WO2024070845A1 - 感光性樹脂組成物、感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置、樹脂の製造方法 - Google Patents

感光性樹脂組成物、感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置、樹脂の製造方法 Download PDF

Info

Publication number
WO2024070845A1
WO2024070845A1 PCT/JP2023/034069 JP2023034069W WO2024070845A1 WO 2024070845 A1 WO2024070845 A1 WO 2024070845A1 JP 2023034069 W JP2023034069 W JP 2023034069W WO 2024070845 A1 WO2024070845 A1 WO 2024070845A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
formula
resin composition
group
carbon atoms
Prior art date
Application number
PCT/JP2023/034069
Other languages
English (en)
French (fr)
Inventor
進 田中
政雄 鴨川
聡 亀本
智之 弓場
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024070845A1 publication Critical patent/WO2024070845A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Definitions

  • the present invention relates to a photosensitive resin composition, a photosensitive resin sheet, a cured product, a method for producing a cured product, a semiconductor device, a display device, and a method for producing a resin.
  • Polyimides and polybenzoxazoles which have excellent heat resistance, electrical insulation, and mechanical properties, are widely used for surface protection films and interlayer insulating films used in semiconductor devices, insulating layers in organic electroluminescent devices, and planarizing films for TFT (thin film transistor) substrates.
  • photosensitive resin compositions in which these resins themselves or their precursors are given photosensitivity have been used (hereinafter, these photosensitive resin compositions will be referred to as polyimide-based photosensitive resin compositions).
  • the pattern processing process can be simplified, and the complicated manufacturing process can be shortened.
  • polyimide-based photosensitive resin compositions positive-type materials have been proposed for polyimide-based photosensitive resin compositions, in which the exposed areas become readily soluble in a developer and can be patterned, and negative-type materials in which the composition itself is readily soluble and the exposed areas become insoluble in a developer.
  • Known polyimide-based photosensitive resin compositions include those in which a quinone diazide compound is added to a polyimide, polybenzoxazole, polyimide precursor, or polybenzoxazole precursor (see, for example, Patent Document 1), and those in which a photoacid generator is added to a polyamide that contains a protecting group that can be removed in the presence of an acid (see, for example, Patent Document 2).
  • Patent Document 1 combines an alkali-soluble resin with a quinone diazide compound.
  • the quinone diazide compound interacts with the alkali-soluble resin to reduce the solubility of the composition in an alkaline developer.
  • the compound becomes an indene carboxylic acid compound through a photochemical reaction upon exposure and acts as a dissolution promoter in an alkaline developer, which creates a dissolution contrast between the exposed and unexposed areas and allows pattern processing. Therefore, the sensitivity depends on the amount of quinone diazide compound added. However, if the amount of quinone diazide compound added is increased, the photochemical reaction rate decreases due to the light absorption of the quinone diazide compound itself. Therefore, it is difficult to achieve both a shorter exposure time and a small amount of film loss.
  • Patent Document 2 substitutes the hydrogen atoms of the hydroxyl groups in an alkali-soluble polyamide with tert-butoxycarbonyl groups (hereinafter also referred to as t-Boc groups) to make an alkali-insoluble resin, which is then combined with a photoacid generator.
  • t-Boc groups tert-butoxycarbonyl groups
  • an acid is generated from the photoacid generator in the exposed area, and this acid reacts with the t-Boc group, causing the t-Boc group to be detached from the polyamide (hereinafter referred to as deprotection), changing the polyamide from an alkali-insoluble state to an alkali-soluble state.
  • deprotection tert-butoxycarbonyl groups
  • this technology has the problem that the reaction rate of the t-Boc group with the acid is low, making it impossible to shorten the exposure time.
  • the present invention is as follows. (1) (A) one or more resins selected from the group consisting of polyimide, polybenzoxazole, polyamide, and copolymers thereof, which contain a structural unit represented by formula (1); (B) a photoacid generator, and (C) a solvent, The photosensitive resin composition, wherein the solvent (C) contains a ketone compound represented by formula (2) (C1) and/or a ketone compound represented by formula (3) (C2).
  • R1 represents a trivalent to dodecavalent organic group having 3 to 30 carbon atoms
  • R2 represents a monovalent oxymethyl group having 3 to 20 carbon atoms
  • m represents an integer of 0 to 4
  • n represents an integer of 1 to 4
  • * represents a bonding site
  • a and b each independently represent an integer of 1 or 2.
  • R3 represents a single bond or a monovalent or divalent organic group having 1 to 12 carbon atoms
  • R4 represents a monovalent organic group having 1 to 5 carbon atoms
  • p represents an integer of 1 or 2.
  • R5 represents a monovalent organic group having 1 to 12 carbon atoms
  • q represents an integer of 1 to 4
  • r represents an integer satisfying 0 ⁇ r ⁇ (q+2).
  • R6 represents a hydrogen atom or a monovalent organic group having 1 to 6 carbon atoms
  • R7 each independently represents a monovalent organic group having 1 to 12 carbon atoms
  • s represents an integer of 2 or 3
  • t represents an integer satisfying 0 ⁇ t ⁇ (s+1).
  • (6) Further comprising a compound represented by formula (5) and/or a compound represented by formula (6),
  • the photosensitive resin composition according to any one of (1) to (5), wherein the total content of the compound represented by formula (5) and the compound represented by formula (6) is 0.0001 mass% or more and 0.03 mass% or less, when the total amount of the photosensitive resin composition is 100 mass%.
  • R 8 represents a monovalent organic group having 1 to 6 carbon atoms
  • R 9 and R 10 each independently represent a monovalent organic group having 1 to 3 carbon atoms.
  • R 11 represents a hydrogen atom or a monovalent organic group having 1 to 6 carbon atoms
  • u represents an integer of 0 or more.
  • a display device comprising a first electrode formed on a substrate, an insulating layer formed on the first electrode so as to partially expose the first electrode, and a second electrode provided opposite the first electrode, wherein the insulating layer comprises the cured product described in (10).
  • a display device comprising a planarization film provided in a state of covering irregularities on a substrate on which a thin film transistor (TFT) is formed, the planarization film comprising the cured product according to (10).
  • TFT thin film transistor
  • a method for producing one or more resins selected from the group consisting of polyimide, polybenzoxazole, polyamide and copolymers thereof, which contains a structural unit represented by formula (1) comprising the step of reacting a hydroxyl group contained in the structure of the one or more resins selected from the group consisting of polyimide, polybenzoxazole, polyamide and copolymers thereof with a protecting agent in a ketone compound represented by formula (2) (C1) and/or a ketone compound represented by formula (3) (C2).
  • R1 represents a trivalent to dodecavalent organic group having 3 to 30 carbon atoms
  • R2 represents a monovalent oxymethyl group having 3 to 20 carbon atoms
  • m represents an integer of 0 to 4
  • n represents an integer of 1 to 4
  • * represents a bonding site
  • a and b each independently represent an integer of 1 or 2.
  • R3 represents a single bond or a monovalent or divalent organic group having 1 to 12 carbon atoms
  • R4 represents a monovalent organic group having 1 to 5 carbon atoms
  • p represents an integer of 1 or 2.
  • R5 represents a monovalent organic group having 1 to 12 carbon atoms
  • q represents an integer of 1 to 4
  • r represents an integer satisfying 0 ⁇ r ⁇ (q+2).
  • the photosensitive composition of the present invention has high sensitivity, allowing for a shorter exposure time and reducing the amount of film loss during development.
  • the photosensitive resin composition of the present invention comprises (A) one or more resins selected from the group consisting of polyimide, polybenzoxazole, polyamide, and copolymers thereof, which contain a structural unit represented by formula (1); (B) a photoacid generator, and (C) a solvent,
  • the (C) solvent is a photosensitive resin composition containing (C1) a ketone compound represented by formula (2) and/or (C2) a ketone compound represented by formula (3).
  • R1 represents a trivalent to dodecavalent organic group having 3 to 30 carbon atoms
  • R2 represents a monovalent oxymethyl group having 3 to 20 carbon atoms
  • m represents an integer of 0 to 4
  • n represents an integer of 1 to 4.
  • * represents a bonding site
  • a and b each independently represent an integer of 1 or 2.
  • R3 represents a single bond or a monovalent or divalent organic group having 1 to 12 carbon atoms
  • R4 represents a monovalent organic group having 1 to 5 carbon atoms
  • p represents an integer of 1 or 2.
  • R5 represents a monovalent organic group having 1 to 12 carbon atoms
  • q represents an integer of 1 to 4
  • r represents an integer satisfying 0 ⁇ r ⁇ (q+2).
  • the photosensitive resin composition of the present invention contains a photoacid generator (B), and thus, when exposed to exposure light corresponding to the photoacid generator contained therein, an acid can be generated in the composition.
  • the generated acid acts on the bond between O-R 2 in the R 1 -O-R 2 structure in the polyimide containing the structural unit represented by formula (1) (A), and can be converted to R 1 -OH.
  • R 1 -OH acts as a soluble group in an alkaline aqueous solution. Therefore, the photosensitive resin composition of the present invention can exhibit a solubility contrast in an alkaline aqueous solution between the unexposed and exposed parts, and therefore the exposed parts can be dissolved to form a relief pattern.
  • R2 is sometimes referred to as an "acid-decomposable group".
  • the O- R2 structure can be converted to a hydroxyl group by the action of an acid, the O- R2 structure is sometimes referred to as a "hydroxyl group protected by an acid-decomposable group”.
  • the conversion of R 1 -O-R 2 to R 1 -OH is sometimes referred to as "deprotection”
  • the proportion of R 1 -OH before the protection reaction that has been converted from R 1 -OH to R 1 -O-R 2 by the reaction with a protecting agent is sometimes referred to as the "protection rate".
  • the photosensitive resin composition of the present invention contains one or more resins selected from the group consisting of polyimides, polybenzoxazoles, polyamides, and copolymers thereof, each of which contains a structural unit represented by formula (1).
  • a polyimide is a polymer containing imide bonds in the repeating unit.
  • the polyimide can be synthesized by a known method.
  • the polyimide can be obtained by reacting a tetracarboxylic acid, a corresponding tetracarboxylic dianhydride or a tetracarboxylic diester dichloride, etc. with a diamine, a corresponding diisocyanate compound, or a trimethylsilylated diamine, etc., and dehydrating and ring-closing the resulting reactant by heating or a reaction using a catalyst such as an acid or a base.
  • the polyimide has tetracarboxylic acid and/or a derivative residue thereof, and diamine and/or a derivative residue thereof.
  • the reaction product before dehydration and ring closure is called a polyimide precursor, and the process of dehydration and ring closure to form imide bonds is called imidization.
  • imidization When cured at 320°C for 1 hour, imidization is considered to have progressed 100%, and based on this, the proportion of imide structures present in the polyimide and the polyimide precursor is taken as the imidization rate.
  • polyimide refers to one with an imidization rate of 80% or more. From the viewpoint of reducing the amount of outgassing at high temperatures and improving the reliability of the cured product described below, an imidization rate of 90% or more is preferable, and an imidization rate of 95% or more is even more preferable.
  • component (A) after imidization preferably contains a structural unit represented by formula (7).
  • X1 represents a tetravalent organic group having 4 to 50 carbon atoms, or a structural unit of formula (1).
  • Y1 represents a divalent organic group having 6 to 30 carbon atoms, or a structural unit of formula (1).
  • the structure represented by formula (7) has an imide structure with high heat resistance. Therefore, by having the structure represented by formula (7), it is possible to obtain a photosensitive resin composition with high heat resistance.
  • X 1 in the formula (7) is a tetravalent organic group having 4 to 50 carbon atoms and containing an aliphatic skeleton having 4 or more carbon atoms.
  • the hydrophobicity of the resin can be kept low, and the resin can be made to have high solubility in an alkaline developer. Therefore, a good relief pattern with little residue after exposure and development can be formed.
  • the tetravalent organic group having 4 to 50 carbon atoms and containing an aliphatic skeleton having 4 or more carbon atoms include the following structures.
  • Polybenzoxazole is a polymer containing an oxazole ring in the repeating unit.
  • the polybenzoxazole can be synthesized by a known method. For example, it can be obtained by heating a reaction product obtained by reacting a dicarboxylic acid, a corresponding dicarboxylic acid dichloride, a dicarboxylic acid diester, a dicarboxylic acid diamide, etc. with a diamine having a hydroxyl group on the carbon next to the carbon to which the nitrogen atom of the amino group is bonded (ortho position), a corresponding diisocyanate compound, or a trimethylsilylated diamine, and dehydrating and ring-closing the reaction product.
  • the polybenzoxazole has a dicarboxylic acid and/or a derivative thereof residue, and a dihydroxydiamine and/or a derivative thereof residue.
  • polybenzoxazole precursor The reaction product before dehydration and ring closure is called polybenzoxazole precursor, and the process of dehydration and ring closure to form oxazole bonds is called oxazolization.
  • oxazolization When cured at 320°C for 1 hour, oxazolization is considered to have progressed 100%, and based on this, the proportion of oxazole structures present in polybenzoxazole and the polybenzoxazole precursor was taken as the oxazolization rate.
  • polybenzoxazole refers to one with an oxazole ratio of 80% or more. From the viewpoint of reducing the amount of outgassing at high temperatures and improving the reliability of the cured product described below, an oxazole ratio of 90% or more is preferable, and an oxazole ratio of 95% or more is even more preferable.
  • component (A) after oxazole conversion preferably contains a structural unit represented by formula (8).
  • X2 represents a tetravalent organic group having 4 to 50 carbon atoms, or a structural unit of formula (1).
  • Y2 represents a divalent organic group having 4 to 30 carbon atoms, or a structural unit of formula (1).
  • the structure represented by formula (8) has an oxazole structure that is highly heat resistant. Therefore, by having the structure represented by formula (8), it is possible to obtain a photosensitive resin composition that has high heat resistance.
  • Polyamides are polymers that contain amide groups in the repeating units.
  • the polyamides can be synthesized by known methods. For example, they can be obtained by reacting a dicarboxylic acid, a corresponding dicarboxylic acid dichloride, a dicarboxylic acid diester, a dicarboxylic acid diamide, etc. with a diamine, a corresponding diisocyanate compound, or a trimethylsilylated diamine.
  • the polyamides have dicarboxylic acid and/or derivative residues thereof, and diamine and/or derivative residues thereof.
  • the structure of the polyamide component (A) preferably contains a structural unit represented by formula (9).
  • X3 represents a divalent organic group having 6 to 30 carbon atoms or a structural unit of formula (1).
  • X3 is a structure represented by the structural unit of formula (1) above, and a structure having a hydroxyl group at the ortho position relative to the amide group represents a polybenzoxazole precursor structure, and polybenzoxazole can be obtained by dehydration ring closure by heat.
  • Y 2 in the formula (8) and Y 3 in the formula (9) are divalent organic groups having 4 to 30 carbon atoms and containing an aliphatic skeleton having 4 or more carbon atoms.
  • Y 2 in the formula (8) and Y 3 in the formula (9) being tetravalent organic groups having 4 to 30 carbon atoms and containing an aliphatic skeleton having 4 or more carbon atoms, the hydrophobicity of the resin can be kept low, and the resin can be made to have high solubility in an alkaline developer. Therefore, a good relief pattern with little residue during exposure and development can be formed.
  • Examples of divalent organic groups having 4 to 30 carbon atoms and containing an aliphatic skeleton having 4 or more carbon atoms include the following structures.
  • the (A) component contained in the photosensitive resin composition of the present invention is preferably capped at the main chain end with a terminal capping agent such as a known monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound, or monoactive ester compound.
  • a terminal capping agent such as a known monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound, or monoactive ester compound.
  • the introduction ratio of the monoamine used as the terminal capping agent is preferably 0.1 mol% or more, particularly preferably 5 mol% or more, and preferably 60 mol% or less, and particularly preferably 50 mol% or less, based on the total amine components.
  • the introduction ratio of the acid anhydride, monocarboxylic acid, monoacid chloride compound, or monoactive ester compound used as the terminal capping agent is preferably 0.1 mol% or more, particularly preferably 5 mol% or more, and preferably 100 mol% or less, and particularly preferably 90 mol% or less, based on the diamine components.
  • a plurality of different terminal groups may be introduced by reacting a plurality of terminal capping agents.
  • the weight average molecular weight of component (A), calculated as polystyrene by gel permeation chromatography, is preferably 3,000 to 200,000, more preferably 5,000 to 100,000, and even more preferably 7,000 to 60,000.
  • the weight average molecular weight is determined by the method described below.
  • the resin (A) containing the structural unit represented by formula (1) contains a polyimide.
  • the photosensitive resin composition of the present invention contains a polyimide resin (A) containing a structural unit represented by formula (1).
  • the photosensitive resin composition of the present invention contains one or more resins selected from the group consisting of polyimides, polybenzoxazoles, polyamides, and copolymers thereof, each of which contains a structural unit represented by formula (1).
  • R1 represents a trivalent to dodecavalent organic group having 3 to 30 carbon atoms
  • R2 represents a monovalent oxymethyl group having 3 to 20 carbon atoms
  • m represents an integer of 0 to 4
  • n represents an integer of 1 to 4.
  • * represents a bonding site
  • a and b each independently represent an integer of 1 or 2.
  • R1 is a trivalent to dodecavalent organic group having 3 to 30 carbon atoms. Any known trivalent to dodecavalent organic group having 3 to 30 carbon atoms can be used as long as it does not impair the effects of the present invention.
  • the R1 has an aromatic ring, and the aromatic ring group is directly bonded to an OH group or an OR2 group.
  • the acid dissociation constant (pKa) of the OH group or the OH group deprotected from the OR2 group is increased, and the alkali solubility is improved. Therefore, it is easy to obtain a relief pattern with less residue.
  • the aromatic ring is preferably a phenyl group or a naphthyl group.
  • R 1 has a phenyl group or naphthyl group, and the phenyl group or naphthyl group is directly bonded to an OH group or an OR 2 group, the following structures can be mentioned.
  • R 2 , a, and b have the same meaning as the same symbols in formula (1) above.
  • m 3 , m 4 , and n 3 each independently represent an integer of 0 to 2
  • n 4 represents an integer of 1 to 2.
  • m 3 +m 4 m
  • n 3 +n 4 n
  • m and n have the same meaning as the same symbols in formula (1) above.
  • m is an integer from 0 to 4
  • n is an integer from 1 to 4.
  • the value of m+n is preferably an integer from 1 to 4, more preferably an integer from 1 to 2, and even more preferably 2.
  • * indicates a bonding site
  • the structure represented by formula (1) can be obtained, for example, by synthesizing one or more resins selected from the group consisting of polyimide, polybenzoxazole, polyamide and copolymers thereof using a hydroxyl group-containing acid dianhydride or a hydroxyl group-containing diamine, and modifying a part or all of the OH groups of the resin to OR2 groups.
  • polyamides containing a structural unit represented by formula (A) (1) it is preferable that the OH group or OR2 group is in the ortho position relative to the nitrogen of the amide group, since this is converted into polybenzoxazole by thermal dehydration ring closure, thereby increasing heat resistance.
  • hydroxyl-containing acid dianhydrides include, but are not limited to, 6,6'-methylenebis(5-hydroxyisobenzofuran-1,3-dione), N,N'-(4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-diyl)bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxamide), N,N'-(propane-2,2'-diylbis(6-hydroxy-3,1-phenylene))bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxamide), and N,N'-((perfluoropropane-2,2-diyl)bis(6-hydroxy-3,1-phenylene))bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxamide).
  • Hydroxy group-containing diamines include, but are not limited to, 2,4-diaminophenol, bis(3-amino-4-hydroxy)biphenyl, bis(3-amino-4-hydroxyphenyl)methylene, bis(3-amino-4-hydroxyphenyl)ether, bis(3-amino-4-hydroxyphenyl)propane, and bis(3-amino-4-hydroxyphenyl)fluorene.
  • the formula (1) is the formula (10).
  • R 2 , a, and b have the same meaning as the same symbols in formula (1).
  • L represents a direct bond, -C(CH 3 ) 2 -, or a 9H-fluorene-1,9-diyl group. It is more preferably a -C(CH 3 ) 2 -, or a 9H-fluorene-1,9-diyl group.
  • m 1 , m 2 , n 1 and n 2 each independently represent an integer of 0 to 2, provided that 1 ⁇ (n 1 +n 2 ) ⁇ 4 is satisfied.
  • * represents a bonding site.
  • the 9H-fluorene-1,9-diyl group is a group represented by the following formula:
  • R 1 -O-R 2 is converted to R 1 -OH, that is, the activation energy for deprotection can be reduced. Therefore, a highly sensitive photosensitive resin composition having a high deprotection rate in exposed areas can be obtained.
  • R 1 -O-R 2 is converted to R 1 -OH, that is, the activation energy for deprotection can be reduced.
  • R2 is a monovalent oxymethyl group having 3 to 20 carbon atoms.
  • the monovalent oxymethyl group having 3 to 20 carbon atoms is a monovalent group having 3 to 20 carbon atoms and having a structure in which carbon and oxygen are bonded by a single bond in order from the bonding site.
  • the monovalent oxymethyl group having 3 to 20 carbon atoms can be specifically represented by the following structure.
  • R 12 to R 17 and R 19 each represent a monovalent organic group
  • R 18 and R 20 each represent a divalent organic group. * represents a bonding site.
  • the number of carbon atoms in the structure is 3 to 20.
  • Examples of monovalent organic groups include alkyl groups having 1 to 6 carbon atoms, cyclic alkyl groups having 5 to 10 carbon atoms, alkoxyalkyl groups having 2 to 8 carbon atoms, and alkoxycyclic alkyl groups having 6 to 16 carbon atoms.
  • Divalent organic groups include propane-1,3-diyl, butane-1,3-diyl, pentane-1,3-diyl, and groups in which the hydrogen atom of a group selected from the group consisting of propane-1,3-diyl, butane-1,3-diyl, and pentane-1,3-diyl groups is substituted with a group selected from the group consisting of alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, and alkoxyalkyl groups having 2 to 8 carbon atoms.
  • the photosensitive resin composition of the present invention can exhibit a dissolution contrast in an alkaline aqueous solution between the unexposed and exposed areas, and the exposed areas can be dissolved to form a pattern.
  • At least one R 2 is preferably a group represented by the formula (11).
  • R 21 represents an alkyl group having 1 to 6 carbon atoms, or an alkoxyalkyl group having 2 to 8 carbon atoms.
  • R 22 and R 23 represent an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 10 carbon atoms, an alkoxyalkyl group having 2 to 8 carbon atoms, or an alkoxycyclic alkyl group having 6 to 16 carbon atoms.
  • R 24 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 10 carbon atoms, an alkoxyalkyl group having 2 to 8 carbon atoms, or an alkoxycyclic alkyl group having 6 to 16 carbon atoms.
  • R 22 , R 23 and R 24 may be bonded to each other to form a cyclization. * represents a bonding site.
  • alkyl groups having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, and hexyl groups.
  • alkoxyalkyl groups having 2 to 8 carbon atoms include methoxymethyl, methoxyethyl, methoxypropyl, methoxybutyl, ethoxymethyl, ethoxyethyl, ethoxypropyl, ethoxybutyl, propoxymethyl, propoxyethyl, propoxypropyl, and propoxybutyl groups.
  • cyclic alkyl groups having 5 to 10 carbon atoms include cyclopentyl, cyclohexyl, cycloheptyl, cyclopentylmethyl, cyclohexylmethyl, cycloheptylmethyl, cyclopentylethyl, cyclohexylethyl, cycloheptylethyl, cyclopentylpropyl, cyclohexylpropyl, and cycloheptylpropyl.
