WO2023245790A1 - 一种通过分子筛由环醇一步制备环烷烃的方法 - Google Patents

一种通过分子筛由环醇一步制备环烷烃的方法 Download PDF

Info

Publication number
WO2023245790A1
WO2023245790A1 PCT/CN2022/106909 CN2022106909W WO2023245790A1 WO 2023245790 A1 WO2023245790 A1 WO 2023245790A1 CN 2022106909 W CN2022106909 W CN 2022106909W WO 2023245790 A1 WO2023245790 A1 WO 2023245790A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycloalkanes
molecular sieve
preparing
type
molecular sieves
Prior art date
Application number
PCT/CN2022/106909
Other languages
English (en)
French (fr)
Inventor
袁鹄
周上群
胡葆华
孟凡民
Original Assignee
中节能万润股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中节能万润股份有限公司 filed Critical 中节能万润股份有限公司
Publication of WO2023245790A1 publication Critical patent/WO2023245790A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/04Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/76Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • Method (1) and method (2) the product has no stereoselectivity, the reagents used are highly toxic, and the reaction process requires anhydrous conditions, and the reaction conditions are very strict; method (3) is to dehydrate first and then hydrogenate. If you want to get the main body selection Highly toxic products require transformation, many reaction steps, and the use of pressure equipment and hazardous materials, such as hydrogen.
  • the present invention provides a method for preparing cycloalkanes from cyclic alcohols through molecular sieves in one step.
  • the reaction conditions are mild, high temperature and high pressure conditions are not required, the reaction product has high stereoselectivity and high yield, and the molecular sieve can also be reused. .
  • n 0 or 1
  • p 0, 1, 2 or 3;
  • A is -CH 2 CH 2 - or single bond
  • the rings in the structural formulas of the cyclic alcohols and cycloalkanes are not substituted by heteroatoms or are substituted by heteroatoms at different positions.
  • the molecular sieve type is H type, NH4 type or modified metal ion type.
  • the ⁇ -type molecular sieve is HBETA, NH4BETA or MBETA, where M represents any one or several metals, such as iron, copper, manganese, nickel, lanthanum, cerium, etc.
  • cyclic alcohol is selected from the following structural formula:
  • the cycloalkane is selected from the following structural formula:
  • substitution of the heteroatom at different positions is specifically: O instead of CH 2 or NH instead of CH 2 .
  • the organic solvent is one of n-heptane, petroleum ether, benzene, toluene, xylene, THF, 2-MeTHF, methanol, ethanol, isopropanol, butanol, isobutanol and tert-butanol or Several kinds.
  • the temperature of the heating reaction is 40°C to 150°C.
  • the temperature of the heating reaction is 90°C to 120°C. If the temperature is low and there is no reaction or the conversion rate is low, the boiling point of the solvent is generally selected as the reaction temperature. Pressure can also be used for low boiling point solvents.
  • the mass ratio of the molecular sieve to the cyclic alcohol is (1-5):1.
  • the present invention uses molecular sieves to prepare cyclic alcohols into cycloalkanes. Since the molecular sieve is acidic and has dehydration function, the molecular sieve has stereoselectivity and can provide hydrogen, and a stereoselective product can be obtained. Cycloalkanes are mainly used in the field of liquid crystal materials. What is most needed is cycloalkanes with a trans structure. However, the present invention uses molecular sieves to prepare cycloalkanes.
  • the unique pore size inside the molecular sieve is conducive to the stereoselectivity of the reaction, so that the cycloalkanes in the product are mainly Trans structure, good stereoselectivity, especially for products with similar structures such as propylcyclohexylcyclohexylpropylbenzene;
  • reaction process does not require the use of hydrogen or high-pressure conditions.
  • the two-step reactions of dehydration and hydroalkylation can be completed in one step at the same time through the selected molecular sieve, and the required cycloalkanes are finally obtained.
  • the reaction process Green and environmentally friendly, easy to industrialize;
  • cycloalcohols are used to prepare cycloalkanes.
  • the dehydration process and the hydroalkylation process require the use of different catalysts, which need to be divided into two steps.
  • the hydrogenation process requires the use of hydrogen, and the hydrogenation process requires the use of hydrogen. It is carried out in a kettle. The conditions of the hydrogenation kettle are relatively high, and the equipment investment is large. Moreover, hydrogen is an extremely flammable and explosive gas, which is extremely dangerous. The operation is very strict and the requirements for the production environment are extremely high.
  • cycloalkanes with the required three-dimensional structure can be prepared in one step using only molecular sieves. The preparation process is simpler, and there is no need to use dangerous raw materials, and there is no need to set up costly equipment, which reduces raw materials, equipment, and operating costs, and more Suitable for industrialization.
  • Figure 2 is the 1HNMR detection spectrum of the propylcyclohexylcyclohexyltoluene product described in Example 1;
  • Figure 3 is the 13CNMR detection spectrum of the propylcyclohexylcyclohexyltoluene product described in Example 1;
  • the dripping is completed in about 1.5 hours. There is no obvious color change in the system, and the internal temperature is 50 to 60°C.
