本発明の触媒のアンモニア生成速度を示す図。 様々な温度における本発明の触媒のアンモニアの生成速度を示す図。 加圧状態における本発明の触媒のアンモニアの生成速度を示す図。 本発明の触媒のXRDデータを示す図。 本発明の触媒の水素TPD測定によって得られたデータを示す図。 本発明の触媒のFT-IR測定によって得られたデータを示す図。
 以下、本発明を詳細に説明する。
(A)アンモニア合成用触媒
 本発明のアンモニア合成用触媒は、鉄と水素化アルミニウムとを含むことを特徴とするものである。
 本発明の触媒中の水素化アルミニウムの量は特に限定されないが、通常は、0.2~2.0重量%であり、好ましくは、0.5~1.0重量%である。
 本発明の触媒は、鉄や水素化アルミウム以外の他の物質を含んでいてもよい。他の物質としては、例えば、窒化アルミニウム、カリウムを挙げることができる。また、本発明の触媒は、実質的に酸化アルミニウムを含まないことが好ましい。ここで、「実質的に酸化アルミニウムを含まない」とは、例えば、本発明の触媒のXRDを測定した場合、そのXRDデータにおいて、酸化アルミニウムの存在を示すピークが検出されないことをいう。
 触媒中の鉄とアルミニウムのモル比は触媒活性を示す限り特に限定されず、モル比(アルミニウム/鉄)は、通常、1/500~1/2であり、好ましくは、1/200~1/5であり、より好ましくは、1/150~1/50であり、よりさらに好ましくは、1/100~1/20である。
 本発明の触媒の形状は特に限定はされず、例えば、塊状、粉末状、被膜状などのいずれの形状であってもよい。
 本発明のアンモニア合成用触媒における鉄の粒子径は、特に限定はされないが、触媒機能向上の観点から好ましくは10~1000 nm、より好ましくは10~500 nmである。
 また、本発明の触媒の比表面積も特に限定はされず、通常、10~200m2g-1h-1である。
 本発明の触媒は、フーリエ変換型赤外分光測定において1730 cm-1付近にAl-H伸縮振動に由来する吸収ピークを有することが好ましい。ここで、「1730 cm-1付近」とは、フーリエ変換型赤外分光測定によって得られたデータにおいて、当業者が1730 cm-1と同一視できる範囲を意味する。例えば、1730 cm-1を中心に±10 cm-1、特に±5 cm-1の範囲は、「1730 cm-1付近」である。
 本発明の触媒は、窒素及び水素の存在下で、鉄酸化物とアルミニウム塩の混合物(触媒の前駆体)を加熱処理することにより得ることができる。加熱条件は、触媒の前駆体から本発明の触媒が生成可能な条件であれば特に限定されず、加熱温度は、通常、200~600℃であり、好ましくは、250~500℃であり、加熱時間は、通常、5~20時間であり、好ましくは、10~20時間である。
(B)アンモニア合成用触媒の前駆体
 本発明のアンモニア合成用触媒の前駆体は、窒素及び水素の存在下での加熱処理によって触媒活性を示すようになるものであって、鉄酸化物とアルミニウム塩とを含むことを特徴とするものである。
 鉄酸化物は特に限定されず、例えば、Fe2O3(酸化鉄(III))、Fe3O4(酸化鉄(II,III))、FeO(酸化鉄(II))、FeOOH(オキシ水酸化鉄)、Fe(OH)2(水酸化鉄(II))、Fe(OH)3(水酸化鉄(III))などを挙げることができる。これらの鉄酸化物の中でも、Fe2O3が好ましい。Fe2O3としては、α-Fe2O3、β-Fe2O3、γ-Fe2O3、ε-Fe2O3などを挙げることができる。これらのFe2O3の中でも、調製の簡便化の観点からα-Fe2O3が好ましい。
 アルミニウム塩は水溶性の塩であれば特に限定されず、例えば、硝酸アルミニウム、塩化アルミニウム、酢酸アルミニウム、ギ酸アルミニウムなどを挙げることができる。これらのアルミニウム塩の中でも、入手の容易さの観点から硝酸アルミニウムが好ましい。
 触媒前駆体中の鉄酸化物とアルミニウム塩のモル比は触媒活性を示す限り特に限定されず、アルミニウムと鉄のモル比(アルミニウム/鉄)は、通常、1/500~1/2であり、好ましくは、1/200~1/5であり、より好ましくは、1/150~1/50であり、よりさらに好ましくは、1/100~1/20である。
 本発明の触媒の前駆体の形状は特に限定はされず、例えば、塊状、粉末状、被膜状などのいずれの形状であってもよい。また、本発明の触媒の前駆体の比表面積も特に限定はされず、通常、10~200m2g-1h-1である。
