WO2023248887A1 - ポジ型感光性樹脂組成物、ポジ型感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置 - Google Patents

ポジ型感光性樹脂組成物、ポジ型感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置 Download PDF

Info

Publication number
WO2023248887A1
WO2023248887A1 PCT/JP2023/022050 JP2023022050W WO2023248887A1 WO 2023248887 A1 WO2023248887 A1 WO 2023248887A1 JP 2023022050 W JP2023022050 W JP 2023022050W WO 2023248887 A1 WO2023248887 A1 WO 2023248887A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photosensitive resin
formula
carbon atoms
positive photosensitive
Prior art date
Application number
PCT/JP2023/022050
Other languages
English (en)
French (fr)
Inventor
政雄 鴨川
進 田中
智之 弓場
聡 亀本
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023248887A1 publication Critical patent/WO2023248887A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a positive photosensitive resin composition, a positive photosensitive resin sheet, a cured product, a method for producing a cured product, a semiconductor device, and a display device.
  • Positive type polyimide photosensitive resin compositions include those in which a quinonediazide compound is added to polyimide, polybenzoxazole, a polyimide precursor, or a polybenzoxazole precursor (for example, see Patent Document 1), It is known that a photoacid generator is added to a polyamide containing a removable protecting group (for example, see Patent Document 2).
  • Patent Document 2 involves replacing the hydrogen atoms of hydroxy groups in alkali-soluble polyamide with tert-butoxycarbonyl groups (hereinafter also referred to as t-Boc groups) to make an alkali-insoluble resin, and combining this with a photoacid generator.
  • t-Boc groups tert-butoxycarbonyl groups
  • an acid is generated from a photoacid generator in an exposed area, and this acid reacts with the t-Boc group to remove the t-Boc group from the polyamide (hereinafter referred to as deprotection).
  • This polyamide can be changed from alkali-insoluble to alkali-soluble.
  • a dissolution contrast occurs between exposed and unexposed areas, making it possible to process positive patterns.
  • This technique has the problem that the reaction rate between the t-Boc group and the acid is low and the dissolution contrast between the exposed and unexposed areas is small, making it impossible to shorten the exposure time, and that residue is generated at
  • An object of the present invention is to provide a positive-working photosensitive composition that has high sensitivity in order to shorten the exposure time, has a small amount of film loss during development, and furthermore has a small amount of residue at pattern openings.
  • R 1 represents a trivalent to dodecademic organic group having 3 to 30 carbon atoms
  • R 2 represents a monovalent acid-decomposable group having 3 to 20 carbon atoms
  • m represents an integer of 0 to 4
  • n represents an integer of 1 to 4.
  • * indicates a binding site
  • a and b each independently represent an integer of 1 or 2.
  • R 6 and R 7 each independently represent an alkyl group having 1 to 6 carbon atoms.
  • R 8 represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkoxyalkyl group having 2 to 8 carbon atoms.
  • r represents an integer of 0 to 2
  • s represents an integer of 0 to 2. * indicates a binding site.
  • the positive photosensitive resin composition according to any one of (1) to (5), wherein the formula (1) is formula (6).
  • R 2 , a, and b have the same meanings as the same symbols in formula (1).
  • L represents a direct bond, -C(CH 3 ) 2 -, 9H-fluorene-9,9-diyl group.
  • m 1 and m 2 each independently represent an integer of 0 to 2.
  • n 1 and n 2 each independently represent an integer of 0 to 2. However, 1 ⁇ (n 1 +n 2 ) ⁇ 4 is satisfied. * indicates a binding site.
  • X 1 represents a tetravalent organic group having 4 to 50 carbon atoms or a structural unit of formula (1).
  • Y 1 represents a divalent organic group having 6 to 30 carbon atoms or a structural unit of the above formula (1).
  • X 2 represents a divalent organic group having 4 to 50 carbon atoms or a structural unit of formula (1).
  • X 1 is a tetravalent organic group having 4 to 50 carbon atoms and containing an aliphatic skeleton having 4 or more carbon atoms
  • X 2 is a divalent organic group having 4 to 50 carbon atoms and containing an aliphatic skeleton having 4 or more carbon atoms.
  • the resin (A) has a structural unit represented by formula (9), and the total number of OH groups and two OR groups contained in formula (9) is determined from M1 and the structure of formula (9).
  • the value of M1/N1 is 0.004075 or more, and/or the resin (A) is expressed by formula (10), where N1 is the molecular weight of the remaining structural part excluding the OH group and the two OR groups.
  • M2 is the total number of OH groups and 2 OR groups included in formula (10), and the molecular weight of the remaining structural part after removing OH groups and 2 OR groups from the structure of formula (10) is The positive photosensitive resin composition according to (2), wherein the value of M2/N2 is 0.004075 or more when N2.
  • R 1 , R 2 , m, and n have the same meanings as the same symbols in formula (1).
  • X 3 represents a tetravalent organic group having 4 to 50 carbon atoms and containing an aliphatic skeleton having 4 or more carbon atoms.
  • X 4 represents a divalent organic group having 4 to 50 carbon atoms and containing an aliphatic skeleton having 4 or more carbon atoms.
  • (11) The positive photosensitive resin composition according to any one of (1) to (10), wherein the photoacid generator (B) includes a nonionic photoacid generator.
  • (1) to (14) further include (D) a solvent, and the (D) solvent includes an aprotic solvent having 3 to 12 carbon atoms and having a dielectric constant in the range of 5 to 20.
  • the positive photosensitive resin composition according to any one of the above (16) A positive photosensitive resin sheet obtained by forming the positive photosensitive resin composition according to any one of (1) to (15) into a sheet on a support. (17) A cured product obtained by curing the positive photosensitive resin composition according to any one of (1) to (15).
  • a display device comprising an electrode, the insulating layer comprising the cured product according to (17).
  • a display device comprising a flattening film provided to cover irregularities on a substrate on which a thin film transistor (TFT) is formed, the flattening film containing the cured product according to (17). Display device.
  • TFT thin film transistor
  • the positive photosensitive composition of the present invention has high sensitivity, exposure time can be shortened, and the amount of film loss during development is small, and there is little residue in pattern openings.
  • the present invention includes (A) a heat-resistant resin containing nitrogen atoms (B) a photoacid generator,
  • the resin (A) contains a structural unit represented by formula (1), and the fluorine atom content in the total resin is 15% by mass or less, assuming the total amount of all resins contained in the composition is 100% by mass. It is a certain positive photosensitive resin composition.
  • R 1 represents a trivalent to dodecademic organic group having 3 to 30 carbon atoms
  • R 2 represents a monovalent acid-decomposable group having 3 to 20 carbon atoms
  • m represents an integer of 0 to 4
  • n represents an integer of 1 to 4.
  • * indicates a binding site
  • a and b each independently represent an integer of 1 or 2.
  • the positive photosensitive resin composition of the present invention contains (B) a photoacid generator, it is possible to generate an acid in the composition by irradiating it with exposure light corresponding to the photoacid generator contained. Can be done.
  • the generated acid acts on the bond between O-R 2 in the R 1 -O-R 2 structure in the heat-resistant resin containing nitrogen atoms (A), which contains the structural unit represented by formula (1).
  • R 1 --OH acts as a soluble group in an alkaline aqueous solution. Therefore, the positive photosensitive resin composition of the present invention can develop a dissolution contrast in an aqueous alkaline solution between the unexposed area and the exposed area, and therefore can form a positive relief pattern in which the exposed area dissolves. .
  • R 2 is referred to herein as an acid-decomposable group. Furthermore, since the OR 2 structure can be converted into a hydroxyl group by the action of an acid, the OR 2 structure is sometimes referred to as "a hydroxyl group protected with an acid-decomposable group.” Furthermore, the conversion of R 1 -O-R 2 to R 1 -OH is sometimes referred to as "deprotection”.
  • a heat-resistant resin containing a nitrogen atom is a resin that has a group containing a nitrogen atom such as an amide group or a urea group, or a heterocycle containing a nitrogen atom such as an imide ring or an oxazole ring in the repeating structure of the polymer. This refers to a resin with a 5% weight loss temperature of 200°C or higher.
  • the term also includes a precursor resin that has a nitrogen atom-containing heterocycle such as an imide ring or an oxazole ring and has a 5% weight loss temperature of 200° C. or higher through chemical ring closure or thermal ring closure.
  • a precursor resin that has a nitrogen atom-containing heterocycle such as an imide ring or an oxazole ring and has a 5% weight loss temperature of 200° C. or higher through chemical ring closure or thermal ring closure.
  • heat-resistant resins containing nitrogen atoms include polyimide, polyamide, polyurea, polyamideimide, polyazole (polybenzimidazole, polybenzoxazole, polybenzothiazole), and the like.
  • polyamides include polyimide precursors and polyazole precursors.
  • the more preferred heat-resistant resin containing a nitrogen atom (A) is preferably one or more resins selected from the group consisting of polyimide, polybenzoxazole, polyamide, and copolymers thereof.
  • the reactant before dehydration and ring closure is called a polyimide precursor, and the process of dehydration and ring closure to form an imide bond is called imidization.
  • the rate at which the imide bond-forming groups present in the polyimide precursor are imidized is referred to as the imidization rate.
  • Polybenzoxazole is a polymer containing a benzoxazole structure as a repeating unit.
  • the polybenzoxazole can be synthesized by a known method. For example, a reaction product obtained by reacting a bisaminophenol compound with a dicarboxylic acid, a corresponding dicarboxylic acid chloride, a dicarboxylic acid active ester, etc., is heated or reacted with an acid, a base, acetic anhydride, or a carbodiimide compound, etc. to dehydrate and ring-close the compound. obtained by letting Therefore, it has a dicarboxylic acid residue and a bisaminophenol residue.
  • Polyamide is a polymer containing amide bonds in repeating units. Polyamide can be synthesized by a known method.
  • the polyamide is preferably a polyimide precursor or a polybenzoxazole precursor.
  • Polyimide precursors are polyamides that can be converted to polyimide by heating. Since polyamide is a polyimide precursor, a resin film with high heat resistance can be obtained.
  • a polyimide precursor can be synthesized by a known method. For example, it can be obtained by reacting a tetracarboxylic acid, the corresponding tetracarboxylic dianhydride, or tetracarboxylic diester dichloride with a diamine, the corresponding diisocyanate compound, or trimethylsilylated diamine.
  • the polybenzoxazole precursor is a polyamide that can be converted to polypolybenzoxazole by heating.
  • the weight average molecular weight of the resin (A) is preferably 3,000 to 200,000, more preferably 5,000 to 100,000, even more preferably 7,000 to 60, as calculated by gel permeation chromatography in terms of polystyrene. ,000. By setting the weight average molecular weight within the above range, it is possible to easily satisfy all of the requirements of good solvent solubility, good solubility in developer, and high mechanical strength. In the present invention, the weight average molecular weight is determined by the method described below.
  • R 1 represents a trivalent to dodecademic organic group having 3 to 30 carbon atoms
  • R 2 represents a monovalent acid-decomposable group having 3 to 20 carbon atoms.
  • R 1 has a phenyl group or a naphthyl group, and the phenyl group or naphthyl group is directly bonded to an OH group or an OR 2 group include the following structures.
  • R 2 , a, and b have the same meanings as the same symbols in the formula (1).
  • m 3 , m 4 , and n 3 each independently represent an integer of 0 to 2
  • n 4 represents an integer of 1 to 2.
  • m 3 +m 4 m
  • n 3 +n 4 n
  • m and n have the same meanings as the same symbols in the above formula (1).
  • * indicates a binding site
  • the structure represented by formula (1) is, for example, a type selected from the group consisting of the polyimide, polybenzoxazole, polyamide, and a copolymer thereof using a hydroxy group-containing acid dianhydride or a hydroxy group-containing diamine. It can be obtained by synthesizing the above resin and modifying some or all of the OH groups of the resin to OR2 groups.
  • hydroxy group-containing acid dianhydride examples include 6,6'-methylenebis(5-hydroxyisobenzofuran-1,3-dione), N,N'-(4,4'-dihydroxy-[1,1' -biphenyl]-3,3'-diyl)bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxamide), N,N'-(propane-2,2'-diylbis(6-hydroxy) -3,1-phenylene))bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxamide), N,N'-((perfluoropropane-2,2-diyl)bis(6- Examples include, but are not limited to, hydroxy-3,1-phenylene)) bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxamide).
  • hydroxy group-containing diamines examples include 2,4-diaminophenol, bis(3-amino-4-hydroxy)biphenyl, bis(3-amino-4-hydroxyphenyl)methylene, and bis(3-amino-4-hydroxy).
  • examples include, but are not limited to, phenyl)ether, bis(3-amino-4-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)fluorene, and the like.
  • the structure in which the pKa of the phenolic hydroxyl group-containing structure produced by the decomposition of the OR 2 group with acid is 11 or more is 50 mol when the structure of formula (1) contained in the composition is 100 mol. % or more is required.
  • the pKa of the phenolic hydroxyl group-containing structure generated by the decomposition of the OR 2 groups in formula (1) with acid is the pKa of the following general formula (11) in which all the OR 2 groups in the structure of formula (1) are deprotected.
  • This is a calculated value representing an index representing the acidity of the phenolic hydroxyl group in the structure. It can be said that the higher the pKa, the lower the acidity of the phenolic hydroxyl group.
  • the higher the acidity of the phenolic hydroxyl group the better the solubility in an alkaline developer, but by intentionally keeping the acidity low by setting the pKa to 11 or higher, the acid generated during exposure can reduce the amount of OR2 group to OH group.
  • the deprotection property is improved, and the solubility contrast between the unexposed area and the exposed area in an alkaline aqueous solution is significantly increased. As a result, there is an advantage of higher exposure sensitivity than simply improving alkali solubility.
  • a more preferable structure of formula (1) is the structure of formula (6).
  • R 2 , a, and b have the same meanings as the same symbols in formula (1).
  • L represents a direct bond, -C(CH 3 ) 2 -, 9H-fluorene-1,9-diyl group. More preferably -C(CH 3 ) 2 -.
  • m 1 , m 2 , n 1 and n 2 each independently represent an integer of 0 to 2. However, 1 ⁇ (n 1 +n 2 ) ⁇ 4 is satisfied. * indicates a binding site.
  • R 2 is a monovalent acid-decomposable group having 3 to 20 carbon atoms.
  • Examples of the acid-decomposable groups mentioned here include organic groups that do not contain carbonyl groups, such as tertiary alkyl groups such as t-butyl groups, and oxymethyl groups. More preferred is an oxymethyl group.
  • R 11 to R 16 and R 18 represent a monovalent organic group
  • R 17 and R 19 represent a divalent organic group. * indicates a binding site.
  • the number of carbon atoms in the structure is 3 to 20.
  • the monovalent organic group include an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 10 carbon atoms, an alkoxyalkyl group having 2 to 8 carbon atoms, or an alkoxy cyclic alkyl group having 6 to 16 carbon atoms. can be mentioned.
  • Examples of divalent organic groups include propane-1,3-diyl group, butane-1,3-diyl group, pentane-1,3-diyl group, propane-1,3-diyl group, and butane-1,3-diyl group.
  • the hydrogen atom of the group selected from the group consisting of diyl group and pentane-1,3-diyl group is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkoxyalkyl group having 2 to 8 carbon atoms.
  • Examples include groups substituted with groups selected from the group consisting of groups.
  • R 2 is the monovalent oxymethyl group having 3 to 20 carbon atoms, the deprotection property of the OR 2 group to the OH group by the acid generated during exposure is improved, and the unexposed area and the exposed area are separated. Increases solubility contrast for aqueous alkaline solutions. As a result, there is an advantage of high exposure sensitivity. It is preferable that at least one of R 2 is a group represented by formula (2) or a group represented by formula (3).
  • R 3 represents an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 8 carbon atoms.
  • R 4 represents an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 10 carbon atoms, an alkoxyalkyl group having 2 to 8 carbon atoms, or an alkoxy cyclic alkyl group having 6 to 16 carbon atoms.
  • R 5 represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkoxyalkyl group having 2 to 8 carbon atoms.
  • p represents an integer of 0 to 2
  • q represents an integer of 0 to 2.
  • alkyl group having 1 to 6 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, etc. It will be done.
  • alkoxyalkyl groups having 2 to 8 carbon atoms include methoxymethyl group, methoxyethyl group, methoxypropyl group, methoxybutyl group, ethoxymethyl group, ethoxyethyl group, ethoxypropyl group, ethoxybutyl group, propoxymethyl group. , propoxyethyl group, propoxypropyl group, propoxybutyl group, etc.
  • cyclic alkyl group having 5 to 10 carbon atoms include cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, cycloheptylmethyl group, cyclopentylethyl group, cyclohexylethyl group, cycloheptylethyl group. group, cyclopentylpropyl group, cyclohexylpropyl group, cyclopeptylpropyl group, etc.
  • alkoxy cyclic alkyl group having 6 to 16 carbon atoms include methoxypentyl group, ethoxypentyl group, propoxypentyl group, dimethoxypentyl group, diethoxypentyl group, dipropoxypentyl group, trimethoxypentyl group, and triethoxypentyl group.
  • tripropoxypentyl group methoxyhexyl group, ethoxyhexyl group, propoxyhexyl group, dimethoxyhexyl group, diethoxyhexyl group, dipropoxyhexyl group, trimethoxyhexyl group, triethoxyhexyl group, tripropoxyhexyl group, to methoxy Examples thereof include a butyl group, an ethoxyheptyl group, a propoxyheptyl group, a dimethoxyheptyl group, a diethoxyheptyl group, a dipropoxyheptyl group, a trimethoxyheptyl group, a triethoxyheptyl group, and a tripropoxyheptyl group.
  • alkoxy group having 1 to 6 carbon atoms examples include methoxy group, ethoxy group, propoxy group, butoxy group, pentoxy group, hexoxy group, and the like.
  • R 2 is a group represented by formula (2).
  • R 2 is a group represented by formula (4) or a group represented by formula (5).
  • Formula (4) or (5) is a structure in which the ⁇ -position of OR 2 in the R 1 -O-R 2 structure is branched. If the ⁇ -position of O-R 2 has a branched structure, the organic group eliminated when R 1 -O-R 2 is converted to R 1 -OH is less likely to remain during development, and as a result, more residue is formed. It is possible to obtain patterns with fewer
  • a structure in which the pKa of the phenolic hydroxyl group-containing structure produced by decomposition of the OR 2 group of formula (1) with acid is 12.5 or more is the formula (
  • the structure of 1) is 50 mol% or more when the structure is 100 mol
  • R 2 is a group represented by formula (4) or a group represented by formula (5), Residue of organic groups during development is further suppressed, and a pattern with less residue can be obtained.
  • the proportion of 2 OR groups should be 15 mol% or more. It is preferably 20 mol% or more, and more preferably 20 mol% or more.
  • X 1 represents a tetravalent organic group having 4 to 50 carbon atoms or a structural unit of formula (1).
  • Y 1 represents a divalent organic group having 6 to 30 carbon atoms or a structural unit of the above formula (1).
  • the structural unit represented by formula (8) has a highly heat-resistant polybenzoxazole precursor structure. Therefore, by heat-treating the structural unit represented by formula (8) to cause oxazole ring closure, a resin film with high heat resistance can be obtained.
  • X 1 is preferably a tetravalent organic group having 4 to 50 carbon atoms and containing an aliphatic skeleton having 4 or more carbon atoms.
  • X 2 is a divalent organic group having 4 to 50 carbon atoms and containing an aliphatic skeleton having 4 or more carbon atoms. This has the advantage of increasing the change in solubility of the resin before and after deprotection, increasing the contrast between the unexposed area and the exposed area, and increasing sensitivity.
  • a tetravalent organic group having 4 to 50 carbon atoms containing an aliphatic skeleton having 4 or more carbon atoms, and a divalent organic group having 4 to 50 carbon atoms containing an aliphatic skeleton having 4 or more carbon atoms are as follows: Examples of such structures include:
  • R 1 -O-R 2 is obtained by reacting a resin having R 1 -OH with a protective agent.
  • a resin having R 1 -OH and a protective agent are reacted without a solvent or in a solvent such as toluene, hexane, propylene glycol monomethyl ether acetate, or cyclopentanone in the presence of an acid or a base at a reaction temperature of -20
  • a resin having R 1 -O-R 2 that is, resin (A) can be obtained.
  • protecting agent a known protecting agent capable of protecting a hydroxyl group can be used.
  • the protecting agent for example, ethyl vinyl ether can be used when R 2 is a 1-ethoxyethyl group, and 3,4-dihydro-2H-pyran can be used when R 2 is a 2-tetrahydropyranyl group.
  • Examples of the acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and perchloric acid, and organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, and trifluoroacetic acid. Furthermore, organic acid salts such as pyridinium p-toluenesulfonate can also be preferably used.
  • Examples of the base include amine compounds such as pyridine, N,N-diethyl-4-aminopyridine, triethylamine, and diisopropylamine.
  • the fluorine atom content in all the resins is 15% by mass or less, when the total amount of all the resins contained in the composition is 100% by mass. Preferably it is 8.5% by mass or less. If the fluorine atom content is 15% by mass or less, the reaction rate at which R 1 -O-R 2 is converted to R 1 -OH, that is, deprotected, increases during exposure, although the reason is not clear. be able to. Therefore, when compared at the same exposure amount, the deprotection rate can be made high, so that a highly sensitive positive photosensitive resin composition can be obtained.
  • the fluorine atom content is 3.5% by mass or less.
  • the fluorine atom content in all resins can be analyzed by the following method, assuming that the total amount of all resins contained in the composition is 100% by mass.
  • the resin is separated from the composition. Precisely weigh the separated resin as a sample.
  • the sample is combusted in the combustion tube of the analyzer using an automatic sample combustion device, the generated gas is absorbed into a solution, and a portion of the absorbed liquid is analyzed using ion chromatography.
  • As the absorption liquid 0.036% by mass of H 2 O 2 can be used.
  • the positive photosensitive resin composition of the present invention contains (B) a photoacid generator.
  • a photoacid generator is a compound that has the function of generating acid upon exposure to light.
  • the photoacid generator (B) known ones can be used as long as the effects of the present invention are not impaired.
  • Examples of the photoacid generator (B) include onium salt type ionic photoacid generators and nonionic photoacid generators.
  • An onium salt refers to a compound formed by a compound having an electron pair that does not participate in chemical bonding and a coordinate bond with another cationic compound using the electron pair.
  • the cation site of the onium salt determines the photochemical properties (molar absorption coefficient, absorption wavelength, quantum yield), and the anion site determines the strength of the generated acid.
  • a nonionic photoacid generator is a photoacid generator in which a light absorbing site and an acid are connected through an ester bond.
  • the ionic compound is preferably one that does not contain heavy metals or halogen ions, and more preferably triorganosulfonium salt compounds.
  • triorganosulfonium salt compounds include methanesulfonate, trifluoromethanesulfonate, camphorsulfonate, 4-toluenesulfonate, and perfluoro-1-butanesulfonic acid of triphenylsulfonium.
  • a diazomethane compound a sulfone compound, a sulfonic acid ester compound, a carboxylic acid ester compound, a sulfonimide compound, a phosphoric acid ester compound, a sulfone benzotriazole compound, etc.
  • a diazomethane compound a sulfone compound, a sulfonic acid ester compound, a carboxylic acid ester compound, a sulfonimide compound, a phosphoric acid ester compound, a sulfone benzotriazole compound, etc.
  • sulfone compounds include ⁇ -ketosulfone compounds, ⁇ -sulfonylsulfone compounds, and the like.
  • Preferred sulfone compounds include 2-(p-toluenesulfonyl)acetophenone and bis(phenylsulfonyl)methane.
  • sulfonic acid ester compounds include alkyl sulfonic esters, haloalkyl sulfonic esters, arylsulfonic esters, iminosulfonic ester compounds, and the like.