  • the reaction was incubated at °C for 2 hours. Slowly pour the system into a 2L beaker containing 48g concentrated hydrochloric acid and 240g ice water. Stir and hydrolyze at 30-40°C for 30 minutes. The system will appear slightly yellow and clear. After stirring evenly, transfer to the separatory funnel and let stand for layering. Discard the colorless clear aqueous phase of the lower layer. Wash with 200g of deionized water 2 to 3 times to pH ⁇ 7 to obtain a toluene and THF solution of cycloalcohol.
  • the cis yield of the propylcyclohexylcyclohexyltoluene product is 5.5%, and the trans yield is 92.5%.
  • This example uses the same method as Example 1 to prepare propylcyclohexylcyclohexyltoluene, with the difference: the recovered H ⁇ molecular sieve is used instead of the H ⁇ molecular sieve in Example 1 (the H ⁇ molecular sieve in Example 1 is roasted at 550°C After treatment, the recovered H ⁇ molecular sieve was obtained and used in the reaction of this example).
  • the conversion rate of propylcyclohexylcyclohexyltoluene in this example is: greater than 99.5%;
  • the cis yield of the propylcyclohexylcyclohexyltoluene product is 6.1%, and the trans yield is 90.5%.
  • This example uses the same method as Example 1 to prepare propylcyclohexylcyclohexyltoluene, except that Fe ⁇ molecular sieve is used instead of H ⁇ molecular sieve in Example 1.
  • the conversion rate of propylcyclohexylcyclohexyltoluene in this example is: greater than 99.5%;
  • the cis yield of the propylcyclohexylcyclohexyltoluene product is 5.1%, and the trans yield is 92.7%.
  • This embodiment uses the same method as Example 1 to prepare propylcyclohexylcyclohexyltoluene, except that NH4 type ZSM-5 molecular sieve is used instead of the H ⁇ molecular sieve in Example 1.
  • the conversion rate of propylcyclohexylcyclohexyltoluene in this example is: greater than 99.5%;
  • the cis yield of the propylcyclohexylcyclohexyltoluene product is 6.8%, and the trans yield is 91.0%.
  • Example 1 the same method as in Example 1 is used to prepare propylcyclohexylcyclohexyltoluene, except that H-type Y-type molecular sieve is used instead of the H ⁇ molecular sieve in Example 1.
  • the conversion rate of propylcyclohexylcyclohexyltoluene in this example is: greater than 99.5%;
  • the cis yield of the propylcyclohexylcyclohexyltoluene product is 8.0%, and the trans yield is 89.6%.
  • This example uses the same method as Example 1 to prepare propylcyclohexylcyclohexyltoluene, except that H-type mordenite is used instead of the H ⁇ molecular sieve in Example 1.
  • the conversion rate of propylcyclohexylcyclohexyltoluene in this example is: greater than 99.5%;
  • the cis yield of the propylcyclohexylcyclohexyltoluene product is 7.2%, and the trans yield is 89.2%.
  • This example uses the same method as Example 1 to prepare propylcyclohexylcyclohexyltoluene, except that H-type SAPO-34 molecular sieve is used instead of the H ⁇ molecular sieve in Example 1.
  • the conversion rate of propylcyclohexylcyclohexyltoluene in this example is: greater than 99.5%;
  • the cis yield of the propylcyclohexylcyclohexyltoluene product is 5.5%, and the trans yield is 92.3%.
  • the conversion rate of propylcyclohexylcyclohexyltoluene in this example is: greater than 99.5%;
  • the cis yield of the propylcyclohexylcyclohexyltoluene product is 5.4%, and the trans yield is 92.0%.
  • Embodiment 1 The main difference from Embodiment 1 is: using replace
  • the conversion rate of propylcyclohexylcyclohexyltoluene in this example is: greater than 99.5%;
  • the cis yield of the propylcyclohexylcyclohexyltoluene product is 5.3%, and the trans yield is 92.8%.
  • the dripping is completed in about 1.5 hours. There is no obvious color change in the system, and the internal temperature is 50 to 60°C.
  • the reaction was incubated at °C for 2 hours. Slowly pour the system into a 2L beaker containing 48g concentrated hydrochloric acid and 240g ice water. Stir and hydrolyze at 30-40°C for 30 minutes. The system will appear slightly yellow and clear. After stirring evenly, turn the separatory funnel and let stand for layering. Discard the colorless clear aqueous phase of the lower layer. Wash with 200g of deionized water 2 to 3 times until pH ⁇ 7. Remove the solvent under reduced pressure. Add THF to dissolve to obtain the THF melt of the cyclic alcohol. liquid;
  • the cis yield of the propylcyclohexylcyclohexyltoluene product is 10.1%, and the trans yield is 87.3%.
  • This embodiment Product conversion rate greater than 99.5%
  • This example uses the same method as Example 1 to prepare propylcyclohexylcyclohexylpropylbenzene. The difference is that 82.1g of p-bromotoluene in Example 1 is replaced by 95.5g of p-bromopropylbenzene.
