WO2023243124A1 - シーリング材用硬化性組成物及びこの硬化性組成物を用いたパネル構造体 - Google Patents

シーリング材用硬化性組成物及びこの硬化性組成物を用いたパネル構造体 Download PDF

Info

Publication number
WO2023243124A1
WO2023243124A1 PCT/JP2022/047915 JP2022047915W WO2023243124A1 WO 2023243124 A1 WO2023243124 A1 WO 2023243124A1 JP 2022047915 W JP2022047915 W JP 2022047915W WO 2023243124 A1 WO2023243124 A1 WO 2023243124A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
mass
group
hydrolyzable silyl
parts
Prior art date
Application number
PCT/JP2022/047915
Other languages
English (en)
French (fr)
Inventor
拓人 池内
Original Assignee
積水フーラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水フーラー株式会社 filed Critical 積水フーラー株式会社
Publication of WO2023243124A1 publication Critical patent/WO2023243124A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention relates to a curable composition for a sealant and a panel structure using this curable composition.
  • a panel member In the panel structure of a building structure, a panel member is arranged in a panel installation part of the building structure, and a gap formed between the facing surface of the panel installation part and the panel member, or a gap formed between the panel members. It is constructed by filling the gaps (these gaps are sometimes collectively referred to as “sealing parts") with a sealing material.
  • the members constituting the sealing part such as the panel installation part and panel members of a building structure, are sometimes collectively referred to as "ceiling part constituting members.”
  • the sealing material is an organic substance, so it is vulnerable to combustion, and in the event of a fire, the sealing material may fall off from the sealing part and the flames may enter through the sealing part. This has the problem of insufficient performance.
  • panel members may shrink or otherwise deform due to the heat generated during a fire, and due to the deformation of the panel members, the dimensions of the sealing part change, and the sealant cannot follow the dimensional changes of the sealing part, causing the sealant to deteriorate.
  • the fire resistance of the walls of the building structure is insufficient.
  • Patent Document 1 describes (A) a polyalkylene ether having a silicon-containing functional group that can form a silanol group at its terminal by hydrolysis, (B) microencapsulated ammonium polyphosphate powder, (C) calcium carbonate powder, and (D ) A fire retardant sealant comprising a silanol condensation catalyst is disclosed.
  • the above fireproof sealing materials foam due to the heat of a fire and then form a carbonized layer, but the foaming makes the combustion residue brittle, so it is easily destroyed by the wind pressure of the combustion flame and falls off from the sealing part. occurs. Furthermore, the above-mentioned fireproof sealing material is unable to follow dimensional changes in the sealing part due to deformation of the panel member due to heat during a fire, and gaps are created in the sealing part. Therefore, the fireproof sealing material has a problem in that its fireproof performance is still insufficient.
  • the sealant filled in the sealing part is often used outdoors and is exposed to rain on a daily basis, which causes the rubber elasticity to deteriorate when heated to about 400 degrees Celsius.
  • the fire resistance further deteriorates and cannot follow the dimensional changes of the sealing part, resulting in further deterioration of fire resistance.
  • the present invention has excellent rubber elasticity even after being exposed to moisture such as rain and even when heated to about 400°C by the heat of a fire, and smoothly follows the dimensional changes of the sealing part that occur during a fire.
  • a curable composition that can reliably maintain the filling state of a sealing part, prevent flames from spreading through the sealing part, and provide excellent fire resistance to architectural structures, and a panel using the same. Provide a structure.
  • the curable composition for sealants of the present invention is 100 parts by mass of a curable resin; 10 to 150 parts by mass of a poorly water-soluble phosphorus compound.
  • the curable composition for sealants of the present invention preferably includes: 100 parts by mass of polyalkylene oxide having a hydrolyzable silyl group, 10 to 150 parts by mass of a poorly water-soluble phosphorus compound, Contains a silanol condensation catalyst.
  • the curable resin includes a one-component curable resin and a two-component curable resin.
  • One-component curable resins include resins that are cured by introducing a crosslinked structure by moisture, light irradiation, or heat, or dry-curable resins that are cured by volatilization of a solvent such as water.
  • Two-component curable resins include resins that are cured by introducing a crosslinked structure by mixing a base resin and a curing agent.
  • One-component curable resin examples include polymers having hydrolyzable silyl groups, hydrolytically crosslinkable silicone resins, urethane prepolymers having isocyanate groups, dry-curable acrylic polymers, photocrosslinkable polymers, etc. It will be done. Among these, a polymer having a hydrolyzable silyl group, a urethane prepolymer having an isocyanate group, and a dry-curable acrylic polymer are preferable, and it is preferable that a polymer having a hydrolyzable silyl group is included.
  • a hydrolyzable silyl group is a group in which 1 to 3 hydrolyzable groups are bonded to a silicon atom.
  • the hydrolyzable group of the hydrolyzable silyl group is not particularly limited, and includes, for example, a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, and a mercapto group. group, alkenyloxy group, oxime group, etc.
  • an alkoxysilyl group is preferable because the hydrolysis reaction is mild.
  • alkoxysilyl groups include trialkoxysilyl groups such as trimethoxysilyl group, triethoxysilyl group, triisopropoxysilyl group, and triphenoxysilyl group; propyldimethoxysilyl group, methyldimethoxysilyl group, and methyldiethoxysilyl group. dialkoxysilyl groups such as; and monoalkoxysilyl groups such as dimethylmethoxysilyl group and dimethylethoxysilyl group.
  • the polymer having a hydrolyzable silyl group is not particularly limited, and includes, for example, polyalkylene oxide having a hydrolysable silyl group, acrylic polymer having a hydrolysable silyl group, and urethane having a hydrolysable silyl group. Examples include resins, polyolefin resins having a hydrolyzable silyl group, and the like.
  • the polymer having a hydrolyzable silyl group preferably contains a polyalkylene oxide having a hydrolyzable silyl group.
  • the polymer having a hydrolyzable silyl group may be used alone or in combination of two or more kinds.
  • the content of the polymer having a hydrolyzable silyl group in the curable resin is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, More preferably 90% by mass or more, and even more preferably 100% by mass.
  • the polyalkylene oxide has a hydrolyzable silyl group. It is preferable to have a hydrolyzable silyl group at the end of the main chain.
  • the hydrolyzable group of the hydrolyzable silyl group is hydrolyzed to generate a silanol group (-SiOH) in the presence of water. Then, the silanol groups undergo dehydration condensation to form a crosslinked structure.
  • the hydrolyzable silyl group contained in the polyalkylene oxide having a hydrolyzable silyl group is preferably an alkoxysilyl group because the hydrolysis reaction is mild.
  • alkoxysilyl group a dialkoxysilyl group is more preferable, a dimethoxysilyl group and a methyldimethoxysilyl group are more preferable, and a methyldimethoxysilyl group is more preferable.
  • the polyalkylene oxide having a hydrolyzable silyl group preferably has on average 1 to 4 hydrolyzable silyl groups in one molecule.
  • the number of hydrolyzable silyl groups in the polyalkylene oxide having hydrolyzable silyl groups is within the above range, the cured product of the curable composition retains excellent rubber elasticity even when heated to about 400°C. It is possible to smoothly follow dimensional changes in the sealing part due to heat during a fire, and to stably maintain the filled state of the sealing part. Furthermore, the combustion residue of the cured product of the curable composition can be stably retained in the sealing part, and the fire resistance performance of the building structure can be maintained.
  • the polyalkylene oxide having a hydrolyzable silyl group preferably has hydrolyzable silyl groups at both ends of its main chain.
  • the average number of hydrolyzable silyl groups per molecule in the polyalkylene oxide having a hydrolyzable silyl group is determined by the concentration of the hydrolyzable silyl groups in the polyalkylene oxide determined by 1 H-NMR, and It can be calculated based on the number average molecular weight of polyalkylene oxide determined by GPC method.
  • the polyalkylene oxide constituting the polyalkylene oxide having a hydrolyzable silyl group has a main chain having the general formula: -(R-O) n - (wherein R is alkylene having 1 to 14 carbon atoms). (where n is the number of repeating units and is a positive integer) is preferred.
  • the main chain skeleton of the polyalkylene oxide may consist of only one type of repeating unit, or may consist of two or more types of repeating units.
  • an alkylene group is a divalent atomic group formed by removing two hydrogen atoms bonded to two different carbon atoms in an aliphatic saturated hydrocarbon, and includes both linear and branched groups. Contains atomic groups.
  • alkylene groups examples include ethylene group, propylene group [-CH(CH 3 )-CH 2 -], trimethylene group [-CH 2 -CH 2 -CH 2 -], butylene group, amylene group [-(CH 2 ) 5 -], hexylene group, etc.
  • polyalkylene oxide examples include polyethylene oxide, polypropylene oxide, polybutylene oxide, polytetramethylene oxide, polyethylene oxide-polypropylene oxide copolymer, and polypropylene oxide-polybutylene oxide copolymer.
  • polypropylene oxide is preferred. According to polypropylene oxide, the cured product of the curable composition maintains excellent rubber elasticity even when heated to about 400°C, and the combustion residue of the cured product of the curable composition can be stably removed from the sealing part. can be held.
  • the hydrolyzable silyl group has an alkylene group having 1 to 25 carbon atoms (preferably an alkylene group having 1 to 6 carbon atoms) at the end of the main chain. It is preferable that they are bonded together.
  • the hydrolyzable silyl group is bonded to the main chain via an alkylene group having 1 to 25 carbon atoms, the flexibility of the cured product of the curable composition is improved.
  • the hydrolyzable silyl group may be bonded to the end of the main chain via a urethane bond.
  • the hydrolyzable silyl group is bonded to the end of the main chain via a urethane bond, the flexibility of the cured product of the curable composition is improved. Since the flexibility of the cured product of the curable composition is improved, the hydrolyzable silyl group is attached to the end of the main chain via a urethane bond and an alkylene group (preferably an alkylene group having 1 to 25 carbon atoms). Preferably, they are bonded.
  • the number average molecular weight of the polyalkylene oxide having a hydrolyzable silyl group is preferably 3,000 or more, more preferably 10,000 or more.
  • the number average molecular weight of the polyalkylene oxide having a hydrolyzable silyl group is preferably 50,000 or less, more preferably 30,000 or less.
  • the cured product of the curable composition maintains excellent rubber elasticity even when heated to about 400°C.
  • the number average molecular weight of the polyalkylene oxide is 50,000 or less
  • the cured product of the curable composition retains excellent rubber elasticity even when heated to about 400°C by the heat of a fire, and has excellent sealing properties due to the heat of a fire. It is possible to smoothly follow the dimensional changes of the sealing part and stably maintain the filled state of the sealing part.