  • alkoxy cyclic alkyl groups having 6 to 16 carbon atoms include methoxypentyl, ethoxypentyl, propoxypentyl, dimethoxypentyl, diethoxypentyl, dipropoxypentyl, trimethoxypentyl, triethoxypentyl, tripropoxypentyl, methoxyhexyl, ethoxyhexyl, propoxyhexyl, dimethoxyhexyl, diethoxyhexyl, dipropoxyhexyl, trimethoxyhexyl, triethoxyhexyl, tripropoxyhexyl, methoxyheptyl, ethoxyheptyl, propoxyheptyl, dimethoxyheptyl, diethoxyheptyl, dipropoxyheptyl, trimethoxyheptyl, triethoxyheptyl, tripropoxyhexyl, methoxyheptyl, e
  • alkoxy groups having 1 to 6 carbon atoms include methoxy, ethoxy, propoxy, butoxy, pentoxy, and hexoxy groups.
  • Formula (11) is a structure in which the ⁇ -position of O-R 2 in the structure of R 1 -O-R 2 is branched.
  • the activation energy for converting R 1 -O-R 2 to R 1 -OH, that is, for deprotection, can be reduced. Therefore, even when only a small amount of acid is generated in the photosensitive composition upon exposure, deprotection can be performed, and a highly sensitive photosensitive resin composition can be obtained.
  • a group represented by any one of formulas (12) to (14) is preferably used for R 2 , and a group represented by formula (14) is particularly preferably used.
  • R 1 -O-R 2 can be obtained by reacting a resin having R 1 -OH with a protecting agent.
  • a resin having R 1 -OH can be reacted with a protecting agent in the presence of an acid or a base at a reaction temperature of -20 to 50°C without a solvent or in a solvent such as toluene, hexane, propylene glycol monomethyl ether acetate, or cyclopentanone, to obtain a resin having R 1 -O-R 2 , i.e., component (A).
  • the protecting agent in the present application is a compound capable of protecting a hydroxyl group, and the protecting group introduced thereby can be deprotected by the action of an acid or a base.
  • a known protecting agent capable of protecting a hydroxyl group can be used.
  • the protecting agent for example, when R 2 is a 1-ethoxyethyl group, ethyl vinyl ether can be used, and when R 2 is a 2-tetrahydropyranyl group, 3,4-dihydro-2H-pyran can be used.
  • the acid examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and perchloric acid, and organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, and trifluoroacetic acid.
  • Organic acid salts such as pyridinium p-toluenesulfonate can also be preferably used.
  • the base includes amine compounds such as pyridine, N,N-diethyl-4-aminopyridine, triethylamine, and diisopropylamine.
  • the photosensitive resin composition of the present invention preferably has a fluorine atom content of more than 15% by mass in all resins when the total amount of all resins contained in the photosensitive resin composition is taken as 100% by mass. As the fluorine atom content increases, hydrophobicity increases, and the incorporation of water molecules and amines from the surrounding atmosphere after film formation can be prevented, thereby suppressing the change in sensitivity over time.
  • the fluorine atom content in all the resins when the total amount of all the resins contained in the photosensitive resin composition is taken as 100 mass % can be analyzed by the following method.
  • the separated resin is precisely weighed as a sample.
  • the resin is burned in a combustion tube of an analyzer, and the generated gas is absorbed in a solution, and then a part of the absorbed solution is analyzed by ion chromatography.
  • As the absorbed solution 0.036 mass % of H 2 O 2 can be used.
  • the photosensitive resin composition of the present invention contains a photoacid generator (B).
  • the photoacid generator is a compound that has a function of generating an acid upon exposure to light. Any known photoacid generator (B) can be used as long as it does not impair the effects of the present invention.
  • Examples of the (B) photoacid generator include onium salt-type ionic photoacid generators and nonionic photoacid generators.
  • An onium salt refers to a compound that is generated when a compound that has an electron pair that is not involved in a chemical bond forms a coordinate bond with another cationic compound through that electron pair.
  • the cationic part of the onium salt determines the photochemical properties (molar absorption coefficient, absorption wavelength, quantum yield), and the anionic part determines the strength of the acid generated.
  • nonionic photoacid generators are photoacid generators in which the part that absorbs light and the acid are connected via an ester bond.
  • the ionic photoacid generator is preferably one that does not contain heavy metals or halogen ions, and is more preferably a triorganosulfonium salt compound.
  • triorganosulfonium salt compounds include, for example, methanesulfonate, trifluoromethanesulfonate, camphorsulfonate, 4-toluenesulfonate, and perfluoro-1-butanesulfonate of triphenylsulfonium ("SP-056", product name, manufactured by ADEKA Corporation); the sulfonate of dimethyl-1-naphthylsulfonium; the sulfonate of dimethyl(4-hydroxy-1-naphthyl)sulfonium; the sulfonate of dimethyl(4,7-dihydroxy-1-naphthyl)sulfonium; and the sulfonate of diphenyliodonium.
  • the non-ionic photoacid generator may be a diazomethane compound, a sulfone compound, a sulfonate compound, a carboxylate compound, a sulfonimide compound, a phosphate compound, or a sulfonebenzotriazole compound.
  • diazomethane compounds include bis(4-methylphenylsulfonyl)diazomethane (product name "WPAG-199", manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
  • sulfone compounds include ⁇ -ketosulfone compounds and ⁇ -sulfonylsulfone compounds.
  • Preferred sulfone compounds include 2-(p-toluenesulfonyl)acetophenone and bis(phenylsulfonyl)methane.
  • sulfonate ester compounds include alkylsulfonate esters, haloalkylsulfonate esters, arylsulfonate esters, and iminosulfonate ester compounds.
  • Preferred examples include benzoin-4-tolylsulfonate, pyrogallol tris(methylsulfonate), nitrobenzyl-9,10-diethoxyanthryl-2-sulfonate, and 2,6-(dinitrobenzyl)phenylsulfonate.
  • carboxylate ester compounds include 2-nitrobenzyl carboxylate.
  • the photoacid generator (B) preferably contains a nonionic photoacid generator.
  • a photosensitive resin composition with higher sensitivity can be obtained.
  • the (B) photoacid generator contains a photoacid generator in which the acid dissociation constant (pKa) of the acidic group generated by light is in the range of -14 to 2.
  • the photoacid generator has an acid dissociation constant (pKa) of the acidic group generated by light in the above range, the acidic group generated by light can act efficiently as an acid on the structure of R 1 -O-R 2. Therefore, deprotection proceeds more, and a highly sensitive photosensitive resin composition can be obtained.
  • the photoacid generator (B) contains an oxime sulfonate compound and/or an imide sulfonate compound.
  • Oxime sulfonate compounds and imide sulfonate compounds are nonionic photoacid generators, and the acidic group generated by light is a sulfo group, so that the acid dissociation constant (pKa) is high, resulting in a photosensitive resin composition with higher sensitivity.
  • the oxime sulfonate compound can be represented by the following structure:
  • R 25 is a monovalent organic group having 1 to 12 carbon atoms.
  • the monovalent organic group having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a trifluoromethanesulfonic acid group, a nonafluorobutyl group, a perfluorooctyl group, a (7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methyl group, a benzyl group, a phenyl group, a tosyl group, and a naphthyl group.
  • R 26 and R 27 are monovalent organic groups having 1 to 30 carbon atoms.
  • R 26 and R 27 may be the same or different.
  • Specific examples of the monovalent organic groups having 1 to 30 carbon atoms include a cyano group, a trifluoromethyl group, a hexafluoropropyl group, a pentafluorobutyl group, a dodecafluorohexyl group, a phenyl group, a 4-methoxyphenyl group, a 2-fluorenyl group, and a 4-(3-(4-(2,2,2-trifluoro-1-(((propylsulfonyl)oxy)imino)ethyl)phenoxy)propoxy)phenyl group.
  • R 28 is a monovalent organic group having 3 to 30 carbon atoms. Specific examples of the monovalent organic group having 3 to 30 carbon atoms include the following structures.
  • oxime sulfonate examples include "Irgacure” (registered trademark), PAG-103 (benzeneacetonitrile, 2-methyl- ⁇ -[[(propylsulfonyl)oxy]imino]-3(2H)-thienylidene), PAG-121 (benzeneacetonitrile, 2-methyl- ⁇ -[[(4-methylphenyl)oxy]imino]-3(2H)-thienylidene), PAG-108 (benzeneacetonitrile, 2-methyl- ⁇ -[[(n-octyl)oxy]imino]-3(2H)-thienylidene), PAG-203 (all manufactured by BASF Japan), and PAI-101 ((Z)-4-methoxy-N-(tosyloxy)benzimidoyl cyanide, manufactured by Midori Chemical Industry Co., Ltd.).
  • the imide sulfonate compound can be represented by the following structure:
  • R 29 is a monovalent organic group having 1 to 12 carbon atoms. Specific examples of the monovalent organic group having 1 to 12 carbon atoms include the groups given as specific examples of R 25 .
  • R 30 and R 31 are monovalent organic groups having 1 to 30 carbon atoms.
  • R 30 and R 31 may be the same or different.
  • Specific examples of the monovalent organic groups having 1 to 30 carbon atoms include the groups given as specific examples of R 26 and R 27 .
  • R 32 is a monovalent organic group having 3 to 30 carbon atoms.
  • Specific examples of the divalent organic group having 3 to 30 carbon atoms include the following structures.
  • R 33 is a monovalent organic group having 1 to 12 carbon atoms.
  • v represents an integer of 0 to 2.
  • Specific examples of the monovalent organic group having 1 to 12 carbon atoms include a methyl group, an ethyl group, an isopropyl group, a butyl group, a 2-butyl group, an isobutyl group, a t-butyl group, a hexyl group, a 2-ethylhexyl group, a dodecanyl group, a 1-(hex-1-en-1-yl) group, and a 1-(4-butoxyphenethyl) group.
  • * represents a bonding site.
  • imide sulfonate compounds include N-hydroxynaphthalimide triflate, "ADEKA ARCLES” (registered trademark) SP-606 (4-butyl-N-hydroxy-naphthalimide triflate, manufactured by ADEKA Corporation), NA-101 (N-hydroxynaphthalimide-p-toluenesulfonate), and NA-106 (N-hydroxynaphthalimide camphorsulfonate, all manufactured by Midori Chemical Industry Co., Ltd.).
  • ADKA ARCLES registered trademark
  • SP-606 4-butyl-N-hydroxy-naphthalimide triflate, manufactured by ADEKA Corporation
  • NA-101 N-hydroxynaphthalimide-p-toluenesulfonate
  • NA-106 N-hydroxynaphthalimide camphorsulfonate, all manufactured by Midori Chemical Industry Co., Ltd.
  • the content of (B) photoacid generator is preferably 0.1 to 20 parts by mass, and more preferably 0.2 to 10 parts by mass, per 100 parts by mass of the total resin in the photosensitive resin composition.
  • the photosensitive resin composition of the present invention further contains a solvent (C).
  • a solvent (C) By containing the solvent, the coating property is improved and a homogeneous photosensitive resin film can be obtained.
  • the solvent (C) contains a ketone compound represented by formula (2) (C1) and/or a ketone compound represented by formula (3) (C2).
  • R3 represents a single bond or a monovalent or divalent organic group having 1 to 12 carbon atoms
  • R4 represents a monovalent organic group having 1 to 5 carbon atoms
  • p represents an integer of 1 or 2.
  • R5 represents a monovalent organic group having 1 to 12 carbon atoms
  • q represents an integer of 1 to 4
  • r represents an integer satisfying 0 ⁇ r ⁇ (q+2).
  • Examples of the ketone solvent represented by formula (2), when R 3 is a single bond include diacetyl, and in other cases, acetylacetone, etc.
  • Ketone solvents represented by formula (3) include cyclopentanone, 2-methylcyclopentanone, 3-methylcyclopentanone, 2,2-dimethylcyclopentanone, 2,4,4-trimethylcyclopentanone, cyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 4-ethylcyclohexanone, 2,2-dimethylcyclohexanone, 2,6-dimethylcyclohexanone, 2,2,6-trimethylcyclohexanone, cycloheptanone, 2-methylcycloheptanone, and 3-methylcycloheptanone.
  • the (C) solvent contains a ketone compound whose boiling point under standard pressure is 100°C or more and 170°C or less, as the (C1) component and/or the (C2) component.
  • the content of (C) solvent is preferably 100 parts by mass or more per 100 parts by mass of component (A) in order to dissolve the composition, and is preferably 1,500 parts by mass or less in order to form a coating film with a thickness of 1 ⁇ m or more.
  • any known solvent may be used as long as it does not impair the effects of the present invention.
  • the solvent (C) used is not particularly limited, but suitable examples include amide solvents, ester solvents, alcohol solvents, ether solvents, ketone solvents, and dimethyl sulfoxide.
  • amide solvents include N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylisobutyric acid amide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and N,N-dimethylpropylene urea.
  • ester solvents include gamma-butyrolactone, delta-valerolactone, propylene carbonate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-methoxy-1-butyl acetate, ethyl acetoacetate, and cyclohexanol acetate.
  • alcohol-based solvents include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, 3-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, propylene glycol mono t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, 3-methoxy-1-butanol, 3-methyl-3-methoxy-1-butanol, ethylene glycol, propylene glycol, etc.
  • ether solvents include diethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, and dipropylene glycol dimethyl ether.
  • ketone solvents include methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone, acetylacetone, cyclopentanone (CP), cyclohexanone, cycloheptanone (CH), dicyclohexyl ketone, etc.
  • the photosensitive resin composition of the present invention preferably further contains a compound represented by formula (4) in an amount of 0.3 mass% or less when the total amount of the photosensitive resin composition is taken as 100 mass%.
  • R6 represents a hydrogen atom or a monovalent organic group having 1 to 6 carbon atoms. From the viewpoint of suppressing shrinkage of the film during curing, R6 is preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • R 7 each independently represents a monovalent organic group having 1 to 12 carbon atoms. From the viewpoint of suppressing shrinkage of the film during curing, R 7 is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
  • s is an integer of 2 to 3. From the viewpoints of improving compatibility with component (A) and suppressing film shrinkage during curing, it is preferable that s is 2.
  • t is an integer satisfying 0 ⁇ t ⁇ (s+1). From the viewpoint of suppressing the shrinkage of the film during curing, it is preferable that t is 0.
  • the content of the compound represented by formula (4) is 0.1% by mass or less, when the total amount of the photosensitive resin composition is taken as 100% by mass.
  • the photosensitive resin composition of the present invention further contains a compound represented by formula (5) and/or a compound represented by formula (6).
  • the total amount of the photosensitive resin composition is taken as 100 mass%, it is preferable that the total content of the compound represented by formula (5) and the compound represented by formula (6) is 0.0001 mass% or more and 0.03 mass% or less.
  • R8 represents a monovalent organic group having 1 to 6 carbon atoms. From the viewpoint of storage stability of the solution, R8 is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
  • R 9 and R 10 each independently represent a monovalent organic group having 1 to 3 carbon atoms. From the viewpoint of storage stability of the solution, R 9 and R 10 are preferably a methyl group.
  • R 11 represents a hydrogen atom or a monovalent organic group having 1 to 6 carbon atoms. From the viewpoint of storage stability of the solution, R 11 is preferably a hydrogen atom, a methyl group, an ethyl group, or a propyl group, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • u is an integer of 0 or more. From the viewpoint of storage stability of the solution, u is preferably an integer of 0 to 3, and more preferably an integer of 0 to 1.
  • the total content of the compound represented by formula (5) and the compound represented by formula (6) is more preferably 0.001% by mass or more, when the total amount of the photosensitive resin composition is taken as 100% by mass. From the same viewpoint, it is more preferably 0.01% by mass or less, and even more preferably 0.0035% by mass or less.
  • the photosensitive resin composition of the present invention preferably contains an organic acid.
  • the preferred pKa range of the organic acid is -2 to 1. That is, the photosensitive resin composition of the present invention preferably contains an organic acid having a pKa of -2 to 1.
  • Preferred specific examples include, but are not limited to, toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, and trifluoroacetic acid.
  • the organic acid is preferably 0.0001 to 0.01% by mass when the total amount of the photosensitive resin composition is taken as 100% by mass. More preferably, it is 0.0001 to 0.001% by mass.
  • the photosensitive resin composition of the present invention preferably contains a heterocyclic amine compound.
  • the heterocyclic amine compound include pyridine, ⁇ -picoline, ⁇ -picoline, ⁇ -picoline, 2,6-lutidine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,6-diethylpyridine, 2-normal propylpyridine, 3-normal propylpyridine, 4-normal propylpyridine, 2,6-dinormal propylpyridine, 2-isopropylpyridine, 3-isopropylpyridine, 4-isopropylpyridine, 2,6-diisopropylpyridine, 2-normal butylpyridine, 3-normal butylpyridine, 4-normal butylpyridine, 2,6-dinormal butylpyridine, 2-isobutylpyridine, 3-isobutylpyridine, 4-
  • the photosensitive resin composition of the present invention may contain additives other than those described above.
  • the additives include a dissolution promoter, a sensitizer, a silane coupling agent, a surfactant, etc.
  • the cured product of the present invention is a cured product obtained by curing the photosensitive resin composition of the present invention.
  • Curing conditions include applying a temperature of 150°C to 320°C to promote a thermal crosslinking reaction and improve heat resistance and chemical resistance. This heat treatment can be carried out by selecting a temperature and gradually increasing the temperature, or by selecting a certain temperature range and continuously increasing the temperature for 5 minutes to 5 hours. As an example, heat treatment can be carried out at 130°C and 200°C for 30 minutes each.
  • the lower limit of the curing conditions in this invention is preferably 170°C or higher, but 170°C or higher is more preferable in order to promote sufficient curing.
  • the upper limit of the curing conditions is preferably 280°C or lower.
  • the method for producing the cured product of the present invention comprises the steps of: (a-1) a step of applying the photosensitive resin composition of the present invention onto a substrate and drying it to form a photosensitive resin film; (b-1) a step of exposing the photosensitive resin film to light; (c-1) developing the exposed portion of the photosensitive resin film by dissolving or removing the exposed portion with an alkaline aqueous solution; and (d-1) a step of heat treating the developed photosensitive resin film.
  • the cured product obtained in this way is primarily made of polyimide, and therefore has excellent heat resistance, electrical insulation, and mechanical properties.
  • the method for producing a cured product of the present invention includes a step of applying the photosensitive resin composition of the present invention onto a substrate to form a photosensitive resin film.
  • the substrate is not particularly limited, but is preferably selected from the group consisting of glass, silicon wafer, ceramic deposition substrate, metal plated substrate, sapphire, and gallium arsenide.
  • the photosensitive composition of the present invention can be applied to a substrate by a known method.
  • Apparatuses used for application include full-surface application apparatuses such as spin coating, dip coating, curtain flow coating, spray coating, and slit coating, and printing apparatuses such as screen printing, roll coating, microgravure coating, and inkjet.
  • the coating is dried to form a photosensitive resin film.
  • a vacuum drying device or a heating device such as a hot plate or oven is used for drying. When using a heating device, drying is preferably performed at a temperature range of 50 to 150°C for 30 seconds to 30 minutes.
  • the thickness of the photosensitive resin film is preferably 0.1 to 100 ⁇ m.
  • the method for producing a cured product of the present invention includes a step of exposing the photosensitive resin film to light.
  • the photosensitive resin film is exposed through a mask having a desired pattern.
  • the wavelength of the exposure light to be irradiated includes light having a wavelength of 300 to 450 nm, such as g-line (436 nm), i-line (365 nm), and h-line (405 nm). Of these, it is preferable to irradiate light having a wavelength of 365 nm.
  • Examples of light sources used in the exposure step include various lasers, light-emitting diodes (LEDs), ultra-high pressure mercury lamps, high pressure mercury lamps, low pressure mercury lamps, and metal halide lamps.
  • the wavelength of the irradiated light may be adjusted through a spectral filter such as a long wavelength cut filter, a short wavelength cut filter, and a bandpass filter, if necessary.
  • post-exposure baking may be performed as necessary. By performing post-exposure baking, effects such as improved resolution after development or an increased tolerance for development conditions can be expected.
  • post-exposure baking an oven, hot plate, infrared, flash annealing device, laser annealing device, etc. can be used.
  • the post-exposure baking temperature is preferably 50 to 170°C, more preferably 60 to 150°C.
  • the post-exposure baking time is preferably 10 seconds to 1 hour, more preferably 30 seconds to 30 minutes.
  • the method for producing a cured product of the present invention includes a step of developing the exposed portion of the photosensitive resin film by dissolving or removing it with an alkaline aqueous solution.
  • the developer used for development dissolves and removes the alkaline aqueous solution soluble polymer, and is typically an alkaline aqueous solution in which an alkaline compound is dissolved.
  • alkaline compounds include tetramethylammonium hydroxide, potassium hydroxide, and sodium carbonate.
  • polar solvents such as N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, ⁇ -butyrolactone, and dimethylacrylamide
  • alcohols such as methanol, ethanol, and isopropanol
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate
  • ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added alone or in combination to these alkaline aqueous solutions.
  • examples of the developer include ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate.
  • examples of the developer include ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate.
  • alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may also be added to the water for rinsing treatment.
  • the method for producing a cured product of the present invention includes a step of heat treating the developed photosensitive resin film.
  • a temperature of 150°C to 320°C is applied to promote a thermal crosslinking reaction, improving heat resistance and chemical resistance.
  • This heat treatment is carried out by selecting a temperature and gradually increasing the temperature, or by selecting a certain temperature range and continuously increasing the temperature for 5 minutes to 5 hours. As an example, heat treatment is carried out at 130°C and 200°C for 30 minutes each.
  • the lower limit of the curing conditions in this invention is preferably 170°C or higher, but 180°C or higher is more preferable in order to promote sufficient curing.
  • the upper limit of the curing conditions is preferably 280°C or lower.
  • the photosensitive resin composition of the present invention is not limited in shape, and may be, for example, in the form of a paste or a sheet.
  • the photosensitive resin sheet of the present invention is a photosensitive resin sheet formed by forming the photosensitive resin composition of the present invention into a sheet on a support.
  • the photosensitive resin sheet of the present invention refers to a sheet formed by applying the photosensitive resin composition of the present invention onto a support and drying it at a temperature and for a time within a range that allows the solvent to volatilize, in which the photosensitive resin composition of the present invention is not completely cured, and in which the photosensitive resin composition of the present invention is soluble in an organic solvent.
  • the support is not particularly limited, but various commercially available films such as polyethylene terephthalate (PET) film, polyphenylene sulfide film, and polyimide film can be used.
  • PET polyethylene terephthalate
  • the joint surface between the support and the photosensitive resin composition may be surface-treated with silicone, a silane coupling agent, an aluminum chelating agent, polyurea, or the like to improve adhesion and peelability.
  • the thickness of the support is not particularly limited, but is preferably in the range of 10 to 100 ⁇ m from the viewpoint of workability.
  • a protective film may be provided on the film surface. This makes it possible to protect the surface of the photosensitive resin composition from contaminants such as dust and dirt in the air.
  • Methods for applying the photosensitive resin composition to a support include spin coating using a spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, roll coater, comma roll coater, gravure coater, screen coater, and slit die coater.
  • the coating thickness varies depending on the coating method, the solids concentration of the composition, and the viscosity, but it is usually preferable for the coating thickness after drying to be 0.5 ⁇ m or more and 100 ⁇ m or less from the viewpoint of coating uniformity, etc.
  • drying an oven, a hot plate, infrared rays, etc. can be used.