  • Preferred specific examples include benzoin-4-tolylsulfonate, pyrogallol tris(methylsulfonate), nitrobenzyl-9,10-diethoxyanthryl-2-sulfonate, and 2,6-(dinitrobenzyl)phenylsulfonate. Can be mentioned.
  • carboxylic acid ester compounds include carboxylic acid 2-nitrobenzyl ester.
  • the photoacid generator (B) includes a nonionic photoacid generator. Since the photoacid generator (B) includes a nonionic photoacid generator, the solubility of the unexposed area is suppressed, and the decrease in film thickness during development is suppressed.
  • the photoacid generator (B) contains a photoacid generator whose acid dissociation constant (pKa) of the acidic group generated by light is in the range of ⁇ 14 to 2.
  • the photoacid generator has an acid dissociation constant (pKa) of the acidic group generated by light within the above range, the acidic group generated by light efficiently converts R 1 -O-R 2 as an acid. It can act on the structure. Therefore, deprotection progresses more and a highly sensitive positive photosensitive resin composition can be obtained.
  • the photoacid generator (B) contains an oxime sulfonate compound and/or an imidosulfonate compound.
  • Oxime sulfonate compounds and imidosulfonate compounds are nonionic photoacid generators, and the acidic group generated by light is a sulfo group, so they have a high acid dissociation constant (pKa) and are highly sensitive positive photosensitive resins.
  • pKa acid dissociation constant
  • the photoacid generator (B) contains an oxime sulfonate compound and/or an imidosulfonate compound.
  • Oxime sulfonate compounds and imidosulfonate compounds are nonionic photoacid generators, and the acidic group generated by light is a sulfo group, so they have a high acid dissociation constant (pKa) and are highly sensitive positive photosensitive resins.
  • polar functional groups such as carbonyl groups and amide groups contained in polyimide, polybenzoxazole, and poly
  • R 21 is a monovalent organic group having 1 to 12 carbon atoms.
  • monovalent organic groups having 1 to 12 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, trifluoromethanesulfonic acid group, nonafluorobutyl group, perfluorooctyl group. , (7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methyl group, benzyl group, phenyl group, tosyl group, naphthyl group, and the like.
  • R 22 and R 23 are monovalent organic groups having 1 to 30 carbon atoms.
  • R 22 and R 23 may be the same or different.
  • Specific examples of monovalent organic groups having 1 to 30 carbon atoms include cyano group, trifluoromethyl group, hexafluoropropyl group, pentafluorobutyl group, dodecafluorohexyl group, phenyl group, 4-methoxyphenyl group, 2 -fluorenyl group, 4-(3-(4-(2,2,2-trifluoro-1-(((propylsulfonyl)oxy)imino)ethyl)phenoxy)propoxy)phenyl group, and the like.
  • oxime sulfonate examples include “Irgacure” (registered trademark) PAG-103 (benzeneacetonitrile, 2-methyl- ⁇ -[[(propylsulfonyl)oxy]imino]-3(2H)-thienylidene), PAG- 121 (benzeneacetonitrile, 2-methyl- ⁇ -[[(4-methylphenyl)oxy]imino]-3(2H)-thienylidene), PAG-108 (benzeneacetonitrile, 2-methyl- ⁇ -[[(n- octyl)oxy]imino]-3(2H)-thienylidene), PAG-203 (all manufactured by BASF Japan), PAI-101 ((Z)-4-methoxy-N-(tosyloxy)benzimidoyl cyanide) , manufactured by Midori Kagaku Co., Ltd.).
  • the imidosulfonate compound can be represented by the following structure.
  • the amine compound (C) more preferably includes an amine compound whose conjugate acid has a pKa of 5.0 to 10.0, and more preferably includes an amine compound whose conjugate acid has a pKa of 6.0 to 9.0. is even more preferable.
  • the amine compound (C) contains an amine compound whose conjugate acid has a pKa within the above range, deprotection during prebaking is suppressed, and the acid generated during exposure is less likely to be neutralized, making it difficult to develop. A positive photosensitive resin composition with less film loss can be obtained.
  • a conjugate acid having a pyridine skeleton is preferable, and lutidine is preferable from the viewpoint of strengthening the interaction with polar functional groups such as carbonyl groups and amide groups contained in polyimide, polybenzoxazole, and polyamide and reducing the decrease in film thickness during development. More preferred.
  • the positive photosensitive resin composition of the present invention further contains (D) a solvent.
  • a solvent By including a solvent, coating properties are improved and a homogeneous positive photosensitive resin film can be obtained.
  • the solvent (D) known solvents can be used as long as the effects of the present invention are not impaired.
  • ester solvents include ⁇ -butyrolactone, ⁇ -valerolactone, propylene carbonate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-1 -butyl acetate, 3-methyl-3-methoxy-1-butyl acetate, ethyl acetoacetate, cyclohexanol acetate and the like.
  • alcoholic solvents include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, 3-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, propylene Glycol mono t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, 3-methoxy-1-butanol, 3-methyl-3-methoxy-1-butanol, ethylene glycol, propylene glycol, etc. It will be done.
  • ketone solvents include methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone, acetylacetone, cyclopentanone, cyclohexanone, cycloheptanone, dicyclohexyl ketone, and the like.
  • the solvent (D) preferably contains an aprotic solvent having a dielectric constant of 5 to 20, more preferably 6 to 19, and even more preferably 7. ⁇ 19.
  • Examples of aprotic solvents with a dielectric constant in the range of 5 to 20 include tetrahydrofuran (dielectric constant 7.6), propylene glycol monomethyl ether acetate (dielectric constant 8.3), methyl isobutyl ketone (dielectric constant 13.1), Examples include cyclopentanone (14.5), cyclohexanone (18.3), and methyl ethyl ketone (18.5).
  • the solvent (D) preferably contains an aprotic solvent having 3 to 12 carbon atoms, more preferably 4 to 10 carbon atoms.
  • An aprotic solvent having 3 to 12 carbon atoms has excellent solubility of the resin (A) contained in the positive photosensitive resin composition of the present invention. Therefore, by containing the aprotic solvent having 3 to 12 carbon atoms, the positive-working photosensitive resin composition of the present invention can be made into a highly concentrated positive-working photosensitive resin composition. By doing so, it is not only easy to obtain a positive photosensitive resin film with a large film thickness of 1 ⁇ m or more, for example, but also a resin film with a strong resin network is formed during film formation, which reduces the film thickness during development. can be made smaller.
  • the composition contains a structure in which the pKa of the phenolic hydroxyl group-containing structure produced by decomposition of the OR 2 group of formula (1) with acid is 12.5 or more. It is most preferable that the content is 50 mol % or more when the structure of formula (1) is 100 mol.
  • the cured product of the present invention is a cured product obtained by curing the positive photosensitive resin composition of the present invention.
  • a temperature of 150° C. to 320° C. is applied to advance a thermal crosslinking reaction to improve heat resistance and chemical resistance.
  • This heat treatment may be carried out by selecting a temperature and raising the temperature in stages, or by selecting a certain temperature range and carrying out the heat treatment while raising the temperature continuously for 5 minutes to 5 hours. For example, heat treatment is performed at 130° C. and 200° C. for 30 minutes each.
  • the lower limit of the curing conditions in the present invention is preferably 170° C. or higher, and more preferably 180° C. or higher to allow curing to proceed sufficiently. Further, the upper limit of the curing conditions is preferably 280°C or less.
  • the method for producing a cured product of the present invention includes a step of applying the positive photosensitive resin composition of the present invention onto a substrate and drying it to form a positive photosensitive resin film. a step of exposing the positive photosensitive resin film; A step of developing the exposed portion of the exposed positive photosensitive resin film by eluting or removing it with an alkaline aqueous solution, and The method includes a step of heat-treating the developed positive photosensitive resin film.
  • the cured product thus obtained is a cured product mainly composed of polyimide or polybenzoxazole, and therefore has excellent heat resistance, electrical insulation, and mechanical properties.
  • the substrate is not particularly limited, but is preferably selected from the group consisting of glass, silicon wafer, ceramic deposition substrate, metal plating substrate, sapphire, and gallium arsenide.
  • a known method can be used to apply the positive photosensitive composition of the present invention onto a substrate.
  • Apparatuses used for coating include full-surface coating apparatuses such as spin coating, dip coating, curtain flow coating, spray coating, or slit coating, or printing apparatuses such as screen printing, roll coating, microgravure coating, or inkjet coating.
  • a vacuum dryer or a heating device such as a hot plate or oven is used.
  • a heating device it is preferable to conduct the heating at a temperature of 50° C. or higher and 150° C. or lower for 30 seconds to 30 minutes.
  • the thickness of the positive photosensitive resin film is preferably 0.1 or more and 100 ⁇ m or less.
  • the method for producing a cured product according to an embodiment of the present invention includes a step of exposing the positive photosensitive resin film.
  • the positive photosensitive resin film is exposed through a mask having a desired pattern.
  • the wavelength of the exposure light to be irradiated is not particularly limited, and examples thereof include light having a wavelength of 300 to 450 nm, such as g-line (436 nm), i-line (365 nm), and h-line (405 nm). Among these, it is preferable to irradiate with light having a wavelength of 365 nm.
  • the light source used in the exposure step include various lasers, light emitting diodes (LEDs), ultra-high pressure mercury lamps, high pressure mercury lamps, low pressure mercury lamps, and metal halide lamps.
  • the wavelength of the irradiated light may be adjusted through a spectral filter such as a long wavelength cut filter, a short wavelength cut filter, or a bandpass filter.
  • post-exposure baking may be performed if necessary. By performing post-exposure baking, effects such as improved resolution after development or increased allowable range of development conditions can be expected.
  • post-exposure baking an oven, hot plate, infrared rays, flash annealing device, laser annealing device, etc. can be used.
  • the post-exposure bake temperature is preferably 50 to 180°C, more preferably 60 to 150°C.
  • the post-exposure bake time is preferably 10 seconds to 1 hour, more preferably 30 seconds to 30 minutes.
  • the method for producing a cured product according to an embodiment of the present invention includes a step of eluting or removing the exposed portion of the exposed positive photosensitive resin film with an aqueous alkaline solution and developing it.
  • the developer used for development dissolves and removes the alkaline aqueous solution-soluble polymer, and is typically an alkaline aqueous solution in which an alkaline compound is dissolved.
  • alkali compound include tetramethylammonium hydroxide, potassium hydroxide, and sodium carbonate.
  • the rinsing treatment may be performed by adding alcohols such as ethanol and isopropyl alcohol, esters such as ethyl lactate, and propylene glycol monomethyl ether acetate to the water.
  • the positive photosensitive resin sheet of the present invention is a positive photosensitive resin sheet in which the positive photosensitive resin composition of the present invention is formed into a sheet shape on a support.
  • the positive photosensitive resin sheet of the present invention is obtained by applying the positive photosensitive resin composition of the present invention onto a support, drying it at a temperature and time within a range that allows the solvent to volatilize, and applying the positive photosensitive resin composition of the present invention to a support. It refers to a sheet-like positive photosensitive resin composition that has not been completely cured, and in which the positive photosensitive resin composition of the present invention is soluble in an organic solvent.
  • Methods for applying the positive photosensitive resin composition to the support include spin coating using a spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, roll coater, Examples of methods include comma roll coater, gravure coater, screen coater, and slit die coater.
  • the coating film thickness varies depending on the coating method, solid content concentration of the composition, viscosity, etc., the film thickness after drying is usually 0.5 ⁇ m or more and 100 ⁇ m or less from the viewpoint of coating film uniformity. preferable.
  • An oven, hot plate, infrared rays, etc. can be used for drying.
  • the drying temperature and drying time may be within a range in which the solvent can be volatilized, and it is preferable to appropriately set the range so that the photosensitive resin composition is in an uncured or semi-cured state. Specifically, it is preferable to conduct the heating at a temperature ranging from 40°C to 150°C for 1 minute to several tens of minutes. Further, the temperature may be increased stepwise by combining these temperatures, for example, heat treatment may be performed at 80° C. and 90° C. for 2 minutes each.
  • Another embodiment of the method for producing a cured product of the present invention uses the positive photosensitive resin sheet of the present invention, a) Step of thermocompression bonding the positive photosensitive resin composition of the present invention onto a base material, b) a step of exposing the thermocompression bonded positive photosensitive resin composition; c) developing the exposed area of the thermocompression-bonded positive photosensitive resin composition by eluting or removing it with an alkaline aqueous solution, and d) A step of heat-treating the developed positive photosensitive resin composition.
  • inorganic circuit boards include ceramic substrates such as alumina substrates, aluminum nitride substrates, and silicon carbide substrates, and metal substrates such as aluminum-based substrates and iron-based substrates.
  • circuit constituent materials include conductors containing metals such as silver, gold, and copper, resistors containing inorganic oxides, low dielectric materials containing glass materials and/or resins, resins and high Examples include high dielectric materials containing dielectric constant inorganic particles, and insulators containing glass-based materials.
  • a step of exposing the positive photosensitive resin sheet to light a step of eluting or removing the exposed area of the exposed positive photosensitive resin sheet with an alkaline aqueous solution and developing it, and a heat treatment of the developed positive photosensitive resin sheet.
  • the step is preferably carried out in the same manner as the method for producing a cured product using the positive photosensitive resin composition.
  • the semiconductor device of the present invention is preferably a semiconductor device in which the rewiring and the interlayer insulating film are repeatedly arranged in 2 to 10 layers.
  • a semiconductor device in which the rewiring and the interlayer insulating film are repeatedly arranged in 2 to 10 layers is a semiconductor device in which the cured product of the present invention is formed on the rewiring to form an interlayer insulating film, and the rewiring and the interlayer insulating film are combined.
  • This is a semiconductor device in which 2 to 10 layers are repeatedly arranged.
  • Another aspect of the display device of the present invention is a display device comprising a planarization film provided to cover irregularities on a substrate on which a thin film transistor (TFT) is formed, wherein the planarization film is provided according to the present invention.
  • TFT thin film transistor
  • the display device has a drive circuit, a planarizing layer, a first electrode, an insulating layer, a light emitting layer, and a second electrode on a substrate, and the planarizing layer and/or the insulating layer includes the cured product. It is preferable that there be.
  • an active matrix display device it has a TFT on a substrate such as glass or a resin film, and wiring located on the side of the TFT and connected to the TFT, and covering unevenness on top of the TFT. In this manner, a flattening layer is provided, and a display device is further provided on the flattening layer. The display device and the wiring are connected through contact holes formed in the planarization layer.
  • a cured product obtained by curing the positive photosensitive resin composition of the present invention has excellent planarization properties and pattern dimensional stability, it is preferably provided in a display device as a planarization layer.
  • a display device may be such that the substrate having the aforementioned drive circuit is made of a resin film.
  • Weight average molecular weight of polyimide, polybenzoxazole, and polyamide The weight average molecular weight (Mw) in terms of polystyrene was determined using a GPC analyzer. The weight average molecular weights of the polyimide resin and polybenzoxazole resin were measured under the following conditions.
  • Measuring device Waters2695 (manufactured by Waters) Column temperature: 50°C Flow rate: 0.4mL/min Detector: 2489 UV/Vis Detector (measurement wavelength 260nm) Developing solvent: NMP (contains 0.21% by weight of lithium chloride, 0.48% by weight of phosphoric acid) Guard column: TOSOH TSK guard column (manufactured by Tosoh Corporation) Column: TOSOH TSK-GEL a-2500, TOSOH TSK-GEL a-4000 series (all manufactured by Tosoh Corporation).
  • This wafer with a resin film was divided into two parts, and one part was heated in a clean oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.) at 140°C for 30 minutes under a nitrogen stream (oxygen concentration 20 ppm or less), and then further The temperature was raised and the mixture was cured at 320° C. for 1 hour to completely close the imide ring (sample IM02). The other one was used as is (sample IM01).
  • the transmission infrared absorption spectra of the resin films (IM01, IM02) before and after curing were measured using an infrared spectrophotometer (FT-720 manufactured by Horiba, Ltd.), and the absorption peak of the imide structure due to polyimide ( 1,780 cm -1 , 1,377 cm -1 ), then peak intensity near 1,377 cm -1 for IM01 (S) and peak intensity near 1,377 cm -1 for IM02 (T).
  • the peak intensity ratio was calculated by dividing the peak intensity (S) by the peak intensity (T), and was taken as the content of imide groups in the polyimide before heat treatment, that is, the imidization rate.
  • the protection rate was measured using a 400 MHz, 1H-NMR (nuclear magnetic resonance) apparatus (AL-400, manufactured by JEOL Ltd.). Specifically, the measurement was carried out in a deuterated dimethyl sulfoxide solution with a total number of 16 times.
  • the integral value of the proton of the methine group (>CH-) derived from the protecting group observed around 5-6 ppm and the integral value of the proton of the phenolic hydroxyl group observed around 9-11 ppm were calculated, and the proton of the methine group was calculated.
  • the sum of the integral value and the integral value of the proton of the phenolic hydroxyl group was taken as 100%, the ratio of the integral value of the proton of the methine group was defined as the protection rate (%).
  • Solid content concentration was determined by the following method. 1.500 g of the solution was weighed into an aluminum cup, and heated at 180° C. for 30 minutes using a hot plate to evaporate the liquid. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration was determined from the ratio to the weight before heating.
  • a + The amount of reduction in the developed film is less than 0.2 ⁇ m
  • a - The amount of reduction in the developed film is 0.2 ⁇ m or more and less than 0.3 ⁇ m
  • B The amount of reduction in the developed film is 0.3 ⁇ m or more and less than 0.5 ⁇ m
  • C The amount of reduction in the developed film is less than 0.5 ⁇ m 0.5 ⁇ m or more and less than 1.0 ⁇ m
  • D The amount of reduction in the developed film is 1.0 ⁇ m or more and less than 2.0 ⁇ m
  • E The amount of reduction in the developed film is 2.0 ⁇ m or more.
  • (6-2) Sensitivity was determined by observing the obtained relief pattern at 20x magnification using an FDP microscope MX61 (manufactured by Olympus Corporation), and measuring the opening diameter of the contact hole. The minimum exposure amount at which the opening diameter of the contact hole reached 10 ⁇ m was determined, and this was taken as the sensitivity. The results were judged as described below, and A + to C - , which had a sensitivity of less than 100 mJ/cm 2 , were considered to be passed.
  • Sensitivity is 10 mJ/cm 2 or more and less than 15 mJ/cm 2
  • a - Sensitivity is 15 mJ/cm 2 or more and 20 mJ/cm less than 2
  • B + Sensitivity is 20 mJ/cm 2 or more and 30 mJ /cm 2 or less
  • C + Sensitivity is 50 mJ/cm 2 or more and 70 mJ/cm 2 or more
  • C Sensitivity is 70 mJ/ cm2 or more, 85 mJ/ cm2 or more, less than 2C - : Sensitivity is 85 mJ/ cm2 or more, 100 mJ/ cm2 or more, less than 2D : Sensitivity is 100 m
  • Judgment was made as below, and A, B + , B -- and C, in which the area of the residue in the opening was less than 5%, were considered to have passed.
  • B + The area where the residue exists in the opening is 1% or more and less than 2%
  • B - The area where the residue exists in the opening is 2% or more and less than 3%
  • C The area where the residue exists in the opening is 3% or more and less than 5%
  • D The area where the residue exists in the opening is 5% or more and less than 10%
  • E The area where the residue exists in the opening is 10% or more.
  • Synthesis Example 1 Synthesis of Polyimide (PI-01) 30.03 g (100 mmol) of TDA-100 and 200.0 g of NMP as an acid dianhydride were weighed and dissolved in a three-necked flask under a stream of dry nitrogen. 1.860 g (20 mmol) of aniline as a monoamine was added thereto together with 50.00 g of NMP, and the mixture was stirred at 40° C. for 1 hour. Next, 23.25 g (90 mmol) of BAP as a diamine was added together with 50.00 g of NMP, reacted at 40°C for 1 hour, and then stirred at 200°C for 4 hours.
  • Synthesis Example 21 Synthesis of polybenzoxazole precursor (PBO-01) Under a stream of dry nitrogen, 25.83 g (100 mmol) of BAP and 2.960 g (20 mmol) of phthalic anhydride were dissolved in 75.00 g of NMP, and the Stir for hours. After that, the temperature of the solution was cooled to -15°C, and after confirming that the temperature of the solution was -15°C, a solution of 26.56g (90mmol) of ODBC dissolved in 30g of NMP was added to the reaction system. The mixture was added dropwise so that the temperature did not exceed 0°C. After the dropwise addition was completed, stirring was continued at 20° C. for 6 hours.
  • PBO-01 polybenzoxazole precursor
  • Synthesis Examples 21 to 35 Synthesis of polybenzoxazole precursors (PBO-02 to 15) From Synthesis Example 21, except that the dicarboxylic acid derivative, diamine, and terminal anhydride were changed to the types and amounts listed in Table 2-1. Synthesis was carried out in the same manner as in Synthesis Example 21. The evaluation results are listed in Table 2-1.
  • Synthesis Example 36 Synthesis of Polyimide Precursor (PAA-01) 31.02 g (100 mmol) of ODPA and 200.0 g of NMP as acid dianhydrides were weighed and dissolved in a three-necked flask under a stream of dry nitrogen. 1.860 g (20 mmol) of aniline as a monoamine was added thereto together with 50.00 g of NMP, and the mixture was stirred at 40° C. for 1 hour. Next, 54.41 g (90 mmol) of HFHA as a diamine was added together with 50.00 g of NMP, and the mixture was stirred at 40° C. for 3 hours.
  • PAA-01 Polyimide Precursor
  • Synthesis examples 38-78 Synthesis was carried out in the same manner as in Synthesis Example 37, except that the base polymer and protective agent were changed as shown in Table 3. The synthesis results are shown in Table 3.
  • Example 1 Under yellow light, (A) 2.500 g of a 40% solid CP solution of P1-01-IPVE10 as a resin, (B) 5.000 x 10 -2 g of PAG-103 as a photoacid generator, (C ) 5.000 ⁇ 10 ⁇ 3 g of lutidine as an amine compound was added and stirred. Thereafter, 1.500 g of CP was added and the concentration was adjusted to obtain a positive photosensitive resin composition.
  • Comparative Examples 1 and 2 have too much fluorine atom content
  • Comparative Example 3 uses PI-01-tBOC25, which contains an organic group containing a carbonyl group as an acid-decomposable group.
  • Example 42 Evaluations were conducted in the same manner as in Example 3, except that the amine compound (C) in Example 3 was changed as shown in Table 6. The evaluation results are shown in Table 6.
  • Examples 44 and 45 10.00 g of PI-01-IPVE25 (40% CP solution) was weighed out, 6.000 g of GBL was added, and the solvent was replaced using a rotary evaporator. After replacing the solvent, the solid content concentration was measured, and GBL was added so that the solid content concentration was 40% to obtain PI-01-IPVE25 (40% GBL solution).
  • Example 3 (A) the resin was changed to PI-01-IPVE25 (40% GBL solution) and the type of solvent was changed as shown in Table 7, so that 100% of the solvent was GBL, and Evaluation was performed in the same manner as in Example 3, except that the composition was made such that 20% of the solvent was CP. The evaluation results are shown in Table 7.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Materials For Photolithography (AREA)