 本発明の触媒の前駆体の製造方法は特に限定されない。一実施形態として鉄酸化物がFe2O3であり、アルミニウム塩が硝酸アルミニウムである本発明の触媒の前駆体は、例えば、下記の工程(1)~(4)を含む方法によって製造することができる。
 工程(1)では、硝酸鉄とアルミニウム塩を水に溶解させる。硝酸鉄とアルミニウム塩のモル比(アルミニウム/鉄)は特に限定されず、通常、1/500~1/2であり、好ましくは、1/200~1/5であり、より好ましくは、1/150~1/50であり、よりさらに好ましくは、1/100~1/20である。
 アルミニウム塩は、上述で挙げた通りである。
 工程(2)では、工程(1)で得られた水溶液にフッ素原子を含む酸を加える。フッ素原子を含む酸は濃度が1~5%(v/v)程度になるように加える。
 フッ素原子を含む酸としては、例えば、無機酸、有機カルボン酸、有機スルホン酸、これらの有機基に含まれる水素原子の一つ以上をフッ素原子で置換したカルボン酸、及びこれらの有機基に含まれる水素原子の一つ以上をフッ素原子で置換したスルホン酸から選ばれる1種以上の化合物が挙げられる。これらの化合物としては、例えば、フッ酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸が挙げられる。これらの化合物は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 工程(3)では、工程(2)で得られた水溶液を蒸発乾固させる。蒸発乾固は常法に従って行うことができ、例えば、減圧下(例えば、5~50kPa)で、加熱(例えば、50~90℃)することにより行うことができる。
 工程(4)では、工程(3)で得られた固体を焼成する。焼成温度は特に限定されないが、通常、200~600℃であり、好ましくは、250~500℃である。焼成時間は特に限定されないが、通常、1~20時間であり、好ましくは、5~10時間である。
(C)アンモニアの製造方法
 本発明アンモニアの製造方法は、窒素と水素を含む原料ガスを、上記の本発明のアンモニア合成用触媒、又は上記の本発明のアンモニア合成用触媒の前駆体から生成するアンモニア合成用触媒に接触させる工程を含むことを特徴とするものである。
 本発明のアンモニアの製造方法では、通常、窒素と水素を含む原料ガスを接触させる際、触媒を加熱して、アンモニアを製造する。
 本発明の製造方法における反応温度は特に限定はされないが、通常、100℃以上、好ましくは、200℃以上であり、より好ましくは、300℃以上であり、通常、600℃以下であり、好ましくは、500℃以下であり、より好ましくは、400℃以下である。アンモニア合成は発熱反応であることから、低温領域のほうが化学平衡論的にアンモニア合成に有利であるが、十分なアンモニア合成速度を得るためには上記の温度範囲で反応を行うことが好ましい。
 本発明の製造方法において、原料ガス中の窒素と水素のモル比は特に限定されないが、モル比(水素/窒素)は、通常、0.4以上、好ましくは、0.5以上、より好ましくは、1以上、通常、10以下、好ましくは、5以下である。
 本発明の製造方法における反応圧力は特に限定はされないが、窒素と水素を含む原料ガスの圧力で、通常、0.01MPa以上、好ましくは、0.1MPa以上、通常、20MPa以下、好ましくは、15MPa以下、より好ましくは、10MPa以下である。また実用的な利用を考慮すると、大気圧以上の加圧条件で反応を行うことが好ましい。
 本発明の製造方法において、窒素と水素とを触媒に接触させる前に、触媒に付着する水分や酸化物を、脱水材を用いる方法、深冷分離する方法や水素ガス等を用いて除去することが好ましい。除去の方法としては還元処理が挙げられる。
 本発明の製造方法においては、より良好なアンモニア収率を得るためには、本発明の製造方法に用いる窒素及び水素中の水分含有量が少ないことが好ましく、特に限定はされないが、窒素と水素を含む原料ガス中の総水分含有量は、通常、100ppm以下、好ましくは、50ppm以下である。
 本発明の製造方法において、反応容器の形式は特に限定されず、アンモニア合成反応に通常用いることができる反応容器を用いることができる。具体的な反応形式としては、例えばバッチ式反応形式、閉鎖循環系反応形式、流通系反応形式等を用いることができる。このうち実用的な観点からは流通系反応形式が好ましい。また触媒を充填した一種類の反応器、又は複数の反応器を連結させる方法や、同一反応器内に複数の反応層を有する反応器の何れの方法も使用することができる。