  • the drying temperature and drying time may be within a range that allows the solvent to volatilize, and it is preferable to set the drying temperature and time appropriately within a range that allows the photosensitive resin composition to be in an uncured or semi-cured state.
  • drying is preferably performed in the range of 40°C to 150°C for one minute to several tens of minutes.
  • the temperature may be increased stepwise by combining these temperatures, for example, heat treatment may be performed at 80°C and 90°C for two minutes each.
  • thermocompression bonding the photosensitive resin composition of the present invention onto a substrate using the photosensitive resin sheet of the present invention
  • step of thermocompression-bonded photosensitive resin composition to light
  • step of thermocompression-bonded photosensitive resin composition to light
  • step of thermocompression-bonded photosensitive resin composition to light
  • step of heat-treating the developed and thermocompression-bonded photosensitive resin composition
  • the cured product obtained in this way is primarily made of polyimide, and therefore has excellent heat resistance, electrical insulation, and mechanical properties.
  • the substrate may be, but is not limited to, a silicon wafer, ceramics, gallium arsenide, an organic circuit board, an inorganic circuit board, or a circuit material disposed on the substrate.
  • organic circuit boards include glass substrate copper-clad laminates such as glass cloth/epoxy copper-clad laminates, composite copper-clad laminates such as glass nonwoven cloth/epoxy copper-clad laminates, heat-resistant thermoplastic substrates such as polyetherimide substrates, polyetherketone substrates, and polysulfone substrates, and flexible substrates such as polyester copper-clad film substrates and polyimide copper-clad film substrates.
  • inorganic circuit boards include ceramic substrates such as alumina substrates, aluminum nitride substrates, and silicon carbide substrates, and metal substrates such as aluminum-based substrates and iron-based substrates.
  • circuit materials include conductors containing metals such as silver, gold, and copper, resistors containing inorganic oxides, low dielectrics containing glass-based materials and/or resins, high dielectrics containing resins and high-dielectric-constant inorganic particles, and insulators containing glass-based materials.
  • the process of laminating the photosensitive resin sheet onto the substrate is not particularly limited, but known methods can be used.
  • the support is peeled off while leaving the protective film, and the photosensitive resin composition with the protective film is placed opposite the substrate and bonded by thermocompression.
  • Thermocompression bonding can be performed by heat pressing, heat lamination, thermal vacuum lamination, etc. Among these, heat lamination is preferred.
  • the bonding temperature is preferably 40°C or higher in terms of adhesion to the substrate and embeddability.
  • the bonding temperature is preferably 150°C or lower to prevent the resin composition film from hardening during bonding, which would deteriorate the resolution of the pattern formation in the exposure and development process.
  • the cured product obtained by curing the photosensitive resin composition of the present invention can be used for electronic components such as semiconductor devices.
  • the semiconductor device in the present invention refers to any device that can function by utilizing the characteristics of a semiconductor element. Electro-optical devices in which a semiconductor element is connected to a substrate, semiconductor circuit boards, stacks of multiple semiconductor elements, and electronic devices including these are all included in the semiconductor device. Electronic components such as multilayer wiring boards for connecting semiconductor elements are also included in the semiconductor device.
  • the semiconductor device is preferably used for applications such as a passivation film for a semiconductor, a surface protection film for a semiconductor element, an interlayer insulating film between a semiconductor element and a rewiring layer, an interlayer insulating film between multiple semiconductor elements, an interlayer insulating film between wiring layers of multilayer wiring for high-density mounting, and an insulating layer for an organic electroluminescent element, but is not limited thereto and can be used for various applications.
  • applications such as a passivation film for a semiconductor, a surface protection film for a semiconductor element, an interlayer insulating film between a semiconductor element and a rewiring layer, an interlayer insulating film between multiple semiconductor elements, an interlayer insulating film between wiring layers of multilayer wiring for high-density mounting, and an insulating layer for an organic electroluminescent element, but is not limited thereto and can be used for various applications.
  • the semiconductor device of the present invention is a semiconductor device in which the cured product of the present invention is disposed as a surface protective film for a semiconductor element or an interlayer insulating film between wiring layers.
  • the cured film of the photosensitive composition By disposing the cured film of the photosensitive composition as a surface protective film for a semiconductor element or an interlayer insulating film between wiring layers, a highly reliable semiconductor device can be obtained.
  • the semiconductor device of the present invention is preferably a semiconductor device in which the wiring layer and the interlayer insulating film are repeatedly arranged in 2 to 10 layers. By repeatedly arranging the wiring layer and the interlayer insulating film in 2 to 10 layers, the semiconductor device can be made smaller.
  • the display device of the present invention includes a first electrode formed on a substrate, an insulating layer formed on the first electrode so as to partially expose the first electrode, and a second electrode provided opposite the first electrode, wherein the insulating layer includes the cured product of the present invention.
  • Another embodiment of the display device of the present invention is a display element that includes a planarization film that is provided in a state that covers the irregularities on a substrate on which thin film transistors (TFTs) are formed, and the planarization film includes the cured product of the present invention.
  • TFTs thin film transistors
  • the display element has a driving circuit, a planarization layer, a first electrode, an insulating layer, a light-emitting layer, and a second electrode on a substrate, and the planarization layer and/or the insulating layer contains the cured product.
  • the planarization layer and/or the insulating layer contains the cured product.
  • an active matrix type display element it has a TFT and wiring located on the side of the TFT and connected to the TFT on a substrate such as glass or a resin film, a planarization layer is provided on the substrate so as to cover the unevenness, and a display element is further provided on the planarization layer.
  • the display element and the wiring are connected through a contact hole formed in the planarization layer.
  • the cured product obtained by curing the photosensitive resin composition of the present invention is excellent in planarization properties and pattern dimensional stability, so it is preferable to provide it as a planarization layer in a display device.
  • flexible display devices have become mainstream in recent years, and the display device may have a substrate having the driving circuit described above made of a resin film.
  • a method for producing one or more resins selected from the group consisting of polyimide, polybenzoxazole, polyamide and copolymers thereof, which contain a structural unit represented by formula (1) a method for producing a resin having a step of reacting a hydroxyl group contained in the structure of one or more resins selected from the group consisting of polyimide, polybenzoxazole, polyamide and copolymers thereof with a protective agent in a ketone compound represented by formula (2) (C1) and/or a ketone compound represented by formula (3) (C2) is preferred.
  • the method for producing a resin of the present invention is preferably a polyimide from the viewpoint of the solubility of the resin in the solvent used.
  • R1 represents a trivalent to dodecavalent organic group having 3 to 30 carbon atoms
  • R2 represents a monovalent oxymethyl group having 3 to 20 carbon atoms
  • m represents an integer of 0 to 4
  • n represents an integer of 1 to 4.
  • * represents a bonding site
  • a and b each independently represent an integer of 1 or 2.
  • R3 represents a single bond or a monovalent or divalent organic group having 1 to 12 carbon atoms
  • R4 represents a monovalent organic group having 1 to 5 carbon atoms
  • p represents an integer of 1 or 2.
  • R5 represents a monovalent organic group having 1 to 12 carbon atoms
  • q represents an integer of 1 to 4
  • r represents an integer satisfying 0 ⁇ r ⁇ (q+2).
  • the protecting agent in the present application is a compound capable of protecting a hydroxyl group, and the protecting group introduced thereby can be deprotected by the action of an acid or a base.
  • a known protecting agent capable of protecting a hydroxyl group can be used as the protecting agent, and the component (A) containing the structural unit represented by formula (1) can be obtained by reacting the resin with the protecting agent.
  • the component (A) containing the structural unit represented by formula (1) can be obtained by reacting the resin having R 1 -OH with the protecting agent in the presence of an acid or a base at a reaction temperature of -20 to 50°C without a solvent or in a solvent such as toluene, hexane, propylene glycol monomethyl ether acetate, or cyclopentanone.
  • R 2 is a 1-ethoxyethyl group
  • ethyl vinyl ether can be used
  • R 2 is a 2-tetrahydropyranyl group
  • 3,4-dihydro-2H-pyran can be used.
  • acids examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and perchloric acid, and organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, and trifluoroacetic acid.
  • organic acids salts such as pyridinium p-toluenesulfonate can also be preferably used.
  • Bases include amine compounds such as pyridine, N,N-diethyl-4-aminopyridine, triethylamine, and diisopropylamine.
  • the reaction rate must be 15 mol%, preferably 20 mol%, more preferably 25 mol%, even more preferably 30 mol%, and most preferably 35 mol% or more.
  • the acid is an organic acid, and even more preferable that the acid has a pKa of -2 to 1.
  • the method for producing the resin of the present invention preferably uses an organic acid with a pKa of -2 to 1.
  • the amount of organic acid added is 0.1 to 1 mass % when the mass of the entire resin before reacting with the protective agent is taken as 100 mass %.
  • Examples of the ketone solvent represented by formula (2), when R 3 is a single bond include diacetyl, and in other cases, acetylacetone, etc.
  • Ketone solvents represented by formula (3) include cyclopentanone, 2-methylcyclopentanone, 3-methylcyclopentanone, 2,2-dimethylcyclopentanone, 2,4,4-trimethylcyclopentanone, cyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 4-ethylcyclohexanone, 2,2-dimethylcyclohexanone, 2,6-dimethylcyclohexanone, 2,2,6-trimethylcyclohexanone, cycloheptanone, 2-methylcycloheptanone, and 3-methylcycloheptanone.
  • the (C1) component and/or the (C2) component contains a ketone compound having a boiling point of 100°C or more and 170°C or less under standard pressure, and it is more preferable that the (C2) component contains the (C2) component. Furthermore, it is particularly preferable that the (C2) component contains cyclopentanone.
  • a solvent other than (C) may be mixed and used.
  • the solvent to be used is not particularly limited, but amide-based solvents, ester-based solvents, alcohol-based solvents, ether-based solvents, ketone-based solvents, dimethyl sulfoxide, etc. can be preferably used.
  • amide solvents include N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylisobutyric acid amide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and N,N-dimethylpropylene urea.
  • ester solvents include gamma-butyrolactone, delta-valerolactone, propylene carbonate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-methoxy-1-butyl acetate, ethyl acetoacetate, and cyclohexanol acetate.
  • alcohol-based solvents include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, 3-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, propylene glycol mono t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, 3-methoxy-1-butanol, 3-methyl-3-methoxy-1-butanol, ethylene glycol, propylene glycol, etc.
  • ether solvents include diethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, and dipropylene glycol dimethyl ether.
  • ketone solvents include methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone, acetylacetone, cyclopentanone, cyclohexanone, cycloheptanone, dicyclohexyl ketone, etc.
  • the solvent used may be completely removed by distillation after completion of the reaction with the protecting agent.
  • Lutidine 2,6-lutidine: a heterocyclic amine compound that stabilizes the structure of the constitutional unit represented by formula (1).
  • DPA 3-dimethylamino-N,N-dimethylpropionamide: a compound represented by general formula (5).
  • Weight average molecular weight of polyimide, polybenzoxazole, and polyamide The weight average molecular weight (Mw) was measured in terms of polystyrene using a GPC analyzer. The weight average molecular weight of polyimide, polybenzoxazole, and polyamide was measured under the following conditions. Measuring device: Waters 2695 (manufactured by Waters Corporation) Column temperature: 50 ° C.
  • This wafer with the resin film was divided into two, and one of them was cured in a clean oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.) at 140°C for 30 minutes under a nitrogen stream (oxygen concentration 20 volume ppm or less), and then further heated to 320°C for 1 hour to completely close the imide ring (sample IM02). The other was used as it was (sample IM01).
  • the transmission infrared absorption spectra of the resin films (IM01, IM02) before and after curing were measured using an infrared spectrophotometer (FT-720, manufactured by Horiba, Ltd.) to confirm the presence of absorption peaks of the imide structure due to polyimide (near 1,780 cm -1 and near 1,377 cm -1 ), and then the peak intensity (S) near 1,377 cm -1 for IM01 and the peak intensity (T) near 1,377 cm -1 for IM02 were determined.
  • the peak intensity ratio was calculated by dividing the peak intensity (S) by the peak intensity (T), and this was taken as the content of imide groups in the polyimide before heat treatment, i.e., the imidization rate.
  • the protection rate was measured using a 400 MHz, 1H-NMR (nuclear magnetic resonance) device (AL-400 manufactured by JEOL Ltd.). Specifically, the measurement was performed in a deuterated dimethyl sulfoxide solution with 16 cumulative measurements.
  • the integral value of the proton of the methine group (>CH-) derived from the protecting group observed at around 5-6 ppm and the integral value of the proton of the phenolic hydroxyl group observed at around 9-11 ppm were calculated, and the ratio of the integral value of the proton of the methine group to the integral value of the proton of the phenolic hydroxyl group, when the sum of the integral values of the protons of the methine group and the protons of the phenolic hydroxyl group was taken as 100%, was taken as the protection rate (%).
  • Solid Content Concentration was determined by the following method. 1,500 g of the solution was weighed out in an aluminum cup and heated for 30 minutes using a hot plate to evaporate the liquid. The heating temperature was set to a value obtained by adding 50 degrees to the boiling point of the solvent under standard pressure. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration was determined from the ratio to the weight before heating.
  • the film was exposed through a mask having a pattern of 10 ⁇ m contact holes at an exposure dose in the range of 5 to 300 mJ/ cm2 at intervals of 5 mJ/ cm2 .
  • the resist was developed for 80 seconds using the ACT-8 developing device with 2.38% by weight TMAH (manufactured by Tama Chemicals Co., Ltd.) as a developer, and then rinsed with distilled water and dried by shaking off to obtain a relief pattern.
  • TMAH manufactured by Tama Chemicals Co., Ltd.
  • a + The amount of reduction in developed film is less than 0.2 ⁇ mA: The amount of reduction in developed film is 0.2 ⁇ m or more but less than 0.3 ⁇ mA- : The amount of reduction in developed film is 0.3 ⁇ m or more but less than 0.4 ⁇ mB + : The amount of reduction in developed film is 0.4 ⁇ m or more but less than 0.5 ⁇ mB: The amount of reduction in developed film is 0.5 ⁇ m or more but less than 0.6 ⁇ mB- : The amount of reduction in developed film is 0.6 ⁇ m or more but less than 0.7 ⁇ mC: The amount of reduction in developed film is 0.7 ⁇ m or more.
  • Sensitivity is less than 60 mJ/ cm2 A: Sensitivity is 60 mJ/ cm2 or more and less than 70 mJ/ cm2 A- : Sensitivity is 70 mJ/ cm2 or more and less than 85 mJ/ cm2 B + : Sensitivity is 85 mJ/ cm2 or more and less than 100 mJ/ cm2 B: Sensitivity is 100 mJ/ cm2 or more and less than 200 mJ/ cm2 C: Sensitivity is 200 mJ/ cm2 or more.
  • the wafer with the resin film was heat-treated at 250°C for 30 minutes under a nitrogen stream (oxygen concentration 20 ppm or less) using a clean oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.), and the film thickness R ( ⁇ m) was measured. At this time, the value of R/4 ⁇ 100 was taken as the film thickness retention rate after heat treatment.
  • a and B which show a film thickness retention rate of 70% or more, were determined to be acceptable.
  • C Film thickness retention rate of less than 70%.
  • Synthesis Example 7 Synthesis of polyimide (PI-01) Under a dry nitrogen stream, 32.96 g (90 mmol) of 6FAP as a diamine and 180 g of NMP were weighed and dissolved in a four-neck flask. 30.03 g (100 mmol) of TDA-100 as an acid dianhydride were added together with 40.00 g of NMP, and the mixture was stirred at 40 ° C. for 1 hour. Next, 1.863 g (20 mmol) of aniline as a monoamine was added together with 40.00 g of NMP, and the mixture was reacted at 40 ° C. for 1 hour, and then stirred at 200 ° C. for 4 hours.
  • Synthesis Examples 8 to 18, 23 to 28 Synthesis of polyimides (PI-02 to 12, 17 to 22) Synthesis was performed in the same manner as in Synthesis Example 7, except that the types and amounts of the acid dianhydride, monoamine, and diamine were changed to those shown in Table 1, and the polymerization solvent was changed to the type shown in Table 1. The evaluation results are shown in Table 1.
  • Synthesis Example 19 Synthesis of polyimide (PI-13) A powder of polyimide (PI-13) was obtained in the same manner as in Synthesis Example 1, except that the white precipitate was collected by filtration and washed 10 times with pure water. The evaluation results are shown in Table 1.
  • Synthesis Example 20 Synthesis of polyimide (PI-14) A powder of polyimide (PI-14) was obtained in the same manner as in Synthesis Example 1, except that the white precipitate was collected by filtration and washed 15 times with pure water. The evaluation results are shown in Table 1.
  • Synthesis Example 21 Synthesis of polyimide (PI-15) A polyimide (PI-15) powder was obtained in the same manner as in Synthesis Example 1, except that the product was dried in a vacuum dryer at 50° C. for 72 hours and then in a vacuum dryer at 200° C. for 8 hours. The evaluation results are shown in Table 1.
  • Synthesis Example 22 Synthesis of polyimide (PI-16) 30.00 g of PI-01 was weighed out and dissolved in 120 g of ethyl lactate at room temperature. This liquid was poured into 1 L of pure water to obtain a white precipitate. This precipitate was collected by filtration, washed three times with pure water, and then dried in a vacuum dryer at 50° C. for 72 hours to obtain a powder of polyimide (PI-16). The evaluation results are shown in Table 1.
  • Synthesis Example 29 Synthesis of polyamide (PA-01) Under a dry nitrogen stream, 36.63 g (100 mmol) of 6FAP and 7.405 g (50 mmol) of PA were dissolved in 75.00 g of NMP in a four-neck flask, and stirred at 80°C for 2 hours. Thereafter, the temperature of the solution was cooled to -15°C, and after confirming that the temperature of the solution had reached -15°C, a solution in which 22.13 g (75 mmol) of ODBC was dissolved in 30 g of NMP was added dropwise so that the temperature in the reaction system did not exceed 0°C. After the dropwise addition was completed, stirring was continued at 20°C for 6 hours.
  • Synthesis Examples 30 to 37 Synthesis of polyamides (PA-01 to 09) Synthesis was performed in the same manner as in Synthesis Example 29, except that the dicarboxylic acid derivative, diamine, and terminal anhydride were changed to the types and amounts shown in Table 2, and the polymerization solvent was changed to the type shown in Table 2. The evaluation results are shown in Table 1.
  • Example 1 Polyimide containing a structural unit represented by formula (1) Under a dry nitrogen gas flow, 10.00 g of PI-01 synthesized in Synthesis Example 7 as a base polymer and 30.00 g of CP as a solvent were weighed and dissolved in a three-necked flask. 0.700 g (8.127 ⁇ 10 ⁇ 3 mol) of IPVE was added as a protective agent and stirred at 0° C. for 1 hour. Next, 1.000 ⁇ 10 ⁇ 2 g of trifluoroacetic acid (pKa: 0.23) was added as a catalyst and stirred at 0° C. for 3 hours.
  • pKa trifluoroacetic acid
  • the acid catalyst was neutralized with a saturated aqueous sodium bicarbonate solution, and the water tank was removed. Furthermore, the organic layer was washed twice with water. Thereafter, low-boiling point residues were removed using a rotary evaporator in order to remove unreacted IPVE. Thereafter, the solids concentration of the solution was measured, and CP was added so that the solids content became 40%, to obtain a 40% by mass solids solution of a resin (PI-01-PR10) in which hydroxyl groups were protected with 1-isopropoxyethyl groups, which are acid-decomposable groups.
  • PI-01-PR10 a resin in which hydroxyl groups were protected with 1-isopropoxyethyl groups, which are acid-decomposable groups.
  • the ratio (protection rate) of phenolic hydroxyl groups protected with acid-decomposable groups was 10 mol%, and at this time, 36.2 mol% (reaction rate) of IPVE was used in the protection reaction.
  • the fluorine concentration of the resin was 16.3%. The results are shown in Table 2.
  • Example 2 to 40 and Comparative Examples 1 to 4 The synthesis was carried out in the same manner as in Example 1, except that the base polymer type, solvent (type, amount), catalyst (type, pKa, amount), and IPVE amount were changed as shown in Table 2. The results are shown in Table 2.
  • Synthesis Example 38 PI-01-PR40 (40% CP solution) was concentrated using a rotary evaporator, and after the solvent was removed and the solution lost fluidity, it was taken out and the solid content was measured. CP and CH were added to this solid so that the solid content was 40% and the mass ratio of CP to CH was 5/95, to obtain PI-01-PR40CH (40% CH/CP solution).
  • Synthesis Example 39 PI-01-PR40 (40% CP solution) was concentrated using a rotary evaporator, and after the solvent was removed and the solution lost fluidity, it was taken out and the solid content was measured. CP and MIBK were added to this solid so that the solid content was 40% and the mass ratio of CP to MIBK was 5/95, to obtain PI-01-PR40M (40% MIBK/CP solution).
  • Synthesis Example 40 10.00 g of PI-01-PR40 (40% CP solution) was weighed out, 6.000 g of GBL was added, and the solvent was replaced using a rotary evaporator. After the solvent replacement, the solid concentration was measured, and GBL was added so that the solid concentration became 40%, to obtain PI-01-PR40G (40% GBL solution).
  • Synthesis Example 41 10.00 g of PI-01-PR40 (40% CP solution) was weighed out, 6.000 g of NMP was added, and solvent replacement was performed using a rotary evaporator. After the solvent replacement, the solid concentration was measured, and NMP was added so that the solid concentration became 40%, to obtain PI-01-PR40N (40% NM solution).
  • Synthesis Example 42 10.00 g of PA-01-PR40 (40% CP solution) was weighed out, 6.000 g of GBL was added, and the solvent was replaced using a rotary evaporator. After the solvent replacement, the solid concentration was measured, and GBL was added so that the solid concentration became 40%, to obtain PA-01-PR40G (40% GBL solution).
  • Synthesis Example 43 10.00 g of PA-01-PR40 (40% CP solution) was weighed out, 6.000 g of NMP was added, and solvent replacement was performed using a rotary evaporator. After the solvent replacement, the solid content was measured, and NMP was added so that the solid content was 40%, to obtain PA-01-PR40N (40% NM solution).
  • Example 41 Under yellow light, 2.500 g of a 40% solids CP solution of PI-01-PR10 as component (A), 5.000 ⁇ 10 ⁇ 2 g of PAG-103 as a photoacid generator (B), and 5.000 ⁇ 10 ⁇ 3 g of lutidine as a heterocyclic amine compound for stabilizing the structure of the structural unit represented by formula (1) were added and stirred. Then, 1.500 g of CP was added to adjust the concentration to obtain a photosensitive resin composition.
  • the NMP concentration of the obtained photosensitive resin composition was 1.00% by mass, the total content of general formulas (5) and (6) was 0% by mass, and trifluoroacetic acid, an organic acid with a pKa of 0.23, was 10 ⁇ 10 ⁇ 6 % by mass.
  • Table 3 The results are shown in Table 3.
  • a relief pattern was created from the prepared photosensitive resin composition, and (7-1) the amount of film loss after development, (7-2) sensitivity, (8) storage stability, (9) the effect of leaving the film after exposure, and (10) film thickness change due to heat treatment were evaluated.
  • the evaluation results are shown in Table 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Abstract