  • the number average molecular weight of the polyalkylene oxide having a hydrolyzable silyl group is a value measured in terms of polystyrene by GPC (gel permeation chromatography). Specifically, 6 to 7 mg of polyalkylene oxide having a hydrolyzable silyl group is collected, the collected polyalkylene oxide is supplied to a test tube, and 0.05% by mass of BHT (dibutylhydroxytoluene) is added to the test tube. ) to prepare a diluted solution such that the concentration of polyalkylene oxide is 1 mg/mL.
  • BHT dibutylhydroxytoluene
  • the number average molecular weight of a polyalkylene oxide having a hydrolyzable silyl group can be measured, for example, using the following measuring device and measuring conditions.
  • Measuring device manufactured by TOSOH, product name “HLC-8121GPC/HT” Measurement conditions Column: TSKgelGMHHR-H(20)HT x 3 TSKguardcolumn-HHR(30)HT x 1
  • Detector Blythe refractometer Standard material: Polystyrene (manufactured by TOSOH, molecular weight: 500-8420000) Elution conditions: 145°C SEC temperature: 145°C
  • the content of polyalkylene oxide having a hydrolyzable silyl group in the curable resin is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass or more. , more preferably 90% by mass or more, and more preferably 100% by mass.
  • polyalkylene oxides having a hydrolyzable silyl group can be used.
  • examples of polyalkylene oxides having a hydrolyzable silyl group include Kaneka's product names "MS Polymer S-203", “MS Polymer S-303", “Silyl Polymer SAT-200", and “Silyl Polymer SAT-200”.
  • Examples include “Excester S3620”, “Excester S2420”, “Excester S2410", and “Excester S3430" manufactured by AGC Corporation.
  • a polyalkylene oxide whose main chain is polypropylene oxide and which has a (methoxymethyl)dimethoxysilyl group at the end of the polypropylene oxide is commercially available from Kaneka Corporation under the trade name "HS-2".
  • a polyalkylene oxide whose main chain is polypropylene oxide and has an isopropyldimethoxymethylsilyl group at the end of the polypropylene oxide is commercially available from Kaneka Corporation under the trade name "SAX720".
  • an alkoxysilyl group is preferable, a dialkoxysilyl group is more preferable, and a methyldimethoxy A silyl group is more preferred.
  • the average number of hydrolyzable silyl groups in one molecule is preferably one or more, more preferably two or more.
  • the average number of hydrolyzable silyl groups in one molecule is preferably 4 or less, more preferably 3 or less.
  • the cured product of the curable composition will remain stable even when heated to about 400°C.
  • the acrylic polymer having a hydrolyzable silyl group preferably has a hydrolyzable silyl group at at least one of both ends of its main chain.
  • an acrylic polymer having a hydrolyzable silyl group may be used in combination with an acrylic polymer not having a hydrolyzable silyl group.
  • the average number of hydrolyzable silyl groups per molecule for both is preferably 0.3 or more, more preferably 0.5 or more.
  • the average number of hydrolyzable silyl groups is 0.3 or more, the curability of the curable composition improves.
  • the average number of hydrolyzable silyl groups per molecule for both is preferably 2.0 or less, more preferably 1.8 or less. If the average number of hydrolyzable silyl groups is 2.0 or less, even if the cured product of the curable composition is exposed to moisture such as rainwater and then heated by heat during a fire, etc. , can maintain excellent rubber elasticity.
  • the method of introducing a hydrolyzable silyl group into an acrylic polymer is not particularly limited.
  • a hydrolyzable silyl examples include a method of hydrosilylation using a hydrosilane having a group.
  • the average number of hydrolyzable silyl groups per molecule in the acrylic polymer having hydrolyzable silyl groups is as follows: It is calculated based on the concentration of hydrolyzable silyl groups and the number average molecular weight of the acrylic polymer having hydrolyzable silyl groups determined by GPC method.
  • the (meth)acrylate monomers constituting the main chain of the acrylic polymer having a hydrolyzable silyl group include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n- Butyl (meth)acrylate, tert-butyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, isononyl (meth)acrylate, isomyristyl (meth)acrylate, stearyl (meth)acrylate, isobornyl (meth)acrylate, benzyl (meth)acrylate, 2-butoxyethyl (meth)acrylate, 2-phenoxyethyl (meth)acrylate, glycidyl (meth)acrylate, te
  • the monomer used for the polymer constituting the main chain skeleton may further contain other monomers in addition to the above-mentioned (meth)acrylate monomer. You can stay there. Examples of other monomers include styrene, indene, ⁇ -methylstyrene, p-methylstyrene, p-chlorostyrene, p-chloromethylstyrene, p-methoxystyrene, p-tert-butoxystyrene, and divinylbenzene.
  • the main chain skeleton of the acrylic polymer having a hydrolyzable silyl group is preferably a copolymer of monomers containing butyl (meth)acrylate and stearyl (meth)acrylate, and monomers containing butyl acrylate and stearyl acrylate.
  • a copolymer of is more preferred.
  • the acrylic polymer having a hydrolyzable silyl group whose main chain skeleton is the above copolymer has a flexible main chain skeleton, thereby providing a curable composition that exhibits high rubber elasticity after curing. be able to.
  • a cured product of such a curable composition can maintain excellent rubber elasticity even when it is heated by fire or the like after being exposed to moisture such as rainwater.
  • the content of the butyl (meth)acrylate component is preferably 30% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more.
  • the content of the butyl (meth)acrylate component is preferably 97% by mass or less, more preferably 95% by mass or less, and even more preferably 85% by mass or less.
  • the content of the stearyl (meth)acrylate component is preferably 3% by mass or more, more preferably 5% by mass or more, and even more preferably 15% by mass or more.
  • the content of the stearyl (meth)acrylate component is preferably 70% by mass or less, more preferably 50% by mass or less, and even more preferably 40% by mass or less.
  • the combustion residue of the cured product of the curable composition can be stably retained in the sealing part, and the fire resistance performance of the building structure can be maintained.
  • a content of stearyl (meth)acrylate component of 70% by mass or less the flexibility of the main chain skeleton of the acrylic polymer having a hydrolyzable silyl group is improved, which results in high rubber elasticity after curing.
  • a curable composition can be provided. A cured product of such a curable composition can maintain excellent rubber elasticity even when it is heated by fire or the like after being exposed to moisture such as rainwater.
  • the method for polymerizing the acrylic polymer having a hydrolyzable silyl group is not particularly limited, and known methods can be used, such as free radical polymerization, anionic polymerization, cationic polymerization, and UV radical polymerization. Examples include various polymerization methods such as living anionic polymerization, living cationic polymerization, and living radical polymerization.
  • the weight average molecular weight of the acrylic polymer having a hydrolyzable silyl group is preferably 1,000 to 50,000, more preferably 10,000 to 40,000, particularly preferably 20,000 to 38,000.
  • the acrylic polymer having a hydrolyzable silyl group and having a weight average molecular weight within the above range has a flexible main chain skeleton, which makes it possible to provide a curable composition that exhibits high rubber elasticity after curing. can.
  • a cured product of such a curable composition can maintain excellent rubber elasticity even when it is heated by fire or the like after being exposed to moisture such as rainwater.
  • the weight average molecular weight of the acrylic polymer having a hydrolyzable silyl group means a value measured by GPC (gel permeation chromatography) in terms of polystyrene.
  • GPC gel permeation chromatography
  • Shodex KF800D manufactured by Tosoh may be used as the GPC column, and chloroform or the like may be used as the solvent.
  • the content of the acrylic polymer having a hydrolyzable silyl group in the curable resin is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass or more. It is preferably 90% by mass or more, more preferably 100% by mass.
  • Urethane resin refers to a polymer having a main chain formed by repeating urethane bonds (-NHCOO-).
  • a urethane resin having a hydrolyzable silyl group has a plurality of hydrolyzable silyl groups in the main chain of the urethane resin.
  • the urethane resin having a hydrolyzable silyl group preferably has hydrolyzable silyl groups at both ends of the main chain of the urethane resin.
  • the hydrolyzable silyl group contained in the urethane resin having a hydrolyzable silyl group is preferably an alkoxysilyl group because the hydrolysis reaction is mild.
  • alkoxysilyl group a dialkoxysilyl group is more preferable, a dimethoxysilyl group and a methyldimethoxysilyl group are more preferable, and a methyldimethoxysilyl group is more preferable.
  • the urethane resin having a hydrolyzable silyl group preferably does not have an isocyanate group.
  • the urethane resin having a hydrolyzable silyl group preferably has on average 1 to 4 hydrolyzable silyl groups in one molecule.
  • the number of hydrolyzable silyl groups in the urethane resin having hydrolyzable silyl groups is within the above range, the cured product of the curable composition retains excellent rubber elasticity even when heated to about 400 ° C. It is possible to smoothly follow dimensional changes in the sealing part due to heat during a fire, and stably maintain the filled state of the sealing part. Furthermore, the combustion residue of the cured product of the curable composition can be stably retained in the sealing part, and the fire resistance performance of the building structure can be maintained.
  • the average number of hydrolyzable silyl groups per molecule in the urethane resin having hydrolyzable silyl groups is determined by the concentration of the hydrolyzable silyl groups in the urethane resin determined by 1 H-NMR and the GPC method. It can be calculated based on the number average molecular weight of the urethane resin determined by.
  • the weight average molecular weight of the urethane resin having a hydrolyzable silyl group is preferably 1,000 to 50,000, more preferably 2,000 to 30,000, and particularly preferably 3,000 to 15,000.
  • a urethane resin having a hydrolyzable silyl group and having a weight average molecular weight within the above range has a flexible main chain skeleton, thereby making it possible to provide a curable composition that exhibits high rubber elasticity after curing.
  • a cured product of such a curable composition can maintain excellent rubber elasticity even when it is heated by fire or the like after being exposed to moisture such as rainwater.
  • the weight average molecular weight of the urethane resin having a hydrolyzable silyl group means a value measured in terms of polystyrene by GPC (gel permeation chromatography) method.
  • GPC gel permeation chromatography
  • Shodex KF800D manufactured by Tosoh may be used as the GPC column, and chloroform or the like may be used as the solvent.
  • the content of the urethane resin having a hydrolyzable silyl group in the curable resin is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, More preferably 90% by mass or more, and even more preferably 100% by mass.
  • Polyolefin resin having hydrolyzable silyl group examples include polyethylene resin and polypropylene resin.
  • a polyolefin resin having a hydrolyzable silyl group has a plurality of hydrolyzable silyl groups in the main chain of the polyolefin resin.
  • the polyolefin resin having a hydrolyzable silyl group preferably has hydrolyzable silyl groups at both ends of the main chain of the polyolefin resin.