  • the conversion rate of propylcyclohexylcyclohexylpropylbenzene product in this example is: greater than 99.5%;
  • the cis yield of the propylcyclohexylcyclohexylpropylbenzene product is 5.8%, and the trans yield is 92.1%.
  • the internal temperature is 50 to 60°C.
  • the reaction was incubated for 2 hours. Slowly pour the system into a 2L beaker containing 48g concentrated hydrochloric acid and 240g ice water. Stir and hydrolyze at 30-40°C for 30 minutes. The system will appear slightly yellow and clear. After stirring evenly, transfer to the separatory funnel and let stand for layering. Discard the colorless clear aqueous phase of the lower layer. Wash with 200g of deionized water 2 to 3 times to pH ⁇ 7 to obtain a toluene and THF solution of cycloalcohol.
  • the conversion rate of methylcyclohexyltoluene product in this example is: greater than 99.5%;
  • the propylcyclohexylcyclohexyltoluene product was prepared using the same method as Example 1, except that the added amount of H ⁇ molecular sieve was 112.5g (theoretical amount of 0.9g/g cyclic alcohol).
  • the propylcyclohexylcyclohexyltoluene product has a cis yield of 5.0% and a trans yield of 86.0%.
  • the propylcyclohexylcyclohexyltoluene product was prepared using the same method as Example 1, except that the H ⁇ molecular sieve was replaced by MSU-X mesoporous molecular sieve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一种通过分子筛由环醇一步制备环烷烃的方法,其特征在于,所述制备环烷烃的方法为:惰性气体保护下,在有机溶剂中,加入环醇和分子筛,加热反应,得到环烷烃,所述分子筛为微孔分子筛;所述分子筛为X型、Y型、L型、β型、丝光沸石、毛沸石、CHA、RHO、AEL、TS、SAPO-34、ZSM-5和ZSM-11中的一种或几种混合。本发明采用分子筛制备环烷烃,可以使环烷烃产物中主要为反式结构,立体选择性较好,反应结束后,分子筛滤除出来经焙烧后,可以重复利用,可降低生产成本;反应过程无需使用氢气,无需高压条件,反应过程绿色环保,易于工业化。

Description

一种通过分子筛由环醇一步制备环烷烃的方法 技术领域
本发明涉及一种通过分子筛由环醇一步制备环烷烃的方法,属于有机合成技术领域。
背景技术
在有机合成化学中,由醇制备烷烃是一类重要反应类型。主要有三种方法:
(1)由醇直接还原,所用还原剂主要有:NaBH 4、R 3SiH、P 2I 4等。如文献J.O.C53 5143(1988)用的还原剂是NaBH 4和CF 3COOH;文献TL2955(1976)用的还原剂是R 3SiH和BF 3;文献CL247(1983)用的还原剂是P 2I 4
(2)由醇制备成磺酸酯,然后还原成烷烃。如文献J.O.C34 3667(1969)所用试剂是C 5H 5N·SO 3/LiAlH 4
(3)由醇脱水,然后加氢制备成烷烃。如专利CN1807372A制备丙基环己基苯,第一步用对甲基苯磺酸脱水,然后用镍加氢产物E:Z=71.7:22.3;专利Jpn.Kokai Tokkyo Koho,2011207782制备PCH31也是先脱水,然后加氢。专利PCT Int.Appl.,2008090780制备PCH3mF也是先脱水,再加氢,然后转型。
上述由醇制备烷烃过程的三种方法都存在反应步骤长,收率低等问题。方法(1)和方法(2),产物没有立体选择性,所用试剂毒性大,而且反应过程需要无水条件,反应条件要求非常严格;方法(3)是先脱水再加氢,如想得到主体选择性高的产品还需转型,反应步骤多,还需使用压力设备和危险物料,如氢气。
发明内容