本発明の目的は、アルカリ現像時の膜減少量が小さく、かつ露光時間を短縮できる、高感度な感光性樹脂組成物を提供することである。本発明は、(A)特定の構成単位を含む、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂、 (B)光酸発生剤、ならびに、 (C)溶剤、を含み、 前記(C)溶剤が、(C1)特定のケトン化合物および/または(C2)特定のケトン化合物、を含む感光性樹脂組成物である。

Description

感光性樹脂組成物、感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置、樹脂の製造方法
 本発明は、感光性樹脂組成物、感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置、樹脂の製造方法に関する。
 半導体装置に用いられる表面保護膜や層間絶縁膜、有機電界発光素子の絶縁層やTFT(薄膜トランジスタ)基板の平坦化膜には、耐熱性や電気絶縁性、機械特性に優れるポリイミドやポリベンゾオキサゾール等が広く用いられている。近年、これらの樹脂自身あるいはその前駆体に感光特性を付与した感光性樹脂組成物が用いられてきている(以後、これらの感光性樹脂組成物をポリイミド系感光性樹脂組成物と称する)。ポリイミド系感光性樹脂組成物を用いることにより、パターン加工工程が簡略化でき、煩雑な製造工程の短縮が行うことができる。
 ポリイミド系感光性樹脂組成物は、露光部が現像液に易溶となりパターン加工することができるポジ型材料、および組成物自身を易溶性とし露光部が現像液に不溶となるネガ型材料が提案されている。ポリイミド系感光性樹脂組成物としては、ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体またはポリベンゾオキサゾール前駆体にキノンジアジド化合物を添加したもの(例えば、特許文献1参照)や、酸の存在下で脱離可能な保護基を含むポリアミドに光酸発生剤を添加したもの(例えば、特許文献2参照)が知られている。
特開2011-180473号公報 特開2011-221173号公報
 近年、使用する基板サイズの大型化や生産性向上などの理由から、露光時間の短縮、さらには現像後の開口率や膜厚の面内均一性を向上させるために現像時における未露光部の膜減少量を少なくすることが課題となっている。
 特許文献1に記載の技術は、アルカリ可溶性樹脂とキノンジアジド化合物を組み合わせた技術である。キノンジアジド化合物は、アルカリ可溶性樹脂と相互作用し組成物のアルカリ現像液に対する溶解性を低下させる。一方で、露光による光化学反応によりインデンカルボン酸化合物になりアルカリ現像液に対して溶解促進剤として働くため、未露光物と露光部で溶解コントラストが発現し、パターン加工することができる。そのため、感度はキノンジアジド化合物の添加量に依存する。しかしながら、キノンジアジド化合物の添加量を多くすると、キノンジアジド化合物自身の光吸収により、光化学反応率が低下する。そのため、露光時間の短縮と少ない膜減少量の両立は困難である。
 特許文献2の技術は、アルカリ可溶性ポリアミド中のヒドロキシ基の水素原子をtert-ブトキシカルボニル基(以下、t-Boc基とも称する)で置換しアルカリ不溶性の樹脂とし、これと光酸発生剤を組み合わせた技術である。この技術は、露光部において光酸発生剤から酸が発生し、この酸が、前記t-Boc基と反応し、該t-Boc基をポリアミドから脱離させ(以後、脱保護と称する)、このポリアミドをアルカリ不溶性からアルカリ可溶性に変えることができる。そのため、露光部と未露光部の溶解コントラストが生じ、パターン加工を可能とする技術である。この技術においては、t-Boc基と酸の反応率が低く、露光時間の短縮ができない課題がある。
 本発明は、以下の通りである。
(1)(A)式(1)で表される構成単位を含む、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂、
(B)光酸発生剤、ならびに、
(C)溶剤、を含み、
前記(C)溶剤が、(C1)式(2)で表されるケトン化合物および/または(C2)式(3)で表されるケトン化合物、を含む感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Rは、炭素数3~30の3~12価の有機基を示し、Rは、炭素数3~20の1価のオキシメチル基である。mは0~4、nは1~4の整数を示す。*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。)
Figure JPOXMLDOC01-appb-C000008
(式(2)中、Rは、単結合もしくは炭素数1~12の1~2価の有機基を示し、Rは、炭素数1~5の1価の有機基を示す。pは1または2の整数を示す。式(3)中、Rは、炭素数1~12の1価の有機基を示し、qは1~4の整数を示し、rは0≦r≦(q+2)を満たす整数を示す。)
(2)前記(A)樹脂が、式(1)で表される構成単位を含むポリイミドを含む、(1)に記載の感光性樹脂組成物。
(3)前記(C1)成分および/または前記(C2)成分が、標準圧力下における沸点が100℃以上、170℃以下であるケトン化合物を含む、(1)または(2)に記載の感光性樹脂組成物。
(4)前記(C2)成分を含有し、前記(C2)成分が、前記式(3)中、q=2およびr=0であるケトン化合物を含有する、(1)~(3)のいずれかに記載の感光性樹脂組成物。
(5)さらに、式(4)で表される化合物の含有量が、感光性樹脂組成物の総量を100質量%としたとき、0.3質量%以下である、(1)~(4)のいずれかに記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000009
(式(4)中、Rは、水素原子または炭素数1~6の1価の有機基を示し、Rは、それぞれ独立に、炭素数1~12の1価の有機基を示し、sは2~3の整数を示し、tは0≦t≦(s+1)を満たす整数を示す。)
(6)さらに、式(5)で表される化合物および/または(6)で表される化合物を含み、
感光性樹脂組成物の総量を100質量%としたとき、式(5)で表される化合物および(6)で表される化合物の合計の含有量が0.0001質量%以上0.03質量%以下である、(1)~(5)のいずれかに記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000010
(式(5)中、Rは、炭素数1~6の1価の有機基を示し、RおよびR10は、それぞれ独立に、炭素数1~3の1価の有機基を示す。式(6)中、R11は、水素原子または炭素数1~6の1価の有機基を示し、uは0以上の整数を示す。)
(7)さらに、pKaが-2~1の有機酸を含む、(1)~(6)のいずれかに記載の感光性樹脂組成物。
(8)感光性樹脂組成物中に含まれる全樹脂の総量を100質量%とした時の、該全樹脂に含有されるフッ素原子の含有量が15質量%より大きい、(1)~(7)のいずれかに記載の感光性樹脂組成物。
(9)(1)~(8)のいずれかに記載の感光性樹脂組成物を支持体上にシート状に形成した感光性樹脂シート。
(10)(1)~(8)のいずれかに記載の感光性樹脂組成物を硬化した硬化物。
(11)a)(1)~(8)のいずれかに記載の感光性樹脂組成物を基材上に塗布、乾燥して感光性樹脂膜を形成する工程、または、(9)に記載の感光性樹脂シートを用い、本発明の感光性樹脂組成物を基材上に熱圧着する工程、
b)該感光性樹脂膜または該熱圧着された感光性樹脂組成物を露光する工程、
c)該露光された感光性樹脂膜の露光部または該露光された熱圧着された感光性樹脂組成物の露光部をアルカリ水溶液で溶出または除去して現像する工程、および、
d)該現像された感光性樹脂膜または該現像された熱圧着された感光性樹脂組成物を加熱処理する工程を含む、硬化物の製造方法。
(12)(10)に記載の硬化物が、半導体素子の表面保護膜または配線層間の層間絶縁膜として配置された、半導体装置。
(13)基板上に形成された、第一電極と、第一電極を部分的に露光せしめるように第一電極上に形成された絶縁層と、第一電極に対向して設けられた第二電極とを含む表示装置であって、前記絶縁層が(10)に記載の硬化物を含む表示装置。
(14)薄膜トランジスタ(TFT)が形成された基板上の凹凸を覆う状態で設けられた平坦化膜を備えてなる表示素子であって、前記平坦化膜が(10)に記載の硬化物を含む表示装置。
(15)式(1)で表される構成単位を含む、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂の製造方法であって、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂の構造に含まれる水酸基を、(C1)式(2)で表されるケトン化合物および/または(C2)式(3)で表されるケトン化合物中で、保護剤と反応させる工程を有する、樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000011
(式(1)中、Rは、炭素数3~30の3~12価の有機基を示し、Rは、炭素数3~20の1価のオキシメチル基である。mは0~4、nは1~4の整数を示す。*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。)
Figure JPOXMLDOC01-appb-C000012
(式(2)中、Rは、単結合もしくは炭素数1~12の1~2価の有機基を示し、Rは、炭素数1~5の1価の有機基を示す。pは1または2の整数を示す。式(3)中、Rは、炭素数1~12の1価の有機基を示し、qは1~4の整数を示し、rは0≦r≦(q+2)を満たす整数を示す。)
(16)前記樹脂がポリイミドである、(15)に記載の樹脂の製造方法。
(17)前記保護剤と反応させる工程において、pKaが-2~1の有機酸を用いる、(15)に記載の樹脂の製造方法。
 本発明の感光性組成物は、高感度であるため露光時間を短縮でき、かつ現像時の膜減少量が少ない。
 本発明の感光性樹脂組成物は、
(A)式(1)で表される構成単位を含む、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂、
(B)光酸発生剤、ならびに、
(C)溶剤、を含み、
前記(C)溶剤が、(C1)式(2)で表されるケトン化合物および/または(C2)式(3)で表されるケトン化合物、を含む感光性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000013
 式(1)中、Rは、炭素数3~30の3~12価の有機基を示し、Rは、炭素数3~20の1価のオキシメチル基である。mは0~4、nは1~4の整数を示す。*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。
Figure JPOXMLDOC01-appb-C000014
 式(2)中、Rは、単結合もしくは炭素数1~12の1~2価の有機基を示し、Rは、炭素数1~5の1価の有機基を示す。pは1または2の整数を示す。式(3)中、Rは、炭素数1~12の1価の有機基を示し、qは1~4の整数を示し、rは0≦r≦(q+2)を満たす整数を示す。
 本発明の感光性樹脂組成物は、(B)光酸発生剤を含むことにより、含有する光酸発生剤に対応した露光光を照射することで、組成物中に酸を発生させることができる。発生した酸は、(A)式(1)で表される構成単位を含むポリイミド中のR-O-Rの構造中のO-R間の結合に作用し、R-OHに変換することができる。R-OHはアルカリ水溶液に対して溶解性基として働く。そのため、本発明の感光性樹脂組成物は、未露光部と露光部でアルカリ水溶液に対する溶解コントラストを発現させることができるため、露光部が溶解しレリーフパターンを形成することができる。
 このため本明細書においてはRを「酸分解性基」と称することがある。また、O-Rの構造を酸の作用により水酸基に変換することができるため、O-Rの構造を「酸分解性基で保護された水酸基」と称することがある。さらに、R-O-RがR-OHに変換されることを「脱保護」、保護反応前のR-OHのうち保護剤との反応でR-OHからR-O-Rに変換された割合を「保護率」と称することがある。
 <(A)式(1)で表される構成単位を含む、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂((A)成分))>
 本発明の感光性樹脂組成物は、(A)式(1)で表される構成単位を含むポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂を含む。
 ポリイミドとは、繰り返し単位にイミド結合を含む高分子である。前記ポリイミドは公知の方法で合成することができる。例えば、テトラカルボン酸、対応するテトラカルボン酸二無水物またはテトラカルボン酸ジエステル二塩化物などと、ジアミン、対応するジイソシアネート化合物またはトリメチルシリル化ジアミンなどを反応させることによって得られる反応物を加熱または酸もしくは塩基などの触媒を用いた反応により、脱水閉環させることによって得られる。従って、前記ポリイミドはテトラカルボン酸及び/又はその誘導体残基と、ジアミン及び/又はその誘導体残基を有する。
 脱水閉環させる前の反応物をポリイミド前駆体と称し、脱水閉環しイミド結合を形成することをイミド化と称する。320℃で1時間キュアした場合にイミド化が100%進行したとし、それを基準にポリイミドおよび前記ポリイミド前駆体中に存在するイミド構造の割合をイミド化率とした。
 本願において、ポリイミドとはイミド化率80%以上のものを表す。高温下におけるアウトガス量の低減や後述する硬化物の信頼性を向上の観点から、イミド化率は90%以上が好ましく、さらに好ましくは95%以上である。
 イミド化後の(A)成分の構造としては、式(7)で表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(7)中、Xは、炭素数4~50の4価の有機基、または、前記式(1)の構成単位を示す。Yは炭素数6~30の2価の有機基、または、前記式(1)の構成単位を示す。ただし、XとYの少なくとも一つは、前記式(1)の構成単位であり、Xが、前記式(1)の構成単位をとる場合は、a=b=2であり、Yが、前記式(1)の構成単位をとる場合は、a+b=2である。
 式(7)で表される構造は、耐熱性の高いイミド構造を有する。そのため、式(7)で表される構造を有することにより、耐熱性が高い感光性樹脂組成物とすることができる。
 高感度化の観点より、前記式(7)中、Xが、炭素数4以上の脂肪族骨格を含む、炭素数4~50の4価の有機基であることが好ましい。前記式(7)中、Xが、炭素数4以上の脂肪族骨格を含む、炭素数4~50の4価の有機基であることにより、樹脂の疎水性を低く抑えることができ、アルカリ現像液に対して溶解性が高い樹脂とすることができる。そのため、露光、現像時に残渣の少ない良好なレリーフパターンを形成することができる。炭素数4以上の脂肪族骨格を含む、炭素数4~50の4価の有機基は、次のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 *は、結合部位を示す。
 高感度化の観点より、これらは、Xで表される4価の有機基全てを100モル%としたとき50モル%以上であることがより好ましい。
 ポリベンゾオキサゾールとは、繰り返し単位にオキサゾール環を含む高分子である。前記ポリベンゾオキサゾールは公知の方法で合成することができる。例えば、ジカルボン酸、対応するジカルボン酸二塩化物、ジカルボン酸ジエステル、ジカルボン酸ジアミドなどと、アミノ基の窒素原子が結合した炭素の隣の炭素(オルソ位)に水酸基を有するジアミン、対応するジイソシアネート化合物またはトリメチルシリル化ジアミンを反応させることによって得られる反応物を加熱により、脱水閉環させることによって得られる。従って、前記ポリベンゾオキサゾールはジカルボン酸及び/又はその誘導体残基と、ジヒドロキシジアミン及び/又はその誘導体残基を有する。
 脱水閉環させる前の反応物をポリベンゾオキサゾール前駆体と称し、脱水閉環しオキサゾール結合を形成することをオキサゾール化と称する。320℃で1時間キュアした場合にオキサゾール化が100%進行したとし、それを基準にポリベンゾオキサゾールおよび前記ポリベンゾオキサゾール前駆体中に存在するオキサゾール構造の割合をオキサゾール化率とした。
 本願において、ポリベンゾオキサゾールとはオキサゾール化率80%以上のものを表す。高温下におけるアウトガス量の低減や後述する硬化物の信頼性を向上の観点から、オキサゾール化率は90%以上が好ましく、さらに好ましくは95%以上である。
 オキサゾール化後の(A)成分の構造としては、式(8)で表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(8)中、Xは、炭素数4~50の4価の有機基、または、前記式(1)の構成単位を示す。Yは炭素数4~30の2価の有機基、または、前記式(1)の構成単位を示す。ただし、XとYの少なくとも一つは、前記式(1)の構成単位であり、Xが、前記式(1)の構成単位をとる場合は、a=b=2であり、Yが、前記式(1)の構成単位をとる場合は、a+b=2である。
 式(8)で表される構造は、耐熱性の高いオキサゾール構造を有する。そのため、式(8)で表される構造を有することにより、耐熱性が高い感光性樹脂組成物とすることができる。
 ポリアミドとは、繰り返し単位にアミド基を含む高分子である。前記ポリアミドは公知の方法で合成することができる。例えば、ジカルボン酸、対応するジカルボン酸二塩化物、ジカルボン酸ジエステル、ジカルボン酸ジアミドなどと、ジアミン、対応するジイソシアネート化合物またはトリメチルシリル化ジアミンを反応させることによって得られる。従って、前記ポリアミドはジカルボン酸及び/又はその誘導体残基と、ジアミン及び/又はその誘導体残基を有する。
 ポリアミドの(A)成分の構造としては、式(9)で表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(9)中、Xは、炭素数6~30の2価の有機基、または、前記式(1)の構成単位を示す。Yは炭素数4~30の2価の有機基、または、前記式(1)の構成単位を示す。ただし、XとYの少なくとも一つは、前記式(1)の構成単位であり、a+b=2である。
 式(9)中、Xが前記式(1)の構成単位で表される構造であって、アミド基に対して、オルソ位に水酸基がある構造は、ポリベンゾオキサゾール前駆体構造を表し、熱による脱水閉環でポリベンゾオキサゾールが得られる。
 高感度化の観点より、前記式(8)中のY、前記式(9)中のYが炭素数4以上の脂肪族骨格を含む、炭素数4~30の2価の有機基であることが好ましい。前記式(8)中のY、前記式(9)中のYが、炭素数4以上の脂肪族骨格を含む、炭素数4~30の4価の有機基であることにより、樹脂の疎水性を低く抑えることができ、アルカリ現像液に対して溶解性が高い樹脂とすることができる。そのため、露光、現像時に残渣の少ない良好なレリーフパターンを形成することができる。炭素数4以上の脂肪族骨格を含む、炭素数4~30の2価の有機基は、次のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 *は、結合部位を示す。
 高感度化の観点より、これらは、Y、Yで表される2価の有機基全てを100モル%としたとき50モル%以上であることがより好ましい。
 本発明の感光性樹脂組成物に含まれる(A)成分は、主鎖末端が公知のモノアミン、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などの末端封止剤で封止されていることが好ましい。主鎖末端が末端封止剤で封止されていることにより、感光性樹脂組成物の保存安定性を向上させることができる。末端封止剤として用いられるモノアミンの導入割合は、全アミン成分に対して、好ましくは0.1モル%以上、特に好ましくは5モル%以上であり、好ましくは60モル%以下、特に好ましくは50モル%以下である。末端封止剤として用いられる酸無水物、モノカルボン酸、モノ酸クロリド化合物またはモノ活性エステル化合物の導入割合は、ジアミン成分に対して、好ましくは0.1モル%以上、特に好ましくは5モル%以上であり、好ましくは100モル%以下、特に好ましくは90モル%以下である。複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
 (A)成分の重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算で3,000~200,000が好ましく、より好ましくは5,000~100,000であり、さらに好ましくは7,000~60,000である。重量平均分子量を上記範囲とすることにより、良好な溶剤溶解性、良好な現像液への溶解性、高い機械強度を全て満たしやすくすることができる。本発明において、重量平均分子量は後述の方法により求められる。
 熱処理による膜厚減少が小さくなるという観点より、(A)式(1)で表される構成単位を含む樹脂はポリイミドを含むことが好ましい。すなわち、本発明の感光性樹脂組成物は、(A)樹脂が、式(1)で表される構成単位を含むポリイミドを含むことが好ましい。
 本発明の感光性樹脂組成物は、(A)式(1)で表される構成単位を含むポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂を含む。
Figure JPOXMLDOC01-appb-C000020
 式(1)中、Rは、炭素数3~30の3~12価の有機基を示し、Rは、炭素数3~20の1価のオキシメチル基である。mは0~4、nは1~4の整数を示す。*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。
 <Rの説明>
 式(1)中、Rは、炭素数3~30の3~12価の有機基である。前記炭素数3~30の3~12価の有機基は、本発明の効果を損なわない範囲で公知のものを使用することができる。
 前記Rが、芳香環を有し、該芳香環基がOH基あるいはOR基と直結していることが好ましい。Rがこのような構造をとることで、OH基あるいはOR基が脱保護したOH基の酸解離定数(pKa)が高くなり、アルカリ溶解性溶解性が向上する。そのため、残渣が少ないレリーフパターンを得ることが容易となる。前記芳香環は、フェニル基あるいはナフチル基であることが好ましい。
 Rが、フェニル基あるいはナフチル基を有し、該フェニル基あるいはナフチル基がOH基あるいはOR基と直結している好ましい一般式(1)の具体例として、次の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 上記構造中、R、a、および、bは、前記式(1)中の同一の記号と同一の意味を示す。m、m、nはそれぞれ独立に0~2の整数、nは1~2の整数を示す。m+m=m、n+n=nを示し、m、nは、前記式(1)中の同一の記号と同一の意味を示す。
 式(1)中、mは0~4、nは1~4の整数を示す。樹脂の耐熱性の観点からm+nの値が1~4の整数であることが好ましく、1~2の整数であることがより好ましく、2であることがさらに好ましい。
 式(1)中、*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。樹脂の耐熱性の観点からa=b=1または、a=b=2であることが好ましく、a=b=1であることがより好ましい。
 式(1)で表される構造は、例えば、ヒドロキシ基含有酸二無水物あるいはヒドロキシ基含有ジアミンを用いて、前記ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群から選ばれる一種以上の樹脂を合成し、該樹脂のOH基の一部または全部をOR基に改質させることによって得られる。