 窒素と水素からアンモニアを合成する反応は、体積収縮を伴う発熱反応であることから、アンモニア収率を上げるために工業的には反応熱を除去することが好ましく、通常用いられる除熱手段を伴う既知の反応装置を用いてもよい。例えば具体的には触媒が充填された反応器を直列に複数個連結し、各反応器の出口にインタークーラーを設置して除熱する方法等を用いてもよい。
 本発明の製造方法においては、本発明のアンモニア合成用触媒を単独で用いても、アンモニア合成に通常用いることができる他の公知の触媒と組み合わせて用いてもよい。
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(イオンクロマトグラム分析)
 反応容器から排出されたアンモニアガスを、5mM硫酸水溶液に溶解させ、捕捉したアンモニウムイオン(NH4 +)をイオンクロマトグラフにより分析した。分析条件は以下の通りである。
[測定条件]
  装置 :JASCO製 PU-2080 plus
  検出器:電気伝導度検出器CD-200(Shodex製)
  カラム:イオンクロマトグラム用カラムLC-2000 plus(日本分光社製)
  溶離液:4.0mM メタンスルホン酸水溶液
  流速 :1.0mL/分
  カラム温度:40℃
(実施例1)
(アンモニア合成用触媒の調製)
 硝酸鉄(III)九水和物(関東化学社製、純度99.9%)6.0gと硝酸アルミニウム(関東化学社製、純度99.9%)0.11gを30mLの純水中に溶解した後、トリフルオロ酢酸(関東化学社製、純度99.0%)1.14mLを加えた溶液を、減圧下(10kPa)、70℃において蒸発乾固を行った。得られた固体を大気中において400℃で10時間焼成し、アンモニア合成用触媒の前駆体として酸化鉄と硝酸アルミニウムの混合物を得た。得られた混合物0.1420gを石英ガラス管中に封入した後、窒素ガス(N2)と水素ガス(H2)の混合ガス雰囲気下において400℃で2時間加熱することでアンモニア合成用触媒(以下、50Fe-Al)0.1 gが得られた。
(アンモニア合成用触媒の構成成分)
前記アンモニア合成触媒の構成成分は高周波誘導結合プラズマ発光分光分析法(ICP発光分光分析法)によって分析した。触媒0.05 gを1 Mの塩化水素水溶液と1 Mの硝酸水溶液の混合溶液10 mLに溶解した後、得られた水溶液を高周波誘導結合プラズマ発光分光分析装置(島津製作所、ICPS-8100)によって分析した。50Fe-Alにおけるアルミニウム/鉄はモル比で1/49.8であった。
(アンモニア合成反応)
 N2とH2を触媒上で反応させてアンモニア(NH3)を生成させる反応(以下、アンモニア合成反応)を行った。前記アンモニア合成用触媒0.1gをガラス管に詰め、固定床流通式反応装置で前記アンモニア合成反応を行った。原料ガスの水分濃度はいずれも1ppm以下であった。原料ガスの流通は、N2:15mL/min、H2:45mL/min、合計60mL/minに設定し、圧力は0.1MPa、反応温度は400℃で行った。
(アンモニアの生成速度)
 前記固定床流通式反応装置から出てきたガスを0.005M硫酸水溶液中にバブリングさせ、前記ガス中のアンモニアを溶解させ、生じたアンモニウムイオンをイオンクロマトグラフにより前記の方法により定量した。400℃、0.1MPaにおけるアンモニアの生成速度は、原料ガスの流通を開始してから20時間後において5.0mmolh-1g-1、50時間後において5.2mmolh-1g-1であった。比較のため、50Fe-Alの代わりに工業用鉄触媒(Al2O3:2%, CaO:2%, K2O:0.5%含有鉄触媒、図中のFe industrial)を用い、同様の条件でアンモニアの生成速度を測定したところ、2.6mmolh-1g-1であった(図1)。50Fe-Alは、工業用鉄触媒の約2倍のアンモニア生成速度を示した。
(様々な温度におけるアンモニアの生成速度)