本发明针对现有技术存在的不足,提供一种通过分子筛由环醇一步制备环烷烃的方法,反应条件温和,无需高温高压条件,反应产物立体选择性高,收率高,分子筛还可以重复利用。
本发明解决上述技术问题的技术方案如下:一种通过分子筛由环醇一步制备环烷烃的方法,所述制备环烷烃的方法为:惰性气体保护下,在有机溶剂中,加入环醇和分子筛,加热反应,得到环烷烃,所述分子筛的微孔分子筛,所述环醇结构式为:
Figure PCTCN2022106909-appb-000001
所述环烷烃的结构式为:
Figure PCTCN2022106909-appb-000002
其中,m=0或1,n=0或1,p=0、1、2或3;
R 1和R 2分别为H、C 1-C 20直链或支链烷基或烷氧基、C 3-C 20的环烷烃、C 4-C 20所有直链或支链的环烷烃、F、CN、CF 3、Cl、Br、CHF 2、CF 3O、NCS、SCN;
A为-CH 2CH 2-或单键;
R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10分别为H、F、Cl或CF 3
所述环醇和环烷烃结构式中的环上无杂原子取代或者有杂原子在不同位置取代。
进一步的,所述分子筛为X型、Y型、L型、β型、丝光沸石、毛沸石、CHA、RHO、AEL、TS、SAPO-34、ZSM-5和ZSM-11中的一种或几种混合。
进一步的,所述分子筛类型为H型、NH4型或被修饰金属离子型。
进一步的,所述β型分子筛为HBETA、NH4BETA或MBETA,其中M代表任一种或几种金属,例如铁、铜、锰、镍、镧、铈等。
进一步的,所述环醇选自如下结构式:
Figure PCTCN2022106909-appb-000003
所述环烷烃选自如下结构式:
Figure PCTCN2022106909-appb-000004
进一步的,所述杂原子在不同位置取代具体为:O代替CH 2或NH代替CH 2
进一步的,所述有机溶剂为正庚烷、石油醚、苯、甲苯、二甲苯、THF、2-MeTHF、甲醇、乙醇、异丙醇、丁醇、异丁醇和叔丁醇中的一种或几种。
进一步的,所述加热反应的温度为40℃~150℃。
进一步的,所述加热反应的温度为90℃~120℃。温度低不反应或转化率低,一般选择溶剂沸点作为反应温度,对低沸点溶剂也可加压反应。
进一步的,所述分子筛与环醇的质量比为(1~5):1。
本发明的有益效果是:
(1)本发明使用分子筛将环醇制备成环烷烃,由于分子筛具有酸性,具有脱水功能,分子筛具有立体选择性而且能提供氢,可以得到具有立体选择性的产物。环烷烃主要用于液晶材料领域,最需要的是反式结构的环烷烃,而本发明采用分子筛制备环烷烃,分子筛内部的独特孔径有利于反应的立体选择性,可以使环烷烃产物中主要为反式结构,立体选择性较好,尤其对于丙基环己基环己基丙基苯等类似结构的产品;
(2)反应结束后,分子筛滤除出来经焙烧后,可以重复利用,可降低生产成本;
(3)本发明所述方法中,反应过程无需使用氢气,无需高压条件,通过选用的分子筛可以同时一步法完成脱水和加氢烷基化两步反应,最终得到所需的环烷烃,反应过程绿色环保,易于工业化;
(4)传统常规的方法中,环醇制备环烷烃,脱水过程和加氢烷基化过程需要采用不同的催化剂,需要分成两步进行,加氢过程需要使用氢气,加氢过程需要在加氢釜中进行,加氢釜的条件要求比较高,设备投资大,而且氢气是极易燃易爆气体,危险程度极高,操作非常严格,对生产环境的要求极高。而本发明中,只需使用分子筛通过一步就能制备出所需立体结构的环烷烃,制备过程更加简便,也无需使用危险原料,无需设置成本高昂的设备,降低原料、设备、操作成本,更适合工业化。
附图说明
图1为实施例1中所述丙基环己基环己基甲苯产品的GC-MS检测图谱;
图2为实施例1中所述丙基环己基环己基甲苯产品的1HNMR检测图谱;
图3为实施例1中所述丙基环己基环己基甲苯产品的13CNMR检测图谱;
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描 述具体的实施方式的目的,不是旨在于限制本发明。
实施例1
丙基环己基环己基甲苯的制备
反应方程式:
Figure PCTCN2022106909-appb-000005
干燥2L三口瓶中加入11.7g镁条,通氮气置换30min。将82.1g对溴甲苯溶于246.3g THF中,滴加适量于体系中,加热引发反应。控制内温40~50℃滴加剩余溶液,约1.5h滴毕,控制内温40~50℃保温反应2h。体系呈浅黑色澄清,少量镁条剩余。将89g丙基环己基环己酮溶于178g甲苯中,控制内温50~60℃滴加至体系中,反应放热,约1.5h滴毕,体系无明显颜色状态变化,内温50~60℃下保温反应2h。将体系缓慢倒入盛有48g浓盐酸和240g冰水的2L烧杯中30~40℃搅拌水解30min,体系略显黄色澄清。搅匀后转分液漏斗静置分层,放掉下层无色澄清水相,200g去离子水水洗2~3次至pH≈7,得到环醇的甲苯、THF溶液。
2L三口瓶中加入环醇的甲苯、THF溶液,搅拌下加入440g(3.5g/g环醇理论量)Hβ分子筛,通氮气搅拌加热,体系深褐色混浊。浴温设定110℃,内温90~100℃持续回流分水,逐渐将蒸出的THF及水放出,约2h后,不再有水蒸出,内温升高至106℃以上,保持内温108~110℃回流保温4h,反应毕,然后经过滤除去分子筛、脱溶剂得到所述的丙基环己基环己基甲苯产品。
本实施例丙基环己基环己基甲苯的转化率为:大于99.5%;