 特に(A)式(1)で表される構成単位を含むポリアミドにおいては、OH基あるいはOR基がアミド基の窒素に対してオルソ位にあると、熱による脱水閉環でポリベンゾオキサゾールに転化され、耐熱性が増すため好ましい。
 ヒドロキシ基含有酸二無水物としては、例えば、6,6’-メチレンビス(5-ヒドロキシイソベンゾフラン-1,3-ジオン)、N,N’-(4,4’-ジヒドロキシ-[1,1’-ビフェニル]-3,3’-ジイル)ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキサミド)、N,N’-(プロパン-2,2’-ジイルビス(6-ヒドロキシ-3,1-フェニレン))ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキサミド)、N,N’-((パーフルオロプロパン-2,2-ジイル)ビス(6-ヒドロキシ-3,1-フェニレン))ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキサミド)などが挙げられるが、これらに限定されない。
 ヒドロキシ基含有ジアミンとしては、例えば、2,4-ジアミノフェノール、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどが挙げられるが、これらに限定されない。
 高感度化の観点より、前記式(1)が、式(10)であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(10)中、R、a、および、bは、前記式(1)中の同一の記号と同一の意味を示す。Lは、直接結合、-C(CH-、9H-フルオレン-1,9-ジイル基を示す。より好ましくは-C(CH-、9H-フルオレン-1,9-ジイル基である。m、m、nおよびnは、それぞれ独立に、0~2の整数を示す。ただし、1≦(n+n)≦4を満たす。*は結合部位を示す。
 前記9H-フルオレン-1,9-ジイル基とは、下記式で表される基である。
Figure JPOXMLDOC01-appb-C000023
*は結合部位を示す。
 前記式(1)が式(10)であることで、R-O-RがR-OHに変換する、すなわち脱保護する活性化エネルギーを小さくすることができる。そのため、露光部の脱保護率が高い高感度な感光性樹脂組成物とすることができる。R-O-RがR-OHに変換する、すなわち脱保護する活性化エネルギーを小さくすることができる
 <Rの説明>
 式(1)中、Rは、炭素数3~20の1価のオキシメチル基である。炭素数3~20の1価のオキシメチル基とは、結合部位から順に炭素-酸素が単結合で結合した構造を有する炭素数3~20の1価の基である。前記炭素数3~20の1価のオキシメチル基は、具体的に、次のような構造で表すことができる。
Figure JPOXMLDOC01-appb-C000024
 上記構造中、R12~R17、R19は1価の有機基を示し、R18およびR20は2価の有機基を示す。*は結合部位を示す。構造中の炭素数は3~20である。
 1価の有機基としては、炭素数1~6のアルキル基、炭素数5~10の環状アルキル基、炭素数2~8のアルコキシアルキル基、または、炭素数6~16のアルコキシ環状アルキル基などが挙げられる。
 2価の有機基としては、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ペンタン-1,3-ジイル基や、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基およびペンタン-1,3-ジイル基からなる群より選ばれる基の水素原子が、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基および炭素数2~8のアルコキシアルキル基からなる群より選ばれる基で置換された基などが挙げられる。
 前記Rが前記炭素数3~20の1価のオキシメチル基であることにより、組成物中で発生した酸が、R-O-Rの構造中のO-R間の結合に作用し、R-O-RをR-OHに変換することができる。そのため、本発明の感光性樹脂組成物は、未露光部と露光部でアルカリ水溶液に対する溶解コントラストを発現させることができるため、露光部が溶解しパターンを形成することができる。
 前記Rは、式(1)中、少なくとも1つのRが、式(11)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 式(11)中、R21は、炭素数1~6のアルキル基、または、炭素数2~8のアルコキシアルキル基を示す。R22およびR23は、炭素数1~6のアルキル基、炭素数5~10の環状アルキル基、炭素数2~8のアルコキシアルキル基、または、炭素数6~16のアルコキシ環状アルキル基を示す。R24は、水素原子、炭素数1~6のアルキル基、炭素数5~10の環状アルキル基、炭素数2~8のアルコキシアルキル基、または、炭素数6~16のアルコキシ環状アルキル基を示す。また、R22、R23およびR24は、互いが結合し環化していてもよい。*は結合部位を示す。
 炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基などが挙げられる。
 炭素数2~8のアルコキシアルキル基の具体例としては、メトキシメチル基、メトキシエチル基、メトキシプロピル基、メトキシブチル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基、エトキシブチル基、プロポキシメチル基、プロポキシエチル基、プロポキシプロピル基、プロポキシブチル基などが挙げられる。
 炭素数5~10の環状アルキル基の具体例としては、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロペンチルメチル基、シクロヘキシルメチル基、シクロへプチルメチル基、シクロペンチルエチル基、シクロヘキシルエチル基、シクロへプチルエチル基、シクロペンチルプロピル基、シクロヘキシルプロピル基、シクロペプチルプロピル基などが挙げられる。
 炭素数6~16のアルコキシ環状アルキル基の具体例としては、メトキシペンチル基、エトキシペンチル基、プロポキシペンチル基、ジメトキシペンチル基、ジエトキシペンチル基、ジプロポキシペンチル基、トリメトキシペンチル基、トリエトキシペンチル基、トリプロポキシペンチル基、メトキシヘキシル基、エトキシヘキシル基、プロポキシヘキシル基、ジメトキシヘキシル基、ジエトキシヘキシル基、ジプロポキシヘキシル基、トリメトキシヘキシル基、トリエトキシヘキシル基、トリプロポキシヘキシル基、メトキシへプチル基、エトキシへプチル基、プロポキシへプチル基、ジメトキシへプチル基、ジエトキシへプチル基、ジプロポキシへプチル基、トリメトキシへプチル基、トリエトキシへプチル基、トリプロポキシへプチル基などが挙げられる。
 炭素数1~6のアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキソキシ基などが挙げられる。
 式(11)は、R-O-Rの構造中のO-Rのα位が分岐した構造である。前記Rの少なくとも一つが、式(11)で表される基であることにより、R-O-RがR-OHに変換する、すなわち脱保護する活性化エネルギーを小さくすることができる。そのため、露光により感光性組成物中に発生する酸が少ない場合でも、脱保護することができ、高感度な感光性樹脂組成物とすることできる。具体的にRには式(12)~(14)のいずれかで表される基が好ましく用いられ、特に好ましくは式(14)で表される基が用いられる。
Figure JPOXMLDOC01-appb-C000026
 式(12)~(14)中、*は結合部位を表す。
 R-O-Rは、R-OHを有する樹脂と保護剤とを反応させることによって得られる。例えば、無溶剤又はトルエン、ヘキサン、プロピレングリコールモノメチルエーテルアセテート、シクロペンタノン等の溶剤中で、R-OHを有する樹脂と保護剤とを、酸、または、塩基の存在下、反応温度-20~50℃で反応させることにより、R-O-Rを有する樹脂、すなわち(A)成分を得ることができる。
 本願における保護剤とは、水酸基を保護できる化合物であり、それにより導入された保護基は酸や塩基の作用により、脱保護可能である。保護剤として、水酸基を保護することが可能な公知の保護剤を用いることができる。
保護剤として、例えば、Rが1-エトキシエチル基の場合はエチルビニルエーテル、2-テトラヒドロピラニル基の場合は、3,4-ジヒドロー2H-ピランなどを用いることができる。
 酸としては、例えば、塩酸、硫酸、硝酸、過塩素酸などの無機酸、および、メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸などの有機酸が挙げられる。また、p-トルエンスルホン酸ピリジニウムなどの有機酸塩も好ましく用いることができる。
塩基としては、ピリジン、N,N-ジエチル-4-アミノピリジン、トリエチルアミン、ジイソプロピルアミン等のアミン化合物が挙げられる。
 <フッ素原子含有量>
 感光性樹脂組成物を室温で放置した後の感度変化が小さいという観点より、本発明の感光性樹脂組成物は、感光性樹脂組成物中に含まれる全樹脂の総量を100質量%とした時の、該全樹脂におけるフッ素原子含有量が15質量%より大きいことが好ましい。フッ素原子含有量増大に伴い、疎水性が増し、膜形成後の周囲雰囲気からの水分子やアミンの取り込みを避けることができ経時での感度変化を抑制することができる。
 感光性樹脂組成物中に含まれる全樹脂の総量を100質量%とした時の、該全樹脂におけるフッ素原子含有量は、以下の方法で分析することができる。
まず感光性樹脂組成物から樹脂を分離する。分離した樹脂を試料として精秤する。自動試料燃焼装置を用いて、分析装置の燃焼管内で燃焼させ、発生したガスを溶液に吸収後、吸収液の一部をイオンクロマト法による分析する。吸収液としてはH 0.036質量%を用いることができる。
 <(B)光酸発生剤>
 本発明の感光性樹脂組成物は、(B)光酸発生剤を含有する。光酸発生剤とは、露光によって酸を発生する機能を有する化合物である。前記(B)光酸発生剤は本発明の効果を損なわない範囲で公知のものを使用することができる。
 前記(B)光酸発生剤として、オニウム塩型のイオン性光酸発生剤や非イオン性光酸発生剤が挙げられる。オニウム塩とは、化学結合に関与しない電子対を有する化合物が、当該電子対によって、他の陽イオン形の化合物と配位結合して生ずる化合物を指す。前記イオン性光酸発生剤は、オニウム塩のカチオン部位が光化学特性(モル吸光係数・吸収波長・量子収率)、アニオン部位が生成する酸の強さを決定する。一方、非イオン性光酸発生剤は、光を吸収する部位と酸がエステル結合を介して光酸発生剤である。
 前記イオン性光酸発生剤は、重金属、ハロゲンイオンを含まないものが好ましく、トリオルガノスルホニウム塩系化合物がより好ましい。トリオルガノスルホニウム塩系化合物の具体例としては、例えば、トリフェニルスルホニウムの、メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩、4-トルエンスルホン酸塩、パーフルオロ-1-ブタンスルホン酸塩(「SP-056」、商品名、ADEKA社製);ジメチル-1-ナフチルスルホニウムの前記スルホン酸塩;ジメチル(4-ヒドロキシ-1-ナフチル)スルホニウムの、前記スルホン酸塩;ジメチル(4,7-ジヒドロキシ-1-ナフチル)スルホニウムの、前記スルホン酸塩;ジフェニルヨードニウムの前記スルホン酸塩などが挙げられる。
 前記非イオン性光酸発生剤としては、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物、スルホンイミド化合物、リン酸エステル化合物、スルホンベンゾトリアゾール化合物などを用いることができる。
 ジアゾメタン化合物の具体例としては、例えば、ビス(4-メチルフェニルスルホニル)ジアゾメタン(「WPAG-199」、商品名、富士フイルム和光純薬製))などが挙げられる。
 スルホン化合物の具体例としては、例えば、β-ケトスルホン化合物、β-スルホニルスルホン化合物などが挙げられる。好ましいスルホン化合物としては、2-(p-トルエンスルホニル)アセトフェノン、ビス(フェニルスルホニル)メタンなどが挙げられる。
 スルホン酸エステル化合物の具体例としては、例えば、アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホン酸エステル化合物などが挙げられる。好ましい具体例としては、例えば、ベンゾイン-4-トリルスルホネート、ピロガロールトリス(メチルスルホネート)、ニトロベンジル-9,10-ジエトキシアンスリル-2-スルホネート、2,6-(ジニトロベンジル)フェニルスルホネートなどが挙げられる。
 カルボン酸エステル化合物の具体例としては、例えば、カルボン酸2-ニトロベンジルエステルなどが挙げられる。
 前記(B)光酸発生剤が、非イオン性光酸発生剤を含むことが好ましい。前記(B)光酸発生剤が非イオン性光酸発生剤を有することにより、より高感度な感光性樹脂組成物とすることができる。
 前記(B)光酸発生剤が、光により発生する酸性基の酸解離定数(pKa)が-14~2の範囲である光酸発生剤を含むことがより好ましい。光酸発生剤が、光により発生する酸性基の酸解離定数(pKa)が上記の範囲であることにより、光により発生する酸性基が酸として効率よくR-O-Rの構造に作用することができる。そのため、脱保護がより進行し、高感度な感光性樹脂組成物とすることができる。前記光により発生する酸性基の酸解離定数(pKa)が-14~2の範囲である光酸発生剤の具体例としては、光により発生する酸が、トリフルオロメタンスルホン酸(pKa=-14)、ノナフルオロブタンスルホン酸(pKa=-3.57)、p-トルエンスルホン酸(pKa=-2.8)、メタンスルホン酸(pKa=-2.6)などである光酸発生剤が挙げられる。
 前記(B)光酸発生剤が、オキシムスルホネート化合物および/またはイミドスルホネート化合物を含むことがさらに好ましい。オキシムスルホネート化合物およびイミドスルホネート化合物は、非イオン性光酸発生剤であり、光により発生する酸性基がスルホ基であるため、酸解離定数(pKa)が高く、より高感度な感光性樹脂組成物とすることができる。
 前記オキシムスルホネート化合物は以下の構造で表すことができる。
Figure JPOXMLDOC01-appb-C000027
 R25は炭素数1~12の1価の有機基である。炭素数1~12の1価の有機基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、トリフルオロメタンスルホン酸基、ノナフルオロブチル基、パーフルオロオクチル基、(7,7-ジメチル-2-オキソビシクロ[2.2.1]ヘプタン-1-イル)メチル基、ベンジル基、フェニル基、トシル基、ナフチル基などが挙げられる。
 R26およびR27は炭素数1~30の1価の有機基である。R26およびR27はそれぞれ同じでも異なっていてもよい。炭素数1~30の1価の有機基の具体例としては、シアノ基、トリフルオロメチル基、ヘキサフルオロプロピル基、ペンタフルオロブチル基、ドデカフルオロヘキシル基、フェニル基、4-メトキシフェニル基、2-フルオレニル基、4-(3-(4-(2,2,2-トリフルオロ-1-(((プロピルスルホニル)オキシ)イミノ)エチル)フェノキシ)プロポキシ)フェニル基などが挙げられる。
 R28は炭素数3~30の1価の有機基である。炭素数3~30の1価の有機基の具体例としては、以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000028
*は結合部位を示す。
 前記オキシムスルホネートの具体例としては、“Irgacure”(登録商標) PAG-103(ベンゼンアセトニトリル,2-メチル-α-[[(プロピルスルホニル)オキシ]イミノ]-3(2H)-チエニリデン)、PAG-121(ベンゼンアセトニトリル,2-メチル-α-[[(4-メチルフェニル)オキシ]イミノ]-3(2H)-チエニリデン)、PAG-108(ベンゼンアセトニトリル,2-メチル-α-[[(n-オクチル)オキシ]イミノ]-3(2H)-チエニリデン)、PAG-203(以上、いずれもBASFジャパン社製)、PAI-101((Z)-4-メトキシ-N-(トシロキシ)ベンズイミドイルシアニド、みどり化学社製)などが挙げられる。
 前記イミドスルホネート化合物は以下の構造で表すことができる。
Figure JPOXMLDOC01-appb-C000029
 R29は炭素数1~12の1価の有機基である。炭素数1~12の1価の有機基の具体例としては、R25の具体例として挙げた基などが挙げられる。
 R30およびR31は炭素数1~30の1価の有機基である。R30およびR31はそれぞれ同じでも異なっていてもよい。炭素数1~30の1価の有機基の具体例としては、R26およびR27の具体例として挙げた基などが挙げられる。
 R32は炭素数3~30の1価の有機基である。炭素数3~30の2価の有機基の具体例としては、以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000030
 R33は炭素数1~12の1価の有機基である。vは0~2の整数を示す。炭素数1~12の1価の有機基の具体例としては、メチル基、エチル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、t-ブチル基、ヘキシル基、2-エチルヘキシル基、ドデカニル基、1-(ヘキシ-1-エン-1-イル)基、1-(4-ブトキシフェネチル)基などが挙げられる。*は結合部位を示す。
 イミドスルホネート化合物としては、N-ヒドロキシナフタルイミドトリフラート、“アデカアークルズ”(登録商標) SP-606(4-ブチル-N-ヒドロキシ-ナフタルイミドトリフラート、ADEKA社製)、NA-101(N-ヒドロキシナフタルイミド-p-トルエンスルホネート)、NA-106(N-ヒドロキシナフタルイミドカンファースルホネート、以上、いずれもみどり化学社製)などが挙げられる。
 本発明において、(B)光酸発生剤の含有量は感光性樹脂組成物中の全樹脂100質量部に対して0.1~20質量部が好ましく、0.2~10質量部がより好ましい。(B)光酸発生剤が上記の範囲であることで、高感度な感光性樹脂組成物とすることができる。
 <(C)溶剤>
 本発明の感光性樹脂組成物は、さらに、(C)溶剤を含む。溶剤を含むことで、塗布性が良好となり、均質な感光性樹脂膜とすることができる。現像時の膜厚減少低減の観点から、前記(C)溶剤としては、(C1)式(2)で表されるケトン化合物および/または(C2)式(3)で表されるケトン化合物を含有する。
Figure JPOXMLDOC01-appb-C000031
 式(2)中、Rは、単結合もしくは炭素数1~12の1~2価の有機基を示し、Rは、炭素数1~5の1価の有機基を示す。pは、1または2の整数を示す。式(3)中、Rは、炭素数1~12の1価の有機基を示し、qは1~4の整数を示し、rは、0≦r≦(q+2)を満たす整数を示す。
 式(2)中、p=1で表されるケトン系溶剤としては、2-ブタノン、3-メチルブタノン、ピナコロン、2-ペンタノン、3-ペンタノン、3-メチル-2-ペンタノン、4-メチル-2-ペンタノン(MIBK)、2-メチル-3-ペンタノン、4,4-ジメチル-2-ペンタノン、2,4-ジメチル-3-ペンタノン、2,2,4,4-テトラメチル-3-ペンタノン、2-ヘキサノン、3-ヘキサノン、5-メチル-3-ヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-メチル-3-ヘプタノン、5-メチル-3-ヘプタノン、2,6-ジメチル-4-ヘプタノン、2-オクタノン、3-オクタノン、2-ノナノン、3-ノナノン、5-ノナノン、2-デカノン、3-デカノン、4-デカノン、5-ヘキセン-2-オン、3-ペンテン-2-オン等が挙げられる。式(2)中、p=2で表されるケトン系溶剤としては、Rが単結合の場合はジアセチルが挙げられ、それ以外ではアセチルアセトン等が挙げられる。
 式(3)で表されるケトン系溶剤としては、シクロペンタノン、2-メチルシクロペンタノン、3-メチルシクロペンタノン、2,2-ジメチルシクロペンタノン、2,4,4-トリメチルシクロペンタノン、シクロヘキサノン、3-メチルシクロヘキサノン、4-メチルシクロヘキサノン、4-エチルシクロヘキサノン、2,2-ジメチルシクロヘキサノン、2,6-ジメチルシクロヘキサノン、2,2,6-トリメチルシクロヘキサノン、シクロヘプタノン、2-メチルシクロヘプタノン、3-メチルシクロヘプタノン等が挙げられる。
 前記(C)溶剤として、現像時の膜厚減少低減の観点から、前記(C1)成分および/または前記(C2)成分が、標準圧力下における沸点が100℃以上、170℃以下であるケトン化合物を含むことが好ましい。
 さらに現像時の膜厚減少低減の観点から、前記(C)溶剤は、前記(C2)成分を含むことがより好ましく、前記(C2)成分が、前記式(3)中、q=2およびr=0であるケトン化合物を含有することがさらに好ましい。すなわち、前記(C)溶剤はシクロペンタノンを含むことが最も好ましい。
 本発明において、(C)溶剤の含有量は、(A)成分100質量部に対して、組成物を溶解させるため、100質量部以上含有することが好ましく、膜厚1μm以上の塗布膜を形成させるため、1,500質量部以下含有することが好ましい。
 前記(C)溶剤としては、本発明の効果を損なわない範囲で、さらに公知のものを使用することができる。
 さらに使用する(C)溶剤としては、特に限定されるものではないが、アミド系溶剤、エステル系溶剤、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、ジメチルスルホキシドなどを好適に用いることができる。
 アミド系溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソ酪酸アミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルプロピレン尿素などが挙げられる。
 エステル系溶剤の具体例としてはγ-ブチロラクトン、δ-バレロラクトン、炭酸プロピレン、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-1-ブチルアセテート、3-メチル-3-メトキシ-1-ブチルアセテート、アセト酢酸エチル、シクロヘキサノールアセテートなどが挙げられる。
 アルコール系溶剤の具体例としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、3-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メトキシ-1-ブタノール、3-メチル-3-メトキシ-1-ブタノール、エチレングリコール、プロピレングリコール、等が挙げられる。
 エーテル系溶剤の具体例としては、ジエチルエーテル、ジイソプロピルエーテル、ジ-n-ブチルエーテル、ジフェニルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジプロピレングリコールジメチルエーテル等が挙げられる。
 ケトン系溶剤の具体例としては、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセチルアセトン、シクロペンタノン(CP)、シクロヘキサノン、シクロヘプタノン(CH)、ジシクロヘキシルケトン等が挙げられる。
 <式(4)で表される化合物>
 露光後放置による感度変化を小さくできるという観点から、本発明の感光性樹脂組成物は、さらに、式(4)で表される化合物の含有量が、感光性樹脂組成物の総量を100質量%としたとき、0.3質量%以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000032