Abstract

本発明は、アルカリ現像時の膜減少量が小さく、かつ露光時間を短縮できる、高感度なポジ型感光性樹脂組成物を提供することを目的とする。本発明は、窒素原子を含む耐熱樹脂(B)光酸発生剤を含み、該(A)樹脂が、式(1)で表される構成単位を含み、組成物中に含まれる全樹脂の総量を100質量%として、該全樹脂におけるフッ素原子含有量が15質量%以下である、ポジ型感光性樹脂組成物である。(式(1)中、R1は、炭素数3~30の3~12価の有機基を示し、R2は、炭素数3~20の1価の酸分解性基である。mは0~4、nは1~4の整数を示す。*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。)

Description

ポジ型感光性樹脂組成物、ポジ型感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置
 本発明は、ポジ型感光性樹脂組成物、ポジ型感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置に関する。
 半導体装置に用いられる表面保護膜や層間絶縁膜、有機電界発光素子の絶縁層やTFT(薄膜トランジスタ)基板の平坦化膜には、耐熱性や電気絶縁性、機械特性に優れるポリイミド樹脂やポリベンゾオキサゾール樹脂等が広く用いられている。近年、これらの樹脂自身あるいはその前駆体に感光特性を付与した感光性樹脂組成物が用いられてきている(以後、これらの感光性樹脂組成物をポリイミド系感光性樹脂組成物と称する)。ポリイミド系感光性樹脂組成物を用いることにより、パターン加工工程が簡略化でき、煩雑な製造工程の短縮が行うことができる。
 ポリイミド系感光性樹脂組成物は、露光部が現像液に易溶となりパターン加工することができるポジ型、および組成物自身を易溶性とし露光部が現像液に不溶となるネガ型材料が提案されている。一般的に、ネガ型と比較し、ポジ型は解像度に優れるため、微細加工性が要求される用途においては、ポジ型のポリイミド系感光性樹脂組成物が用いられる。
 ポジ型のポリイミド系感光性樹脂組成物としては、ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体またはポリベンゾオキサゾール前駆体にキノンジアジド化合物を添加したもの(例えば、特許文献1参照)や、酸の存在下で脱離可能な保護基を含むポリアミドに光酸発生剤を添加したもの(例えば、特許文献2参照)が知られている。
特開2011-180473号公報 特開2011-221173号公報
 近年、使用する基板サイズの大型化や生産性向上などの理由から、露光時間の短縮、さらには現像後の開口率や膜厚の面内均一性を向上させるために現像時における未露光部の膜減少量を少なくすることが課題となっている。
 特許文献1に記載の技術は、アルカリ可溶性樹脂とキノンジアジド化合物を組み合わせた技術である。キノンジアジド化合物は、アルカリ可溶性樹脂と相互作用し組成物のアルカリ現像液に対する溶解性を低下させる。一方で、露光による光化学反応によりインデンカルボン酸化合物になりアルカリ現像液に対して溶解促進剤として働くため、未露光物と露光部で溶解速度の差(溶解コントラスト)が発現し、パターン加工することができる。そのため、感度はキノンジアジド化合物の添加量に依存する。しかしながら、キノンジアジド化合物の添加量を多くすると、キノンジアジド化合物自身の光吸収により、光化学反応率が低下する。そのため、露光時間の短縮と少ない膜減少量の両立は困難である。
 特許文献2の技術は、アルカリ可溶性ポリアミド中のヒドロキシ基の水素原子をtert-ブトキシカルボニル基(以下、t-Boc基とも称する)で置換しアルカリ不溶性の樹脂とし、これと光酸発生剤を組み合わせた技術である。この技術は、露光部において光酸発生剤から酸が発生し、この酸が、前記t-Boc基と反応し、該t-Boc基をポリアミドから脱離させ(以後、脱保護と称する)、このポリアミドをアルカリ不溶性からアルカリ可溶性に変えることができる。結果、露光部と未露光部の溶解コントラストが生じ、ポジ型のパターン加工を可能とする技術である。この技術においては、t-Boc基と酸の反応率が低く、露光部と未露光部の溶解コントラストが小さいため露光時間の短縮ができない課題、パターン開口部に残渣が発生する課題がある。
 本発明の目的は、露光時間を短縮するため高感度でかつ、現像時の膜減少量が少ない、さらにはパターン開口部の残渣が少ないポジ型感光性組成物を提供することである。
 本発明は、以下の通りである。
(1)(A)窒素原子を含む耐熱樹脂(B)光酸発生剤を含み、該(A)樹脂が、式(1)で表される構成単位を含み、組成物中に含まれる全樹脂の総量を100質量%として、該全樹脂におけるフッ素原子含有量が15質量%以下である、ポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000008
式(1)中、Rは、炭素数3~30の3~12価の有機基を示し、Rは、炭素数3~20の1価の酸分解性基である。mは0~4、nは1~4の整数を示す。*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。
(2)(A)窒素原子を含む耐熱樹脂がポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群から選ばれる一種以上の樹脂である(1)に記載のポジ型感光性樹脂組成物。
(3)酸分解性基がオキシメチル基である(1)または(2)に記載のポジ型感光性樹脂組成物。
(4)前記式(1)のOR基が酸で分解して生成するフェノール性水酸基含有構造のpKaが11以上である(1)~(3)のいずれかに記載のポジ型感光性樹脂組成物。
(5)前記Rの少なくとも一つが、式(2)で表される基、または、式(3)で表される基である、(1)~(4)のいずれかに記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000009
式(2)および式(3)中、Rは、炭素数1~6のアルキル基、または、炭素数2~8のアルコキシアルキル基を示す。Rは、炭素数1~6のアルキル基、炭素数5~10の環状アルキル基、炭素数2~8のアルコキシアルキル基、または、炭素数6~16のアルコキシ環状アルキル基を示す。Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、または、炭素数2~8のアルコキシアルキル基を示す。pは0~2の整数を示し、qは0~2の整数を示す。*は結合部位を示す。
(6)前記Rの少なくとも一つが、式(4)で表される基、または、式(5)で表される基である、(1)~(5)のいずれかに記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000010
式(4)および式(5)中、RおよびRは、それぞれ独立に、炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、または、炭素数2~8のアルコキシアルキル基を示す。rは、0~2の整数を示し、sは、0~2の整数を示す。*は結合部位を示す。
(7)前記式(1)が、式(6)である、(1)~(5)のいずれかに記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000011
式(6)中、R、a、および、bは、前記式(1)中の同一の記号と同一の意味を示す。Lは、直接結合、-C(CH-、9H-フルオレン-9,9-ジイル基を示す。mおよびmは、それぞれ独立に、0~2の整数を示す。nおよびnは、それぞれ独立に、0~2の整数を示す。ただし、1≦(n+n)≦4を満たす。*は結合部位を示す。
(8)前記(A)樹脂が、式(7)で表される構造単位をおよび/または式(8)で表される構造単位を含む、(2)に記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000012
式(7)中、Xは、炭素数4~50の4価の有機基、または、前記式(1)の構成単位を示す。Yは炭素数6~30の2価の有機基、または、前記式(1)の構成単位を示す。ただし、XとYの少なくとも一つは、前記式(1)の構成単位であり、Xが、前記式(1)の構成単位をとる場合は、a=b=2であり、Yが、前記式(1)の構成単位をとる場合は、a+b=2である。*は結合部位を示す。
Figure JPOXMLDOC01-appb-C000013
式(8)中、Xは、炭素数4~50の2価の有機基、または、前記式(1)の構成単位を示す。Yは炭素数6~30の2価の有機基、または、前記式(1)の構成単位を示す。ただし、XとYの少なくとも一つは、前記式(1)の構成単位であり、a=b=1である。*は結合部位を示す。
(9)前記式(7)中、Xが、炭素数4以上の脂肪族骨格を含む、炭素数4~50の4価の有機基である、および/または、前記式(8)中、Xが、炭素数4以上の脂肪族骨格を含む、炭素数4~50の2価の有機基である、(8)に記載のポジ型感光性樹脂組成物。
(10)前記(A)樹脂が、式(9)で表される構造単位を有し、式(9)に含まれるOH基およびOR基の合計数をM1、式(9)の構造からOH基およびOR基を除いた残りの構造部分の分子量をN1としたとき、M1/N1の値が0.004075以上である、および/または
前記(A)樹脂が、式(10)で表される構造単位を有し、式(10)に含まれるOH基およびOR基の合計数をM2、式(10)の構造からOH基およびOR基を除いた残りの構造部分の分子量をN2としたとき、M2/N2の値が0.004075以上である、(2)に記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000014
式(9)、式(10)中、R、R、m、および、nは、前記式(1)中の同一の記号と同一の意味を示す。Xは炭素数4以上の脂肪族骨格を含む、炭素数4~50の4価の有機基を示す。Xは、炭素数4以上の脂肪族骨格を含む、炭素数4~50の2価の有機基を示す。
(11)前記(B)光酸発生剤が、非イオン性光酸発生剤を含む、(1)~(10)のいずれかに記載のポジ型感光性樹脂組成物。
(12)前記(B)光酸発生剤が、光により発生する酸性基の酸解離定数(pKa)が-14~2の範囲である光酸発生剤を含む、(1)~(11)のいずれかに記載のポジ型感光性樹脂組成物。
(13)前記(B)光酸発生剤が、オキシムスルホネート化合物および/またはイミドスルホネート化合物を含む、(1)~(12)のいずれかに記載のポジ型感光性樹脂組成物。
(14)さらに、(C)共役酸のpKaが4.5~10.8の範囲であるアミン化合物を含む、(1)~(13)のいずれかに記載のポジ型感光性樹脂組成物。
(15)さらに、(D)溶剤を含み、該(D)溶剤が、比誘電率が5~20の範囲である炭素数3~12の非プロトン性溶剤を含む、(1)~(14)のいずれかに記載のポジ型感光性樹脂組成物。
(16)(1)~(15)のいずれかに記載のポジ型感光性樹脂組成物を支持体上にシート状に形成したポジ型感光性樹脂シート。
(17)(1)~(15)のいずれかに記載のポジ型感光性樹脂組成物を硬化した硬化物。
(18)a)(1)~(15)のいずれかに記載のポジ型感光性樹脂組成物を基材上に塗布、乾燥してポジ型感光性樹脂膜を形成する工程、または、(16)に記載のポジ型感光性樹脂シートを用い、本発明のポジ型感光性樹脂組成物を基材上に熱圧着する工程、b)該ポジ型感光性樹脂膜または該熱圧着されたポジ型感光性樹脂組成物を露光する工程、c)該露光されたポジ型感光性樹脂膜の露光部または該熱圧着されたポジ型感光性樹脂組成物の露光部をアルカリ水溶液で溶出または除去して現像する工程、および、d)該現像されたポジ型感光性樹脂膜または該現像された熱圧着されたポジ型感光性樹脂組成物を加熱処理する工程を含む硬化物の製造方法。
(19)(17)に記載の硬化物が、半導体の保護膜または再配線間の層間絶縁膜として配置された、半導体装置。
(20)基板上に形成された、第一電極と、第一電極を部分的に露光せしめるように第一電極上に形成された絶縁層と、第一電極に対向して設けられた第二電極とを含む表示装置であって、前記絶縁層が(17)に記載の硬化物を含む表示装置。
(21)薄膜トランジスタ(TFT)が形成された基板上の凹凸を覆う状態で設けられた平坦化膜を備えてなる表示装置であって、前記平坦化膜が(17)に記載の硬化物を含む表示装置。
 本発明のポジ型感光性組成物は、高感度であるため露光時間を短縮でき、かつ現像時の膜減少量が少なく、パターン開口部の残渣が少ない。
 本発明は、(A)窒素原子を含む耐熱樹脂(B)光酸発生剤を含み、
該(A)樹脂が、式(1)で表される構成単位を含み、組成物中に含まれる全樹脂の総量を100質量%として、該全樹脂におけるフッ素原子含有量が15質量%以下である、ポジ型感光性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000015
 式(1)中、Rは、炭素数3~30の3~12価の有機基を示し、Rは、炭素数3~20の1価の酸分解性基である。mは0~4、nは1~4の整数を示す。*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。
 本発明のポジ型感光性樹脂組成物は、(B)光酸発生剤を含むことにより、含有する光酸発生剤に対応した露光光を照射することで、組成物中に酸を発生させることができる。発生した酸は、式(1)で表される構成単位を含む、(A)窒素原子を含む耐熱樹脂中のR-O-Rの構造中のO-R間の結合に作用し、R-OHに変換することができる。R-OHはアルカリ水溶液に対して溶解性基として働く。そのため、本発明のポジ型感光性樹脂組成物は、未露光部と露光部でアルカリ水溶液に対する溶解コントラストを発現させることができるため、露光部が溶解するポジ型のレリーフパターンを形成することができる。
 このため、本明細書においてはRを酸分解性基と称する。また、O-Rの構造を酸の作用により水酸基に変換することができるため、O-Rの構造を「酸分解性基で保護された水酸基」と称することがある。さらに、R-O-RがR-OHに変換されることを「脱保護」と称することがある。
 <(A)窒素原子を含む耐熱樹脂>
 窒素原子を含む耐熱樹脂とは、ポリマーの繰り返し構造中に、アミド基やウレア基等の窒素原子を含有する基や、イミド環やオキサゾール環等の窒素原子を含有する複素環を有する樹脂であって、5%重量減少温度が200℃以上の樹脂を指す。
 また、化学閉環や熱閉環によってイミド環やオキサゾール環等の窒素原子を含有する複素環を有する5%重量減少温度が200℃以上の樹脂となる前駆体樹脂も含むものとする。
 窒素原子を含む耐熱樹脂としては、例えば、ポリイミド、ポリアミド、ポリウレア、ポリアミドイミド、ポリアゾール(ポリベンズイミダゾール、ポリベンゾオキサゾール、ポリベンゾチアゾール)等が挙げられる。このうち、ポリアミドにはポリイミド前駆体、ポリアゾール前駆体が含まれる。
 より好ましい(A)窒素原子を含む耐熱樹脂として、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群から選ばれる一種以上の樹脂が好ましい。
 ポリイミドとは、繰り返し単位にイミド結合を含む高分子である。前記ポリイミドは公知の方法で合成することができる。例えば、テトラカルボン酸、対応するテトラカルボン酸二無水物またはテトラカルボン酸ジエステル二塩化物などと、ジアミン、対応するジイソシアネート化合物またはトリメチルシリル化ジアミンなどを反応させることによって得られる反応物を加熱または酸もしくは塩基などの触媒を用いた反応により、脱水閉環させることによって得られる。従って、前記ポリイミドはテトラカルボン酸及び/又はその誘導体残基と、ジアミン及び/又はその誘導体残基を有する。
 脱水閉環させる前の反応物をポリイミド前駆体と称し、脱水閉環しイミド結合を形成することをイミド化と称する。前記ポリイミド前駆体中に存在するイミド結合形成可能な基がイミド化する率をイミド化率と称する。
 ポリイミドのイミド化率は好ましくは30%以上であり、より望ましくは50%以上、さらに好ましくは70%以上、特に好ましくは80%以上である。イミド化率が30%以上であることにより、高温下におけるアウトガス量の低減が可能であり、後述する硬化物の信頼性を向上することができるため好ましい。
 ポリベンゾオキサゾールとは、繰り返し単位にベンゾオキサゾール構造を含む高分子である。前記ポリベンゾオキサゾールは公知の方法で合成することができる。例えば、ビスアミノフェノール化合物とジカルボン酸や対応するジカルボン酸クロリドやジカルボン酸活性エステルなどを反応させて得られる反応物を加熱又は酸、塩基、無水酢酸若しくはカルボジイミド化合物などを用いた反応により、脱水閉環させることによって得られる。従って、ジカルボン酸残基とビスアミノフェノール残基を有する。
 ポリアミドとは、繰り返し単位にアミド結合を含む高分子である。ポリアミドは公知の方法で合成することができる。
 前記ポリアミドは、ポリイミド前駆体またはポリベンゾオキサゾール前駆体であることが好ましい。ポリイミド前駆体は、加熱によりポリイミドに転化しうるポリアミドである。ポリアミドがポリイミド前駆体であることにより、耐熱性の高い樹脂膜とすることができる。ポリイミド前駆体は公知の方法で合成することができる。例えば、テトラカルボン酸、対応するテトラカルボン酸二無水物又はテトラカルボン酸ジエステル二塩化物などと、ジアミン、対応するジイソシアネート化合物又はトリメチルシリル化ジアミンなどを反応させることによって得られる。前記ポリベンゾオキサゾール前駆体は、加熱によりポリポリベンゾオキサゾールに転化しうるポリアミドである。ポリアミドがポリベンゾオキサゾール前駆体であることにより、耐熱性の高い樹脂膜とすることができる。ポリベンゾオキサゾール前駆体は公知の方法で合成することができる。例えば、ビスアミノフェノール化合物とジカルボン酸や対応するジカルボン酸クロリドやジカルボン酸活性エステルなどを反応させて得られる。