本实施例丙基环己基环己基甲苯产品中顺式收率:5.5%,反式收率:92.5%。
丙基环己基环己基甲苯产品的GC-MS检测图谱如图1所示,1HNMR和13CNMR如图2-3所示。
实施例2
丙基环己基环己基甲苯的制备
本实施例采用实施例1相同的方法制备丙基环己基环己基甲苯,不同之处:采用回收的Hβ分子筛代替实施例1中的Hβ分子筛(将实施例1中的Hβ分子筛在550℃下焙烧处理后,得到回收的Hβ分子筛,用于本实施例的反应中)。
本实施例丙基环己基环己基甲苯的转化率为:大于99.5%;
本实施例丙基环己基环己基甲苯产品中顺式收率:6.1%,反式收率:90.5%。
实施例3
丙基环己基环己基甲苯的制备
本实施例采用实施例1相同的方法制备丙基环己基环己基甲苯,不同之处:采用Feβ分子筛代替实施例1中的Hβ分子筛。
本实施例丙基环己基环己基甲苯的转化率为:大于99.5%;
本实施例丙基环己基环己基甲苯产品中顺式收率:5.1%,反式收率:92.7%。
实施例4
丙基环己基环己基甲苯的制备
本实施例采用实施例1相同的方法制备丙基环己基环己基甲苯,不同之处:采用NH4型的ZSM-5分子筛代替实施例1中的Hβ分子筛。
本实施例丙基环己基环己基甲苯的转化率为:大于99.5%;
本实施例丙基环己基环己基甲苯产品中顺式收率:6.8%,反式收率:91.0%。
实施例5
丙基环己基环己基甲苯的制备
本实施例采用实施例1相同的方法制备丙基环己基环己基甲苯,不同之处:采用H型的Y型分子筛代替实施例1中的Hβ分子筛。
本实施例丙基环己基环己基甲苯的转化率为:大于99.5%;
本实施例丙基环己基环己基甲苯产品中顺式收率:8.0%,反式收率:89.6%。
实施例6
丙基环己基环己基甲苯的制备
本实施例采用实施例1相同的方法制备丙基环己基环己基甲苯,不同之处:采用H型的丝光沸石代替实施例1中的Hβ分子筛。
本实施例丙基环己基环己基甲苯的转化率为:大于99.5%;
本实施例丙基环己基环己基甲苯产品中顺式收率:7.2%,反式收率:89.2%。
实施例7
丙基环己基环己基甲苯的制备
本实施例采用实施例1相同的方法制备丙基环己基环己基甲苯,不同之处:采用H型的SAPO-34分子筛代替实施例1中的Hβ分子筛。
本实施例丙基环己基环己基甲苯的转化率为:大于99.5%;
本实施例丙基环己基环己基甲苯产品中顺式收率:8.3%,反式收率:88.2%。
实施例8
丙基环己基环己基甲苯的制备
本实施例采用实施例1相同的方法制备丙基环己基环己基甲苯,不同之处:Hβ分子筛的加入量为625g(5g/g环醇理论量)。
本实施例丙基环己基环己基甲苯的转化率为:大于99.5%;
本实施例丙基环己基环己基甲苯产品中顺式收率:5.5%,反式收率:92.3%。
实施例9
丙基环己基环己基甲苯的制备
本实施例采用实施例1相同的方法制备丙基环己基环己基甲苯,不同之处:Hβ分子筛的加入量为125g(1g/g环醇理论量)。
本实施例丙基环己基环己基甲苯的转化率为:大于99.5%;
本实施例丙基环己基环己基甲苯产品中顺式收率:5.4%,反式收率:92.0%。
实施例10
丙基环己基环己基甲苯的制备
反应方程式:
Figure PCTCN2022106909-appb-000006
与实施例1的主要区别在于:使用
Figure PCTCN2022106909-appb-000007
代替
Figure PCTCN2022106909-appb-000008
具体制备过程为:
2L三口瓶中加入
Figure PCTCN2022106909-appb-000009
的甲苯溶液,其中
Figure PCTCN2022106909-appb-000010
的加入量为125g,搅拌下加入440g(3.5g/g环烯理论量)Hβ分子筛,通氮气搅拌加热,体系深褐色混浊。浴温设定110℃,内温90~100℃持续回流分水,逐渐将蒸出的水放出,约2h后,不再有水蒸出,内温升高至106℃以上,保持内温108~110℃回流保温4h,反应毕,然后经过滤除去分子筛、脱溶剂得到所述的丙基环己基环己基甲苯产品。
本实施例丙基环己基环己基甲苯的转化率为:大于99.5%;
本实施例丙基环己基环己基甲苯产品中顺式收率:5.3%,反式收率:92.8%。
实施例11
丙基环己基环己基甲苯的制备
反应方程式:
Figure PCTCN2022106909-appb-000011
干燥2L三口瓶中加入11.7g镁条,通氮气置换30min。将82.1g对溴甲苯溶于246.3g THF中,滴加适量于体系中,加热引发反应。控制内温40~50℃滴加剩余溶液,约1.5h滴毕,控制内温40~50℃保温反应2h。体系呈浅黑色澄清,少量镁条剩余。将89g丙基环己基环己酮溶于178g甲苯中,控制内温50~60℃滴加至体系中,反应放热,约1.5h滴毕,体系无明显颜色状态变化,内温50~60℃下保温反应2h。将体系缓慢倒入盛有48g浓盐酸和240g冰水的2L烧杯中30~40℃搅拌水解30min,体系略显黄色澄清。搅匀后转分液漏斗静置分层,放掉下层无色澄清水相,200g去离子水水洗2~3次至pH≈7,减压脱溶剂,加入THF溶解,得到环醇的THF熔液;
将环醇的THF熔液和440g Hβ分子筛加入压力釜中,内温100~110℃,20atm反应4小时,反应毕,滤除分子筛,脱溶剂得到所述的丙基环己基环己基甲苯产品。
本实施例丙基环己基环己基甲苯的转化率为:大于99.5%;
本实施例丙基环己基环己基甲苯产品中顺式收率:10.1%,反式收率:87.3%。
实施例12
Figure PCTCN2022106909-appb-000012