  • Hydrolytically crosslinkable silicone resin refers to a polymer having a molecular chain formed by repeating siloxane bonds (-Si-O-). In the hydrolyzable crosslinkable silicone resin, a hydrolyzable group is bonded to a part of the silicon atoms constituting the main chain of the silicone resin.
  • Hydrolyzable groups are not particularly limited and include, for example, hydrogen atoms, halogen atoms, alkoxy groups, acyloxy groups, ketoximate groups, amino groups, amide groups, acid amide groups, aminooxy groups, mercapto groups, alkenyloxy groups, etc. are mentioned, and an alkoxy group is preferred.
  • alkoxy group examples include methoxy group, ethoxy group, propoxy group, butoxy group, and methoxy group and ethoxy group are preferred.
  • the hydrolytically crosslinkable silicone resin causes a condensation reaction in the hydrolyzable groups to form a crosslinked structure in the presence of moisture or a crosslinking agent, using a catalyst as necessary.
  • a hydrolytically crosslinkable silicone resin has an alkoxy group as a hydrolyzable group, a part of the alkoxy group is hydrolyzed to generate a hydroxy group, and this hydroxy group and alkoxy group undergo a dealcoholization condensation reaction. occurs to form a crosslinked structure.
  • the content of hydrolyzable groups in the hydrolytically crosslinkable silicone resin is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the content of hydrolyzable groups in the hydrolytically crosslinkable silicone resin is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 35% by mass or less.
  • the viscosity at 25° C. of the hydrolytically crosslinkable silicone resin is preferably 5 Pa ⁇ s or more, more preferably 10 mPa ⁇ s or more, and even more preferably 13 Pa ⁇ s or more.
  • the viscosity at 25° C. of the hydrolytically crosslinkable silicone resin is preferably 25 Pa ⁇ s or less, more preferably 22 Pa ⁇ s or less, and even more preferably 19 Pa ⁇ s or less.
  • the viscosity of the hydrolytically crosslinkable silicone resin at 25°C can be determined by measuring the rotational speed of the spindle (RV-2) using a B-type viscometer (for example, BROOKFIELD product name "DV-E rotational viscometer"). This refers to the value measured at a setting of 10 rpm.
  • the content of the hydrolytically crosslinkable silicone resin in the curable resin is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass. The above is more preferable, and 100% by mass is more preferable.
  • urethane prepolymer having isocyanate groups examples include a urethane prepolymer which is a reaction product of a polyol and a polyisocyanate and has an isocyanate group at the end.
  • the isocyanate groups of the urethane prepolymer form a urea bond (-NHCONH-) while generating carbon dioxide to form a crosslinked structure.
  • the urethane prepolymer having an isocyanate group preferably does not have a hydrolyzable silyl group.
  • a polyol is a compound having two or more hydroxyl groups in one molecule.
  • the polyol include polyether polyol, polyester polyol, (meth)acrylic polyol, polybutadiene polyol, and hydrogenated polybutadiene polyol.
  • polyether polyols are preferred. These polyols may be used alone or in combination of two or more.
  • polyether polyols include polyoxyalkylene polyols.
  • polyoxyalkylene polyols include polyoxyalkylene diols such as polyoxyethylene diol (polyethylene glycol) and polyoxypropylene diol (polypropylene glycol); polyoxyalkylene triols such as polyoxyethylene triol and polyoxypropylene triol; Examples include polyether polyols obtained by copolymerizing these. Among these, polyoxyalkylene triol is preferred, and polyoxypropylene triol is preferred.
  • polyether polyols examples include polyether polyols obtained by copolymerizing two or more of the above-mentioned polyoxyalkylene polyols. Examples include polyoxyethylene/polyoxypropylene glycol and polyoxyethylene/polyoxypropylene triol. These copolymers may be either block copolymers or random copolymers. Polyether polyols may be used alone or in combination of two or more.
  • the number average molecular weight of the polyether polyol is preferably 500 to 7,000, more preferably 1,000 to 6,000, more preferably 1,500 to 5,000, and more preferably 2,000 to 4,000.
  • the number average molecular weight of polyether polyol can be measured using gel permeation chromatography (GPC). Specifically, a sample solution is prepared by dissolving the sample in tetrahydrofuran (THF) to a concentration of 1.0% by mass. Using this sample solution, the number average molecular weight of the polyether polyol is measured by the GPC method using a refractive index detector with reference to standard polystyrene.
  • GPC gel permeation chromatography
  • Polyisocyanate is a compound having two or more isocyanate groups in one molecule.
  • the polyisocyanate include tolylene diisocyanate (for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, etc.), diphenylmethane diisocyanate (for example, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, etc.) ), 1,4-phenylene diisocyanate, polymethylene polyphenylene polyisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, toridine diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, and other aromatic polyisocyanates; hexamethylene diisocyanate , aliphatic and /or alicyclic polyisocyanate; examples thereof include
  • the method for synthesizing the urethane prepolymer involves heating the polyol to 70 to 120°C to melt it, dehydrating the resulting melt under reduced pressure, and adding polyisocyanate to the melt under a nitrogen atmosphere.
  • a method in which the above-mentioned polyol and the above-mentioned polyisocyanate are reacted is preferably used.
  • the molar ratio ([NCO]/[OH]) between the total isocyanate groups (NCO) possessed by the polyisocyanate and the total hydroxyl groups (OH) possessed by the polyol is set to 1. It is preferable to set it to 5 to 4.0. By setting the molar ratio within the above range, a urethane prepolymer having isocyanate groups at the terminals can be obtained.
  • the number average molecular weight of the urethane prepolymer having isocyanate groups is preferably 10,000 to 50,000, more preferably 20,000 to 40,000. According to the urethane prepolymer having a number average molecular weight within the above range, it is possible to provide a curable composition that exhibits high rubber elasticity after curing. A cured product of such a curable composition can maintain excellent rubber elasticity even when it is heated by fire or the like after being exposed to moisture such as rainwater.
  • the number average molecular weight of the urethane prepolymer having isocyanate groups means a value measured in terms of polystyrene by GPC (gel permeation chromatography) method.
  • GPC gel permeation chromatography
  • Shodex KF800D manufactured by Tosoh may be used as the GPC column, and chloroform or the like may be used as the solvent.
  • the content of the urethane prepolymer having an isocyanate group in the curable resin is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass. % or more, more preferably 100% by mass.
  • dry-curable acrylic polymers include acrylic emulsion resins.
  • the acrylic emulsion resin is preferably obtained by emulsion polymerization of raw material monomers containing acrylic monomers. Acrylic emulsion resin aggregates and hardens (solidifies) as a solvent such as water evaporates. It is preferable that the dry-curable acrylic polymer does not have a hydrolyzable silyl group. It is preferable that the acrylic emulsion resin does not have a hydrolyzable silyl group.
  • Acrylic emulsion resin is a polymer of raw material monomers containing acrylic monomers.
  • acrylic monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate.
  • acrylate octyl (meth)acrylate, nonyl (meth)acrylate, cyclohexyl (meth)acrylate, and alkyl (meth)acrylate such as butylcyclohexyl (meth)acrylate; acrylic acid, methacrylic acid, ⁇ -carboxyethyl (meth)acrylate , 2-(meth)acryloylpropionic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, itaconic acid half ester, maleic acid half ester, maleic anhydride, itaconic anhydride, etc.
  • Acrylic monomers having a carboxyl group glycidyl Acrylic monomers with glycidyl groups such as (meth)acrylate and allyl glycidyl ether; 4-hydroxybutyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxyhexyl ( meth)acrylate, 6-hydroxyhexyl(meth)acrylate, 1,4-cyclohexanedimethanol mono(meth)acrylate, 8-hydroxyoctyl(meth)acrylate, 10-hydroxydecyl(meth)acrylate, 12-hydroxylauryl(meth)acrylate ) Acrylic monomers having hydroxyl groups such as acrylate; ethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, polyethylene Examples include glycol
  • the acrylic monomer preferably contains an alkyl (meth)acrylate, an acrylic monomer having a carboxyl group, and an acrylic monomer having a glycidyl group, and includes butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, acrylic More preferably, it contains an acid and glycidyl (meth)acrylate.
  • the content of the alkyl (meth)acrylate component in the acrylic emulsion resin is preferably 30% by mass or more, more preferably 50% by mass or more, more preferably 80% by mass or more, more preferably 84% by mass or more, 89. More preferably, the content is 5% by mass or more.
  • the content of the alkyl (meth)acrylate component in the acrylic emulsion resin is preferably 98.89% by mass or less, more preferably 98% by mass or less, more preferably 96.45% by mass or less, and more preferably 95% by mass or less. preferable.
  • the content of the acrylic monomer component having a carboxyl group in the acrylic emulsion resin is preferably 0.1% by mass or more, more preferably 0.5% by mass or more.
  • the content of the acrylic monomer component having a carboxyl group in the acrylic emulsion resin is preferably 5% by mass or less, more preferably 3% by mass or less.
  • the content of the acrylic monomer component having a glycidyl group in the acrylic emulsion resin is preferably 0.01% by mass or more, more preferably 0.05% by mass or more.
  • the content of the acrylic monomer component having a glycidyl group in the acrylic emulsion resin is preferably 1% by mass or less, more preferably 0.5% by mass or less.
  • the raw material monomer may contain other monomers than the above-mentioned acrylic monomer.
  • Other monomers include methacrylonitrile, acrylonitrile, styrene, p-chlorostyrene, vinylnaphthalene, vinyl chloride, vinyl bromide, vinyl fluoride, vinyl acetate, vinyl propionate, vinyl benzoate, vinyl butyrate, and vinyl methyl ether.
  • acrylonitrile is preferred.
  • These other monomers may be used alone or in combination of two or more.
  • the content of the acrylonitrile component in the acrylic emulsion resin is preferably 1% by mass or more, more preferably 3% by mass or more.
  • the content of the acrylonitrile component in the acrylic emulsion resin is preferably 10% by mass or less, more preferably 7% by mass or less.
  • the weight average molecular weight of the acrylic emulsion resin is preferably 10,000 or more, more preferably 50,000 or more, and even more preferably 100,000 or more. Moreover, the weight average molecular weight of the acrylic emulsion resin is preferably 1,000,000 or less, more preferably 800,000 or less, more preferably 700,000 or less, more preferably 500,000 or less, and more preferably 400,000 or less. Since the weight average molecular weight of the acrylic emulsion resin is 10,000 or more, even when the cured product of the curable composition is exposed to moisture such as rainwater and then heated by heat from a fire, etc., it has excellent properties. Can maintain rubber elasticity. When the weight average molecular weight of the acrylic emulsion resin is 1,000,000 or less, the cured product of the curable composition maintains excellent rubber elasticity even when heated to about 400°C.