 それらの共重合体とは、ポリイミド、ポリベンゾオキサゾール、および、ポリアミドの群から選ばれる2種以上の共重合体を指す。
 本発明のポジ型感光性樹脂組成物に含まれる、(A)樹脂は、ポリイミド、ポリベンゾオキサゾール、および、ポリアミドの群から選ばれる2種以上の共重合体であることが好ましい。共重合体とすることにより、耐熱性、溶剤溶解性、およびアルカリ溶解性の両立が容易となる。
 本発明のポジ型感光性樹脂組成物に含まれる、(A)樹脂は、主鎖末端が公知のモノアミン、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などの末端封止剤で封止されていることが好ましい。主鎖末端が末端封止剤で封止されていることにより、ポジ型感光性樹脂組成物の保存安定性を向上させることができる。末端封止剤として用いられるモノアミンの導入割合は、全アミン成分に対して、好ましくは0.1モル%以上、特に好ましくは5モル%以上であり、好ましくは60モル%以下、特に好ましくは50モル%以下である。末端封止剤として用いられる酸無水物、モノカルボン酸、モノ酸クロリド化合物またはモノ活性エステル化合物の導入割合は、ジアミン成分に対して、好ましくは0.1モル%以上、特に好ましくは5モル%以上であり、好ましくは100モル%以下、特に好ましくは90モル%以下である。複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
 (A)樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算で3,000~200,000が好ましく、より好ましくは5,000~100,000であり、さらに好ましくは7,000~60,000である。重量平均分子量を上記範囲とすることにより、良好な溶剤溶解性、良好な現像液への溶解性、高い機械強度を全て満たしやすくすることができる。本発明において、重量平均分子量は後述の方法により求められる。
 <(A)樹脂が、式(1)で表される構成単位を含む>
 本発明のポジ型感光性樹脂組成物は、(A)樹脂が、式(1)で表される構成単位を含む。
Figure JPOXMLDOC01-appb-C000016
 式(1)中、Rは、炭素数3~30の3~12価の有機基を示し、Rは、炭素数3~20の1価の酸分解性基である。
 Rは芳香環を有し、該芳香環基がOH基あるいはOR基と直結していることが好ましい。前記芳香環は、フェニル基あるいはナフチル基であることがより好ましい。Rがこのような構造をとることで、OR基が脱保護した後のOH基のアルカリ溶解性が向上する。そのため、残渣が少ないポジ型のレリーフパターンを得ることが容易となる。
 Rが、フェニル基あるいはナフチル基を有し、該フェニル基あるいはナフチル基がOH基あるいはOR基と直結している好ましい式(1)の構造の具体例としては次の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 上記構造中、R、a、および、bは、前記式(1)中の同一の記号と同一の意味を示す。m、m、nはそれぞれ独立に0~2の整数、nは1~2の整数を示す。m+m=m、n+n=nを示し、m、nは、前記式(1)中の同一の記号と同一の意味を示す。
 式(1)中、mは0~4、nは1~4の整数を示す。樹脂の耐熱性の観点からm+nの値が1~4の整数であることが好ましく、1~2の整数であることがより好ましく、2であることがさらに好ましい。
 式(1)中、*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。樹脂の耐熱性の観点からa=b=1または、a=b=2であることが好ましく、a=b=1であることがより好ましい。
 式(1)で表される構造は、例えば、ヒドロキシ基含有酸二無水物あるいはヒドロキシ基含有ジアミンを用いて、前記ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群から選ばれる一種以上の樹脂を合成し、該樹脂のOH基の一部または全部をOR基に改質させることによって得られる。
 ヒドロキシ基含有酸二無水物としては、例えば、6,6’-メチレンビス(5-ヒドロキシイソベンゾフラン-1,3-ジオン)、N,N’-(4,4’-ジヒドロキシ-[1,1’-ビフェニル]-3,3’-ジイル)ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキサミド)、N,N’-(プロパン-2,2’-ジイルビス(6-ヒドロキシ-3,1-フェニレン))ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキサミド)、N,N’-((パーフルオロプロパン-2,2-ジイル)ビス(6-ヒドロキシ-3,1-フェニレン))ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキサミド)などが挙げられるが、これらに限定されない。
 ヒドロキシ基含有ジアミンとしては、例えば、2,4-ジアミノフェノール、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどが挙げられるが、これらに限定されない。
 より好ましい式(1)の構造としては、式(1)のOR基が酸で分解して生成するフェノール性水酸基含有構造のpKaが11以上となることである。好ましいpKaの値としては11.5以上、より好ましくは12以上、さらに好ましくは12.5以上である。
 このとき、前記OR基が酸で分解して生成するフェノール性水酸基含有構造のpKaが11以上となる構造は、組成物に含まれる式(1)の構造を100モルとしたときに50モル%以上含まれていることが必要である。
 ここで、式(1)のOR基が酸で分解して生成するフェノール性水酸基含有構造のpKaとは式(1)の構造のOR基が全て脱保護した下記一般式(11)の構造のフェノール性水酸基の酸性度を表す指標を表す計算値である。pKaが高い程、フェノール性水酸基の酸性度は低いと言える。本来フェノール性水酸基の酸性度は高いほどアルカリ現像液への溶解性が向上するが、pKaを11以上として酸性度をあえて低く抑えることで、露光で発生した酸によるOR基からOH基への脱保護性が向上し、未露光部と露光部でアルカリ水溶液に対する溶解コントラストが著しく増大する特徴が発現する。結果、単純にアルカリ溶解性を向上させるよりも高い露光感度を有する利点がある。
Figure JPOXMLDOC01-appb-C000018
 m、および、nは、前記式(1)中の同一の記号と同一の意味を示す。
 pKaの算出方法は以下のとおりである。一般式(11)の構造を対象に、量子力学におけるシュレディンガー方程式に則り、分子の電子状態を計算する手法を用いて算出する。具体的には、下記計算ソフトおよび基底関数を用い、水との溶媒和エネルギーを考慮に入れ計算した。すなわち、分子の周囲に均一な誘電体を配置し、分子と誘電体の相互作用を計算した。本検討では誘電率をε=78.39として計算した。
計算ソフト:Gaussian 16
計算レベル:B3LYP/6-31+G(d,p)
Solvation method:PCM-UAHF-G03 (Solvent=water
 式(1)のOR基が酸で分解して生成するフェノール性水酸基含有構造のpKaが11以上となる好ましい構造として次の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 より好ましい式(1)の構造として、式(6)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 式(6)中、R、a、および、bは、前記式(1)中の同一の記号と同一の意味を示す。Lは、直接結合、-C(CH-、9H-フルオレン-1,9-ジイル基を示す。より好ましくは-C(CH-である。m、m、nおよびnは、それぞれ独立に、0~2の整数を示す。ただし、1≦(n+n)≦4を満たす。*は結合部位を示す。
 前記9H-フルオレン-1,9-ジイル基とは、下記式で表される基である。
Figure JPOXMLDOC01-appb-C000021
 式(1)中、Rは、炭素数3~20の1価の酸分解性基である。
 ここで挙げる酸分解性基としては、t-ブチル基のような第3級アルキル基、オキシメチル基など、カルボニル基を含まない有機基が挙げられる。より好ましくはオキシメチル基である。
 ここでいうオキシメチル基とは、結合部位から順に炭素-酸素が単結合で結合した構造を有する1価の基である。前記炭素数3~20の1価のオキシメチル基は、具体的に、次のような構造で表すことができる。
Figure JPOXMLDOC01-appb-C000022
 上記構造中、R11~R16、R18は1価の有機基を示し、R17およびR19は2価の有機基を示す。*は結合部位を示す。構造中の炭素数は3~20である。
1価の有機基としては、炭素数1~6のアルキル基、炭素数5~10の環状アルキル基、炭素数2~8のアルコキシアルキル基、または、炭素数6~16のアルコキシ環状アルキル基などが挙げられる。
2価の有機基としては、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ペンタン-1,3-ジイル基や、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基およびペンタン-1,3-ジイル基からなる群より選ばれる基の水素原子が、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基および炭素数2~8のアルコキシアルキル基からなる群より選ばれる基で置換された基などが挙げられる。
 前記Rが前記炭素数3~20の1価のオキシメチル基であることにより、露光で発生した酸によるOR基からOH基への脱保護性が向上し、未露光部と露光部でアルカリ水溶液に対する溶解コントラストを増大させる。結果、高い露光感度を有する利点がある。前記Rの少なくとも一つが、式(2)で表される基、または式(3)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000023
 式(2)および式(3)中、Rは、炭素数1~6のアルキル基、または、炭素数2~8のアルコキシアルキル基を示す。Rは、炭素数1~6のアルキル基、炭素数5~10の環状アルキル基、炭素数2~8のアルコキシアルキル基、または、炭素数6~16のアルコキシ環状アルキル基を示す。Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、または、炭素数2~8のアルコキシアルキル基を示す。pは0~2の整数を示し、qは0~2の整数を示す。
 炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基などが挙げられる。
 炭素数2~8のアルコキシアルキル基の具体例としては、メトキシメチル基、メトキシエチル基、メトキシプロピル基、メトキシブチル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基、エトキシブチル基、プロポキシメチル基、プロポキシエチル基、プロポキシプロピル基、プロポキシブチル基などが挙げられる。
 炭素数5~10の環状アルキル基の具体例としては、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロペンチルメチル基、シクロヘキシルメチル基、シクロへプチルメチル基、シクロペンチルエチル基、シクロヘキシルエチル基、シクロへプチルエチル基、シクロペンチルプロピル基、シクロヘキシルプロピル基、シクロペプチルプロピル基などが挙げられる。
 炭素数6~16のアルコキシ環状アルキル基の具体例としては、メトキシペンチル基、エトキシペンチル基、プロポキシペンチル基、ジメトキシペンチル基、ジエトキシペンチル基、ジプロポキシペンチル基、トリメトキシペンチル基、トリエトキシペンチル基、トリプロポキシペンチル基、メトキシヘキシル基、エトキシヘキシル基、プロポキシヘキシル基、ジメトキシヘキシル基、ジエトキシヘキシル基、ジプロポキシヘキシル基、トリメトキシヘキシル基、トリエトキシヘキシル基、トリプロポキシヘキシル基、メトキシへプチル基、エトキシへプチル基、プロポキシへプチル基、ジメトキシへプチル基、ジエトキシへプチル基、ジプロポキシへプチル基、トリメトキシへプチル基、トリエトキシへプチル基、トリプロポキシへプチル基などが挙げられる。
 炭素数1~6のアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキソキシ基などが挙げられる。
 前記Rの少なくとも一つが、式(2)で表される基、または式(3)で表される基であることにより、R-O-RがR-OHに変換した際に脱離した有機基が現像時に残留しにくくなり、結果として残渣の少ないパターンを得ることができる。
 残渣の少ないパターンを得られる観点より、前記Rが、式(2)で表される基であることがより好ましい。。
 残渣の少ないパターンを得られる観点より、前記Rが、式(4)で表される基、または、式(5)で表される基であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000024
 式(4)および式(5)中、RおよびRは、それぞれ独立に、炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~8のアルコキシアルキル基を示す。rは、0~2の整数を示し、sは、0~2の整数を示す。*は結合部位を示す。
 前記炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~8のアルコキシアルキル基の具体例としては、式(2)および式(3)の対応する基の具体例と同一である。
 式(4)または(5)は、R-O-Rの構造中のO-Rのα位が分岐した構造である。O-Rのα位が分岐した構造であると、R-O-RがR-OHに変換した際に脱離した有機基が現像時により残留しにくくなり、結果としてさらに残渣の少ないパターンを得ることができる。
 特に、式(1)の構造として、式(1)のOR基が酸で分解して生成するフェノール性水酸基含有構造のpKaが12.5以上となる構造が、組成物に含まれる式(1)の構造を100モルとしたときに50モル%以上含まれ、かつ、Rが、式(4)で表される基、または、式(5)で表される基である場合は、有機基の現像時の残留がさらに抑制され、残渣の少ないパターンを得ることができる。
 さらに残渣の少ないパターンを得ることができる観点から、樹脂(A)中のフェノール性水酸基とOR基の合計を100モルとした時、OR基の割合が40モル%以下であることが最も好ましい。
 また、現像時の膜厚減少を抑制する観点から、樹脂(A)中のフェノール性水酸基とOR基の合計を100モルとした時、OR基の割合が15モル%以上であることが好ましく、20モル%以上であることがより好ましい。
 前記(A)樹脂のうち、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群から選ばれる一種以上の樹脂として、好ましくは、下記一般式(7)で表される構造単位をおよび/または(8)で表される構造単位を含んでいることである。
Figure JPOXMLDOC01-appb-C000025
 式(7)中、Xは、炭素数4~50の4価の有機基、または、前記式(1)の構成単位を示す。Yは炭素数6~30の2価の有機基、または、前記式(1)の構成単位を示す。ただし、XとYの少なくとも一つは、前記式(1)の構成単位であり、Xが、前記式(1)の構成単位をとる場合は、a=b=2であり、Yが、前記式(1)の構成単位をとる場合は、a+b=2である。*は結合部位を示す。
 式(7)で表される構造単位は、耐熱性の高いイミド構造を有するため、耐熱性が高い樹脂膜を得ることができる。
 式(8)中、Xは、炭素数4~50の2価の有機基、または、前記式(1)の構成単位を示す。Yは炭素数6~30の2価の有機基、または、前記式(1)の構成単位を示す。ただし、XとYの少なくとも一つは、前記式(1)の構成単位であり、a=b=1である。*は結合部位を示す。
 式(8)で表される構造単位は、耐熱性の高いポリベンゾオキサゾールの前駆体構造を有する。そのため、式(8)で表される構造単位を熱処理してオキサゾール閉環をさせることにより、耐熱性が高い樹脂膜を得ることができる。
 熱処理による膜厚減少が小さくなるという観点より、前記(A)樹脂は式(7)で表される構造単位を含んでいることがより好ましい。
 前記式(7)中、Xが、炭素数4以上の脂肪族骨格を含む、炭素数4~50の4価の有機基であることが好ましい。および/または、前記式(8)中、Xが、炭素数4以上の脂肪族骨格を含む、炭素数4~50の2価の有機基であることが好ましい。これにより、脱保護前後の樹脂の溶解性変化を増大させ、未露光部と露光部のコントラストを高め、高感度化できる利点がある。炭素数4以上の脂肪族骨格を含む、炭素数4~50の4価の有機基、炭素数4以上の脂肪族骨格を含む、炭素数4~50の2価の有機基、は、次のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 *は、結合部位を示す。
 未露光部と露光部のコントラストを高め、高感度化できる観点より、前記式(7)中、X、および/または、前記式(8)中、Xのうち、炭素数4以上の脂肪族骨格の割合は、好ましくは50モル%以上、より好ましくは70モル%以上である。