的制备
反应方程式:
Figure PCTCN2022106909-appb-000013
干燥2L三口瓶中加入11.7g镁条,通氮气置换30min。将82.1g对溴甲苯溶于246.3g THF中,滴加适量于体系中,加热引发反应。控制内温40~50℃滴加剩余溶液,约1.5h滴毕,控制内温40~50℃保温反应2h。体系呈浅黑色澄清,少量镁条剩余。将89.6g
Figure PCTCN2022106909-appb-000014
溶于178g甲苯中,控制内温50~60℃滴加至体系中,反应放热,约1.5h滴毕,体系无明显颜色状态变化,内温50~60℃下保温反应2h。将体系缓慢倒入盛有48g浓盐酸和240g冰水的2L烧杯中30~40℃搅拌水解30min,体系略显黄色澄清。搅匀后转分液漏斗静置分层,放掉下层无色澄清水相,200g去离子水水洗2~3次至pH≈7,得到环醇的甲苯、THF溶液。
2L三口瓶中加入环醇的甲苯、THF溶液,搅拌下加入440g(3.48g/g环醇理论量)Hβ分子筛,通氮气搅拌加热,体系深褐色混浊。浴温设定110℃,内温90~100℃持续回流分水,逐渐将蒸出的THF及水放出,约2h后,不再有水蒸出,内温升高至106℃以上,保持内温108~110℃回流保温4h,反应毕,脱溶剂得到产品。
本实施例
Figure PCTCN2022106909-appb-000015
产品的转化率为:大于99.5%;
本实施例
Figure PCTCN2022106909-appb-000016
产品中顺式收率:5.8%,反式收率:92.3%。
实施例13
丙基环己基环己基丙基苯的制备
反应方程式:
Figure PCTCN2022106909-appb-000017
本实施例采用实施例1相同的方法进行丙基环己基环己基丙基苯的制备,不同之处在于,将实施例1中的82.1g对溴甲苯替换为95.5g对溴丙基苯。
本实施例丙基环己基环己基丙基苯产品的转化率为:大于99.5%;
本实施例丙基环己基环己基丙基苯产品中顺式收率:5.8%,反式收率:92.1%。
实施例14
甲基环己基甲苯的制备
反应方程式:
Figure PCTCN2022106909-appb-000018
干燥2L三口瓶中加入11.7g镁条,通氮气置换30min。将82.1g对溴甲苯溶于246.3g THF中,滴加适量于体系中,加热引发反应。控制内温40~50℃滴加剩余溶液,约1.5h滴毕,控制内温40~50℃保温反应2h。体系呈浅黑色澄清,少量镁条剩余。将44.8g甲基环己酮溶于178g甲苯中,控制内温50~60℃滴加至体系中,反应放热,约1.5h滴毕,体系无明显颜色状态变化,内温50~60℃下保温反应2h。将体系缓慢倒入盛有48g浓盐酸和240g冰水的2L烧杯中30~40℃搅拌水解30min,体系略显黄色澄清。搅匀后转分液漏斗静置分层,放掉下层无色澄清水相,200g去离子水水洗2~3次至pH≈7,得到环醇的甲苯、THF溶液。
2L三口瓶中加入环醇的甲苯、THF溶液,搅拌下加入408g(5g/g环醇理论量)Hβ分子筛,通氮气搅拌加热,体系深褐色混浊。浴温设定110℃,内温90~100℃持续回流分水,逐渐将蒸出的THF及水放出,约2h后,不再有水蒸出,内温升高至106℃以上,保持内温108~110℃回流保温4h,反应毕,滤除分子筛,脱除溶剂,得到甲基环己基甲苯产品。
本实施例甲基环己基甲苯产品的转化率为:大于99.5%;
本实施例甲基环己基甲苯产品中顺式收率:42.5%,反式收率:56.5%。
对比例1
本对比例采用实施例1相同的方法制备丙基环己基环己基甲苯产品,不同之处在于:Hβ分子筛的加入量为112.5g(0.9g/g环醇理论量)。
本对比例丙基环己基环己基甲苯的转化率为:96.0%;
本对比例丙基环己基环己基甲苯产品中顺式收率:5.0%,反式收率:86.0%。
通过对比例1和实施例1的数据比对可以看出,分子筛的用量不采用本发明所述的用量,则会明显影响产品的转化率。
对比例2
本对比例采用实施例1相同的方法制备丙基环己基环己基甲苯产品,不同之处在于:Hβ分子筛替换为MSU-X介孔分子筛。
本对比例中反应不能够顺利进行,丙基环己基环己基甲苯的转化率几乎为0。
对比例3
本对比例采用实施例1相同的方法制备丙基环己基环己基甲苯产品,不同之处在于:Hβ分子筛替换为KIT-1介孔分子筛。
本对比例中反应不能够顺利进行,丙基环己基环己基甲苯的转化率几乎为0。
对比例4
本对比例采用实施例1相同的方法制备丙基环己基环己基甲苯产品,不同之处在于:Hβ分子筛替换为MSU-S介孔分子筛。
本对比例中反应不能够顺利进行,丙基环己基环己基甲苯的转化率几乎为0。
从对比例2-对比例4的实验情况可以看出,采用介孔分子筛无法达到微孔分子筛的催化效果。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种通过分子筛由环醇一步制备环烷烃的方法,其特征在于,所述制备环烷烃的方法为:惰性气体保护下,在有机溶剂中,加入环醇和分子筛,加热反应,得到环烷烃,所述分子筛的为微孔分子筛,所述环醇结构式为:
    Figure PCTCN2022106909-appb-100001
    所述环烷烃的结构式为:
    Figure PCTCN2022106909-appb-100002
    其中,m=0或1,n=0或1,p=0、1、2或3;