  • the weight average molecular weight of the acrylic emulsion resin means a value measured by GPC (gel permeation chromatography) in terms of polystyrene.
  • GPC gel permeation chromatography
  • Shodex KF800D manufactured by Tosoh may be used as the GPC column, and chloroform or the like may be used as the solvent.
  • the glass transition temperature of the acrylic emulsion resin is preferably -80°C or higher, more preferably -75°C or higher, and even more preferably -70°C or higher.
  • the glass transition temperature of the acrylic emulsion resin is preferably -20°C or lower, more preferably -30°C or lower, more preferably -35°C or lower, and even more preferably -50°C or lower. Because the glass transition temperature of the acrylic emulsion resin is -80°C or higher, even if the cured product of the curable composition is exposed to moisture such as rainwater and then heated by heat from a fire, etc. , can maintain excellent rubber elasticity. Since the glass transition temperature of the acrylic emulsion resin is -20°C or lower, the cured product of the curable composition maintains excellent rubber elasticity even when heated to about 400°C.
  • the glass transition temperature [°C] of the acrylic emulsion resin is determined by the following formula (1 ) can be calculated from the Fox equation. For example, first, the glass transition temperature at absolute temperature [K (Kelvin)] is calculated based on the following formula (1). Next, the value obtained by subtracting "273" from the calculated glass transition temperature [K] is defined as the glass transition temperature [° C.] of the acrylic emulsion resin.
  • Tg is the glass transition temperature (K) of the acrylic emulsion resin
  • Wi is the content ratio (mass fraction) of the i type monomer
  • Tgi is the individual weight of the i type monomer. It is the glass transition temperature (K) of coalescence
  • n is an integer representing the number of types of monomers.
  • the "glass transition temperature of a homopolymer of monomers” is the glass transition temperature of a homopolymer obtained by homopolymerizing monomers.
  • the glass transition temperature of the monomer homopolymer for example, the value described in literature such as "Polymer Handbook Fourth Edition” (Polymer Handbook Fourth Edition, John Wiley & Sons, Inc., 1999) can be adopted. can.
  • the acrylic emulsion resin is preferably in the form of particles. Thereby, aggregation and hardening (solidification) of the acrylic emulsion resin can be promoted.
  • the curable composition contains an acrylic emulsion resin
  • it is preferable that the curable composition further contains an aqueous solvent containing water. This allows the acrylic emulsion resin to be dispersed in an aqueous solvent containing water, and by volatilizing the aqueous solvent in this state, aggregation and hardening (solidification) of the acrylic emulsion resin can be prevented. It can be promoted.
  • the aqueous solvent is not particularly limited, and examples thereof include water and a mixed solvent of water and a water-soluble organic solvent (lower alcohol (alcohol having 5 or less carbon atoms) such as methanol and ethanol). Among them, water is preferred.
  • the aqueous solvent may be used alone or in combination of two or more.
  • the content of the aqueous solvent in the curable composition is preferably 40 parts by mass or more, more preferably 45 parts by mass or more, and even more preferably 50 parts by mass or more, based on 100 parts by mass of the acrylic emulsion resin.
  • the content of the aqueous solvent in the curable composition is preferably 100 parts by mass or less, more preferably 90 parts by mass or less, and even more preferably 80 parts by mass or less, based on 100 parts by mass of the acrylic emulsion resin.
  • the acrylic emulsion resin is preferably one obtained by emulsion polymerization.
  • emulsion polymerization for example, an acrylic emulsion resin is obtained by emulsion polymerizing (emulsion polymerization) a raw material monomer containing an acrylic monomer in an aqueous solvent containing water.
  • an acrylic emulsion composition containing an aqueous solvent containing water and an acrylic emulsion resin is obtained.
  • an acrylic emulsion resin is contained in a dispersed state in an aqueous solvent containing water.
  • the curable composition contains an acrylic emulsion resin
  • the curable composition contains an aqueous solvent containing water, an acrylic emulsion composition containing an acrylic emulsion resin, a poorly water-soluble phosphorus compound, and optionally Preferably, it is produced by mixing with other additives.
  • the curable composition may contain additives commonly used in acrylic emulsion compositions.
  • additives include preservatives, antifoaming agents, wetting agents, dryness regulators, antifreeze agents, rust preventives, antioxidants, ultraviolet absorbers, oxygen absorbers, light stabilizers, and the like.
  • the additives may be used alone or in combination of two or more. The order of addition of the above additives is not particularly limited.
  • this acrylic emulsion composition and a poorly water-soluble phosphorus compound are mixed to obtain a curable composition, or an acrylic emulsion composition, a poorly water-soluble phosphorus compound, and a method of obtaining a curable composition by mixing the above additives.
  • Acrylic emulsion resin can be produced using a known emulsion polymerization method.
  • an acrylic emulsion resin can be obtained by emulsion polymerizing raw material monomers containing acrylic monomers in an aqueous solvent containing water in the presence of a polymerization initiator and, if necessary, a surfactant. used.
  • an acrylic emulsion composition in which an acrylic emulsion resin is dispersed in an aqueous solvent containing water can be obtained.
  • the raw material monomer and the polymerization initiator may be supplied to the reaction system all at once, or continuously or intermittently dropwise.
  • An example of a method for producing an acrylic emulsion resin is, for example, by continuously or intermittently dropping an emulsion containing a raw material monomer containing an acrylic monomer, a surfactant, and an aqueous solvent into an aqueous solvent.
  • a method of emulsion polymerization of monomers is used.
  • the emulsion can be produced by a known method.
  • an emulsion can be obtained by adding raw material monomers and surfactants to an aqueous solvent and dispersing them using a microemulsifier such as a homogenizer, an ultrasonic processor, or a nanomizer.
  • the polymerization initiator may be contained in the emulsion, or may be contained in the aqueous solvent into which the emulsion is dropped.
  • the polymerization initiator include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; benzoyl peroxide, lauroyl peroxide, o-chlorobenzoyl peroxide, o-methoxybenzoyl peroxide, 3,5, Organic peroxides such as 5-trimethylhexanoyl peroxide, tert-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide; 2,2'-azobisisobutyronitrile, 1,1 Examples include azo compounds such as '-azobiscyclohexanecarbonitrile and 2,2'-azobis(2,4-dimethylvaleronitrile).
  • the polymerization initiators may be used alone or in combination of two or more.
  • the polymerization initiator is preferably used in an amount of 0.01 to 5 parts by weight, more preferably 0.05 to 1 part by weight, based on 100 parts by weight of the raw material monomer.
  • any of nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants can be used.
  • the surfactants may be used alone or in combination of two or more kinds.
  • nonionic surfactants include polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene sorbitol tetraoleate, and the like.
  • anionic surfactants include sodium oleate; fatty acid oils such as potassium castor oil; alkyl sulfate ester salts such as sodium lauryl sulfate and ammonium lauryl sulfate; alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate; alkylnaphthalene sulfonates.
  • Alkanesulfonate such as sodium dioctyl sulfosuccinate; Alkenyl succinate (dipotassium salt); Alkyl phosphate ester salt; Naphthalene sulfonic acid formalin condensate; Polyoxyethylene alkylphenyl ether sulfate ester salt, poly Examples include polyoxyethylene alkyl ether sulfates such as sodium oxyethylene lauryl ether sulfate; polyoxyethylene alkyl sulfate ester salts, and the like.
  • Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate; and quaternary ammonium salts such as lauryltrimethylammonium chloride.
  • zwitterionic surfactants examples include lauryl dimethylamine oxide, phosphate ester surfactants, and phosphite ester surfactants.
  • the polymerization temperature for emulsion polymerization is preferably 50 to 100°C, more preferably 65 to 85°C. Further, the polymerization time of emulsion polymerization is preferably 1 to 12 hours.
  • the polymerization reaction of emulsion polymerization may be performed in an atmosphere of an inert gas (for example, nitrogen gas) that is inert to polymerization. Further, after the emulsion polymerization is completed, ammonia and amines such as triethylamine and dimethylethanolamine; bases such as NaOH and KOH may be added to neutralize, if necessary.
  • the content of the acrylic emulsion resin in the curable resin is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. More preferably, 100% by mass is more preferable.
  • a photocrosslinkable polymer has a photocrosslinkable group in its molecule, and is cured by forming chemical bonds between molecules to form a crosslinked structure by irradiation with light such as ultraviolet rays.
  • the photocrosslinkable group may form a chemical bond by irradiation with light.
  • the photocrosslinkable group is not particularly limited and includes, for example, a thiol group, a glycidyl group, an oxetanyl group, a vinyl group, a (meth)acryloyl group, a benzophenone group, a benzoin group, a thioxanthone group, and a benzophenone group, a benzoin group. and thioxanthone group are preferred, and benzophenone group is more preferred.
  • (meth)acryloyl means methacryloyl or acryloyl.
  • the main chain structure of the photocrosslinkable polymer is not particularly limited, and examples thereof include polyolefin resins, acrylic resins, epoxy resins, cyanoacrylate resins, and the like.
  • Examples of the method for introducing a photocrosslinkable group into the main chain include a method of polymerizing a monomer composition containing a photocrosslinkable group-containing monomer.
  • the photocrosslinkable group-containing monomer is not particularly limited, and examples include glycidyl (meth)acrylate, 4-hydroxybutyl acrylate glycidyl ether, 4-(meth)acryloyloxybenzophenone, 4-[2-((meth)acryloyloxy) ) Ethoxy] benzophenone, 4-(meth)acryloyloxy-4'-methoxybenzophenone, 4-(meth)acryloyloxyethoxy-4'-methoxybenzophenone, 4-(meth)acryloyloxy-4'-bromobenzophenone, 4- Examples include (meth)acryloyloxyethoxy-4'-bromobenzophenone, and 4-(meth)acryloyloxybenzophenone and 4-[2-((meth)acryloyloxy)ethoxy]benzophenone are preferred.
  • the ultraviolet crosslinkable group-containing monomer (D) may be used alone or in combination of two or more.
  • the content of the photocrosslinkable polymer in the curable resin is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. is more preferable, and 100% by mass is more preferable.
  • the two-component curable resin is not particularly limited, and examples thereof include isocyanate polymers, glycidyl polymers, and the like.
  • the isocyanate-based polymer is a two-component curable resin consisting of a main resin containing polyisocyanate and a curing agent containing polyol. By mixing the main ingredient and the curing agent and reacting the polyisocyanate and polyol, urethane bonds are formed, crosslinked, and cured.
  • polyisocyanate examples include aromatic aliphatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and the like.
  • aromatic aliphatic diisocyanate examples include diphenylmethane diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, 1,3-bis(1-isocyanato-1-methylethyl)benzene, 1,4-bis(1 -isocyanato-1-methylethyl)benzene, ⁇ , ⁇ '-diisocyanato-1,4-diethylbenzene, and urethane prepolymers having isocyanate groups at both ends.