 さらに、脱保護前後の樹脂の溶解性変化を増大させ、未露光部と露光部のコントラストを高め、高感度化できる点で、前記(A)樹脂のうち、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群から選ばれる一種以上の樹脂が、式(9)で表される構造単位を有し、式(9)に含まれるOH基およびOR基の合計数をM1、式(9)の構造からOH基およびOR基を除いた残りの構造部分の分子量をN1としたとき、M1/N1の値が0.004075以上である、および/または前記(A)樹脂が、式(10)で表される構造単位を有し、式(10)に含まれるOH基およびOR基の合計数をM2、式(10)の構造からOH基およびOR基を除いた残りの構造部分の分子量をN2としたとき、M2/N2の値が0.004075以上であることが好ましい。
 M1/N1、M2/N2の値としてより好ましくは0.004501、さらに好ましくは0.005001である。
 式(9)、式(10)中、R、R、m、および、nは、前記式(1)中の同一の記号と同一の意味を示す。Xは炭素数4以上の脂肪族骨格を含む、炭素数4~50の4価の有機基を示す。Xは、炭素数4以上の脂肪族骨格を含む、炭素数4~50の2価の有機基を示す。
 例えば式(9)の具体例として下記構造の場合、M1=2.000、N1=512.5となるため、M1/N1=0.003902となる。
Figure JPOXMLDOC01-appb-C000027
 また、式(10)の具体例として下記構造の場合、M2=2.000、N2=532.9となるため、M1/N1=0.003753となる。
Figure JPOXMLDOC01-appb-C000028
 一般式(1)中、R-O-Rは、R-OHを有する樹脂と保護剤とを反応させることによって得られる。例えば、無溶剤又はトルエン、ヘキサン、プロピレングリコールモノメチルエーテルアセテート、シクロペンタノン等の溶剤中で、R-OHを有する樹脂と保護剤とを、酸、または、塩基の存在下、反応温度-20~50℃で反応させることにより、R-O-Rを有する樹脂、すなわち(A)樹脂を得ることができる。
 保護剤として、水酸基を保護することが可能な公知の保護剤を用いることができる。
保護剤として、例えば、Rが1-エトキシエチル基の場合はエチルビニルエーテル、2-テトラヒドロピラニル基の場合は、3,4-ジヒドロー2H-ピランなどを用いることができる。
 酸としては、例えば、塩酸、硫酸、硝酸、過塩素酸などの無機酸、および、メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸などの有機酸が挙げられる。また、p-トルエンスルホン酸ピリジニウムなどの有機酸塩も好ましく用いることができる。
塩基としては、ピリジン、N,N-ジエチル-4-アミノピリジン、トリエチルアミン、ジイソプロピルアミン等のアミン化合物が挙げられる。
 <フッ素原子含有量>
 本発明のポジ型感光性樹脂組成物は、組成物中に含まれる全樹脂の総量を100質量%として、該全樹脂におけるフッ素原子含有量が15質量%以下である。好ましくは8.5質量%以下である。フッ素原子含有量が15質量%以下であると、理由は定かではないが、露光時に、R-O-RがR-OHに変換する、すなわち脱保護する反応速度を大きいものとすることができる。そのため、同一露光量で比較すると、脱保護率を高いものとすることができるため、高感度のポジ型感光性樹脂組成物とすることができる。
 現像後のパターン残渣を低減する観点より、フッ素原子含有量が3.5質量%以下であることがさらに好ましい。
 組成物中に含まれる全樹脂の総量を100質量%として、該全樹脂におけるフッ素原子含有量は、以下の方法で分析することができる。
まず組成物から樹脂を分離する。分離した樹脂を試料として精秤する。自動試料燃焼装置を用いて、分析装置の燃焼管内で燃焼させ、発生したガスを溶液に吸収後、吸収液の一部をイオンクロマト法による分析する。吸収液としてはH 0.036質量%を用いることができる。
 <(B)光酸発生剤>
 本発明のポジ型感光性樹脂組成物は、(B)光酸発生剤を含有する。光酸発生剤とは、露光によって酸を発生する機能を有する化合物である。前記(B)光酸発生剤は本発明の効果を損なわない範囲で公知のものを使用することができる。
 前記(B)光酸発生剤として、オニウム塩型のイオン性光酸発生剤や非イオン性光酸発生剤が挙げられる。オニウム塩とは、化学結合に関与しない電子対を有する化合物が、当該電子対によって、他の陽イオン形の化合物と配位結合して生ずる化合物を指す。前記イオン性光酸発生剤は、オニウム塩のカチオン部位が光化学特性(モル吸光係数・吸収波長・量子収率)、アニオン部位が生成する酸の強さを決定する。一方、非イオン性光酸発生剤は、光を吸収する部位と酸がエステル結合を介して光酸発生剤である。
 前記イオン性化合物としては、イオン性化合物としては、重金属、ハロゲンイオンを含まないものが好ましく、トリオルガノスルホニウム塩系化合物がより好ましい。トリオルガノスルホニウム塩系化合物の具体例としては、例えば、トリフェニルスルホニウムの、メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩、4-トルエンスルホン酸塩、パーフルオロ-1-ブタンスルホン酸塩(「SP-056」、商品名、ADEKA社製);ジメチル-1-ナフチルスルホニウムの前記スルホン酸塩;ジメチル(4-ヒドロキシ-1-ナフチル)スルホニウムの、前記スルホン酸塩;ジメチル(4,7-ジヒドロキシ-1-ナフチル)スルホニウムの、前記スルホン酸塩;ジフェニルヨードニウムの前記スルホン酸塩などが挙げられる。
 前記非イオン性の光酸発生剤としては、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物、スルホンイミド化合物、リン酸エステル化合物、スルホンベンゾトリアゾール化合物などを用いることができる。
 ジアゾメタン化合物の具体例としては、例えば、ビス(4-メチルフェニルスルホニル)ジアゾメタン(「WPAG-199」、商品名、富士フイルム和光純薬製))などが挙げられる。
 スルホン化合物の具体例としては、例えば、β-ケトスルホン化合物、β-スルホニルスルホン化合物などが挙げられる。好ましいスルホン化合物としては、2-(p-トルエンスルホニル)アセトフェノン、ビス(フェニルスルホニル)メタンなどが挙げられる。
 スルホン酸エステル化合物の具体例としては、例えば、アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホン酸エステル化合物などが挙げられる。好ましい具体例としては、例えば、ベンゾイン-4-トリルスルホネート、ピロガロールトリス(メチルスルホネート)、ニトロベンジル-9,10-ジエトキシアンスリル-2-スルホネート、2,6-(ジニトロベンジル)フェニルスルホネートなどが挙げられる。
 カルボン酸エステル化合物の具体例としては、例えば、カルボン酸2-ニトロベンジルエステルなどが挙げられる。
 前記(B)光酸発生剤が、非イオン性光酸発生剤を含むことが好ましい。前記(B)光酸発生剤が非イオン性光酸発生剤を有することにより、未露光部の溶解性が抑止され、現像時の膜厚減少が抑制される。
 前記(B)光酸発生剤が、光により発生する酸性基の酸解離定数(pKa)が-14~2の範囲である光酸発生剤を含むことがより好ましい。(B)光酸発生剤が、光により発生する酸性基の酸解離定数(pKa)が上記の範囲であることにより、光により発生する酸性基が酸として効率よくR-O-Rの構造に作用することができる。そのため、脱保護がより進行し、高感度なポジ型感光性樹脂組成物とすることができる。前記光により発生する酸性基の酸解離定数(pKa)が-14~2の範囲である光酸発生剤の具体例としては、光により発生する酸が、トリフルオロメタンスルホン酸(pKa=-14)、ノナフルオロブタンスルホン酸(pKa=-3.57)、p-トルエンスルホン酸(pKa=-2.8)、メタンスルホン酸(pKa=-2.6)、ベンゼンスルホン酸(pKa=0.7)、10-カンファースルホン酸(pKa=1.2)、エタンスルホン酸(pKa=1.83)、1-プロパンスルホン酸(pKa=1.92)などである光酸発生剤が挙げられる。
 前記(B)光酸発生剤が、オキシムスルホネート化合物および/またはイミドスルホネート化合物を含むことがさらに好ましい。オキシムスルホネート化合物およびイミドスルホネート化合物は、非イオン性光酸発生剤であり、光により発生する酸性基がスルホ基であるため、酸解離定数(pKa)が高く、より高感度なポジ型感光性樹脂組成物とすることができるだけでなく、ポリイミド、ポリベンゾオキサゾール、ポリアミドに含まれるカルボニル基やアミド基等の極性官能基との相互作用が強まってさらに未露光部の溶解性が抑止され、現像時の膜厚減少が抑制される。
 前記オキシムスルホネート化合物は以下の構造で表すことができる。
Figure JPOXMLDOC01-appb-C000029
 R21は炭素数1~12の1価の有機基である。炭素数1~12の1価の有機基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、トリフルオロメタンスルホン酸基、ノナフルオロブチル基、パーフルオロオクチル基、(7,7-ジメチル-2-オキソビシクロ[2.2.1]ヘプタン-1-イル)メチル基、ベンジル基、フェニル基、トシル基、ナフチル基などが挙げられる。
 R22およびR23は炭素数1~30の1価の有機基である。R22およびR23はそれぞれ同じでも異なっていてもよい。炭素数1~30の1価の有機基の具体例としては、シアノ基、トリフルオロメチル基、ヘキサフルオロプロピル基、ペンタフルオロブチル基、ドデカフルオロヘキシル基、フェニル基、4-メトキシフェニル基、2-フルオレニル基、4-(3-(4-(2,2,2-トリフルオロ-1-(((プロピルスルホニル)オキシ)イミノ)エチル)フェノキシ)プロポキシ)フェニル基などが挙げられる。
 R24は炭素数3~30の1価の有機基である。炭素数3~30の1価の有機基の具体例としては、以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000030
*は結合部位を示す。
 前記オキシムスルホネートの具体例としては、“Irgacure”(登録商標) PAG-103(ベンゼンアセトニトリル,2-メチル-α-[[(プロピルスルホニル)オキシ]イミノ]-3(2H)-チエニリデン)、PAG-121(ベンゼンアセトニトリル,2-メチル-α-[[(4-メチルフェニル)オキシ]イミノ]-3(2H)-チエニリデン)、PAG-108(ベンゼンアセトニトリル,2-メチル-α-[[(n-オクチル)オキシ]イミノ]-3(2H)-チエニリデン)、PAG-203(以上、いずれもBASFジャパン社製)、PAI-101((Z)-4-メトキシ-N-(トシロキシ)ベンズイミドイルシアニド、みどり化学社製)などが挙げられる。
 前記イミドスルホネート化合物は以下の構造で表すことができる。
Figure JPOXMLDOC01-appb-C000031
 R25は炭素数1~12の1価の有機基である。炭素数1~12の1価の有機基の具体例としては、R21の具体例として挙げた基などが挙げられる。
 R26およびR27は炭素数1~30の1価の有機基である。R26およびR27はそれぞれ同じでも異なっていてもよい。炭素数1~30の1価の有機基の具体例としては、R22およびR23の具体例として挙げた基などが挙げられる。
 R28は炭素数3~30の1価の有機基である。炭素数3~30の2価の有機基の具体例としては、以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 R29は炭素数1~12の1価の有機基である。tは0~2の整数を示す。炭素数1~12の1価の有機基の具体例としては、メチル基、エチル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、t-ブチル基、ヘキシル基、2-エチルヘキシル基、ドデカニル基、1-(ヘキシ-1-エン-1-イル)基、1-(4-ブトキシフェネチル)基などが挙げられる。*は結合部位を示す。
 イミドスルホネート化合物としては、N-ヒドロキシナフタルイミドトリフラート、“アデカアークルズ”(登録商標) SP-606(4-ブチル-N-ヒドロキシ-ナフタルイミドトリフラート、ADEKA社製)、NA-101(N-ヒドロキシナフタルイミド-p-トルエンスルホネート)、NA-106(N-ヒドロキシナフタルイミドカンファースルホネート、以上、いずれもみどり化学社製)などが挙げられる。
 本発明において、(B)光酸発生剤の含有量はポジ型感光性樹脂組成物中の全樹脂100質量部に対して0.1~20質量部が好ましく、0.2~10質量部がより好ましい。(B)光酸発生剤が上記の範囲であることで、高感度なポジ型感光性樹脂組成物とすることができる。
 <(C)共役酸のpKaが4.5~10.8の範囲であるアミン化合物>
 本発明のポジ型感光性樹脂組成物は、さらに、(C)共役酸のpKaが4.5~10.8の範囲であるアミン化合物を含むことが好ましい。前記(C)アミン化合物を含むことにより、後述するプリベーク時に脱保護が抑制される。そのため、現像膜減少の少ないポジ型感光性樹脂組成物とすることができる。
 前記(C)アミン化合物は、共役酸のpKaが5.0~10.0であるアミン化合物を含むことがより好ましく、共役酸のpKaが6.0~9.0であるアミン化合物を含むことがさらに好ましい。前記(C)アミン化合物が、共役酸のpKaが上記の範囲にあるアミン化合物を含むことで、プリベーク時の脱保護が抑制されるとともに、露光時に発生する酸が中和されにくくなるため、現像膜減量が少ないポジ型感光性樹脂組成物とすることができる。
 共役酸のpKaが上記の範囲であるアミン化合物として、アニリン(pKa=4.6)、ジメチルアニリン(pKa=5.20)、ピリジン(pKa=5.25)、2-ピコリン(pKa=5.97)、2,6-ルチジン(pKa=6.75)、イミダゾール(pKa=6.95)、N-メチルモルホリン(pKa=7.38)、モルホリン(pKa=8.36)、ジシクロヘキシルアミン(pKa=10.4)、シクロヘキシルアミン(pKa=10.6)などが挙げられる。
 ポリイミド、ポリベンゾオキサゾール、ポリアミドに含まれるカルボニル基やアミド基等の極性官能基との相互作用が強まって現像時の膜厚減少が小さくなる観点より、ピリジン骨格を有する共役酸が好ましく、ルチジンがより好ましい。
 本発明において、(C)アミン化合物の含有量は(A)樹脂100質量部に対して0.01~10質量部が好ましく、0.1~2質量部がより好ましい。(C)アミン化合物の含有量が上記の範囲であることで、膜減少量の少ない、高感度なポジ型感光性樹脂組成物とすることができる。
 <(D)溶剤>
 本発明のポジ型感光性樹脂組成物は、さらに、(D)溶剤を含むことが好ましい。溶剤を含むことで、塗布性が良好となり、均質なポジ型感光性樹脂膜とすることができる。前記(D)溶剤は本発明の効果を損なわない範囲で公知のものを使用することができる。
 前記(D)溶剤としては、特に限定されるものではないが、アミド系溶剤、エステル系溶剤、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、ジメチルスルホキシドなどを好適に用いることができる。
 アミド系溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソ酪酸アミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルプロピレン尿素などが挙げられる。
 エステル系溶剤の具体例としてはγ-ブチロラクトン、δ-バレロラクトン、炭酸プロピレン、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-1-ブチルアセテート、3-メチル-3-メトキシ-1-ブチルアセテート、アセト酢酸エチル、シクロヘキサノールアセテートなどが挙げられる。
 アルコール系溶剤の具体例としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、3-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メトキシ-1-ブタノール、3-メチル-3-メトキシ-1-ブタノール、エチレングリコール、プロピレングリコール、等が挙げられる。
 エーテル系溶剤の具体例としては、ジエチルエーテル、ジイソプロピルエーテル、ジ-n-ブチルエーテル、ジフェニルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジプロピレングリコールジメチルエーテル等が挙げられる。
 ケトン系溶剤の具体例としては、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセチルアセトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、ジシクロヘキシルケトン等が挙げられる。
 前記(D)溶剤としては、比誘電率が5~20の範囲である非プロトン性溶剤を含むことが好ましく、より好ましくは比誘電率が6~19であり、さらに好ましくは比誘電率が7~19である。
 (D)溶剤が比誘電率が5~20の範囲である非プロトン性溶剤を含むことで、ポジ型感光性樹脂組成物の溶液として保管時の安定性が向上する。
 比誘電率が5~20の範囲である非プロトン性溶剤としては、テトラヒドロフラン(比誘電率7.6)、プロピレングリコールモノメチルエーテルアセテート(同8.3)、メチルイソブチルケトン(同13.1)、シクロペンタノン(同14.5)、シクロヘキサノン(同18.3)、メチルエチルケトン(同18.5)などが挙げられる。
 前記(D)溶剤は、炭素数3~12の非プロトン性溶剤を含むことが好ましく、より好ましくは炭素数4~10である。炭素数3~12の非プロトン性溶剤は、本発明のポジ型感光性樹脂組成物に含まれる(A)樹脂の溶解性に優れる。そのため、本発明のポジ型感光性樹脂組成物が、炭素数3~12の非プロトン性溶剤を含むことで、高濃度のポジ型感光性樹脂組成物とすることができ、該組成物を塗布することにより、例えば、1μm以上の膜厚が大きいポジ型感光性樹脂膜を得ることが容易となるだけでなく、製膜時に樹脂のネットワークが強い樹脂膜を形成し、現像時の膜厚減少を小さくすることができる。