    R 1和R 2分别为H、C 1-C 20直链或支链烷基或烷氧基、C 3-C 20的环烷烃、C 4-C 20所有直链或支链的环烷烃、F、CN、CF 3、Cl、Br、CHF 2、CF 3O、NCS、SCN;
    A为-CH 2CH 2-或单键;
    R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10分别为H、F、Cl或CF 3
    所述环醇和环烷烃结构式中的环上无杂原子取代或者有杂原子在不同位置取代。
  2. 根据权利要求1所述一种通过分子筛由环醇一步制备环烷烃的方法,其特征在于,所述分子筛为X型、Y型、L型、β型、丝光沸石、毛沸石、CHA、RHO、AEL、TS、SAPO-34、ZSM-5和ZSM-11中的一种或几种混合。
  3. 根据权利要求2所述一种通过分子筛由环醇一步制备环烷烃的方法,其特征在于,所述分子筛类型为H型、NH4型或被修饰金属离子型。
  4. 根据权利要求2所述一种通过分子筛由环醇一步制备环烷烃的方法,其特征在于,所述β型分子筛为HBETA、NH4BETA或MBETA,其中M代表任一种或几种金属。
  5. 根据权利要求1所述一种通过分子筛由环醇一步制备环烷烃的方法,其特征在于,所述环醇选自如下结构式:
    Figure PCTCN2022106909-appb-100003
    Figure PCTCN2022106909-appb-100004
    所述环烷烃选自如下结构式:
    Figure PCTCN2022106909-appb-100005
  6. 根据权利要求1所述一种通过分子筛由环醇一步制备环烷烃的方法,其特征在于,所述杂原子在不同位置取代具体为:O代替CH 2或NH代替CH 2
  7. 根据权利要求1所述一种通过分子筛由环醇一步制备环烷烃的方法,其特征在于,所述有机溶剂为正庚烷、石油醚、苯、甲苯、二甲苯、THF、2-MeTHF、甲醇、乙醇、异丙醇、丁醇、异丁醇和叔丁醇中的一种或几种。
  8. 根据权利要求1所述一种通过分子筛由环醇一步制备环烷烃的方法,其特征在于,所述加热反应的温度为40℃~150℃。
  9. 根据权利要求1所述一种通过分子筛由环醇一步制备环烷烃的方法,其特征在于,所述加热反应的温度为90℃~120℃。
  10. 根据权利要求1所述一种通过分子筛由环醇一步制备环烷烃的方法,其特征在于,所述分子筛与环醇的质量比为(1~5):1。
PCT/CN2022/106909 2022-06-21 2022-07-21 一种通过分子筛由环醇一步制备环烷烃的方法 WO2023245790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210705076.9A CN114890857B (zh) 2022-06-21 2022-06-21 一种通过分子筛由环醇一步制备环烷烃的方法
CN202210705076.9 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023245790A1 true WO2023245790A1 (zh) 2023-12-28

Family

ID=82727318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106909 WO2023245790A1 (zh) 2022-06-21 2022-07-21 一种通过分子筛由环醇一步制备环烷烃的方法

Country Status (2)

Country Link
CN (1) CN114890857B (zh)
WO (1) WO2023245790A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107041A (en) * 1988-09-30 1992-04-21 Idemitsu Kosan Co., Ltd. 1,1-dicyclohexyl cycloalkane derivative, method for the preparation thereof and traction-drive fluid containing the same
US20110288352A1 (en) * 2010-05-07 2011-11-24 Gevo, Inc. Renewable jet fuel blendstock from isobutanol
CN102389832A (zh) * 2011-08-08 2012-03-28 中国科学院广州能源研究所 一种高活性山梨醇水相加氢制取c5、c6烷烃的催化剂及其制备方法
CN107814676A (zh) * 2016-09-14 2018-03-20 中国科学院大连化学物理研究所 一种十氢萘及四氢萘的制备方法
CN110117213A (zh) * 2018-02-06 2019-08-13 中国科学院大连化学物理研究所 一种2,5-己二酮合成液体环烷烃的方法
CN111054433A (zh) * 2019-12-27 2020-04-24 辽宁师范大学 一种用于环己醇脱水的beta沸石分子筛催化剂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009028576A1 (ja) * 2007-08-31 2010-12-02 旭硝子株式会社 ポリマー液晶、光学異方性膜、および光学素子