  • aliphatic diisocyanates examples include hexamethylene diisocyanate, tetramethylene diisocyanate, 2-methyl-pentane-1,5-diisocyanate, 3-methyl-pentane-1,5-diisocyanate, lysine diisocyanate, trioxyethylene diisocyanate, and the like. It will be done.
  • alicyclic diisocyanate examples include isophorone diisocyanate, cyclohexyl diisocyanate, hydrogenated diphenylmethane diisocyanate, norbornane diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate, and hydrogenated tetramethylxylene diisocyanate.
  • polyols examples include polyurethane polyols, polyester polyols, polyether polyols, acrylic polyols, polyolefin polyols, and castor oil polyols.
  • a glycidyl-based polymer is a two-component curable resin consisting of a base resin containing an epoxy resin and a curing agent.
  • Epoxy resins are not particularly limited, and include, for example, bisphenol A epoxy resin obtained by reacting bisphenol A and epichlorohydrin, and bisphenol F epoxy resin obtained by reacting bisphenol F and epichlorohydrin. Examples include resins and their hydrogenated products, glycidyl ester type epoxy resins, novolac type epoxy resins, urethane-modified epoxy resins, nitrogen-containing epoxy resins such as triglycidyl isocyanurate, rubber-modified epoxy resins containing polybutadiene or NBR, etc. It will be done.
  • the curing agent is not particularly limited, and examples thereof include amine curing agents, acid anhydride curing agents, polyamide curing agents, imidazole curing agents, polymerkaplan curing agents, and the like.
  • amine curing agent examples include aliphatic polyamines such as polyoxypropylenetriamine, diethylenetriamine, and triethylenetetramine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, 2,4,6-tris(dimethylaminomethyl)phenol, and the like. and aromatic polyamines.
  • acid anhydride curing agents examples include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, pyromellitic anhydride, hetacetic anhydride, dodecenylsuccinic anhydride, and the like.
  • polyamide curing agent examples include dimer acid.
  • the content of the two-component curable resin in the curable resin is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. is more preferable, and 100% by mass is more preferable.
  • the curable composition contains a poorly water-soluble phosphorus compound.
  • the poorly water-soluble phosphorus compound is not particularly limited, and examples thereof include poorly water-soluble aluminum phosphite, monobasic aluminum phosphate, dibasic aluminum phosphate, tertiary aluminum phosphate, aluminum metaphosphate, and condensed aluminum phosphate. Examples include inorganic phosphorus compounds, poorly water-soluble organic phosphorus compounds such as melam polyphosphate, melamine polyphosphate, melem polyphosphate, etc. It is preferable to include a poorly water-soluble inorganic phosphorus compound, and aluminum phosphite or primary phosphoric acid. It is more preferable that ammonium is included, and it is even more preferable that aluminum phosphite is included.
  • the poorly water-soluble phosphorus compounds may be used alone or in combination of two or more kinds.
  • “Poorly water-soluble phosphorus compound” refers to a phosphorus compound whose saturation concentration (solubility) of a saturated solution obtained by dissolving the phosphorus compound in 100 g of water at 25°C is 0.03 g/100 g-H 2 O or less. .
  • a solution solution is prepared by supplying an excessive amount of the phosphorus compound to the extent that a slight precipitate is formed, and stirring and dissolving the compound in 1000 g of water at 25°C.
  • a saturated solution is prepared by suction-filtering the solution through a Type 5 C filter paper in accordance with JIS P3801 to remove undissolved components in the solution. The saturated solution is heated to 100° C.
  • solubility g/100g-H 2 O
  • some water is absorbed by the filter paper in the process of removing insoluble matter, but the amount is extremely small compared to 1000 g of water, so the mass of water absorbed by the filter paper affects the solubility value. It has no effect and can be ignored.
  • the cured product of the curable composition is filled into the sealing part of a building structure, but the panel members that make up the wall part may shrink due to heat during a fire, and in this case, The sealing part expands and causes a dimensional change.
  • the cured product of the curable composition When the curable composition contains a poorly water-soluble phosphorus compound, the cured product of the curable composition has excellent rubber elasticity even when heated to about 400°C, and the cured product of the curable composition has excellent rubber elasticity even when heated to about 400°C. burns to form a strong combustion residue, which smoothly follows dimensional changes in the sealing part caused by heat during a fire, reliably maintains the filled state of the sealing part, and prevents flame from spreading through the sealing part. It is possible to impart excellent fire resistance to architectural structures.
  • the cured product of the curable composition containing the poorly water-soluble phosphorus compound maintains excellent rubber elasticity even after being exposed to moisture such as rainwater and even when heated up to 400°C by the heat of a fire.
  • the combustion residue generated by combustion is hard and smoothly follows dimensional changes in the sealing part, ensuring that it remains filled in the sealing part, giving the building structure excellent fire resistance performance. can do.
  • the poorly water-soluble phosphorus compound when heated to around 400°C by the heat of a fire, it maintains excellent rubber elasticity, while the crosslinked structure formed by the polymer with hydrolyzable silyl groups decomposes due to the heat of combustion. , is cut to produce a decomposition residue, and this decomposition residue is incorporated into the combustion residue of the poorly water-soluble phosphorus compound to form a strong combustion residue, and this combustion residue reliably maintains the state in which the sealing part is filled. .
  • the content of the poorly water-soluble phosphorus compound in the curable composition is 10 parts by mass or more, preferably 20 parts by mass or more, and more preferably 30 parts by mass or more, based on 100 parts by mass of the curable resin.
  • the content of the poorly water-soluble phosphorus compound in the curable composition is 150 parts by mass or less, preferably 120 parts by mass or less, and more preferably 100 parts by mass or less, based on 100 parts by mass of the curable resin.
  • the curable composition contains calcium carbonate.
  • Calcium carbonate is not particularly limited, and includes, for example, colloidal calcium carbonate, heavy calcium carbonate, light calcium carbonate, etc., with colloidal calcium carbonate and heavy calcium carbonate being preferred, and colloidal calcium carbonate being more preferred. More preferably, the calcium carbonate contains colloidal calcium carbonate and ground calcium carbonate.
  • the average particle diameter of calcium carbonate is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2.5 ⁇ m. According to calcium carbonate having such an average particle diameter, the combustion residue of the cured product of the curable composition has excellent strength, and the combustion residue does not become too hard and does not cause cracks. Therefore, it is possible to reliably maintain the filled state of sealing parts such as joints, and to impart excellent fire resistance to the panel structure of the building structure.
  • the average particle diameter of calcium carbonate refers to a value calculated by the arithmetic mean of 10 particle diameters measured on a scale by SEM observation. The particle diameter is defined as the diameter of the smallest perfect circle that can surround the particle in a micrograph obtained by SEM (electron scanning microscope).
  • the calcium carbonate is surface-treated with a fatty acid, a fatty acid ester, or the like.
  • Calcium carbonate that has been surface-treated with a fatty acid, a fatty acid ester, or the like can impart thixotropy to the curable composition and can suppress aggregation of calcium carbonate.
  • the content of calcium carbonate in the curable composition is 50 parts by mass or more, preferably 70 parts by mass or more, more preferably 100 parts by mass or more, and 120 parts by mass or more based on 100 parts by mass of the curable resin. More preferred.
  • the content of calcium carbonate in the curable composition is 300 parts by mass or less, preferably 250 parts by mass or less, more preferably 200 parts by mass or less, and 160 parts by mass or less, based on 100 parts by mass of the curable resin. More preferred.
  • the content of calcium carbonate in the curable composition is 50 parts by mass or more, it plays a reinforcing effect on the curable resin that has been softened by the heat of the fire, and improves the shape retention of the cured product of the curable composition. do.
  • the cured product of the curable composition retains excellent rubber elasticity even when heated to about 400°C, and is resistant to heat caused by fire. It is possible to smoothly follow the dimensional change of the sealing part and stably maintain the filled state of the sealing part.
  • the curable composition preferably contains a silanol condensation catalyst.
  • the curable composition preferably contains a polymer having a hydrolyzable silyl group
  • the curable composition preferably further contains a silanol condensation catalyst.
  • the silanol condensation catalyst is a catalyst for promoting a dehydration condensation reaction between silanol groups formed by hydrolyzing the hydrolyzable silyl groups of a polymer having hydrolyzable silyl groups.
  • silanol condensation catalysts include 1,1,3,3-tetrabutyl-1,3-dilauryloxycarbonyl-distanoxane, dibutyltin dilaurate, dibutyltin oxide, dibutyltin diacetate, dibutyltin phthalate, bis(dibutyltin lauric acid).
  • silanol condensation catalysts may be used alone or in combination of two or more.
  • silanol condensation catalyst organic tin compounds are preferred, and 1,1,3,3-tetrabutyl-1,3-dilauryloxycarbonyl-distanoxane and dibutyltin diacetate are preferred. According to such a silanol condensation catalyst, the curing speed of the curable composition can be easily adjusted.
  • the content of the silanol condensation catalyst in the curable composition is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, based on 100 parts by mass of the polymer having a hydrolyzable silyl group.
  • the amount is more preferably .1 part by mass or more, more preferably 0.2 part by mass or more, and even more preferably 0.3 part by mass or more.
  • the content of the silanol condensation catalyst in the curable composition is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and 6 parts by mass or less based on 100 parts by mass of the polymer having a hydrolyzable silyl group. More preferably, the amount is 5 parts by mass or less.
  • the content of the silanol condensation catalyst in the curable composition is 0.001 part by mass or more, the curing speed of the curable composition is increased, and the time required for curing the curable composition is shortened. Can be done.
  • the content of the silanol condensation catalyst in the curable composition is 10 parts by mass or less, the curable composition has an appropriate curing rate, and the storage stability and handleability of the curable composition can be improved. can.
  • the curable composition contains a urethane prepolymer having an isocyanate group
  • the curable composition further contains a curing catalyst.
  • the curing catalyst is a catalyst for promoting a reaction in which the isocyanate groups of the urethane prepolymer generate urea bonds to form a crosslinked structure in the presence of water.
  • a tin-based curing catalyst As the curing catalyst, a tin-based curing catalyst, an amine-based curing catalyst, etc. are used.
  • the tin-based curing catalyst include stannous acid, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, and stannous dioctoate.
  • amine curing catalyst morpholine compounds are preferred.
  • morpholine compounds include 2,2'-dimorpholinodiethyl ether, bis(2,6-dimethylmorpholinoethyl)ether, and bis(2-(2,6-dimethyl-4-morpholino)ethyl).