 ポリイミド、ポリベンゾオキサゾール、ポリアミドに含まれるカルボニル基やアミド基等の極性官能基との相互作用が強まって現像時の膜厚減少が小さくなる観点より、前記(D)溶剤は、環状ケトンが好ましく、シクロペンタノンがより好ましい。
 これら環状ケトン溶媒は比誘電率が5~20の範囲である非プロトン性溶剤全体を100質量としたとき、20質量%以上であることが好ましい。
 本発明のポジ型感光性樹脂組成物は、さらに、(D)溶剤を含み、該(D)溶剤が、比誘電率が5~20の範囲である炭素数3~12の非プロトン性溶剤を含むことが好ましい。 本発明において、(D)溶剤の含有量は、(A)樹脂100質量部に対して、組成物を溶解させるため、100質量部以上含有することが好ましく、膜厚1μm以上の塗布膜を形成させるため、1,500質量部以下含有することが好ましい。
 特に、ポリイミド、ポリベンゾオキサゾール、ポリアミドに含まれるカルボニル基やアミド基等の極性官能基との相互作用が強まって現像時の膜厚減少が小さくなる観点より、(B)光酸発生剤が、オキシムスルホネート化合物および/またはイミドスルホネート化合物を含み、かつ、(C)アミン化合物がピリジン骨格を有する共役酸であり、かつ、(D)溶媒が比誘電率が5~20の範囲である非プロトン性溶剤であって、比誘電率が5~20の範囲である非プロトン性溶剤全体を100質量としたとき、20質量%以上が環状ケトン溶媒であることがさらに好ましく、これに加えて、相互作用がより強まるよう、式(1)の構造として、式(1)のOR基が酸で分解して生成するフェノール性水酸基含有構造のpKaが12.5以上となる構造が、組成物に含まれる式(1)の構造を100モルとしたときに50モル%以上含まれていることが最も好ましい。
 本発明の感光性樹脂組成物は上記以外のその他の添加剤を含んでいてもよい。その他の添加剤として、例えば、溶解促進剤、増感剤、シランカップリング剤、界面活性剤などが挙げられる。
 <硬化物、硬化物の製造方法>
 本発明の硬化物は、本発明のポジ型感光性樹脂組成物を硬化した硬化物である。
硬化条件としては、150℃~320℃の温度を加えて熱架橋反応を進行させ、耐熱性および耐薬品性を向上させる。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施すればよい。一例としては、130℃、200℃で各30分ずつ熱処理する。本発明においてのキュア条件の下限としては170℃以上が好ましいが、十分に硬化を進行させるために180℃以上であることがより好ましい。また、キュア条件の上限としては、280℃以下が好ましい。
 本発明の硬化物の製造方法は、本発明のポジ型感光性樹脂組成物を基材上に塗布、乾燥してポジ型感光性樹脂膜を形成する工程、
該ポジ型感光性樹脂膜を露光する工程、
該露光されたポジ型感光性樹脂膜の露光部をアルカリ水溶液で溶出または除去して現像する工程、および、
該現像されたポジ型感光性樹脂膜を加熱処理する工程、を含む。
 このようにして得られた硬化物は、ポリイミドあるいはポリベンゾオキサゾールを主体とする硬化物であるため、耐熱性や電気絶縁性、機械特性に優れる。
 本発明の実施の形態に係る硬化物の製造方法は、本発明のポジ型感光性樹脂組成物を基材上に塗布してポジ型感光性樹脂膜を形成する工程、を含む。
 基材は特に限定されないが、ガラス、シリコンウェハー、セラミック堆積基板、金属めっき基板、サファイア、ガリウムヒ素からなる群から選ばれることが好ましい。
 本発明のポジ型感光性組成物を基材上に塗布する方法は公知の方法を用いることができる。塗布に用いる装置としては、スピンコーティング、ディップコーティング、カーテンフローコーティング、スプレーコーティング若しくはスリットコーティング等の全面塗布装置又はスクリーン印刷、ロールコーティング、マイクログラビアコーティング若しくはインクジェット等の印刷装置が挙げられる。
 塗布後、乾燥してポジ型感光性樹脂膜を形成する。乾燥は、真空乾燥装置あるいは、ホットプレート、オーブン等の加熱装置を用いる。加熱装置を用いる場合、50℃以上150℃以下の温度範囲で30秒~30分間行うことが好ましい。前記ポジ型感光性樹脂膜の膜厚は0.1以上100μm以下が好ましい。
 本発明の実施の形態に係る硬化物の製造方法は、該ポジ型感光性樹脂膜を露光する工程、を含む。
 露光する工程において、前記ポジ型感光性樹脂膜上に、所望のパターンを有するマスクを介して露光する。照射する露光光の波長は特に制限されず、例えば、g線(436nm)、i線(365nm)、及び、h線(405nm)等の300~450nmの波長を有する光が挙げられる。なかでも、365nmの波長を有する光を照射することが好ましい。露光工程において使用する光源としては、例えば、各種レーザー、発光ダイオード(LED)、超高圧水銀灯、高圧水銀灯、低圧水銀灯、及び、メタルハライドランプが挙げられる。また、必要に応じて長波長カットフィルター、短波長カットフィルター及びバンドパスフィルター等の分光フィルターを通して照射光の波長を調整してもよい。
 露光後、必要に応じて、露光後ベークをしても構わない。露光後ベークを行うことによって、現像後の解像度向上又は現像条件の許容幅増大などの効果が期待できる。露光後ベークは、オーブン、ホットプレート、赤外線、フラッシュアニール装置、レーザーアニール装置などを使用することができる。露光後ベーク温度としては、50~180℃が好ましく、60~150℃がより好ましい。露光後ベーク時間は、10秒~1時間が好ましく、30秒~30分であることがより好ましい。
 本発明の実施の形態に係る硬化物の製造方法は、該露光したポジ型感光性樹脂膜の露光部をアルカリ水溶液で溶出または除去して現像する工程、を含む。
 ポジ型感光性樹脂組成物のパターンを形成するには、露光後、現像液を用いて露光部を除去する。現像に使用される現像液は、アルカリ水溶液可溶性重合体を溶解除去するものであり、典型的にはアルカリ化合物を溶解したアルカリ性水溶液である。アルカリ化合物としては、テトラメチルアンモニウムヒドロキシド、水酸化カリウム、炭酸ナトリウムなどが挙げられる。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。
 現像後は、有機溶媒または水にてリンス処理をすることが好ましい。有機溶媒を用いる場合、上記の現像液に加え、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテートなどが挙げられる。水を用いる場合、ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしてもよい。
 本発明の実施の形態に係る硬化物の製造方法は、現像したポジ型感光性樹脂膜を加熱処理する工程、を含む。
 現像後、150℃~320℃の温度を加えて熱架橋反応を進行させ、耐熱性および耐薬品性を向上させる。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施する。一例としては、130℃、200℃で各30分ずつ熱処理する。本発明においてのキュア条件の下限としては170℃以上が好ましいが、十分に硬化を進行させるために180℃以上であることがより好ましい。また、キュア条件の上限としては、280℃以下が好ましい。
 <ポジ型感光性樹脂シート、硬化物の製造方法>
 本発明のポジ型感光性樹脂組成物は、その形状に制限はなく、例えばペースト状であってもシート状であってもよい。
 また、本発明のポジ型感光性樹脂シートは、本発明のポジ型感光性樹脂組成物を支持体上にシート状に形成したポジ型感光性樹脂シートである。本発明のポジ型感光性樹脂シートとは、本発明のポジ型感光性樹脂組成物を支持体上に塗布し、溶剤を揮発させることが可能な範囲の温度および時間で乾燥し、本発明のポジ型感光性樹脂組成物が、完全に硬化されていないシート状のもので、本発明のポジ型感光性樹脂組成物が、有機溶剤に可溶である状態のものを指す。
 支持体は特に限定されないが、ポリエチレンテレフタレート(PET)フィルム、ポリフェニレンサルファイドフィルム、ポリイミドフィルムなど、通常市販されている各種のフィルムが使用可能である。支持体とポジ型感光性樹脂組成物との接合面には、密着性と剥離性を向上させるために、シリコーン、シランカップリング剤、アルミキレート剤、ポリ尿素などの表面処理を施してもよい。また、支持体の厚みは特に限定されないが、作業性の観点から、10~100μmの範囲であることが好ましい。さらに塗布で得られたポジ型感光性樹脂組成物の膜表面を保護するために、膜表面上に保護フィルムを有してもよい。これにより、大気中のゴミやチリ等の汚染物質からポジ型感光性樹脂組成物の表面を保護することができる。
 ポジ型感光性樹脂組成物を支持体に塗布する方法としてはスピンナーを用いたスピン塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーター、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどの方法が挙げられる。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が、塗膜均一性などの観点から0.5μm以上100μm以下であることが好ましい。
 乾燥には、オーブン、ホットプレート、赤外線などを使用することができる。乾燥温度および乾燥時間は、溶媒を揮発させることが可能な範囲であればよく、感光性樹脂組成物が未硬化または半硬化状態となるような範囲を適宜設定することが好ましい。具体的には、40℃から150℃の範囲で1分から数十分行うことが好ましい。また、これらの温度を組み合わせて段階的に昇温してもよく、例えば、80℃、90℃で各2分ずつ熱処理してもよい。
 本発明の硬化物は、本発明のポジ型感光性樹脂組成物を硬化したものである。本発明の硬化物の製造方法の一つの態様は、
a)本発明のポジ型感光性樹脂組成物を基材上に塗布、乾燥してポジ型感光性樹脂膜を形成する工程、
b)該ポジ型感光性樹脂膜を露光する工程、
c)該露光されたポジ型感光性樹脂膜の露光部をアルカリ水溶液で溶出または除去して現像する工程、および、
d)該現像されたポジ型感光性樹脂膜を加熱処理する工程、を含む。 本発明の硬化物の製造方法の別の態様は、本発明のポジ型感光性樹脂シートを用い、
a)本発明のポジ型感光性樹脂組成物を基材上に熱圧着する工程、
b)該熱圧着されたポジ型感光性樹脂組成物を露光する工程、
c)該熱圧着されたポジ型感光性樹脂組成物の露光部をアルカリ水溶液で溶出または除去して現像する工程、および、
d)該現像されたポジ型感光性樹脂組成物を加熱処理する工程、を含む。
 このようにして得られた硬化物は、ポリイミドあるいはポリベンゾオキサゾールを主体とする硬化物であるため、耐熱性や電気絶縁性、機械特性に優れる。
 前記基材は、シリコンウェハー、セラミックス類、ガリウムヒ素、有機系回路基板、無機系回路基板、およびこれらの基板に回路の構成材料が配置されたものなどが挙げられるが、これらに限定されない。有機系回路基板の例としては、ガラス布・エポキシ銅張積層板などのガラス基材銅張積層板、ガラス不織布・エポキシ銅張積層板などのコンポジット銅張積層板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板などの耐熱・熱可塑性基板、ポリエステル銅張フィルム基板、ポリイミド銅張フィルム基板などのフレキシブル基板が挙げられる。また、無機系回路基板の例は、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板などのセラミック基板、アルミニウムベース基板、鉄ベース基板などの金属系基板が挙げられる。回路の構成材料の例は、銀、金、銅などの金属を含有する導体、無機系酸化物などを含有する抵抗体、ガラス系材料および/または樹脂などを含有する低誘電体、樹脂や高誘電率無機粒子などを含有する高誘電体、ガラス系材料などを含有する絶縁体などが挙げられる。
 前記ポジ型感光性樹脂シートを前記基材上に熱圧着する工程は特に限定されないが、公知の方法を用いることができる。例えば、前記ポジ型感光性樹脂シートが、保護フィルムを有する場合には、保護フィルムを剥離し、ポジ型感光性樹脂シートと基板を対向させ、熱圧着により貼り合わせる。ポジ型感光性樹脂シートから支持体を剥離するのは、熱圧着の前でも後でも構わないし、露光の前でも後でも構わない。熱圧着は、熱プレス、熱ラミネート、熱真空ラミネート等によって行うことができる。中でも熱ラミネートが好ましい。貼り合わせ温度は、基板への密着性、埋め込み性の点から40℃以上が好ましい。また、貼り合わせ時に樹脂組成物フィルムが硬化し、露光・現像工程におけるパターン形成の解像度が悪くなることを防ぐために、貼り合わせ温度は150℃以下が好ましい。
 該ポジ型感光性樹脂シートを露光する工程、該露光したポジ型感光性樹脂シートの露光部をアルカリ水溶液で溶出または除去して現像する工程、および、現像したポジ型感光性樹脂シートを加熱処理する工程については、特に制限はないが、前記ポジ型感光性樹脂組成物を用いた硬化物の製造方法と同様に行うことが好ましい。
 本発明のポジ型感光性樹脂組成物を硬化した硬化物は、半導体装置等の電子部品に使用することができる。本発明でいう半導体装置とは、半導体素子の特性を利用することで機能し得る装置全般を指す。半導体素子を基板に接続した電気光学装置や半導体回路基板、複数の半導体素子を積層したもの、並びにこれらを含む電子装置は、全て半導体装置に含まれる。また、半導体素子を接続するための多層配線板等の電子部品も半導体装置に含める。具体的には、半導体のパッシベーション膜、半導体素子の表面保護膜、半導体素子と配線の間の層間絶縁膜、複数の半導体素子の間の層間絶縁膜、高密度実装用多層配線の配線層間の層間絶縁膜、有機電界発光素子の絶縁層などの用途に好適に用いられるが、これに制限されず、様々な用途に用いることができる。
 本発明の半導体装置は、本発明の硬化物が半導体の保護膜または再配線間の層間絶縁膜として配置された、半導体装置である。前記ポジ型感光性組成物の硬化膜が半導体の保護膜または再配線間の層間絶縁膜として配置されることにより、高信頼性の半導体装置とすることができる。
 本発明の半導体装置は、前記再配線と前記層間絶縁膜が2~10層繰り返し配置された、半導体装置であることが好ましい。前記再配線と前記層間絶縁膜が2~10層繰り返し配置された半導体装置とは、前記再配線上に、本発明の硬化物を形成し層間絶縁膜とし、この再配線と層間絶縁膜の組を1層とし、これを2~10層繰り返し配置された半導体装置である。前記再配線と前記層間絶縁膜が2~10層繰り返し配置されることにより、半導体装置の小型化ができる。
 本発明の表示装置は、基板上に形成された、第一電極と、第一電極を部分的に露光せしめるように第一電極上に形成された絶縁層と、第一電極に対向して設けられた第二電極とを含む表示装置であって、前記絶縁層が本発明の硬化物を含む表示装置である。
 本発明の表示装置の別の態様は、薄膜トランジスタ(TFT)が形成された基板上の凹凸を覆う状態で設けられた平坦化膜を備えてなる表示装置であって、前記平坦化膜が本発明の硬化物を含む表示装置である。
 具体的には、基板上に、駆動回路、平坦化層、第1電極、絶縁層、発光層および第2電極を有し、平坦化層および/または絶縁層が前記硬化物を含む表示装置であることが好ましい。アクティブマトリックス型の表示装置を例に挙げると、ガラスや樹脂フィルムなどの基板上に、TFTと、TFTの側方部に位置しTFTと接続された配線とを有し、その上に凹凸を覆うようにして平坦化層を有し、さらに平坦化層上に表示装置が設けられている。表示装置と配線とは、平坦化層に形成されたコンタクトホールを介して接続される。本発明のポジ型感光性樹脂組成物を硬化した硬化物は、平坦化性とパターン寸法安定性に優れるため、平坦化層として表示装置に具備させることが好ましい。特に、近年、表示装置のフレキシブル化が主流になっており、前述の駆動回路を有する基板が樹脂フィルムからなる表示装置であってもよい。
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。なお、用いた化合物のうち略語を使用しているものについて、名称を以下に示す。なお、ジアミン化合物については樹脂(A)としたときの式(1)のOR基が酸で分解して生成するフェノール性水酸基含有構造のpKaを併記する。
 (酸二無水物化合物)
TDA-100:1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン
ODPA:3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
CHDA:1,2,4,5-シクロヘキサンテトラカルボン酸二無水物
(ジアミン化合物)
BAP(pKa=12.76):2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン
6FAP(pKa=10.43):2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン
HA:N,N’-((パーフルオロプロパン-2,2-ジイル)ビス(6-ヒドロキシ-3,1-フェニレン))ビス(3-アミノベンズアミド)
ABPS(pKa=8.24):ビス(3-アミノ-4-ヒドロキシフェニル)スルホン
BAHF(pKa=11.12):9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン
CPPS(pKa=12.22):1,1-ビス(3-アミノ-4-ヒドロキシフェニル)シクロペンタン
CHPS(pKa=13.27):1,1-ビス(3-アミノ-4-ヒドロキシフェニル)シクロヘキサン