 反応温度を200-400℃に調整し、他は上記と同様の条件でアンモニアの生成速度を測定した(図2)。比較のため、50Fe-Alの代わりに工業用鉄触媒(Al2O3:2%, CaO:2%, K2O:0.5%含有鉄触媒、図中のFe industrial)又は鉄粒子(図中のFe particle)を用い、同様の条件でアンモニアの生成速度を測定した(図2)。図2に示すように、従来の工業用鉄触媒が動作しない200℃においても、50Fe-Alは0.1mmolh-1g-1のアンモニアを生成した。なお、鉄粒子は50Fe-Alの調製と同様な方法で調製された。すなわち、硝酸鉄(III)九水和物(関東化学社製、純度99.9%)6.0gを30mLの純水中に溶解した後、トリフルオロ酢酸(関東化学社製、純度99.0%)1.14mLを加えた溶液を、減圧下(10kPa)、70℃において蒸発乾固を行った。得られた固体を大気中において400℃で10時間焼成し、アンモニア合成用触媒の前駆体として酸化鉄粒子を得た。得られた酸化鉄粒子0.1420gを石英ガラス管中に封入した後、窒素ガス(N2)と水素ガス(H2)の混合ガス雰囲気下において400℃で2時間加熱することでアンモニア合成用触媒(Fe particle)0.1 gが得られた。
(加圧状態のアンモニア合成反応)
 加圧状態でのアンモニア合成反応を行った。前記アンモニア合成用触媒0.1gをステンレス管に詰め、固定床流通式反応装置で前記アンモニア合成反応を行った。原料ガスの水分濃度はいずれも1ppm以下であった。原料ガスの流通は、N2:15mL/min、H2:45mL/min、合計60mL/minに設定した。ステンレス管下流に設置した背圧弁を用いて圧力を0.1-0.9MPaに調整し、反応温度は400℃で行った。結果を図3に示す。
(実施例2)
(アンモニア合成用触媒の調製)
 実施例1における硝酸アルミニウムの添加量を0.11gから0.14gに変えた以外は、実施例1と同様の方法により、アンモニア合成用触媒(以下、40Fe-Al)が得られた。実施例1と同様のICP発光分光分析法によって分析した40Fe-Alにおけるアルミニウム/鉄はモル比で1/40.3であった。
(アンモニア合成反応)
 実施例1の50Fe-Alに代えて、40Fe-Alを用いた以外は、実施例1と同様の方法と条件により、アンモニア(NH3)を生成させる反応(以下、アンモニア合成反応)を行った。
(アンモニアの生成速度)
 実施例1と同様の方法により、400℃、0.1MPaにおけるアンモニアの生成速度を測定した。アンモニアの生成速度は、原料ガスの流通を開始してから50時間後において、5.0mmolh-1g-1であった。結果を表1に示した。
(実施例3)
(アンモニア合成用触媒の調製)
 実施例1における硝酸アルミニウムの添加量を0.14gから0.28gに変えた以外は、実施例1と同様の方法により、アンモニア合成用触媒(以下、20Fe-Al)が得られた。実施例1と同様のICP発光分光分析法によって分析した20Fe-Alにおけるアルミニウム/鉄はモル比で1/20.2であった。
(アンモニア合成反応)
 実施例1の50Fe-Alに代えて、20Fe-Alを用いた以外は、実施例1と同様の方法と条件により、アンモニア(NH3)を生成させる反応(以下、アンモニア合成反応)を行った。
(アンモニアの生成速度)
 実施例1と同様の方法により、400℃、0.1MPaにおけるアンモニアの生成速度を測定した。アンモニアの生成速度は、原料ガスの流通を開始してから50時間後において、4.8mmolh-1g-1であった。結果を表1に示した。
(実施例4)
(アンモニア合成用触媒の調製)
 実施例1における硝酸アルミニウムの添加量を0.11gから0.56gに変えた以外は、実施例1と同様の方法により、アンモニア合成用触媒(以下、10Fe-Al)が得られた。実施例1と同様のICP発光分光分析法によって分析した10Fe-Alにおけるアルミニウム/鉄はモル比で1/9.9であった。
(アンモニア合成反応)
 実施例1の50Fe-Alに代えて、10Fe-Alを用いた以外は、実施例1と同様の方法と条件により、アンモニア(NH3)を生成させる反応(以下、アンモニア合成反応)を行った。
(アンモニアの生成速度)
 実施例1と同様の方法により、400℃、0.1MPaにおけるアンモニアの生成速度を測定した。アンモニアの生成速度は、原料ガスの流通を開始してから50時間後において、3.7mmolh-1g-1であった。結果を表1に示した。
(実施例5)
(アンモニア合成用触媒の調製)
 実施例1における硝酸アルミニウムの添加量を0.11gから0.07gに変えた以外は、実施例1と同様の方法により、アンモニア合成用触媒(以下、80Fe-Al)が得られた。実施例1と同様のICP発光分光分析法によって分析した80Fe-Alにおけるアルミニウム/鉄はモル比で1/80.1であった。
(アンモニア合成反応)
 実施例1の50Fe-Alに代えて、80Fe-Alを用いた以外は、実施例1と同様の方法と条件により、アンモニア(NH3)を生成させる反応(以下、アンモニア合成反応)を行った。