  • the content of the curing catalyst in the curable composition is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, and 0.1 parts by mass based on 100 parts by mass of the urethane prepolymer having an isocyanate group.
  • the amount is more preferably 0.2 parts by mass or more, more preferably 0.3 parts by mass or more.
  • the content of the curing catalyst in the curable composition is preferably 5 parts by mass or less, more preferably 1 part by mass or less, and more preferably 0.1 parts by mass or less, based on 100 parts by mass of the urethane prepolymer having an isocyanate group. preferable.
  • the curable composition does not need to contain glass frit.
  • the glass frit acts as a binder for binding together the curable resin and/or the poorly water-soluble phosphorus compound in the combustion residue of the cured product of the curable composition.
  • the combustion residue of the poorly water-soluble phosphorus compound effectively captures the decomposition residue of the curable resin and forms a strong combustion residue, so that the binder No ingredients required.
  • the curable composition does not contain glass frit, the cured product of the curable composition does not become too hard. Therefore, there is a large difference in hardness between the sealing part component, which has become brittle due to the heat of the fire, and the cured product of the curable composition, and this causes a breaking point in the sealing part component. It is possible to reduce the occurrence of formation of the sealing part and to stably maintain the shape of the sealing part constituent member in the event of a fire.
  • glass constituting the glass frit examples include phosphoric acid glass, boric acid glass, bismuth oxide glass, silicate glass, and sodium oxide glass. is preferred, and phosphate glass is more preferred.
  • These glass frits include B 2 O 3 , P 2 O 5 , ZnO, SiO 2 , Bi 2 O 3 , Al 2 O 3 , BaO, CaO, MgO, MnO 2 , ZrO 2 , TiO 2 , CeO 2 , SrO , V 2 O 5 , SnO 2 , Li 2 O, Na 2 O, K 2 O, CuO, Fe 2 O 3 and the like by adjusting a predetermined component ratio.
  • the curable composition contains a plasticizer.
  • plasticizers include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisobutyl phthalate, dihexyl phthalate, bis(2-ethylhexyl) phthalate, dioctyl phthalate, diisononyl phthalate, dinonyl phthalate, and phthalate.
  • Phthalate esters such as diisodecyl, diisoundecyl phthalate, and bisbutylbenzyl phthalate; polyalkylene glycols such as diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, and polypropylene glycol; phosphoric acid Examples include tricresyl. Among these, polyalkylene glycol is preferred, and polypropylene glycol is more preferred. Further, as the plasticizer, phthalic acid ester is preferable, and dioctyl phthalate is more preferable.
  • the plasticizer is preferably liquid at 23° C. and 1.01 ⁇ 10 5 Pa (1 atm).
  • the number average molecular weight of the plasticizer is preferably 1000 or more, more preferably 2000 or more.
  • the number average molecular weight of the plasticizer is preferably 10,000 or less, more preferably 5,000 or less, and even more preferably less than 3,000.
  • the number average molecular weight of the plasticizer is within the above range, the cured product of the curable composition maintains excellent rubber elasticity even when heated to about 400°C, and the cured product of the curable composition maintains excellent rubber elasticity even when heated to about 400°C. Combustion residue can be stably held in the sealing part.
  • the number average molecular weight of the plasticizer is a value measured in terms of polystyrene by GPC (gel permeation chromatography) method.
  • GPC gel permeation chromatography
  • the content of the plasticizer in the curable composition is preferably 1 part by mass or more, more preferably 10 parts by mass or more, based on 100 parts by mass of the curable resin.
  • the content of the plasticizer in the curable composition is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, based on 100 parts by mass of the curable resin.
  • the curable composition further contains a dehydrating agent.
  • a dehydrating agent when the curable composition is stored, it is possible to suppress the curable composition from being cured by moisture contained in the air or the like.
  • Dehydrating agents include silane compounds such as vinyltrimethoxysilane, dimethyldimethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, tetramethoxysilane, phenyltrimethoxysilane, and diphenyldimethoxysilane; and methyl orthoformate. , ethyl orthoformate, methyl orthoacetate, and ester compounds such as ethyl orthoacetate. These dehydrating agents may be used alone or in combination of two or more. Among them, vinyltrimethoxysilane is preferred.
  • the content of the dehydrating agent in the curable composition is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, based on 100 parts by mass of the curable resin.
  • the content of the dehydrating agent in the curable composition is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, based on 100 parts by mass of the curable resin.
  • the content of the dehydrating agent in the curable composition is 0.5 parts by mass or more, the effects obtained by the dehydrating agent can be sufficiently obtained. Further, when the content of the dehydrating agent in the curable composition is 20 parts by mass or less, the curable composition has excellent curability.
  • the curable composition contains other additives such as thixotropic agents, antioxidants, ultraviolet absorbers, pigments, dyes, antisettling agents, aminosilane coupling agents, epoxysilane coupling agents, thixotropic agents and solvents. It's okay to stay. Among these, thixotropy imparting agents, ultraviolet absorbers, and antioxidants are preferred.
  • the curable composition preferably contains an aminosilane coupling agent.
  • an aminosilane coupling agent By using an aminosilane coupling agent, the rubber elasticity and adhesiveness of the cured product of the curable composition can be improved.
  • the aminosilane coupling agent means a compound containing a silicon atom to which an alkoxy group is bonded in one molecule and a functional group containing a nitrogen atom.
  • aminosilane coupling agent examples include 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropyltriethoxysilane, and N-(2-aminoethyl)-3-aminopropyltrimethoxy.
  • the aminosilane coupling agents include 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane.
  • Ethoxysilane is preferred, and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane is more preferred.
  • the content of the aminosilane coupling agent in the curable composition is preferably 1 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the curable resin.
  • the content of the aminosilane coupling agent is within the above range, the rubber elasticity and adhesiveness of the cured product of the curable composition can be improved.
  • the curable composition preferably contains an epoxysilane coupling agent.
  • an epoxy silane coupling agent By using an epoxy silane coupling agent, the rubber elasticity and adhesiveness of the cured product of the curable composition can be improved.
  • Epoxysilane coupling agent means a compound containing a silicon atom to which an alkoxy group is bonded in one molecule and a functional group containing an epoxy group.
  • the epoxysilane coupling agent is not particularly limited, and examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropyltrimethoxysilane. Examples include propylethyldiethoxysilane and 2-(3,4epoxycyclohexyl)ethyltrimethoxysilane, with 3-glycidoxypropyltriethoxysilane being preferred.
  • the content of the epoxy silane coupling agent in the curable composition is preferably 0.3 parts by mass or more, more preferably 0.4 parts by mass or more, and 0.45 parts by mass based on 100 parts by mass of the curable resin.
  • the amount above is more preferable, and 0.5 parts by mass or more is more preferable.
  • the content of the epoxy silane coupling agent in the curable composition is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, more preferably 6 parts by mass or less, and 4 parts by mass based on 100 parts by mass of the curable resin. Parts below are particularly preferred.
  • the content of the epoxy silane coupling agent is 0.3 parts by mass or more, the curability and adhesiveness of the curable composition are improved.
  • the thixotropy-imparting agent may be any agent as long as it can impart thixotropy to the curable composition.
  • Preferred examples of the thixotropic agent include hydrogenated castor oil, fatty acid bisamide, and fumed silica.
  • the content of the thixotropic agent in the curable composition is preferably 0.1 part by mass or more, more preferably 1 part by mass or more, based on 100 parts by mass of the curable resin.
  • the content of the thixotropic agent in the curable composition is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, based on 100 parts by mass of the curable resin.
  • the content of the thixotropic agent in the curable composition is 0.1 parts by mass or more, thixotropic properties can be effectively imparted to the curable composition.
  • the content of the thixotropy imparting agent in the curable composition is 200 parts by mass or less, the curable composition has an appropriate viscosity, and the handleability of the curable composition is improved.
  • the ultraviolet absorber examples include benzotriazole-based ultraviolet absorbers and benzophenone-based ultraviolet absorbers, with benzotriazole-based ultraviolet absorbers being preferred.
  • the content of the ultraviolet absorber in the curable composition is preferably 0.1 parts by mass or more based on 100 parts by mass of the curable resin.
  • the content of the ultraviolet absorber in the curable composition is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, based on 100 parts by mass of the curable resin.
  • the antioxidant examples include hindered phenolic antioxidants, monophenolic antioxidants, bisphenol antioxidants, and polyphenolic antioxidants, with hindered phenolic antioxidants being preferred. It will be done.
  • the content of the antioxidant in the curable composition is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, based on 100 parts by mass of the curable resin.
  • the content of the antioxidant in the curable composition is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, based on 100 parts by mass of the curable resin.
  • the curable composition contains a hindered amine light stabilizer.
  • a hindered amine light stabilizer it is possible to provide a curable composition that can maintain excellent rubber elasticity for a longer period of time after curing.
  • hindered amine light stabilizer examples include a mixture of bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate. , bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, dibutylamine/1,3,5-triazine/N,N'-bis(2,2,6,6-tetramethyl-4 - Polycondensate of piperidyl-1,6-hexamethylene diamine and N-(2,2,6,6-tetramethyl-4-piperidyl)butylamine, poly[ ⁇ 6-(1,1,3,3- Tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl ⁇ (2,2,6,6-tetramethyl-4-piperidyl)imino ⁇ hexamethylene ⁇ (2,2,6,6 -tetramethyl-4-piperidyl)imino], a polycon
  • hindered amine light stabilizer NOR type hindered amine light stabilizer is preferably mentioned. According to the NOR type hindered amine light stabilizer, it is possible to provide a curable composition in which deterioration of rubber elasticity over time is suppressed after curing.
  • the NOR type hindered amine light stabilizer has a NOR structure in which an alkyl group (R) is bonded to a nitrogen atom (N) contained in a piperidine ring skeleton via an oxygen atom (O).
  • the number of carbon atoms in the alkyl group in the NOR structure is preferably 1 to 20, more preferably 1 to 18, and particularly preferably 18.
  • Examples of the alkyl group include a linear alkyl group, a branched alkyl group, and a cyclic alkyl group (saturated alicyclic hydrocarbon group).
  • Examples of straight-chain alkyl groups include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-nonyl group, and n-decyl group.
  • Examples include groups.
  • Examples of the branched alkyl group include isopropyl, isobutyl, sec-butyl, and tert-butyl.
  • Examples of the cyclic alkyl group saturated alicyclic hydrocarbon group
  • examples of the hydrogen atoms constituting the alkyl group may be substituted with a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, etc.) or a hydroxyl group.
  • Examples of the NOR type hindered amine light stabilizer include a hindered amine light stabilizer represented by the following formula (I).