CN108277019A (zh) * 2017-11-13 2018-07-13 晶美晟光电材料(南京)有限公司 一种反式环己基类液晶化合物的制备方法
CN114524715B (zh) * 2022-02-11 2023-10-13 河北工业大学 一种羰基化合物定向加氢的方法
CN115350722B (zh) * 2022-10-24 2023-01-03 中节能万润股份有限公司 一种贵金属负载分子筛型双功能催化剂的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107041A (en) * 1988-09-30 1992-04-21 Idemitsu Kosan Co., Ltd. 1,1-dicyclohexyl cycloalkane derivative, method for the preparation thereof and traction-drive fluid containing the same
US20110288352A1 (en) * 2010-05-07 2011-11-24 Gevo, Inc. Renewable jet fuel blendstock from isobutanol
CN102389832A (zh) * 2011-08-08 2012-03-28 中国科学院广州能源研究所 一种高活性山梨醇水相加氢制取c5、c6烷烃的催化剂及其制备方法
CN107814676A (zh) * 2016-09-14 2018-03-20 中国科学院大连化学物理研究所 一种十氢萘及四氢萘的制备方法
CN110117213A (zh) * 2018-02-06 2019-08-13 中国科学院大连化学物理研究所 一种2,5-己二酮合成液体环烷烃的方法
CN111054433A (zh) * 2019-12-27 2020-04-24 辽宁师范大学 一种用于环己醇脱水的beta沸石分子筛催化剂的制备方法

Also Published As

Publication number Publication date
CN114890857B (zh) 2023-04-07
CN114890857A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2016131371A1 (zh) 一种制备甲酰胺类化合物的方法
WO2021129082A1 (zh) 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法
Sá et al. Fast and efficient preparation of Baylis–Hillman-derived (E)-allylic azides and related compounds in aqueous medium
JP2014514272A (ja) 触媒移動水素化分解によるc−o結合の還元
Xie et al. Cu (OAc) 2/Pyrimidines‐Catalyzed Cross‐coupling Reactions of Aryl Iodides and Activated Aryl Bromides with Alkynes under Aerobic, Solvent‐free and Palladium‐free Conditions
CN112142694A (zh) 一种多取代四氢呋喃与四氢吡喃双烯体类化合物及其制备方法
CN113773204B (zh) 一种氟代苯胺的制备方法
WO2023245790A1 (zh) 一种通过分子筛由环醇一步制备环烷烃的方法
CN111217657B (zh) 3-甲基-2-环戊烯-1-酮合成甲基环戊二烯的方法
CN103172480B (zh) 一种制备碘代芳烃的方法
CN111704584B (zh) 一种苯并三氮唑及其衍生物高选择性n2烷基化方法
CN114621097B (zh) 一种2,4-二氟硝基苯催化加氢制备2,4-二氟苯胺的方法
CN105111044A (zh) 由丁烯醇合成异戊烯醇的方法
TWI630192B (zh) Method for preparing alkylbenzene
JP4674163B2 (ja) アダマンタンの製造方法
CN107540553B (zh) 一种1-硝基萘催化加氢制备1-萘胺的方法
CN107141212B (zh) 2-氯代-4′-氟苯乙酮的制备方法
CN111978162A (zh) 一种芳香酮类化合物的合成新方法
CN112645890B (zh) 2-吡嗪羧酸酯类化合物的合成方法
CN113105384B (zh) 咔唑、芴类有机电致发光中间体的制备方法
CN112973778B (zh) 一种铁锆双金属负载型催化剂及其制备方法和应用
CN115368217B (zh) 一种3,4,5-三甲氧基甲苯的合成方法
CN114797914B (zh) 原位磷化的木质素制环烷烃催化剂及其制备方法与应用
CN117024258B (zh) 一种改性X型分子筛催化制备β-异佛尔酮的方法
CN110590641B (zh) 一种3-羟基异吲哚-1-酮系列化合物的绿色制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947537

Country of ref document: EP

Kind code of ref document: A1