(アンモニアの生成速度)
 実施例1と同様の方法により、400℃、0.1MPaにおけるアンモニアの生成速度を測定した。アンモニアの生成速度は、原料ガスの流通を開始してから50時間後において、5.2mmolh-1g-1であった。結果を表1に示した。
(実施例6)
(アンモニア合成用触媒の調製)
 実施例1における硝酸アルミニウムの添加量を0.11gから0.06gに変えた以外は、実施例1と同様の方法により、アンモニア合成用触媒(以下、100Fe-Al)が得られた。実施例1と同様のICP発光分光分析法によって分析した100Fe-Alにおけるアルミニウム/鉄はモル比で1/99.8であった。
(アンモニア合成反応)
 実施例1の50Fe-Alに代えて、100Fe-Alを用いた以外は、実施例1と同様の方法と条件により、アンモニア(NH3)を生成させる反応(以下、アンモニア合成反応)を行った。
(アンモニアの生成速度)
 実施例1と同様の方法により、400℃、0.1MPaにおけるアンモニアの生成速度を測定した。アンモニアの生成速度は、原料ガスの流通を開始してから50時間後において、4.7mmolh-1g-1であった。結果を表1に示した。
(実施例7)
(アンモニア合成用触媒の調製)
 硝酸鉄(III)九水和物6.0gと硝酸アルミニウム0.11g、硝酸カリウム(関東化学社製、純度98.0%)0.03gを30mLの純水中に溶解した後、トリフルオロ酢酸(関東化学社製、純度99.0%)1.14mLを加えた溶液を、減圧下(10kPa)、70℃において蒸発乾固を行った。得られた固体を大気中において450℃で10時間焼成し、アンモニア合成用触媒の前駆体として酸化鉄と硝酸アルミニウムの混合物を得た。得られた混合物0.1420gを実施例1と同様の方法で加熱することでアンモニア合成用触媒(以下、50Fe-Al-K)が得られた。実施例1と同様のICP発光分光分析法によって分析した50Fe-Al-Kにおけるカリウム/アルミニウム/鉄はモル比で1/1.1/50.1であった。
(アンモニア合成反応)
 実施例1の50Fe-Alに代えて、50Fe-Al-Kを用いた以外は、実施例1と同様の方法と条件により、アンモニア(NH3)を生成させる反応(以下、アンモニア合成反応)を行った。
(アンモニアの生成速度)
 実施例1と同様の方法により、400℃、0.1MPaにおけるアンモニアの生成速度を測定した。アンモニアの生成速度は、原料ガスの流通を開始してから50時間後において、5.0mmolh-1g-1であった。結果を表1に示した。400℃、0.1 MPaでは50Fe-Al-Kと50Fe-Alに大きな性能差はない。なお、当該触媒の400℃、0.9 MPaでの反応速度は23.0 mmolh-1g-1に達した。一方、400℃、0.9 MPaで50Fe-Alは13.2 mmolh-1g-1のアンモニア生成速度を示した。このことから加圧によって50Fe-Al-Kは50Fe-Alを多きく上回るアンモニア合成活性を発揮する。また、上述のように200℃、0.1 MPaで50Fe-Alは0.1mmolh-1g-1のアンモニア合成活性を示すが、同条件で50Fe-Al-Kは0.3 mmolh-1g-1のアンモニア合成活性を示した。このことは低温で50Fe-Al-Kでは50Fe-Alを上回るアンモニア合成活性を発現することを示している。
(実施例8)
(アンモニア合成用触媒の調製)
 実施例7において硝酸アルミニウム0.22gを添加した以外は、実施例1と同様の方法により、アンモニア合成用触媒(以下、50Fe-2Al-K)が得られた。実施例1と同様のICP発光分光分析法によって分析した50Fe-2Al-Kにおけるカリウム/アルミニウム/鉄はモル比で1/1.9/50.1であった。
(アンモニア合成反応)
 実施例1の50Fe-Alに代えて、50Fe-2Al-Kを用いた以外は、実施例1と同様の方法と条件により、アンモニア(NH3)を生成させる反応(以下、アンモニア合成反応)を行った。
(アンモニアの生成速度)