  • NOR-type hindered amine light stabilizer When using a NOR-type hindered amine light stabilizer, it is preferable to use the NOR-type hindered amine light stabilizer in combination with a benzotriazole-based ultraviolet absorber or a triazine-based ultraviolet absorber. Thereby, it is possible to provide a curable composition in which the decline in rubber elasticity over time after curing is more suppressed.
  • the content of the hindered amine light stabilizer in the curable composition is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, based on 100 parts by mass of the curable resin.
  • the content of the hindered amine light stabilizer in the curable composition is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, based on 100 parts by mass of the curable resin.
  • the curable composition can be manufactured by mixing a curable resin, a poorly water-soluble phosphorus compound, and a silanol condensation catalyst and additives added as necessary.
  • the curable composition may be suspended or emulsified in an aqueous solvent to form a suspension or emulsion.
  • the curable composition may be in the form of a solution dissolved in a solvent.
  • the water solvent include alcohols such as ethyl alcohol, methyl alcohol, and isopropyl alcohol, and water.
  • the solvent include xylene, toluene, and acetone.
  • the curable composition preferably has an elution rate of 3% or less after curing, that is, the cured product of the curable composition when immersed in water at 23° C. for one week, preferably 2.8%. It is more preferably at most 2.5%, even more preferably at most 2.0%.
  • the elution rate is 3% or less, the cured product of the curable composition can maintain excellent rubber elasticity even after being exposed to moisture such as rainwater. Therefore, the cured product of such a curable composition can smoothly follow the dimensional changes of the sealing part over a long period of time.
  • the elution rate when the cured product of the curable composition is immersed in water at 23° C. for one week can be measured according to the following procedure.
  • a curable composition is cured for one week in an atmosphere of 23° C. and 50% relative humidity to produce a cured product, and 5.00 g of this cured product is weighed and used as a sample.
  • a container to hold water is prepared, and the mass (W 1 ) of this container is measured. Fill a container with 100 mL of water, completely immerse the entire sample in the water, cover the container, seal it, and leave it in an atmosphere at 23° C. for one week.
  • the sample is removed from the water, and the container is left at 60° C.
  • the cured product of the curable composition preferably has a rubber elasticity of 5 or more, more preferably 10 or more, at 23° C. according to Shore A.
  • the curable composition preferably has a rubber elasticity of 50 or less at 23° C. according to Shore A, and more preferably 40 or less. If the cured product of the curable composition has a rubber elasticity of 5 or more at 23°C according to Shore A, the cured product of the curable composition has excellent rubber elasticity despite being heated by heat during a fire. , it is possible to smoothly follow the expansion of the sealing part and to stably maintain the closure of the sealing part.
  • the cured product of the curable composition has a rubber elasticity of 50 or less at 23°C by Shore A, the cured product of the curable composition will not become too hard in the event of a fire, and the sealant will become brittle due to the heat of the fire.
  • This method reduces the formation of breaking points in the sealing part constituent member due to the large difference in hardness between the sealing part constituent member and the hardness of the cured product of the curable composition, and improves the form of the sealing part constituent member. This is preferable because it can be maintained stably in the event of a fire.
  • the rubber elasticity of the cured product of the curable composition by Shore A was determined by curing and curing the curable composition for one week in an atmosphere of 23° C. and 50% relative humidity to produce a cured product. This refers to the value measured using a type A durometer in accordance with JIS K6253 at a measurement temperature of 23°C.
  • the cured product of the curable composition preferably has a rubber elasticity of 40 or more at 23°C according to Shore A after being left at 23°C for 1 hour after combustion at 600°C. .
  • the rubber elasticity at 23°C by Shore A after being left at 23°C for 1 hour after combustion at 600°C is 40 or more, the combustion residue of the cured product of the curable composition can be stably retained in the sealing part. It is possible to keep the sealing part closed in a stable manner.
  • the rubber elasticity at 23°C by Shore A after being left at 23°C for 1 hour after combustion at 600°C is measured as follows.
  • the curable composition is cured for one week in an atmosphere of 23° C. and 50% relative humidity to produce a cured product.
  • 100 g of a cured product of the curable composition is prepared as a sample. Feed the sample into the combustion furnace. The sample is burned in a combustion furnace at 600°C for 30 minutes. Immediately after the combustion of the sample, the combustion residue obtained is left in an atmosphere at 23° C. for 1 hour.
  • the rubber elasticity of the combustion residue by Shore A is measured using an A-type durometer at a measurement temperature of 23° C. in accordance with JIS K6253.
  • the curable composition can be suitably used as a sealant.
  • Panel structures can be constructed using the curable composition as a sealant.
  • a method for constructing a panel structure by applying a curable composition to a sealing part of a building structure a method is used in which the curable composition is filled into a sealing part and then cured and cured.
  • the obtained panel structure includes a panel installation part of a building structure, a panel member installed in the panel installation part of the building structure, and a space between the opposing surfaces of the panel installation part and the panel member filled. and a cured product of the curable composition.
  • panel members examples include mortar board, flexible board, gypsum board, calcium silicate board, medium density fiberboard, particle board, wood-based plywood, hard fiberboard, and the like.
  • gypsum board is preferred.
  • Examples of panel placement areas include walls of architectural structures.
  • Examples of the wall include an outer wall, an inner wall, and a ceiling, with the outer wall being preferred.
  • the sealing part is not particularly limited, and includes, for example, a gap formed between a panel installation part formed in a building structure and a panel member installed in this panel installation part, or a gap between adjacent panel members. Examples include a gap formed between opposing surfaces. Also,
  • the sealing structure includes a sealing part constituent member and a cured product of a curable composition filled between the sealing part constituent members.
  • the material constituting the panel arrangement portion or panel members by using gypsum board, a panel structure with excellent fire resistance can be provided. Therefore, in the panel structure, at least one of the panel installation portion and the panel member is preferably made of gypsum board.
  • the panel members constituting the panel structure may be heated to about 300° C. due to the heat of the fire, causing contraction, and in such a case, the sealing portion expands.
  • the cured product of the curable composition maintains excellent rubber elasticity and expands smoothly even when heated up to about 400°C due to heat during a fire, so it smoothly follows the expansion of the sealing part and seals. The closed state of the area can be maintained reliably.
  • the cured product of the curable composition generates a strong combustion residue when burned by heat during a fire, and this combustion residue fills the sealing part of a building structure and reliably maintains the closed state even in the event of a fire. It is possible to prevent flames from spreading through the sealing part and provide excellent fire resistance to the panel structure of the building structure.
  • the curable composition of the present invention has excellent rubber elasticity even when the cured product is heated to about 400°C. Therefore, when a curable composition is used as a sealant, even if the sealing part expands during a fire, the cured product of the curable composition will smoothly follow the expansion of the sealing part and block the sealing part. The state can be maintained stably.
  • the combustion residue generated by burning the cured product is strong, and even in the event of a fire, the combustion residue fills the sealing part and reliably maintains the closed state. It is possible to prevent flames from spreading through the walls and provide excellent fire resistance to the panel structure of building structures.
  • the curable composition of the present invention contains a poorly water-soluble phosphorus compound, even after being repeatedly exposed to moisture such as rainwater over a long period of time, the cured composition can be heated up to about 400°C.
  • the combustion residue is also hard, making it possible to reliably maintain the filled state of the sealing part while following dimensional changes in the sealing part caused by heat during a fire, etc. Excellent fire resistance can be imparted to structures.
  • Polyalkylene oxide having hydrolyzable silyl group ⁇ Polyalkylene oxide (1) having a hydrolyzable silyl group (polyalkylene oxide whose main chain skeleton is made of polypropylene oxide and which has a methyldimethoxysilyl group at the end of the main chain without intervening a urethane bond or an alkylene group, number average) Molecular weight: 16,000, manufactured by Asahi Glass Co., Ltd.
  • Polyalkylene oxide (2) having a hydrolyzable silyl group (polyalkylene oxide whose main chain skeleton is made of polyalkylene oxide and which has a methyldimethoxysilyl group at both ends of the main chain via a urethane bond and a methylene group, weight Average molecular weight: 50,000, number average molecular weight: 30,000, average number of methyldimethoxysilyl groups in one molecule: 2.0, manufactured by Wacker, product name "STP-E30"
  • Acrylic polymer having hydrolyzable silyl group ⁇ Acrylic polymer (main chain skeleton consists of butyl acrylate-stearyl acrylate copolymer (butyl acrylate component content: 70% by mass, stearyl acrylate component content: 30% by mass), and at the end of the main chain skeleton Acrylic polymer having methyldimethoxysilyl groups, manufactured by Kaneka, trade name "SA310S", average number of methyldimethoxysilyl groups in one molecule: 2.0, weight average molecular weight: 34,000)
  • urethane prepolymer (number average molecular weight 30,000) having isocyanate groups at the ends.
  • the obtained urethane prepolymer did not have a hydrolyzable silyl group.
  • raw material monomers containing 88.4 parts by mass of 2-ethylhexyl acrylate, 5 parts by mass of butyl acrylate, 5 parts by mass of acrylonitrile, 1.5 parts by mass of acrylic acid, and 0.1 parts by mass of glycidyl methacrylate, and an anionic surfactant 2.7 parts by mass of a nonionic surfactant (manufactured by Sanyo Chemical Industries, Ltd., product name "Eleminol ES-70”) and 2.1 parts by mass of a nonionic surfactant (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product name "Neugen ET-160”).
  • a nonionic surfactant manufactured by Sanyo Chemical Industries, Ltd., product name "Eleminol ES-70
  • a nonionic surfactant manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product name "Neugen ET-160”
  • the obtained emulsion was continuously dropped into the reactor using a dropping funnel over a period of 4 hours. During this time, the polymerization temperature was maintained at 72 to 75°C, and after the completion of the dropwise addition, the aging reaction was carried out at 75 to 80°C for 3 hours to emulsion polymerize the raw material monomers and obtain particulate acrylic emulsion resin.
  • an acrylic emulsion composition (nonvolatile content: : 60.1% by mass, viscosity (23° C.) 4650 mPa ⁇ s, pH: 4.8). Note that the acrylic emulsion resin did not have a hydrolyzable silyl group.
  • [Phosphorus compounds] ⁇ Aluminum phosphite (poorly water-soluble phosphorus compound, solubility: 0.01g/100g-H 2 O) ⁇ Aluminum monophosphate (poorly water-soluble phosphorus compound, solubility: 0.01g/100g-H 2 O) ⁇ Ammonium polyphosphate 1 (solubility: 0.5g/100g-H 2 O) ⁇ Ammonium polyphosphate 2 (microencapsulated ammonium polyphosphate, solubility: 0.09g/100g-H 2 O)
  • Antifreezing agent ethylene glycol
  • Example 8 Mixing the acrylic emulsion composition, phosphorus compound, calcium carbonate, hindered phenolic antioxidant, plasticizer, dryness regulator, and antifreeze agent for 60 minutes using a planetary mixer until uniform. A curable composition was obtained. The blending amounts of each component in the obtained curable composition were as shown in Table 1.