 (酸二化合物)
ODBC:4,4’-オキシビス(ベンゾイルクロリド)
BPDC:4,4’-ジシクロヘキシルジカルボン酸クロリド
CHDC:4,4’-シクロヘキサンジカルボン酸クロリド(シス、トランス混合体)
 (アミノ基を有する末端封止剤)
mAP:3-アミノフェノール。
 ((B)光酸発生剤)
 (オキシムスルホネート化合物)
PAG-103:“Irgacure”(登録商標) PAG-103(ベンゼンアセトニトリル,2-メチル-α-[[(プロピルスルホニル)オキシ]イミノ]-3(2H)-チエニリデン、BASFジャパン社製)
PAI-101:(Z)-4-メトキシ-N-(トシロキシ)ベンズイミドイルシアニド、みどり化学社製
 (イミドスルホネート化合物)
SP-606:“アデカアークルズ”(登録商標) SP-606(4-ブトキシ-N-ヒドロキシ-ナフタルイミドトリフラート、ADEKA社製)
 (イオン性光酸発生剤)
SP-056:“アデカアークルズ”(登録商標) SP-056(トリフェニルスルホニウムパーフルオロ-1-ブタンスルホナート酸塩、ADEKA社製)。
 ((C)アミン化合物)
ルチジン:2,6-ルチジン
 ((D)溶剤))
CP:シクロペンタノン
GBL:γ-ブチロラクトン
 (その他)
IPVE:イソプロピルビニルエーテル
CHVE:シクロヘキシルビニルエーテル
NPVE:n-プロピルビニルエーテル
DHP:ジヒドロピラン
BocO:二炭酸ジ-tert-ブチル
NQD-1:4,4’-(1-(4-(2-(4-ヒドロキシフェニル)プロパン-2-イル)フェニル)エタン-1,1-ジイル)ジフェノールとナフトキノンジアジドスルホン酸の2エステル。
 (1)ポリイミド、ポリベンゾオキサゾール、ポリアミドの重量平均分子量
 GPC分析装置を用い、ポリスチレン換算の重量平均分子量(Mw)を測定して求めた。なお、ポリイミド樹脂およびポリベンゾオキサゾール樹脂の重量平均分子量は下記条件により測定した。
測定装置:Waters2695(Waters社製)
カラム温度:50℃
流速:0.4mL/min
検出器:2489 UV/Vis Detector(測定波長 260nm)
展開溶剤:NMP(塩化リチウム0.21重量%、リン酸0.48重量%含有)
ガードカラム:TOSOH TSK guard column(東ソー(株)製)
カラム:TOSOH TSK-GEL a-2500、
    TOSOH TSK-GEL a-4000 直列(いずれも東ソー(株)製)。
 (2)PI-01~PI-20、PAA-01のイミド化率(%)
 合成例で得られたポリイミド(PI-01~PI-20、PAA-01)を濃度35質量%になるようにGBLに溶解した。この溶液を4インチのシリコンウェハー上にスピンナー(ミカサ(株)製1H-DX)を用いてスピンコート法で塗布し、次いで120℃のホットプレートで3分ベークし、厚さ4~5μmの樹脂膜を作製した。この樹脂膜付きウエハを2分割し、一方をクリーンオーブン(光洋サーモシステム(株)製CLH-21CD-S)を用いて、窒素気流下(酸素濃度20ppm以下)において140℃で30分、次いでさらに昇温して320℃で1時間キュアして、イミド環を完全に閉環させた(サンプルIM02)。もう一方はそのまま用いた(サンプルIM01)。赤外分光光度計((株)堀場製作所製FT-720)を用いてキュア前後の樹脂膜(IM01、IM02)の透過赤外吸収スペクトルをそれぞれ測定し、ポリイミドに起因するイミド構造の吸収ピーク(1,780cm-1付近、1,377cm-1付近)の存在を確認の上、IM01の1,377cm-1付近のピーク強度(S)、IM02の1,377cm-1付近のピーク強度(T)を求めた。ピーク強度(S)をピーク強度(T)で割ったピーク強度比を算出し、熱処理前ポリイミド中のイミド基の含量、すなわちイミド化率とした。
 (3)ポジ型感光性樹脂組成物中の全樹脂におけるフッ素原子含有量
 樹脂または樹脂溶液を試料として精秤する。下記記載の自動試料燃焼装置を用いて、分析装置の燃焼管内で燃焼させ、発生したガスを溶液に吸収後、吸収液の一部をイオンクロマト法により分析した。樹脂溶液の場合は、得られた試料中の全フッ素原子含有量(質量%)を前記固形分濃度(%)で割ることにより、該樹脂におけるフッ素原子含有量とした。
 <燃焼・吸収条件>
システム  :AQF-2100H、GA-210(三菱化学(株)社製)
電気炉温度 :Inlet 900℃  Outlet 1000℃
ガス    :Ar/O 200mL/分
      :O/   400mL/分
吸収液   :H 0.036質量%、内標 P 4μg/mL
吸収液量  :20mL
 <イオンクロマトグラフィー・アニオン分析条件>
システム :ICS1600(DINONEX(株)社製)
移動相  :2.7mmol/L NaCO / 0.3mmol/L NaHCO
流速   :1.5mL/分
検出器  :電気伝導度検出器
注入量  :20μL。
 (4)保護率
 保護率は、400MHz、1H-NMR(核磁気共鳴)装置(日本電子株式会社製 AL-400)を用いて測定した。具体的には、重水素化ジメチルスルホキシド溶液中、積算回数16回で測定した。5-6ppm付近に観測される保護基由来のメチン基(>CH-)のプロトンの積分値および9-11ppm付近に観測されるフェノール性水酸基のプロトンの積分値を算出し、メチン基のプロトンの積分値とフェノール性水酸基のプロトンの積分値の合計を100%としたときの、メチン基のプロトン積分値の割合を保護率(%)とした。
 (5)固形分濃度
 固形分濃度は、以下の方法により求めた。アルミカップに溶液を1.500g秤取し、ホットプレートを用いて180℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分の重量を秤量して、加熱前の重量に対する割合から固形分濃度を求めた。
 (6)レリーフパターンの作製
 各実施例および比較例により得られたポジ型感光性樹脂組成物を、塗布現像装置ACT-8(東京エレクトロン(株)製)を用いて、8インチシリコンウェハー上にスピンコート法により塗布し、100℃で2分間加熱をして膜厚4.0μmのポジ型感光性樹脂膜を作製した。なお、膜厚は、光干渉式膜厚測定装置ラムダエースSTM-602(SCREENホールディングス社製)を用いて、屈折率1.629の条件で測定した。その後、露光機i線ステッパーNSR-2005i9C(ニコン社製)を用いて、10μmのコンタクトホールのパターンを有するマスクを介して、露光量5~300mJ/cmの範囲で5mJ/cm毎に露光した。露光後、前記ACT-8の現像装置を用いて、2.38質量%のTMAH(多摩化学工業(株)製)を現像液として、80秒間現像した後、蒸留水でリンスを行い、振り切り乾燥し、レリーフパターンを得た。
 (6-1)現像膜減少量の算出
 現像膜減少量は、現像前の膜厚から、現像後の膜厚を引算し、算出した。下記のように結果を判定し、膜減少量が1.0μm未満である、A、A、BおよびCを合格とした。
:現像膜減少量が0.2μm未満
:現像膜減少量が0.2μm以上0.3μm未満
B:現像膜減少量が0.3μm以上0.5μm未満
C:現像膜減少量が0.5μm以上1.0μm未満
D:現像膜減少量が1.0μm以上2.0μm未満
E:現像膜減少量が2.0μm以上。
 (6-2)感度
 感度は得られたレリーフパターンをFDP顕微鏡MX61(オリンパス(株)製)を用いて倍率20倍で観察し、コンタクトホールの開口径を測定した。コンタクトホールの開口径が10μmに達した最低露光量を求め、これを感度とした。下記のように結果を判定し、感度が100mJ/cm未満である、A~Cを合格とした。
:感度が10mJ/cm未満
A:感度が10mJ/cm以上15mJ/cm未満
:感度が15mJ/cm以上20mJ/cm未満
:感度が20mJ/cm以上30mJ/cm未満
B:感度が30mJ/cm以上40mJ/cm未満
:感度が40mJ/cm以上50mJ/cm未満
:感度が50mJ/cm以上70mJ/cm未満
C:感度が70mJ/cm以上85mJ/cm未満
:感度が85mJ/cm以上100mJ/cm未満
D:感度が100mJ/cm以上200mJ/cm未満
E:感度が200mJ/cm以上。
 (6-3)現像残渣
 現像残渣は、得られたレリーフパターンの前記最低露光量で加工した際のコンタクトホールを観察箇所とし、FPD/LSI検査顕微鏡(OPTIPHOT-300;(株)ニコン製)を用いて開口部における残渣の有無を観察した。
 下記のように判定し、開口部における残渣の存在面積が5%未満となる、A、B、B--、及びCを合格とした。
A:開口部における残渣無し(1%未満)
:開口部における残渣の存在面積が1%以上2%未満
:開口部における残渣の存在面積が2%以上3%未満
C:開口部における残渣の存在面積が3%以上5%未満
D:開口部における残渣の存在面積が5%以上10%未満
E:開口部における残渣の存在面積が10%以上。
 (7)熱処理による膜厚変化
 各実施例および比較例により得られたポジ型感光性樹脂組成物を、塗布現像装置ACT-8(東京エレクトロン(株)製)を用いて、8インチシリコンウェハー上にスピンコート法により塗布し、100℃で2分間加熱をして膜厚4.0μmのポジ型感光性樹脂膜を作製した。なお、膜厚は、光干渉式膜厚測定装置ラムダエースSTM-602(SCREENホールディングス社製)を用いて、屈折率1.629の条件で測定した。この樹脂膜付きウエハをクリーンオーブン(光洋サーモシステム(株)製CLH-21CD-S)を用いて、窒素気流下(酸素濃度20ppm以下)において250℃で30分熱処理して、膜厚R(μm)を測定した。このとき、R/4×100の値を熱処理後の膜厚保持率とした。
 下記のように判定し、膜厚保持率が70%以上となる、A、Bを合格とした。
A:膜厚保持率75%以上
B:膜厚保持率70%以上、75%未満
C:膜厚保持率70%未満。
 合成例1 ポリイミド(PI-01)の合成
 乾燥窒素気流下、三口フラスコに酸二無水物としてTDA-100を30.03g(100mmol)、NMPを200.0g秤量して溶解させた。ここにモノアミンとしてアニリン 1.860g(20mmol)をNMP 50.00gとともに加え、40℃で1時間攪拌した。次いで、ジアミンとしてBAP 23.25g(90mmol)をNMP 50.00gとともに加えて、40℃で1時間反応させ、次いで200℃で4時間攪拌した。撹拌終了後、溶液を純水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、純水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し、ポリイミド樹脂(PI-01)の粉末を得た。得られた樹脂のMwは24,900、イミド化率は100%であった。該樹脂におけるフッ素原子含有量は0質量%であった。評価結果を表1に記載した。
 合成例2~20 ポリイミド(PI-02~20)の合成
 合成例1から、酸二無水物、モノアミン、ジアミンを表1に記載の種類および量に変更した以外は、合成例1と同様に合成した。評価結果を表1に記載した。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 合成例21 ポリベンゾオキサゾール前駆体(PBO-01)の合成
 乾燥窒素気流下、BAP 25.83g(100mmol)とフタル酸無水物 2.960g(20mmol)をNMP75.00gに溶解させ、80℃で2時間攪拌した。その後、溶液の温度を-15℃まで冷却し、溶液の温度が-15℃になったことを確認した後、ODBC 26.56g(90mmol)をNMP 30gに溶解させた溶液を、反応系内の温度が0℃を越えないように滴下した。滴下終了後、6時間、20℃で撹拌を続けた。反応終了後、メタノールを10重量%含んだ純水3Lに上記溶液を投入して白色の沈殿を析出させた。この沈殿をろ過で集めて、純水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し、ポリベンゾオキサゾール樹脂(PBO-01)を得た。得られた樹脂のMwは23,400、オキサゾール化率は10%であった。評価結果を表2-1に記載した。
 合成例21~35 ポリベンゾオキサゾール前駆体(PBO-02~15)の合成
 合成例21から、ジカルボン酸誘導体、ジアミン、末端無水物を表2-1に記載の種類および量に変更した以外は、合成例21と同様に合成した。評価結果を表2-1に記載した。
 合成例36 ポリイミド前駆体(PAA-01)の合成
 乾燥窒素気流下、三口フラスコに酸二無水物としてODPAを31.02g(100mmol)、NMPを200.0g秤量して溶解させた。ここにモノアミンとしてアニリン 1.860g(20mmol)をNMP 50.00gとともに加え、40℃で1時間攪拌した。次いで、ジアミンとしてHFHA 54.41g(90mmol)をNMP 50.00gとともに加えて、40℃で3時間攪拌させた。撹拌終了後、溶液を純水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、純水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し、ポリイミド前駆体(PAA-01)の粉末を得た。得られた樹脂のMwは27,000、イミド化率は5%、樹脂のフッ素原子濃度は18.3%であった。評価結果を表2-2に記載した。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 合成例37 (A)式(1)で表される構成単位を含む樹脂:
 乾燥窒素気流下、三口フラスコにベースポリマーとして合成例1で合成したPI-01を10.00g、溶剤としてCPを50.00g秤量して溶解させた。ここに保護剤としてIPVEを1.800g加え、0℃で1時間攪拌した。次いで、触媒として、p-トルエンスルホン酸ピリジニウムを1.000×10-2g加え、0℃で3時間攪拌させた。攪拌終了後、飽和炭酸水素ナトリウム水溶液で酸触媒を中和した後、水槽を除去した。さらに有機層を水で2回洗浄した。その後、未反応のIPVEを除去することを目的として、ロータリーエバポレーターを用いて低沸点残存物を除去した。その後、溶液の固形分濃度を測定し、固形分濃度が40%となるようにCPを添加し、水酸基が酸分解性基である1-イソプロポキシエチル基で保護された樹脂(PI-01-IPVE10)の固形分40質量%溶液を得た。酸分解性基で保護されているフェノール性水酸基の割合は、10mol%であった。合成結果を表3に示す。
 合成例38~78
 合成例37から、ベースポリマーおよび保護剤を表3のように変更した以外は、合成例37と同様に合成した。合成結果を表3に示す。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 実施例1
 黄色灯下、(A)樹脂として、P1-01-IPVE10の固形分40%CP溶液を2.500g、(B)光酸発生剤としてPAG-103を5.000×10-2g、(C)アミン化合物としてルチジンを5.000×10-3g加え、攪拌した。その後、CPを1.500g加え濃度を調整し、ポジ型感光性樹脂組成物とした。
 調製したポジ型感光性樹脂組成物の、(6)レリーフパターンの作製を行い、(6-1)現像膜減量、(6-2)感度、(6-3)残渣の評価を行った。評価結果を表4に示す。
 実施例2~38、比較例1~4
 ポジ型感光性樹脂組成物の各成分の配合を表4に記載のように変更した以外は、実施例1と同様に、評価を行った。評価結果を表4に示す。比較例1,2はフッ素原子含有量が多過ぎ、比較例3はPI-01-tBOC25が用いられており、カルボニル基を含む有機基が酸分解性基として含まれている。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
  実施例39~40
 実施例14から(B)光酸発生剤の種類を表5に記載のように変更した以外は、実施例14と同様に評価を行った。評価結果を表5に示す。
 実施例41
 実施例7から(B)光酸発生剤の種類を表5に記載のように変更した以外は、実施例7と同様に評価を行った。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000043
 実施例42
 実施例3から(C)アミン化合物を表6に記載ように変更した以外は、実施例3と同様に評価を行った。評価結果を表6に示す。
 実施例43
 実施例14から(C)アミン化合物を表6に記載ように変更した以外は、実施例14と同様に評価を行った。評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000044
 実施例44、45
 PI-01-IPVE25(40%CP溶液)を10.00g秤取し、GBLを6.000g加え、ロータリーエバポレーターを用いて、溶媒置換を行った。溶媒置換後、固形分濃度を測定し、固形分濃度が40%となるようGBLを加え、PI-01-IPVE25(40%GBL溶液)を得た。
 実施例3から(A)樹脂をPI-01-IPVE25(40%GBL溶液)に変更し、溶剤の種類を表7のように変更して、溶媒の100%がGBLとなる組成物、および、溶媒の20%がCPとなる組成物とした以外は、実施例3と同様に評価を行った。評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000045
 比較例5~7
 表8に記載のように、未保護の樹脂とキノンジアジド化合物を用いて組成物を調整した。調整した組成物の(6)レリーフパターンの作製を行い、(6-1)現像膜減少量、(6-2)感度、(6-3)残渣の評価を行った。評価結果を表8に示す。比較例5,6,7はいずれも一般式(1)(n=1~4)の構造を含まない。
Figure JPOXMLDOC01-appb-T000046