 式(4)中、Rは、水素原子または炭素数1~6の1価の有機基を示す。キュア時の膜の収縮を抑える観点より、Rはメチル基、エチル基であることが好ましく、メチル基であることがより好ましい。
 式(4)中、Rは、それぞれ独立に、炭素数1~12の1価の有機基を示す。キュア時の膜の収縮を抑える観点よりRはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基であることが好ましく、メチル基、エチル基であることがより好ましく、メチル基であることがさらに好ましい。
 式(4)中、sは2~3の整数を示す。(A)成分との相溶性向上、キュア時の膜の収縮を抑える観点より、sは2であることが好ましい。
 式(4)中、tは、0≦t≦(s+1)を満たす整数を示す。キュア時の膜の収縮を抑える観点より、tは0であることが好ましい。
 露光後放置による感度変化を小さくできるという観点から、より好ましくは式(4)で表される化合物の含有量が、感光性樹脂組成物の総量を100質量%としたとき、0.1質量%以下である。
 <式(5)、(6)で表される化合物>
 感光性樹脂組成物を室温で放置した後の、現像時の膜厚減少低減の観点から、本発明の感光性樹脂組成物は、さらに、式(5)で表される化合物および/または(6)で表される化合物を含むことが好ましく、感光性樹脂組成物の総量を100質量%としたとき、式(5)で表される化合物および(6)で表される化合物の合計の含有量が0.0001質量%以上0.03質量%以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
 式(5)中、Rは、炭素数1~6の1価の有機基を示す。溶液の保
存安定性の観点からRは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基であることが好ましく、メチル基、エチル基であることがより好ましく、メチル基であることがさらに好ましい。
 式(5)中、RおよびR10は、それぞれ独立に、炭素数1~3の1価の有機基を示す。溶液の保存安定性の観点からRおよびR10は、メチル基であることが好ましい。
 式(6)中、R11は、水素原子または炭素数1~6の1価の有機基を示す。溶液の保存安定性の観点からR11は、水素原子、メチル基、エチル基、プロピル基であることが好ましく、水素原子、メチル基であることがより好ましく、水素原子であることがさらに好ましい。
 式(6)中、uは、0以上の整数を示す。溶液の保存安定性の観点からuは、0~3の整数であることが好ましく、0~1の整数であることがより好ましい。
 感光性樹脂組成物を室温で放置した後の、現像時の膜厚減少低減の観点から、式(5)で表される化合物および(6)で表される化合物の合計の含有量は、感光性樹脂組成物の総量を100質量%としたとき、0.001質量%以上であることがより好ましい。また、同様の観点よりより好ましくは0.01質量%以下、さらに好ましくは0.0035質量%以下である。
 <有機酸>
 本発明の感光性樹脂組成物は、有機酸を含むことが好ましい。感光性樹脂組成物を室温で放置した後の感度変化を小さくできる観点から、有機酸の好ましいpKaの範囲は-2~1である。すなわち、本発明の感光性樹脂組成物は、pKaが-2~1の有機酸を含むことが好ましい。好ましい具体例としてはトルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸などが挙げられるが、これらに限定されない。
 また、感光性樹脂組成物を室温で放置した後の感度変化を小さくできる観点から、有機酸は感光性樹脂組成物の総量を100質量%としたとき、0.0001~0.01質量%であることが好ましい。より好ましくは0.0001~0.001質量%である。
 <その他>
 さらに、式(1)で表される構成単位の構造を安定化させる観点から、本発明の感光性樹脂組成物は複素環式アミン化合物を含むことが好ましい。複素環式アミン化合物の好ましい例としては、ピリジン、α-ピコリン、β-ピコリン、γ-ピコリン、2,6-ルチジン、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,6-ジエチルピリジン、2-ノルマルプロピルピリジン、3-ノルマルプロピルピリジン、4-ノルマルプロピルピリジン、2,6-ジノルマルプロピルピリジン、2-イソプロピルピリジン、3-イソプロピルピリジン、4-イソプロピルピリジン、2,6-ジイソプロピルピリジン、2-ノルマルブチルピリジン、3-ノルマルブチルピリジン、4-ノルマルブチルピリジン、2,6-ジノルマルブチルピリジン、2-イソブチルピリジン、3-イソブチルピリジン、4-イソブチルピリジン、2,6-ジイソブチルピリジン、2-tert-ブチルピリジン、3-tert-ブチルピリジン、4-tert-ブチルピリジン、2,6-ジ-tert-ブチルピリジン、2-フェニルピリジン、3-フェニルピリジン、4-フェニルピリジン、N-メチル-4-フェニルピリジン、4-ジメチルアミノピリジン、イミダゾール、N-メチルイミダゾール、2-メチルイミダゾール、ベンズイミダゾール、2-フェニルベンズイミダゾール、2,4,5-トリフェニルイミダゾール、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、ピラジン、ピラゾール、ピリダジン、プリン、ピロリジン、ピペリジン、ピペラジン、モルホリン、4-メチルモルホリン、4-フェニルモルホリンN-シクロヘキシル-N’-[2-(4-モルホリニル)エチル]チオ尿素、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.3.0]-7-ウンデセンなどが挙げられる。
 本発明の感光性樹脂組成物は上記以外のその他の添加剤を含んでいてもよい。その他の添加剤として、例えば、溶解促進剤、増感剤、シランカップリング剤、界面活性剤などが挙げられる。
 <硬化物>
 本発明の硬化物は、本発明の感光性樹脂組成物を硬化した硬化物である。
 硬化条件としては、150℃~320℃の温度を加えて熱架橋反応を進行させ、耐熱性および耐薬品性を向上させる。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施すればよい。一例としては、130℃、200℃で各30分ずつ熱処理する。本発明においてのキュア条件の下限としては170℃以上が好ましいが、十分に硬化を進行させるために170℃以上であることがより好ましい。また、キュア条件の上限としては、280℃以下が好ましい。
 <硬化物の製造方法(1)>
 本発明の硬化物の製造方法は、
(a-1)本発明の感光性樹脂組成物を基材上に塗布、乾燥して感光性樹脂膜を形成する工程、
(b-1)該感光性樹脂膜を露光する工程、
(c-1)該露光された感光性樹脂膜の露光部をアルカリ水溶液で溶出または除去して現像する工程、および、
(d-1)該現像された感光性樹脂膜を加熱処理する工程、を含む。
 このようにして得られた硬化物は、ポリイミドを主体とする硬化物であるため、耐熱性や電気絶縁性、機械特性に優れる。
 本発明の硬化物の製造方法は、本発明の感光性樹脂組成物を基材上に塗布して感光性樹脂膜を形成する工程、を含む。
 基材は特に限定されないが、ガラス、シリコンウェハー、セラミック堆積基板、金属めっき基板、サファイア、ガリウムヒ素からなる群から選ばれることが好ましい。
 本発明の感光性組成物を基材上に塗布する方法は公知の方法を用いることができる。塗布に用いる装置としては、スピンコーティング、ディップコーティング、カーテンフローコーティング、スプレーコーティング若しくはスリットコーティング等の全面塗布装置又はスクリーン印刷、ロールコーティング、マイクログラビアコーティング若しくはインクジェット等の印刷装置が挙げられる。
 塗布後、乾燥して感光性樹脂膜を形成する。乾燥は、真空乾燥装置あるいは、ホットプレート、オーブン等の加熱装置を用いる。加熱装置を用いる場合、50以上150℃以下の温度範囲で30秒~30分間行うことが好ましい。前記感光性樹脂膜の膜厚は0.1以上100μm以下が好ましい。
 本発明の硬化物の製造方法は、該感光性樹脂膜を露光する工程、を含む。
 露光する工程において、前記感光性樹脂膜上に、所望のパターンを有するマスクを介して露光する。照射する露光光の波長は特に制限されず、例えば、g線(436nm)、i線(365nm)、及び、h線(405nm)等の300~450nmの波長を有する光が挙げられる。なかでも、365nmの波長を有する光を照射することが好ましい。露光工程において使用する光源としては、例えば、各種レーザー、発光ダイオード(LED)、超高圧水銀灯、高圧水銀灯、低圧水銀灯、及び、メタルハライドランプが挙げられる。また、必要に応じて長波長カットフィルター、短波長カットフィルター及びバンドパスフィルター等の分光フィルターを通して照射光の波長を調整してもよい。
 露光後、必要に応じて、露光後ベークをしても構わない。露光後ベークを行うことによって、現像後の解像度向上又は現像条件の許容幅増大などの効果が期待できる。露光後ベークは、オーブン、ホットプレート、赤外線、フラッシュアニール装置、レーザーアニール装置などを使用することができる。露光後ベーク温度としては、50~170℃が好ましく、60~150℃がより好ましい。露光後ベーク時間は、10秒~1時間が好ましく、30秒~30分であることがより好ましい。
 本発明の硬化物の製造方法は、該露光した感光性樹脂膜の露光部をアルカリ水溶液で溶出または除去して現像する工程、を含む。
 感光性樹脂組成物のパターンを形成するには、露光後、現像液を用いて露光部を除去する。現像に使用される現像液は、アルカリ水溶液可溶性重合体を溶解除去するものであり、典型的にはアルカリ化合物を溶解したアルカリ性水溶液である。アルカリ化合物としては、テトラメチルアンモニウムヒドロキシド、水酸化カリウム、炭酸ナトリウムなどが挙げられる。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。
 現像後は、有機溶媒または水にてリンス処理をすることが好ましい。有機溶媒を用いる場合、上記の現像液に加え、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテートなどが挙げられる。水を用いる場合、ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしてもよい。
 本発明の硬化物の製造方法は、現像した感光性樹脂膜を加熱処理する工程、を含む。
 現像後、150℃~320℃の温度を加えて熱架橋反応を進行させ、耐熱性および耐薬品性を向上させる。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施する。一例としては、130℃、200℃で各30分ずつ熱処理する。本発明においてのキュア条件の下限としては170℃以上が好ましいが、十分に硬化を進行させるために180℃以上であることがより好ましい。また、キュア条件の上限としては、280℃以下が好ましい。
 <感光性樹脂シート>
 本発明の感光性樹脂組成物は、その形状に制限はなく、例えばペースト状であってもシート状であってもよい。
 本発明の感光性樹脂シートは、本発明の感光性樹脂組成物を支持体上にシート状に形成した感光性樹脂シートである。本発明の感光性樹脂シートとは、本発明の感光性樹脂組成物を支持体上に塗布し、溶剤を揮発させることが可能な範囲の温度および時間で乾燥し、本発明の感光性樹脂組成物が、完全に硬化されていないシート状のもので、本発明の感光性樹脂組成物が、有機溶剤に可溶である状態のものを指す。
 支持体は特に限定されないが、ポリエチレンテレフタレート(PET)フィルム、ポリフェニレンサルファイドフィルム、ポリイミドフィルムなど、通常市販されている各種のフィルムが使用可能である。支持体と感光性樹脂組成物との接合面には、密着性と剥離性を向上させるために、シリコーン、シランカップリング剤、アルミキレート剤、ポリ尿素などの表面処理を施してもよい。また、支持体の厚みは特に限定されないが、作業性の観点から、10~100μmの範囲であることが好ましい。さらに塗布で得られた感光性樹脂組成物の膜表面を保護するために、膜表面上に保護フィルムを有してもよい。これにより、大気中のゴミやチリ等の汚染物質から感光性樹脂組成物の表面を保護することができる。
 感光性樹脂組成物を支持体に塗布する方法としてはスピンナーを用いたスピン塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーター、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどの方法が挙げられる。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が、塗膜均一性などの観点から0.5μm以上100μm以下であることが好ましい。
 乾燥には、オーブン、ホットプレート、赤外線などを使用することができる。乾燥温度および乾燥時間は、溶媒を揮発させることが可能な範囲であればよく、感光性樹脂組成物が未硬化または半硬化状態となるような範囲を適宜設定することが好ましい。具体的には、40℃から150℃の範囲で1分から数十分行うことが好ましい。また、これらの温度を組み合わせて段階的に昇温してもよく、例えば、80℃、90℃で各2分ずつ熱処理してもよい。
 <硬化物の製造方法(2)>
 本発明の硬化物の製造方法の別の態様は、
(a-2)本発明の感光性樹脂シートを用い、本発明の感光性樹脂組成物を基材上に熱圧着する工程、
(b-2)該熱圧着された感光性樹脂組成物を露光する工程、
(c-2)該露光された熱圧着された感光性樹脂組成物の露光部をアルカリ水溶液で溶出または除去して現像する工程、および、
(d-2)該現像された熱圧着された感光性樹脂組成物を加熱処理する工程、を含む。
 このようにして得られた硬化物は、ポリイミドを主体とする硬化物であるため、耐熱性や電気絶縁性、機械特性に優れる。
 前記基材は、シリコンウェハー、セラミックス類、ガリウムヒ素、有機系回路基板、無機系回路基板、およびこれらの基板に回路の構成材料が配置されたものなどが挙げられるが、これらに限定されない。有機系回路基板の例としては、ガラス布・エポキシ銅張積層板などのガラス基材銅張積層板、ガラス不織布・エポキシ銅張積層板などのコンポジット銅張積層板、ポリエーテルイミド基板、ポリエーテルケトン基板、ポリサルフォン系基板などの耐熱・熱可塑性基板、ポリエステル銅張フィルム基板、ポリイミド銅張フィルム基板などのフレキシブル基板が挙げられる。また、無機系回路基板の例は、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板などのセラミック基板、アルミニウムベース基板、鉄ベース基板などの金属系基板が挙げられる。回路の構成材料の例は、銀、金、銅などの金属を含有する導体、無機系酸化物などを含有する抵抗体、ガラス系材料および/または樹脂などを含有する低誘電体、樹脂や高誘電率無機粒子などを含有する高誘電体、ガラス系材料などを含有する絶縁体などが挙げられる。
 前記感光性樹脂シートを前記基材上にラミネートする工程は特に限定されないが、公知の方法を用いることができる。例えば、前記感光性樹脂シートが、保護フィルムを有する場合には、保護フィルムを残したまま支持体を剥離し、保護フィルムの付いた感光性樹脂組成物と基板を対向させ、熱圧着により貼り合わせる。熱圧着は、熱プレス、熱ラミネート、熱真空ラミネート等によって行うことができる。中でも熱ラミネートが好ましい。貼り合わせ温度は、基板への密着性、埋め込み性の点から40℃以上が好ましい。また、貼り合わせ時に樹脂組成物フィルムが硬化し、露光・現像工程におけるパターン形成の解像度が悪くなることを防ぐために、貼り合わせ温度は150℃以下が好ましい。
 該感光性樹脂シートを露光する工程、該露光した感光性樹脂シートの露光部をアルカリ水溶液で溶出または除去して現像する工程、および、現像した感光性樹脂シートを加熱処理する工程については、特に制限はないが、前記硬化物の製造方法(1)と同様に行うことが好ましい。
 <半導体装置>
 本発明の感光性樹脂組成物を硬化した硬化物は、半導体装置等の電子部品に使用することができる。本発明でいう半導体装置とは、半導体素子の特性を利用することで機能し得る装置全般を指す。半導体素子を基板に接続した電気光学装置や半導体回路基板、複数の半導体素子を積層したもの、並びにこれらを含む電子装置は、全て半導体装置に含まれる。また、半導体素子を接続するための多層配線板等の電子部品も半導体装置に含める。具体的には、半導体のパッシベーション膜、半導体素子の表面保護膜、半導体素子と再配線層の間の層間絶縁膜、複数の半導体素子の間の層間絶縁膜、高密度実装用多層配線の配線層間の層間絶縁膜、有機電界発光素子の絶縁層などの用途に好適に用いられるが、これに制限されず、様々な用途に用いることができる。
 本発明の半導体装置は、本発明の硬化物が、半導体素子の表面保護膜または配線層間の層間絶縁膜として配置された、半導体装置である。前記感光性組成物の硬化膜が半導体素子の表面保護膜または配線層間の層間絶縁膜として配置されることにより、高信頼性の半導体装置とすることができる。
 本発明の半導体装置は、前記配線層と前記層間絶縁膜が2~10層繰り返し配置された、半導体装置であることが好ましい。前記配線層と前記層間絶縁膜が2~10層繰り返し配置されることにより、半導体装置の小型化ができる。
 <表示装置>
 本発明の表示装置は、基板上に形成された、第一電極と、第一電極を部分的に露光せしめるように第一電極上に形成された絶縁層と、第一電極に対向して設けられた第二電極とを含む表示装置であって、前記絶縁層が本発明の硬化物を含む表示装置である。
 本発明の表示装置の別の態様は、薄膜トランジスタ(TFT)が形成された基板上の凹凸を覆う状態で設けられた平坦化膜を備えてなる表示素子であって、前記平坦化膜が本発明の硬化物を含む表示装置である。
 具体的には、基板上に、駆動回路、平坦化層、第1電極、絶縁層、発光層および第2電極を有し、平坦化層および/または絶縁層が前記硬化物を含む表示素子であることが好ましい。アクティブマトリックス型の表示素子を例に挙げると、ガラスや樹脂フィルムなどの基板上に、TFTと、TFTの側方部に位置しTFTと接続された配線とを有し、その上に凹凸を覆うようにして平坦化層を有し、さらに平坦化層上に表示素子が設けられている。表示素子と配線とは、平坦化層に形成されたコンタクトホールを介して接続される。本発明の感光性樹脂組成物を硬化した硬化物は、平坦化性とパターン寸法安定性に優れるため、平坦化層として表示装置に具備させることが好ましい。特に、近年、表示装置のフレキシブル化が主流になっており、前述の駆動回路を有する基板が樹脂フィルムからなる表示装置であってもよい。
 <式(1)で表される構成単位を含むポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体の製造方法>
 式(1)で表される構成単位を含むポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂の製造方法としては、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂の構造に含まれる水酸基を、(C1)式(2)で表されるケトン化合物および/または(C2)式(3)で表されるケトン化合物中で、保護剤と反応させる工程を有する、樹脂の製造方法が好ましい。中でも、本発明の樹脂の製造方法は、用いる溶媒への樹脂の溶解性の観点からポリイミドであると好ましい。
Figure JPOXMLDOC01-appb-C000034
 式(1)中、Rは、炭素数3~30の3~12価の有機基を示し、Rは、炭素数3~20の1価のオキシメチル基である。mは0~4、nは1~4の整数を示す。*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。
Figure JPOXMLDOC01-appb-C000035
 式(2)中、Rは、単結合もしくは炭素数1~12の1~2価の有機基を示し、Rは、炭素数1~5の1価の有機基を示す。pは、1または2の整数を示す。式(3)中、Rは、炭素数1~12の1価の有機基を示し、qは1~4の整数を示し、rは、0≦r≦(q+2)を満たす整数を示す。
 本願における保護剤とは、水酸基を保護できる化合物であり、それにより導入された保護基は酸や塩基の作用により、脱保護可能である。保護剤として、水酸基を保護することが可能な公知の保護剤を用いることができ、樹脂と保護剤とを反応させることによって式(1)で表される構成単位を含む(A)成分が得られる。例えば、無溶剤又はトルエン、ヘキサン、プロピレングリコールモノメチルエーテルアセテート、シクロペンタノン等の溶剤中で、R-OHを有する樹脂と保護剤とを、酸、または、塩基の存在下、反応温度-20~50℃で反応させることにより、式(1)で表される構成単位を含む(A)成分を得ることができる。
 保護剤として、例えば、Rが1-エトキシエチル基の場合はエチルビニルエーテル、2-テトラヒドロピラニル基の場合は、3,4-ジヒドロー2H-ピランなどを用いることができる。
 酸としては、例えば、塩酸、硫酸、硝酸、過塩素酸などの無機酸、および、メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸などの有機酸が挙げられる。また、p-トルエンスルホン酸ピリジニウムなどの有機酸塩も好ましく用いることができる。
 塩基としては、ピリジン、N,N-ジエチル-4-アミノピリジン、トリエチルアミン、ジイソプロピルアミン等のアミン化合物が挙げられる。
 保護剤の添加量M1(モル)うち、R-OHからR-O-Rの変換に使用された量(M2モル)の割合(M2/M1×100)を反応率(モル%)とすると、反応率は15モル%は必須であり、好ましくは20モル%、より好ましくは25モル%、さらに好ましくは30モル%、最も好ましくは35モル%以上である。
 反応率の観点から、酸は有機酸であることがより好ましく、pKaが-2~1の有機酸であることがさらに好ましい。すなわち、本発明の樹脂の製造方法は、保護剤と反応させる工程において、pKaが-2~1の有機酸を用いることが好ましい。
 また、同様の観点から、有機酸の添加量は保護剤と反応させる前の樹脂全体の質量を100質量%とした時、0.1~1質量%であることが好ましい。
 式(2)中、p=1で表されるケトン系溶剤としては、2-ブタノン、3-メチルブタノン、ピナコロン、2-ペンタノン、3-ペンタノン、3-メチル-2-ペンタノン、4-メチル-2-ペンタノン、2-メチル-3-ペンタノン、4,4-ジメチル-2-ペンタノン、2,4-ジメチル-3-ペンタノン、2,2,4,4-テトラメチル-3-ペンタノン、2-ヘキサノン、3-ヘキサノン、5-メチル-3-ヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-メチル-3-ヘプタノン、5-メチル-3-ヘプタノン、2,6-ジメチル-4-ヘプタノン、2-オクタノン、3-オクタノン、2-ノナノン、3-ノナノン、5-ノナノン、2-デカノン、3-デカノン、4-デカノン、5-ヘキセン-2-オン、3-ペンテン-2-オン等が挙げられる。式(2)中、p=2で表されるケトン系溶剤としては、Rが単結合の場合はジアセチルが挙げられ、それ以外ではアセチルアセトン等が挙げられる。
 式(3)で表されるケトン系溶剤としては、シクロペンタノン、2-メチルシクロペンタノン、3-メチルシクロペンタノン、2,2-ジメチルシクロペンタノン、2,4,4-トリメチルシクロペンタノン、シクロヘキサノン、3-メチルシクロヘキサノン、4-メチルシクロヘキサノン、4-エチルシクロヘキサノン、2,2-ジメチルシクロヘキサノン、2,6-ジメチルシクロヘキサノン、2,2,6-トリメチルシクロヘキサノン、シクロヘプタノン、2-メチルシクロヘプタノン、3-メチルシクロヘプタノン等が挙げられる。