 実施例1と同様の方法により、400℃、0.1MPaにおけるアンモニアの生成速度を測定した。アンモニアの生成速度は、原料ガスの流通を開始してから50時間後において、4.9mmolh-1g-1であった。結果を表1に示した。400℃、0.1 MPaでは50Fe-2Al-Kと50Fe-Alに大きな性能差はない。なお、当該触媒の400℃、0.9 MPaでの反応速度は20.0 mmolh-1g-1に達した。一方、400℃、0.9 MPaで50Fe-Alは13.2 mmolh-1g-1のアンモニア生成速度を示した。このことから加圧によって50Fe-Al-Kは50Fe-Alを多きく上回るアンモニア合成活性を発揮する。また、上述のように200℃、0.1 MPaで50Fe-Alは0.1mmolh-1g-1のアンモニア合成活性を示すが、同条件で50Fe-Al-Kは0.3 mmolh-1g-1のアンモニア合成活性を示した。このことは低温で50Fe-2Al-Kでは50Fe-Alを上回るアンモニア合成活性を発現することを示している。
(実施例9)
(アンモニア合成用触媒の調製)
 実施例1における硝酸アルミニウムの添加量を0.11gから2.75gに変えた以外は、実施例1と同様の方法により、アンモニア合成用触媒(以下、2Fe-Al)が得られた。
(アンモニア合成反応後の触媒のXRD測定)
 アンモニア合成反応後の2Fe-AlのXRDを測定した。測定条件等は、下記の通りである。
アンモニア合成反応条件:400℃,50時間
XRD測定条件:装置(リガク社製、MiniFleX600C)、X線(Cu Kα,45kV,15mA)
 結果を図4に示す。図4に示すように、50度付近に金属鉄の存在を示す大きなピークが検出され、30度及び37度付近にそれぞれ水素化アルミニウム及び窒化アルミニウムの存在を示すピークが検出された。アンモニア合成用鉄触媒のXRDデータは数多く報告されているが、いずれも図3に示すXRDデータと大きく異なるものであった。例えば、G. Ertl et al., Nature, 315, 311 (1985)には、標準的な鉄触媒(Al2O3:2%, CaO:2%, K2O:0.5%含有)のXRDデータが掲載されているが、このXRDデータ(Fig. 1)において、主要なピークはα-Feに分類される。P. Chen et al., Angew. Chem. Int., 129, 8842 (2017)には、報告されている鉄触媒で最も活性の高い触媒(Fe担持LiH(Fe:Li=1:5))のXRDデータが掲載されているが、このXRDデータ(Fig. S7)において主要なピークはFeとLiHに分類される。
(アンモニア合成反応後の触媒の水素TPD測定)
 アンモニア合成反応後の20Fe-Alの水素TPD測定を行った。反応後の触媒0.1gを石英管に詰め、30mL/minのアルゴンガス流通下で30℃から500℃まで1℃/minで昇温し、生じたH2ガスを四重極質量分析計を用いて計測した。測定条件等は、下記の通りである。
アンモニア合成反応条件:400℃,50時間
水素TPD測定条件:装置(マイクロトラックベル社製、BELCAT)
 結果を図5に示す。図5に示すように、昇温によって水素の脱離がみられ、水素化物の形成が示唆された。
(アンモニア合成触媒のフーリエ変換型赤外分光測定)
 実施例1における50Fe-Al、実施例7における50Fe-Al-Kの前駆体及び実施例1におけるFe Industrialを30mL/minの水素気流中において400℃で2時間加熱した後、水素気流中において室温まで冷却してフーリエ変換型赤外分光測定(FT-IR測定)を行った。50Fe-Al-Kは測定後、さらに水素気流中で300℃に昇温しFT-IR測定を行った。
FT-IR測定条件:装置(JASCO製、FT/IR-6100)
 結果を図6に示す。50Fe-Al及び50Fe-Al-Kでは1730cm-1にAl-H振動に帰属される吸収ピークが確認された。この吸収ピークは50Fe-Al-Kにおける300℃での測定でも確認された。一方、Fe IndustrialにおいてはAl-H振動に帰属される吸収ピークが確認されなかった。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2022-101842の明細書及び/又は図面に記載される内容を包含する。
 本発明は、アンモニアに関連する各種産業において利用可能である。

Claims (13)

  1.  鉄と水素化アルミニウムとを含むことを特徴とするアンモニア合成用触媒。
  2.  フーリエ変換型赤外分光測定において1730 cm-1付近にAl-H伸縮振動に由来する吸収ピークを有することを特徴とする請求項1に記載のアンモニア合成用触媒。
  3.  更に、窒化アルミニウムを含むことを特徴とする請求項1に記載のアンモニア合成用触媒。