Claims (21)

  1. (A)窒素原子を含む耐熱樹脂
    (B)光酸発生剤を含み、
    該(A)樹脂が、式(1)で表される構成単位を含み、組成物中に含まれる全樹脂の総量を100質量%として、該全樹脂におけるフッ素原子含有量が15質量%以下である、
    ポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、炭素数3~30の3~12価の有機基を示し、Rは、炭素数3~20の1価の酸分解性基である。mは0~4、nは1~4の整数を示す。*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。)
  2. (A)窒素原子を含む耐熱樹脂がポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群から選ばれる一種以上の樹脂である請求項1に記載のポジ型感光性樹脂組成物。
  3. 酸分解性基がオキシメチル基である請求項1に記載のポジ型感光性樹脂組成物。
  4. 前記式(1)のOR基が酸で分解して生成するフェノール性水酸基含有構造のpKaが11以上である請求項1に記載のポジ型感光性樹脂組成物。
  5. 前記Rの少なくとも一つが、式(2)で表される基、または、式(3)で表される基である、請求項1に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    式(2)および式(3)中、Rは、炭素数1~6のアルキル基、または、炭素数2~8のアルコキシアルキル基を示す。Rは、炭素数1~6のアルキル基、炭素数5~10の環状アルキル基、炭素数2~8のアルコキシアルキル基、または、炭素数6~16のアルコキシ環状アルキル基を示す。Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、または、炭素数2~8のアルコキシアルキル基を示す。pは0~2の整数を示し、qは0~2の整数を示す。*は結合部位を示す。
  6. 前記Rの少なくとも一つが、式(4)で表される基、または、式(5)で表される基である、請求項1に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(4)および式(5)中、RおよびRは、それぞれ独立に、炭素数1~6のアルキル基を示す。Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、または、炭素数2~8のアルコキシアルキル基を示す。rは、0~2の整数を示し、sは、0~2の整数を示す。*は結合部位を示す。)
  7. 前記式(1)が、式(6)である、請求項1に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(6)中、R、a、および、bは、前記式(1)中の同一の記号と同一の意味を示す。Lは、直接結合、-C(CH-、9H-フルオレン-9,9-ジイル基を示す。mおよびmは、それぞれ独立に、0~2の整数を示す。nおよびnは、それぞれ独立に、0~2の整数を示す。ただし、1≦(n+n)≦4を満たす。*は結合部位を示す。)
  8. 前記(A)樹脂が、式(7)で表される構造単位をおよび/または式(8)で表される構造単位を含む、請求項2に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(7)中、Xは、炭素数4~50の4価の有機基、または、前記式(1)の構成単位を示す。Yは炭素数6~30の2価の有機基、または、前記式(1)の構成単位を示す。ただし、XとYの少なくとも一つは、前記式(1)の構成単位であり、Xが、前記式(1)の構成単位をとる場合は、a=b=2であり、Yが、前記式(1)の構成単位をとる場合は、a+b=2である。*は結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(8)中、Xは、炭素数4~50の2価の有機基、または、前記式(1)の構成単位を示す。Yは炭素数6~30の2価の有機基、または、前記式(1)の構成単位を示す。ただし、XとYの少なくとも一つは、前記式(1)の構成単位であり、a=b=1である。*は結合部位を示す。)
  9. 前記式(7)中、Xが、炭素数4以上の脂肪族骨格を含む、炭素数4~50の4価の有機基である、および/または、前記式(8)中、Xが、炭素数4以上の脂肪族骨格を含む、炭素数4~50の2価の有機基である、請求項8に記載のポジ型感光性樹脂組成物。
  10. 前記(A)樹脂が、式(9)で表される構造単位を有し、式(9)に含まれるOH基およびOR基の合計数をM1、式(9)の構造からOH基およびOR基を除いた残りの構造部分の分子量をN1としたとき、M1/N1の値が0.004075以上である、および/または
    前記(A)樹脂が、式(10)で表される構造単位を有し、式(10)に含まれるOH基およびOR基の合計数をM2、式(10)の構造からOH基およびOR基を除いた残りの構造部分の分子量をN2としたとき、M2/N2の値が0.004075以上である、請求項2に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式(9)、式(10)中、R、R、m、および、nは、前記式(1)中の同一の記号と同一の意味を示す。Xは炭素数4以上の脂肪族骨格を含む、炭素数4~50の4価の有機基を示す。Xは、炭素数4以上の脂肪族骨格を含む、炭素数4~50の2価の有機基を示す。)
  11. 前記(B)光酸発生剤が、非イオン性光酸発生剤を含む、請求項1に記載のポジ型感光性樹脂組成物。
  12. 前記(B)光酸発生剤が、光により発生する酸性基の酸解離定数(pKa)が-14~2の範囲である光酸発生剤を含む、請求項1に記載のポジ型感光性樹脂組成物。
  13. 前記(B)光酸発生剤が、オキシムスルホネート化合物および/またはイミドスルホネート化合物を含む、請求項1に記載のポジ型感光性樹脂組成物。
  14. さらに、(C)共役酸のpKaが4.5~10.8の範囲であるアミン化合物を含む、請求項1に記載のポジ型感光性樹脂組成物。
  15. さらに、(D)溶剤を含み、該(D)溶剤が、比誘電率が5~20の範囲である炭素数3~12の非プロトン性溶剤を含む、請求項1に記載のポジ型感光性樹脂組成物。
  16. 請求項1~15のいずれかに記載のポジ型感光性樹脂組成物を支持体上にシート状に形成したポジ型感光性樹脂シート。
  17. 請求項1~15のいずれかに記載のポジ型感光性樹脂組成物を硬化した硬化物。
  18. a)請求項1~15のいずれかに記載のポジ型感光性樹脂組成物を基材上に塗布、乾燥してポジ型感光性樹脂膜を形成する工程、または、請求項16に記載のポジ型感光性樹脂シートを用い、本発明のポジ型感光性樹脂組成物を基材上に熱圧着する工程、b)該ポジ型感光性樹脂膜または該熱圧着されたポジ型感光性樹脂組成物を露光する工程、c)該露光されたポジ型感光性樹脂膜の露光部または該熱圧着されたポジ型感光性樹脂組成物の露光部をアルカリ水溶液で溶出または除去して現像する工程、および、d)該現像されたポジ型感光性樹脂膜または該現像された熱圧着されたポジ型感光性樹脂組成物を加熱処理する工程を含む硬化物の製造方法。
  19. 請求項17に記載の硬化物が、半導体の保護膜または再配線間の層間絶縁膜として配置された、半導体装置。
  20. 基板上に形成された、第一電極と、第一電極を部分的に露光せしめるように第一電極上に形成された絶縁層と、第一電極に対向して設けられた第二電極とを含む表示装置であって、
    前記絶縁層が請求項17に記載の硬化物を含む表示装置。
  21. 薄膜トランジスタ(TFT)が形成された基板上の凹凸を覆う状態で設けられた平坦化膜を備えてなる表示装置であって、前記平坦化膜が請求項17に記載の硬化物を含む表示装置。
PCT/JP2023/022050 2022-06-22 2023-06-14 ポジ型感光性樹脂組成物、ポジ型感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置 WO2023248887A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022100054 2022-06-22
JP2022-100054 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023248887A1 true WO2023248887A1 (ja) 2023-12-28

Family

ID=89379800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022050 WO2023248887A1 (ja) 2022-06-22 2023-06-14 ポジ型感光性樹脂組成物、ポジ型感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置

Country Status (2)

Country Link
TW (1) TW202403452A (ja)
WO (1) WO2023248887A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156012A (ja) * 2002-11-07 2004-06-03 Samsung Electronics Co Ltd 感光性ポリイミド前駆体用可溶性ポリイミドおよびこれを含む感光性ポリイミド前駆体組成物
JP2008233363A (ja) * 2007-03-19 2008-10-02 Fujifilm Corp 感光性樹脂組成物、それを用いた硬化レリーフパターンの製造方法及び半導体装置
JP2010139929A (ja) * 2008-12-15 2010-06-24 Toyobo Co Ltd ポジ型感光性ポリイミド樹脂組成物
JP2011221173A (ja) * 2010-04-07 2011-11-04 Toyobo Co Ltd ポジ型感光性樹脂組成物及びそれを使用したレリーフパターンの製造方法
JP2017049368A (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 感光性組成物、硬化膜の製造方法、液晶表示装置の製造方法、有機エレクトロルミネッセンス表示装置の製造方法、およびタッチパネルの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156012A (ja) * 2002-11-07 2004-06-03 Samsung Electronics Co Ltd 感光性ポリイミド前駆体用可溶性ポリイミドおよびこれを含む感光性ポリイミド前駆体組成物
JP2008233363A (ja) * 2007-03-19 2008-10-02 Fujifilm Corp 感光性樹脂組成物、それを用いた硬化レリーフパターンの製造方法及び半導体装置
JP2010139929A (ja) * 2008-12-15 2010-06-24 Toyobo Co Ltd ポジ型感光性ポリイミド樹脂組成物
JP2011221173A (ja) * 2010-04-07 2011-11-04 Toyobo Co Ltd ポジ型感光性樹脂組成物及びそれを使用したレリーフパターンの製造方法
JP2017049368A (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 感光性組成物、硬化膜の製造方法、液晶表示装置の製造方法、有機エレクトロルミネッセンス表示装置の製造方法、およびタッチパネルの製造方法

Also Published As

Publication number Publication date
TW202403452A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP4775261B2 (ja) ポジ型感光性樹脂組成物、パターンの製造方法及び電子部品
KR101910220B1 (ko) 감광성 수지 조성물, 그 수지 조성물을 사용한 패턴 경화막의 제조 방법 및 전자 부품
JP5910109B2 (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、および表示体装置
TW201346448A (zh) 正型感光性樹脂組成物,使用其之半導體裝置及顯示裝置
TW201809076A (zh) 樹脂組成物
JP6225585B2 (ja) 耐熱性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
JP6645424B2 (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置
JP2006189788A (ja) ネガ型感光性樹脂組成物、パターン形成方法及び電子部品
WO2014069091A1 (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置
JP6451065B2 (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置
JP5076390B2 (ja) ネガ型感光性樹脂組成物、パターン硬化膜の製造方法および電子部品
JP6255740B2 (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、表示体装置、およびポジ型感光性樹脂組成物の製造方法
JP6291718B2 (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、および表示体装置
JP5120539B2 (ja) 耐熱性樹脂組成物
JP5617505B2 (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、および表示体装置
WO2023248887A1 (ja) ポジ型感光性樹脂組成物、ポジ型感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置
EP3413132B1 (en) Positive-type photosensitive resin composition
JP2008033158A (ja) ポジ型感光性樹脂組成物、パターン硬化膜の製造方法および電子部品
JP2006178059A (ja) ネガ型感光性樹脂組成物、パターンの製造方法及び電子部品
WO2024070845A1 (ja) 感光性樹脂組成物、感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置、樹脂の製造方法
US7638254B2 (en) Positive photosensitive resin composition, method for forming pattern, and electronic part
JP2024052576A (ja) 感光性樹脂組成物、感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置
TW202417554A (zh) 感光性樹脂組成物、感光性樹脂片、硬化物、硬化物的製造方法、半導體裝置、顯示裝置及樹脂的製造方法
TWI830255B (zh) 感光性聚醯亞胺樹脂組成物
EP3413131A1 (en) Positive-type photosensitive resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023537957

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827073

Country of ref document: EP

Kind code of ref document: A1