 さらに反応率向上の観点から、前記(C1)成分および/または前記(C2)成分が、標準圧力下における沸点が100℃以上、170℃以下であるケトン化合物を含むことが好ましく、前記(C2)成分を含むことがより好ましい。さらに、シクロペンタノンを含むことが特に好ましい。
 本発明の製造方法においては(C)以外の溶剤を混合して用いても良く、用いられる溶剤としては、特に限定されるものではないが、アミド系溶剤、エステル系溶剤、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、ジメチルスルホキシドなどを好適に用いることができる。
 アミド系溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソ酪酸アミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルプロピレン尿素などが挙げられる。
 エステル系溶剤の具体例としてはγ-ブチロラクトン、δ-バレロラクトン、炭酸プロピレン、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-1-ブチルアセテート、3-メチル-3-メトキシ-1-ブチルアセテート、アセト酢酸エチル、シクロヘキサノールアセテートなどが挙げられる。
 アルコール系溶剤の具体例としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、3-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メトキシ-1-ブタノール、3-メチル-3-メトキシ-1-ブタノール、エチレングリコール、プロピレングリコール、等が挙げられる。
 エーテル系溶剤の具体例としては、ジエチルエーテル、ジイソプロピルエーテル、ジ-n-ブチルエーテル、ジフェニルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジプロピレングリコールジメチルエーテル等が挙げられる。
 ケトン系溶剤の具体例としては、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセチルアセトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、ジシクロヘキシルケトン等が挙げられる。
 なお、(A)成分に対する溶解性向上および保護反応の反応率向上の観点から、使用した溶媒は、保護剤との反応の終了後に完全に留去してもよい。
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。なお、用いた化合物のうち略語を使用しているものについて、名称を以下に示す。
 (酸二無水物化合物)
TDA-100:1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン
ODPA:3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
 (ジアミン化合物)
6FAP:2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン
ABPS:4,4’-スルホニルビス(2-アミノフェノール)
BAP:2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン
BAHF:9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン
HAB:3,3’-ジヒドロキシベンジジン
 (酸二化合物)
ODBC:4,4’-オキシビス(ベンゾイルクロリド)
BPDC:4,4’-ジシクロヘキシルジカルボン酸クロリド
 (酸無水物化合物)
PA:フタル酸無水物
 ((B)光酸発生剤)
 (オキシムスルホネート化合物)
PAG-103:“Irgacure”(登録商標) PAG-103(ベンゼンアセトニトリル,2-メチル-α-[[(プロピルスルホニル)オキシ]イミノ]-3(2H)-チエニリデン、BASFジャパン社製)
 ((C)溶剤)
CP:シクロペンタノン
CH:シクロヘプタノン
GBL:γ-ブチロラクトン
NMP:N-メチルピロリドン
MIBK:4-メチル-2-ペンタノン
MPA:3-メトキシ-N,N-ジメチルプロパンアミド
 (その他)
IPVE:イソプロピルビニルエーテル:保護剤
ルチジン:2,6-ルチジン:式(1)で表される構成単位の構造を安定化させる複素環式アミン化合物
DPA:3-ジメチルアミノ-N,N-ジメチルプロピオンアミド:一般式(5)の化合物。
 (1)ポリイミド、ポリベンゾオキサゾール、ポリアミドの重量平均分子量
 GPC分析装置を用い、ポリスチレン換算の重量平均分子量(Mw)を測定して求めた。なお、ポリイミド、ポリベンゾオキサゾール、およびポリアミドの重量平均分子量は下記条件により測定した。
測定装置:Waters2695(Waters社製)
カラム温度:50℃
流速:0.4mL/min
検出器:2489 UV/Vis Detector(測定波長 260nm)
展開溶剤:NMP(塩化リチウム0.21重量%、リン酸0.48重量%含有)
ガードカラム:TOSOH TSK guard column(東ソー(株)製)
カラム:TOSOH TSK-GEL a-2500、
    TOSOH TSK-GEL a-4000 直列(いずれも東ソー(株)製)。
 (2)イミド化率(%)
 合成例で得られたポリイミド(PI-01~PI-22)を濃度35質量%になるようにGBLに溶解した。この溶液を4インチのシリコンウェハー上にスピンナー(ミカサ(株)製1H-DX)を用いてスピンコート法で塗布し、次いで120℃のホットプレートで3分ベークし、厚さ4~5μmの樹脂膜を作製した。この樹脂膜付きウエハを2分割し、一方をクリーンオーブン(光洋サーモシステム(株)製CLH-21CD-S)を用いて、窒素気流下(酸素濃度20体積ppm以下)において140℃で30分、次いでさらに昇温して320℃で1時間キュアして、イミド環を完全に閉環させた(サンプルIM02)。もう一方はそのまま用いた(サンプルIM01)。赤外分光光度計((株)堀場製作所製FT-720)を用いてキュア前後の樹脂膜(IM01、IM02)の透過赤外吸収スペクトルをそれぞれ測定し、ポリイミドに起因するイミド構造の吸収ピーク(1,780cm-1付近、1,377cm-1付近)の存在を確認の上、IM01の1,377cm-1付近のピーク強度(S)、IM02の1,377cm-1付近のピーク強度(T)を求めた。ピーク強度(S)をピーク強度(T)で割ったピーク強度比を算出し、熱処理前ポリイミド中のイミド基の含量、すなわちイミド化率とした。
 (3)感光性樹脂組成物中の全樹脂におけるフッ素原子含有量
 樹脂または樹脂溶液を試料として精秤する。下記記載の自動試料燃焼装置を用いて、分析装置の燃焼管内で燃焼させ、発生したガスを溶液に吸収後、吸収液の一部をイオンクロマト法により分析した。樹脂溶液の場合は、得られた試料中の全フッ素原子含有量(質量%)を前記固形分濃度(%)で割ることにより、該樹脂におけるフッ素原子含有量とした。
 <燃焼・吸収条件>
 システム  :AQF-2100H、GA-210(三菱化学(株)社製)
 電気炉温度 :Inlet 900℃  Outlet 1000℃
 ガス    :Ar/O 200mL/分
       :O/   400mL/分
 吸収液   :H 0.036質量%、内標 P 4μg/mL
 吸収液量  :20mL
 <イオンクロマトグラフィー・アニオン分析条件>
 システム :ICS1600(DINONEX(株)社製)
 移動相  :2.7mmol/L NaCO / 0.3mmol/L NaHCO
 流速   :1.5mL/分
 検出器  :電気伝導度検出器
 注入量  :20μL。
 (4)保護率
 保護率は、400MHz、1H-NMR(核磁気共鳴)装置(日本電子株式会社製 AL-400)を用いて測定した。具体的には、重水素化ジメチルスルホキシド溶液中、積算回数16回で測定した。5-6ppm付近に観測される保護基由来のメチン基(>CH-)のプロトンの積分値および9-11ppm付近に観測されるフェノール性水酸基のプロトンの積分値を算出し、メチン基のプロトンの積分値とフェノール性水酸基のプロトンの積分値の合計を100%としたときの、メチン基のプロトン積分値の割合を保護率(%)とした。
 (5)固形分濃度
 固形分濃度は、以下の方法により求めた。アルミカップに溶液を1.500g秤取し、ホットプレートを用いて30分間加熱して液分を蒸発させた。加熱温度は溶剤の標準圧力下における沸点から50度を足した値で設定した。加熱後のアルミカップに残った固形分の重量を秤量して、加熱前の重量に対する割合から固形分濃度を求めた。
 (6)一般式(4)~(6)、および、pKaが-2~1の酸化合物の含有量
 (6-1)感光性樹脂組成物、溶剤中の含有量
 各実施例および比較例に用いた組成物を、GC-MS装置(Agilent社製)を用い、カラム温度:40~300℃、キャリアガス:ヘリウム(1.5mL/min)、スキャン範囲:m/z29~600の条件で、GC-MS分析を実施した。対象となる化合物それぞれで上記と同一条件でGC-MS分析して検量線を作成することで、感光性樹脂組成物、溶剤中における対象となる化合物の含有量を算出した。
 (6-2)樹脂粉体中の含有量
合成例で得られた樹脂100.0mgをアセトン1mLに溶解させた溶液を前記と同様にGC-MS分析を実施し、樹脂粉体中における対象となる化合物の含有量を算出した。
 (7)レリーフパターンの作製
 各実施例および比較例により得られた感光性樹脂組成物を、塗布現像装置ACT-8(東京エレクトロン(株)製)を用いて、8インチシリコンウェハー上にスピンコート法により塗布し、100℃で2分間加熱をして膜厚4.0μmの感光性樹脂膜を作製した。なお、膜厚は、光干渉式膜厚測定装置ラムダエースSTM-602(SCREENホールディングス社製)を用いて、屈折率1.629の条件で測定した。その後、露光機i線ステッパーNSR-2005i9C(ニコン社製)を用いて、10μmのコンタクトホールのパターンを有するマスクを介して、露光量5~300mJ/cmの範囲で5mJ/cm毎に露光した。露光後、前記ACT-8の現像装置を用いて、2.38質量%のTMAH(多摩化学工業(株)製)を現像液として、80秒間現像した後、蒸留水でリンスを行い、振り切り乾燥し、レリーフパターンを得た。
 (7-1)現像膜減少量の算出
 現像膜減少量は、未露光部における現像前の膜厚から、現像後の膜厚を引算し、算出した。下記のように結果を判定し、膜減少量が0.7μm未満である、A~Bを合格とした。
:現像膜減少量が0.2μm未満
A:現像膜減少量が0.2μm以上0.3μm未満
:現像膜減少量が0.3μm以上0.4μm未満
:現像膜減少量が0.4μm以上0.5μm未満
B:現像膜減少量が0.5μm以上0.6μm未満
:現像膜減少量が0.6μm以上0.7μm未満
C:現像膜減少量が0.7μm以上。
 (7-2)感度
 感度は得られたレリーフパターンをFDP顕微鏡MX61(オリンパス(株)製)を用いて倍率20倍で観察し、コンタクトホールの開口径を測定した。コンタクトホールの開口径が10μmに達した最低露光量を求め、これを感度とした。下記のように結果を判定し、感度が200mJ/cm未満である、A~Bを合格とした。
:感度が60mJ/cm未満
A:感度が60mJ/cm以上70mJ/cm未満
:感度が70mJ/cm以上85mJ/cm未満
:感度が85mJ/cm以上100mJ/cm未満
B:感度が100mJ/cm以上200mJ/cm未満
C:感度が200mJ/cm以上。
 (8)保管安定性
 各実施例および比較例により得られた感光性樹脂組成物を、23℃、45%RHで5日間放置した後、(7)と同様の手順でレリーフパターンを作製した。
 (8-1)現像膜減少量の算出
 (7-1)と同様の評価手順、判定基準で合否を判定した。
 (8-2)感度変化
 (7-2)と同様の評価手順で感度を求め、放置前の感度をEop(B)、放置後の感度をEop(A)としたとき、感度変化x(%)を以下の式で算出し、評価基準を下記のように定め、A~Bを合格とした。
感度変化x(%)=Eop(A)/Eop(B)×100
A:xが102未満
:xが102以上105未満
:xが105以上112未満
B:xが112以上120未満
C:xが120以上。
 (9)露光後放置の影響
 各実施例および比較例により得られた感光性樹脂組成物を、(7)と同様の手順でレリーフパターンを作製した。この際、露光後の膜を放置せずに現像した場合の感度をEop(B)、露光後に23℃、45%RHの環境下で24時間放置した後に現像した場合の感度をEop(C)としたとき、感度変化y(%)を以下の式で算出し、評価基準を下記のように定め、A~Bを合格とした。
感度変化y(%)=Eop(C)/Eop(B)×100
A:yが110未満
:yが110以上150未満
B:yが150以上200未満
C:yが200以上。
 (10)熱処理による膜厚変化
 各実施例および比較例により得られた感光性樹脂組成物を、塗布現像装置ACT-8(東京エレクトロン(株)製)を用いて、8インチシリコンウェハー上にスピンコート法により塗布し、100℃で2分間加熱をして膜厚4.0μmの感光性樹脂膜を作製した。なお、膜厚は、光干渉式膜厚測定装置ラムダエースSTM-602(SCREENホールディングス社製)を用いて、屈折率1.629の条件で測定した。この樹脂膜付きウエハをクリーンオーブン(光洋サーモシステム(株)製CLH-21CD-S)を用いて、窒素気流下(酸素濃度20ppm以下)において250℃で30分熱処理して、膜厚R(μm)を測定した。このとき、R/4×100の値を熱処理後の膜厚保持率とした。
 下記のように判定し、膜厚保持率が70%以上となる、A、Bを合格とした。
A:膜厚保持率75%以上
B:膜厚保持率70%以上、75%未満
C:膜厚保持率70%未満。
 合成例1 MPA-2の調整
 市販のMPA(MPA-1)1kgを用いて、一般式(5)に含まれる化合物の含有量を評価したところ、DPAが2000ppm含まれていた。続いてMPA-1をイオン交換樹脂塔に充填したイオン交換樹脂(商品名「アンバーリスト16WET」、オルガノ社(ローム&ハース社)製)100mlに、連続的に接触させて、DPAが800ppmになるまで精製を行い、精製後の溶剤(MPA-2)を得た。
 合成例2 MPA-3の調整
 市販のMPA(MPA-1)1kgにDPAを0.4010g追加し、DPAが2400ppmとなるMPA(MPA-3)を得た。
 合成例3 MPA-4の調整
 市販のMPA(MPA-1)1kgにDPAを4.024g追加し、DPAが6000ppmとなるMPA(MPA-4)を得た。
 合成例4 MPA-5の調整
 市販のMPA(MPA-1)1kgにDPAを6.048g追加し、DPAが8000ppmとなるMPA(MPA-5)を得た。
 合成例5 MPA-6の調整
 市販のMPA(MPA-1)1kgにDPAを17.02g追加し、DPAが18700ppmとなるMPA(MPA-6)を得た。
 合成例6 MPA-7の調整
 市販のMPA(MPA-1)1kgにDPAを19.41g追加し、DPAが21000ppmとなるMPA(MPA-7)を得た。
 合成例7 ポリイミド(PI-01)の合成
 乾燥窒素気流下、四口フラスコにジアミンとして6FAP 32.96g(90mmol)NMPを180g秤量して溶解させた。ここに酸二無水物としてTDA-100を30.03g(100mmol)、NMP 40.00gとともに加え、40℃で1時間攪拌した。次いで、モノアミンとしてアニリン1.863g(20mmol)をNMP 40.00gとともに加えて、40℃で1時間反応させ、次いで200℃で4時間攪拌した。撹拌終了後、溶液を純水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、純水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し、ポリイミド(PI-01)の粉末を得た。得られた樹脂のMwは29,600、イミド化率は100%であった。該樹脂粉末におけるNMPの含有量は6.5質量%であった。評価結果を表1に記載した。
 合成例8~18、23~28 ポリイミド(PI-02~12、17~22)の合成
 合成例7から、酸二無水物、モノアミン、ジアミンを表1に記載の種類および量に、重合溶媒を記載の種類に変更した以外は、合成例7と同様に合成した。評価結果を表1に記載した。
 合成例19 ポリイミド(PI-13)の合成
 白色沈殿を濾過で集めて、純水で10回洗浄する以外は合成例1と同様にしてポリイミド(PI-13)の粉末を得た。評価結果を表1に記載した。
 合成例20 ポリイミド(PI-14)の合成
 白色沈殿を濾過で集めて、純水で15回洗浄する以外は合成例1と同様にしてポリイミド(PI-14)の粉末を得た。評価結果を表1に記載した。
 合成例21 ポリイミド(PI-15)の合成
 50℃の真空乾燥機で72時間乾燥した後、200℃の真空乾燥機で8時間乾燥する以外は合成例1と同様にしてポリイミド(PI-15)の粉末を得た。評価結果を表1に記載した。
 合成例22 ポリイミド(PI-16)の合成
 PI-01を30.00g秤量して、120gの乳酸エチルに室温で溶解させた。この液を純水1Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、純水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し、ポリイミド(PI-16)の粉末を得た。評価結果を表1に記載した。
 合成例29 ポリアミド(PA-01)の合成
 乾燥窒素気流下、四口フラスコにジアミンとして6FAP36.63g(100mmol)とPA 7.405g(50mmol)をNMP75.00gに溶解させ、80℃で2時間攪拌した。その後、溶液の温度を-15℃まで冷却し、溶液の温度が-15℃になったことを確認した後、ODBC22.13g(75mmol)をNMP30gに溶解させた溶液を、反応系内の温度が0℃を越えないように滴下した。滴下終了後、6時間、20℃で撹拌を続けた。反応終了後、メタノールを10重量%含んだ純水3Lに上記溶液を投入して白色の沈殿を析出させた。この沈殿をろ過で集めて、純水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し、ポリアミド(PA-01)を得た。得られた樹脂のMwは23,400であった。評価結果を表1に記載した。
 合成例30~37 ポリアミド(PA-01~09)の合成
 合成例29から、ジカルボン酸誘導体、ジアミン、末端無水物を表2に記載の種類および量に、重合溶媒を記載の種類に変更した以外は、合成例29と同様に合成した。評価結果を表1に記載した。
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
 実施例1 (A)式(1)で表される構成単位を含むポリイミド
 乾燥窒素気流下、三口フラスコにベースポリマーとして合成例7で合成したPI-01を10.00g、溶剤としてCPを30.00g秤量して溶解させた。ここに保護剤としてIPVEを0.700g(8.127×10-3モル)加え、0℃で1時間攪拌した。次いで、触媒として、トリフルオロ酢酸(pKa:0.23)を1.000×10-2g加え、0℃で3時間攪拌させた。攪拌終了後、飽和炭酸水素ナトリウム水溶液で酸触媒を中和した後、水槽を除去した。さらに有機層を水で2回洗浄した。その後、未反応のIPVEを除去することを目的として、ロータリーエバポレーターを用いて低沸点残存物を除去した。その後、溶液の固形分濃度を測定し、固形分が40%となるようにCPを添加し、水酸基が酸分解性基である1-イソプロポキシエチル基で保護された樹脂(PI-01-PR10)の固形分40質量%溶液を得た。酸分解性基で保護されているフェノール性水酸基の割合(保護率)は、10モル%であり、このとき、IPVEのうち36.2モル%(反応率)が保護反応に使用された。また、樹脂のフッ素濃度は16.3%であった。結果を表2に示す。
 実施例2~40および比較例1~4
 実施例1から、ベースポリマー種類、溶剤(種類、量)、触媒(種類、pKa、量)、IPVE量を表2のように変更した以外は、実施例1と同様に合成した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
 合成例38
 ロータリーエバポレーターを用いてPI-01-PR40(40%CP溶液)を濃縮し、溶媒が除去されて流動性がなくなった後、取り出して固形分濃度を測定した。この固体に固形分濃度が40%、CPとCHの質量の比率が5/95となるようCPとCHを加え、PI-01-PR40CH(40%CH/CP溶液)を得た。
 合成例39
 ロータリーエバポレーターを用いてPI-01-PR40(40%CP溶液)を濃縮し、溶媒が除去されて流動性がなくなった後、取り出して固形分濃度を測定した。この固体に固形分濃度が40%、CPとMIBKの質量の比率が5/95となるようCPとMIBKを加え、PI-01-PR40M(40%MIBK/CP溶液)を得た。
 合成例40
 PI-01-PR40(40%CP溶液)を10.00g秤取し、GBLを6.000g加え、ロータリーエバポレーターを用いて、溶媒置換を行った。溶媒置換後、固形分濃度を測定し、固形分濃度が40%となるようGBLを加え、PI-01-PR40G(40%GBL溶液)を得た。
 合成例41
 PI-01-PR40(40%CP溶液)を10.00g秤取し、NMPを6.000g加え、ロータリーエバポレーターを用いて、溶媒置換を行った。溶媒置換後、固形分濃度を測定し、固形分濃度が40%となるようNMPを加え、PI-01-PR40N(40%NM溶液)を得た。
 合成例42
 PA-01-PR40(40%CP溶液)を10.00g秤取し、GBLを6.000g加え、ロータリーエバポレーターを用いて、溶媒置換を行った。溶媒置換後、固形分濃度を測定し、固形分濃度が40%となるようGBLを加え、PA-01-PR40G(40%GBL溶液)を得た。
 合成例43
 PA-01-PR40(40%CP溶液)を10.00g秤取し、NMPを6.000g加え、ロータリーエバポレーターを用いて、溶媒置換を行った。溶媒置換後、固形分濃度を測定し、固形分濃度が40%となるようNMPを加え、PA-01-PR40N(40%NM溶液)を得た。
 実施例41
 黄色灯下、(A)成分として、PI-01-PR10の固形分40%CP溶液を2.500g、(B)光酸発生剤としてPAG-103を5.000×10-2g、式(1)で表される構成単位の構造を安定化させる複素環式アミン化合物としてルチジンを5.000×10-3g加え、攪拌した。その後、CPを1.500g加え濃度を調整し、感光性樹脂組成物とした。得られた感光性樹脂組成物のNMP濃度は1.00質量%、一般式(5)、(6)の合計含有量は0質量%、pKa0.23の有機酸であるトリフルオロ酢酸が10×10-6質量%であった。結果を表3に示す。
 調製した感光性樹脂組成物の、(7)レリーフパターンの作製を行い、(7-1)現像膜減量および(7-2)感度、(8)保存安定性、(9)露光後放置の影響、(10)熱処理による膜厚変化の評価を行った。評価結果を表3に示す。
 実施例42~80、比較例5~8
 感光性樹脂組成物の各成分の配合を表3に記載のように変更した以外は、実施例41と同様に、評価を行った。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
 