  4.  アルミニウム/鉄のモル比が1/150~1/50であることを特徴とする請求項1に記載のアンモニア合成用触媒。
  5.  鉄の粒子径が10~1000 nmであることを特徴とする請求項1に記載のアンモニア合成用触媒。
  6.  窒素及び水素の存在下で、鉄酸化物とアルミニウム塩の混合物を加熱処理することにより得られることを特徴とする請求項1に記載のアンモニア合成用触媒。
  7.  鉄酸化物が、Fe2O3であることを特徴とする請求項6に記載のアンモニア合成用触媒。
  8.  アルミニウム塩が、硝酸アルミニウムであることを特徴とする請求項6に記載のアンモニア合成用触媒。
  9.  窒素及び水素の存在下での加熱処理によって触媒活性を示すようになるアンモニア合成用触媒の前駆体であって、鉄酸化物とアルミニウム塩とを含むことを特徴とするアンモニア合成用触媒の前駆体。
  10.  鉄酸化物が、Fe2O3であることを特徴とする請求項9に記載のアンモニア合成用触媒の前駆体。
  11.  アルミニウム塩が、硝酸アルミニウムであることを特徴とする請求項9に記載のアンモニア合成用触媒の前駆体。
  12.  以下の工程(1)~(4)を含む方法によって得られることを特徴とする請求項9に記載のアンモニア合成用触媒の前駆体、
    (1)硝酸鉄とアルミニウム塩を水に溶解させる工程、
    (2)工程(1)で得られた水溶液にフッ素原子を含む酸を加える工程、
    (3)工程(2)で得られた水溶液を蒸発乾固させる工程、
    (4)工程(3)で得られた固体を焼成する工程。
  13.  窒素と水素を含む原料ガスを、請求項1乃至8のいずれか一項に記載のアンモニア合成用触媒、又は請求項9乃至12のいずれか一項に記載のアンモニア合成用触媒の前駆体から生成するアンモニア合成用触媒に接触させる工程を含むことを特徴とするアンモニアの製造方法。
PCT/JP2023/022847 2022-06-24 2023-06-21 含水素アルミニウムと鉄を組み合わせたアンモニア合成触媒 WO2023249030A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022101842 2022-06-24
JP2022-101842 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023249030A1 true WO2023249030A1 (ja) 2023-12-28

Family

ID=89379981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022847 WO2023249030A1 (ja) 2022-06-24 2023-06-21 含水素アルミニウムと鉄を組み合わせたアンモニア合成触媒

Country Status (1)

Country Link
WO (1) WO2023249030A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934916B1 (ja) * 1969-08-06 1974-09-18
JPS62121649A (ja) * 1985-11-08 1987-06-02 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− 触媒前駆物質
JPS6324024A (ja) * 1986-06-12 1988-02-01 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− 焼結品
JPH0615176A (ja) * 1990-05-29 1994-01-25 Ministero Dell Univ E Della Ric Scient & Tecnol アンモニア合成用の沈澱触媒の前駆体の製造法
CN102464297A (zh) * 2010-11-10 2012-05-23 中国科学院金属研究所 储氢材料纳米催化体系的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934916B1 (ja) * 1969-08-06 1974-09-18
JPS62121649A (ja) * 1985-11-08 1987-06-02 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− 触媒前駆物質