Claims (17)

  1. (A)式(1)で表される構成単位を含む、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂、
    (B)光酸発生剤、ならびに、
    (C)溶剤、を含み、
    前記(C)溶剤が、(C1)式(2)で表されるケトン化合物および/または(C2)式(3)で表されるケトン化合物、を含む感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、炭素数3~30の3~12価の有機基を示し、Rは、炭素数3~20の1価のオキシメチル基である。mは0~4、nは1~4の整数を示す。*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは、単結合もしくは炭素数1~12の1~2価の有機基を示し、Rは、炭素数1~5の1価の有機基を示す。pは1または2の整数を示す。式(3)中、Rは、炭素数1~12の1価の有機基を示し、qは1~4の整数を示し、rは0≦r≦(q+2)を満たす整数を示す。)
  2. 前記(A)樹脂が、式(1)で表される構成単位を含むポリイミドを含む、請求項1に記載の感光性樹脂組成物。
  3. 前記(C1)成分および/または前記(C2)成分が、標準圧力下における沸点が100℃以上、170℃以下であるケトン化合物を含む、請求項1に記載の感光性樹脂組成物。
  4. 前記(C2)成分を含有し、
    前記(C2)成分が、前記式(3)中、q=2およびr=0であるケトン化合物を含有する、
    請求項1に記載の感光性樹脂組成物。
  5. さらに、式(4)で表される化合物の含有量が、感光性樹脂組成物の総量を100質量%としたとき、0.3質量%以下である、請求項1に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(4)中、Rは、水素原子または炭素数1~6の1価の有機基を示し、Rは、それぞれ独立に、炭素数1~12の1価の有機基を示し、sは2~3の整数を示し、tは0≦t≦(s+1)を満たす整数を示す。)
  6. さらに、式(5)で表される化合物および/または(6)で表される化合物を含み、
    感光性樹脂組成物の総量を100質量%としたとき、式(5)で表される化合物および(6)で表される化合物の合計の含有量が0.0001%以上0.03質量%以下である、請求項1に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(5)中、Rは、炭素数1~6の1価の有機基を示し、RおよびR10は、それぞれ独立に、炭素数1~3の1価の有機基を示す。式(6)中、R11は、水素原子または炭素数1~6の1価の有機基を示し、uは0以上の整数を示す。)
  7. さらに、pKaが-2~1の有機酸を含む、請求項1に記載の感光性樹脂組成物。
  8. 感光性樹脂組成物中に含まれる全樹脂の総量を100質量%とした時の、該全樹脂に含有されるフッ素原子の含有量が15質量%より大きい、請求項1に記載の感光性樹脂組成物。
  9. 請求項1~8のいずれかに記載の感光性樹脂組成物を支持体上にシート状に形成した感光性樹脂シート。
  10. 請求項1~8のいずれかに記載の感光性樹脂組成物を硬化した硬化物。
  11. a)請求項1~8のいずれかに記載の感光性樹脂組成物を基材上に塗布、乾燥して感光性樹脂膜を形成する工程、または、請求項9に記載の感光性樹脂シートを用い、本発明の感光性樹脂組成物を基材上に熱圧着する工程、
    b)該感光性樹脂膜または該熱圧着された感光性樹脂組成物を露光する工程、
    c)該露光された感光性樹脂膜の露光部または該露光された熱圧着された感光性樹脂組成物の露光部をアルカリ水溶液で溶出または除去して現像する工程、および、
    d)該現像された感光性樹脂膜または該現像された熱圧着された感光性樹脂組成物を加熱処理する工程を含む、
    硬化物の製造方法。
  12. 請求項10に記載の硬化物が、半導体素子の表面保護膜または配線層間の層間絶縁膜として配置された、半導体装置。
  13. 基板上に形成された、第一電極と、第一電極を部分的に露光せしめるように第一電極上に形成された絶縁層と、第一電極に対向して設けられた第二電極とを含む表示装置であって、
    前記絶縁層が請求項10に記載の硬化物を含む表示装置。
  14. 薄膜トランジスタ(TFT)が形成された基板上の凹凸を覆う状態で設けられた平坦化膜を備えてなる表示素子であって、前記平坦化膜が請求項10に記載の硬化物を含む表示装置。
  15. 式(1)で表される構成単位を含む、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂の製造方法であって、ポリイミド、ポリベンゾオキサゾール、ポリアミドおよびそれらの共重合体からなる群より選択される一種以上の樹脂の構造に含まれる水酸基を、(C1)式(2)で表されるケトン化合物および/または(C2)式(3)で表されるケトン化合物中で、保護剤と反応させる工程を有する、樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(1)中、Rは、炭素数3~30の3~12価の有機基を示し、Rは、炭素数3~20の1価のオキシメチル基である。mは0~4、nは1~4の整数を示す。*は結合部位を示し、aおよびbは、それぞれ独立に、1または2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(2)中、Rは、単結合もしくは炭素数1~12の1~2価の有機基を示し、Rは、炭素数1~5の1価の有機基を示す。pは1または2の整数を示す。式(3)中、Rは、炭素数1~12の1価の有機基を示し、qは1~4の整数を示し、rは0≦r≦(q+2)を満たす整数を示す。)
  16. 前記樹脂がポリイミドである、請求項15に記載の樹脂の製造方法。
  17.  前記保護剤と反応させる工程において、pKaが-2~1の有機酸を用いる、請求項15に記載の樹脂の製造方法。
     
PCT/JP2023/034069 2022-09-30 2023-09-20 感光性樹脂組成物、感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置、樹脂の製造方法 WO2024070845A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157510 2022-09-30
JP2022-157510 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070845A1 true WO2024070845A1 (ja) 2024-04-04

Family

ID=90477589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034069 WO2024070845A1 (ja) 2022-09-30 2023-09-20 感光性樹脂組成物、感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置、樹脂の製造方法

Country Status (2)

Country Link
TW (1) TW202417554A (ja)
WO (1) WO2024070845A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038664A1 (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 組成物、硬化膜、硬化膜の製造方法、半導体デバイスの製造方法および半導体デバイス
WO2021125080A1 (ja) * 2019-12-20 2021-06-24 東レ株式会社 感光性樹脂組成物、硬化膜、有機elディスプレイ、及び表示装置、並びに、硬化膜の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038664A1 (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 組成物、硬化膜、硬化膜の製造方法、半導体デバイスの製造方法および半導体デバイス
WO2021125080A1 (ja) * 2019-12-20 2021-06-24 東レ株式会社 感光性樹脂組成物、硬化膜、有機elディスプレイ、及び表示装置、並びに、硬化膜の製造方法

Also Published As

Publication number Publication date
TW202417554A (zh) 2024-05-01

Similar Documents

Publication Publication Date Title
EP2469337B1 (en) Positive photosensitive resin composition, method for forming pattern, and electronic component
KR101910220B1 (ko) 감광성 수지 조성물, 그 수지 조성물을 사용한 패턴 경화막의 제조 방법 및 전자 부품
US8758977B2 (en) Negative-type photosensitive resin composition, pattern forming method and electronic parts
CN102393607A (zh) 正型感光性树脂组合物及使用该组合物的半导体器件和显示器
JP2006189788A (ja) ネガ型感光性樹脂組成物、パターン形成方法及び電子部品
TWI703406B (zh) 負型感光性樹脂組合物及硬化浮凸圖案之製造方法
JP4646068B2 (ja) ポジ型感光性樹脂組成物、その製造方法、及びレリーフパターンの形成方法
JP6291718B2 (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、および表示体装置
JP4775077B2 (ja) ポジ型感光性ポリアミドイミド樹脂組成物、パターンの製造方法及び電子部品
JP6255740B2 (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、表示体装置、およびポジ型感光性樹脂組成物の製造方法
JP4736864B2 (ja) ポジ型感光性ポリアミドイミド樹脂組成物、パターンの製造方法及び電子部品
JP2006308765A (ja) ネガ型感光性樹脂組成物、パターンの製造方法及び電子部品
JP5120539B2 (ja) 耐熱性樹脂組成物
TWI529201B (zh) 正型感光性樹脂組成物、感光性樹脂膜及使用其的顯示裝置
JP2016130831A (ja) ポジ型感光性樹脂組成物、これを用いた硬化膜及びパターン硬化膜の製造方法、並びに電子部品
CN116991034A (zh) 负型感光性树脂组成物、图案形成方法、层间绝缘膜、表面保护膜、及电子零件
WO2024070845A1 (ja) 感光性樹脂組成物、感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置、樹脂の製造方法
TWI846881B (zh) 感光性聚醯亞胺樹脂組成物
US20100159217A1 (en) Negative-type photosensitive resin composition, method for forming patterns, and electronic parts
JP5617505B2 (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、および表示体装置
JP2006178059A (ja) ネガ型感光性樹脂組成物、パターンの製造方法及び電子部品
JP2024052576A (ja) 感光性樹脂組成物、感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置
WO2023248887A1 (ja) ポジ型感光性樹脂組成物、ポジ型感光性樹脂シート、硬化物、硬化物の製造方法、半導体装置、表示装置
JP7247867B2 (ja) 感光性ポリイミド樹脂組成物、パターン形成方法及び半導体装置の製造方法
WO2010010842A1 (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜およびそれを用いた半導体装置、表示体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023560838

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872073

Country of ref document: EP

Kind code of ref document: A1