JPS6324024A (ja) * 1986-06-12 1988-02-01 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− 焼結品
JPH0615176A (ja) * 1990-05-29 1994-01-25 Ministero Dell Univ E Della Ric Scient & Tecnol アンモニア合成用の沈澱触媒の前駆体の製造法
CN102464297A (zh) * 2010-11-10 2012-05-23 中国科学院金属研究所 储氢材料纳米催化体系的制备方法

Similar Documents

Publication Publication Date Title
JP6680919B2 (ja) 担持金属触媒
US10759668B2 (en) Supported metal material, supported metal catalyst, and ammonia synthesis method using the same
JP6556695B2 (ja) アンモニア合成触媒及びアンモニア合成方法
CN113351251A (zh) 一种核壳催化剂、其制备方法及应用
RU2446010C2 (ru) Способ получения водорода прямым разложением природного газа и снг
CN108816221A (zh) 一种氧化铝为载体的钌基氨合成催化剂的制备方法
EP1974812A1 (en) Catalysts and process for the production of olefins with the same
Habimana et al. Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas
EP3766835A1 (en) Electron or hydride ion absorbing/desorbing material, electron or hydride ion absorbing/desorbing composition, transition metal carrier and catalyst, and use therefor
WO2023249030A1 (ja) 含水素アルミニウムと鉄を組み合わせたアンモニア合成触媒
WO2021172107A1 (ja) 典型元素酸化物を含む金属担持物、アンモニア合成用触媒、及びアンモニアの合成方法
JP6737455B2 (ja) ラーベス相金属間化合物、金属間化合物を用いた触媒、及びアンモニア製造方法
JP7418849B2 (ja) 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒
KR102255171B1 (ko) 과산화수소 제조용 세슘-팔라듐 촉매의 제조방법 및 이를 이용한 과산화수소의 제조방법
EP0133778B1 (en) Methanol conversion process
JPH08141399A (ja) アンモニア合成触媒およびその調製法
EP0306566A1 (en) Disproportionation of selected chlorofluoromethanes
JP7388776B2 (ja) アンモニア合成用触媒、及びアンモニアの製造方法
KR102579471B1 (ko) 이산화탄소 건식 흡수제를 이용한 일산화탄소 및 합성가스 생성 공정 및 시스템
Matsumoto et al. Reaction mechanism of methane oxidation to synthesis gas over an activated PdY zeolite
CN105498758A (zh) 一种一氧化碳合成草酸二乙酯的催化剂及其制备和应用
CN114620705A (zh) 一种六氟环氧丙烷制备高纯碳酰氟的方法
TW202204039A (zh) 用於乙酸乙烯酯製造之催化劑的製備方法
JP2015218091A (ja) アンモニア合成触媒およびアンモニア合成方法
JP2022047222A (ja) イソシアン酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827213

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)