  • the obtained curable composition was immersed in water at 23°C, the cured product was burned at 600°C, and then left at 23°C for 1 hour, and the rubber elasticity at 23°C was measured using Shore A in the following manner. The results are shown in Table 1.
  • the curable composition of the present invention has excellent rubber elasticity even when the cured product is heated to about 400°C. Furthermore, the curable composition can produce a hard combustion residue upon combustion. Therefore, the curable composition can be suitably used as a sealant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Sealing Material Composition (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、火災時の熱によって生じるシーリング部の寸法変化に円滑に追従し、シーリング部の充填状態を確実に保持して、シーリング部を通じた炎の回り込みを阻止し、建築構造物に優れた耐火性能を付与することができる硬化性組成物を提供する。本発明のシーリング材用硬化性組成物は、硬化性樹脂100質量部と、水難溶性リン系化合物10~150質量部とを含有することを特徴とする。上記硬化性組成物の硬化物は、火災時において、シーリング部の閉塞状態を安定的に維持することができる。

Description

シーリング材用硬化性組成物及びこの硬化性組成物を用いたパネル構造体
 本発明は、シーリング材用硬化性組成物及びこの硬化性組成物を用いたパネル構造体に関する。
 建築構造物のパネル構造体は、建築構造物のパネル配設部にパネル部材が配設され、パネル配設部とパネル部材との対向面間に形成された隙間や、パネル部材間に形成された隙間(これらの隙間を総称して「シーリング部」ということがある)にシーリング材を充填することによって構成されている。建築構造物のパネル配設部やパネル部材などのシーリング部を構成する部材を総称して「シーリング部構成部材」ということがある。
 上記パネル構造体において、シーリング材は有機物であるため、燃焼に対して弱く、火災時にシーリング材がシーリング部から脱落し、シーリング部を通じて炎が廻り込むことがあり、建築構造物の壁部の耐火性能が不十分になるという問題点を有している。
 又、パネル部材は、火災時の熱によって収縮などの変形を生じることがあり、パネル部材の変形によって、シーリング部の寸法が変化し、このシーリング部の寸法変化にシーリング材が追従できず、シーリング部を通じて炎が廻り込むことがあり、上記と同様に、建築構造物の壁部の耐火性能が不十分になるという問題点を有している。
 特許文献1には、(A)末端に加水分解によってシラノール基を形成しうるケイ素含有官能基をもつポリアルキレンエーテル、(B)マイクロカプセル化ポリリン酸アンモニウム粉末、(C)炭酸カルシウム粉末及び(D)シラノール縮合触媒からなる防火性シーリング材が開示されている。
特開平8-81674号公報
 しかしながら、上記防火性シーリング材は、火災時の熱によって発泡した後、炭化層膜を形成するが、発泡により燃焼残渣が脆くなるため、燃焼炎の風圧によって容易に破壊し、シーリング部からの脱落を生じる。更に、上記防火性シーリング材は、火災時の熱によるパネル部材の変形に起因したシーリング部の寸法変化に追従することができず、シーリング部に隙間を生じる。そのため、上記防火性シーリング材は、耐火性能が依然として不十分であるという問題点を有する。
 又、シーリング部に充填されるシーリング材は、屋外に露出された状態で用いられることが多く、日常的に雨に晒され、これが原因となって、400℃程度まで加熱された時にゴム弾性が更に低下してシーリング部の寸法変化に追従することができず、耐火性能が更に低下するという問題点も有する。
 本発明は、雨などの水分に晒された後においても、火災時の熱によって400℃程度まで加熱されても優れたゴム弾性を有し、火災時に生じるシーリング部の寸法変化に円滑に追従してシーリング部の充填状態を確実に保持し、シーリング部を通じた炎の回り込みを阻止することができ、建築構造物に優れた耐火性能を付与することができる硬化性組成物及びこれを用いたパネル構造体を提供する。
 本発明のシーリング材用硬化性組成物は、
 硬化性樹脂100質量部と、
 水難溶性リン系化合物10~150質量部と、を含有する。
 本発明のシーリング材用硬化性組成物は、好ましくは、
 加水分解性シリル基を有するポリアルキレンオキサイド100質量部と、
 水難溶性リン系化合物10~150質量部と、
 シラノール縮合触媒とを含有する。
[硬化性樹脂]
 硬化性樹脂は、1液型硬化性樹脂及び2液型硬化性樹脂を含む。1液型硬化性樹脂は、水分、光照射又は熱によって架橋構造が導入されて硬化する樹脂、又は水などの溶媒の揮発により硬化する乾燥硬化型の樹脂が含まれる。2液型硬化性樹脂は、主剤と硬化剤とを混合することによって架橋構造が導入されて硬化する樹脂が含まれる。
[1液型硬化性樹脂]
 1液型硬化性樹脂としては、加水分解性シリル基を有する重合体、加水分解架橋性シリコーン樹脂、イソシアネート基を有するウレタンプレポリマー、乾燥硬化型アクリル系重合体、光架橋性重合体などが挙げられる。なかでも、加水分解性シリル基を有する重合体、イソシアネート基を有するウレタンプレポリマー、及び乾燥硬化型アクリル系重合体が好ましく、加水分解性シリル基を有する重合体を含むことが好ましい。
[加水分解性シリル基を有する重合体]
 加水分解性シリル基を含有する重合体は、水の存在下にて、加水分解性シリル基の加水分解性基が加水分解してシラノール基(≡SiOH)を生成する。そして、シラノール基同士が脱水縮合して架橋構造が形成される。
 加水分解性シリル基とは、珪素原子に1~3個の加水分解性基が結合してなる基である。加水分解性シリル基の加水分解性基としては、特に限定されず、例えば、水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基、オキシム基などが挙げられる。
 なかでも、加水分解性シリル基としては、加水分解反応が穏やかであることから、アルコキシシリル基が好ましい。アルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、及びトリフェノキシシリル基などのトリアルコキシシリル基;プロピルジメトキシシリル基、メチルジメトキシシリル基、及びメチルジエトキシシリル基などのジアルコキシシリル基;並びに、ジメチルメトキシシリル基、及びジメチルエトキシシリル基などのモノアルコキシシリル基が挙げられる。
 加水分解性シリル基を有する重合体としては、特に限定されず、例えば、加水分解性シリル基を有するポリアルキレンオキサイド、加水分解性シリル基を有するアクリル系重合体、加水分解性シリル基を有するウレタン樹脂、加水分解性シリル基を有するポリオレフィン系樹脂などが挙げられる。加水分解性シリル基を有する重合体としては、加水分解性シリル基を有するポリアルキレンオキサイドを含有していることが好ましい。なお、加水分解性シリル基を有する重合体は、単独で用いられても二種以上が併用されてもよい。
 硬化性樹脂中における加水分解性シリル基を有する重合体の含有量は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上がより好ましく、90質量%以上がより好ましく、100質量%がより好ましい。
[加水分解性シリル基を有するポリアルキレンオキサイド]
 ポリアルキレンオキサイドは、加水分解性シリル基を有する。主鎖の末端に加水分解性シリル基を有することが好ましい。加水分解性シリル基を有するポリアルキレンオキサイドは、水の存在下にて、加水分解性シリル基の加水分解性基が加水分解してシラノール基(-SiOH)を生成する。そして、シラノール基同士が脱水縮合して架橋構造が形成される。
 加水分解性シリル基を有するポリアルキレンオキサイドが有する加水分解性シリル基としては、加水分解反応が穏やかであることから、アルコキシシリル基が好ましい。アルコキシシリル基としては、ジアルコキシシリル基がより好ましく、ジメトキシシリル基及びメチルジメトキシシリル基がより好ましく、メチルジメトキシシリル基がより好ましい。
 加水分解性シリル基を有するポリアルキレンオキサイドは、1分子中に平均して、1~4個の加水分解性シリル基を有していることが好ましい。加水分解性シリル基を有するポリアルキレンオキサイドにおける加水分解性シリル基の数が上記範囲内にあると、硬化性組成物の硬化物は、400℃程度に加熱されても優れたゴム弾性を保持し、火災時の熱によるシーリング部の寸法変化に円滑に追従し、シーリング部の充填状態を安定的に保持することができる。更に、硬化性組成物の硬化物の燃焼残渣をシーリング部に安定的に保持することができ、建築構造物の耐火性能を維持することができる。加水分解性シリル基を有するポリアルキレンオキサイドは、その主鎖の両末端に加水分解性シリル基を有していることが好ましい。
 なお、加水分解性シリル基を有するポリアルキレンオキサイド中における、1分子当たりの加水分解性シリル基の平均個数は、1H-NMRにより求められるポリアルキレンオキサイド中の加水分解性シリル基の濃度、及びGPC法により求められるポリアルキレンオキサイドの数平均分子量に基づいて算出することができる。
 加水分解性シリル基を有するポリアルキレンオキサイドを構成しているポリアルキレンオキサイドとしては、主鎖が、一般式:-(R-O)n-(式中、Rは炭素数が1~14のアルキレン基を表し、nは、繰り返し単位の数であって正の整数である。)で表される繰り返し単位を含有する重合体が好ましく挙げられる。ポリアルキレンオキサイドの主鎖骨格は一種のみの繰り返し単位からなっていてもよいし、二種以上の繰り返し単位からなっていてもよい。
 本発明において、アルキレン基とは、脂肪族飽和炭化水素中の異なる2個の炭素原子に結合する2個の水素原子を除いて生じる2価の原子団であり、直鎖状及び分岐状の双方の原子団を含む。
 アルキレン基としては、例えば、エチレン基、プロピレン基[-CH(CH3)-CH2-]、トリメチレン基[-CH2-CH2-CH2-]、ブチレン基、アミレン基[-(CH25-]、ヘキシレン基などが挙げられる。
 ポリアルキレンオキサイドの主鎖骨格としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブチレンオキサイド、ポリテトラメチレンオキサイド、ポリエチレンオキサイド-ポリプロピレンオキサイド共重合体、及びポリプロピレンオキサイド-ポリブチレンオキサイド共重合体などが挙げられる。なかでも、ポリプロピレンオキサイドが好ましい。ポリプロピレンオキサイドによれば、硬化性組成物の硬化物は、400℃程度に加熱されても優れたゴム弾性を維持していると共に、硬化性組成物の硬化物の燃焼残渣をシーリング部に安定的に保持することができる。
 加水分解性シリル基を有するポリアルキレンオキサイドにおいて、加水分解性シリル基は、主鎖の末端に、炭素数が1~25のアルキレン基(好ましくは、炭素数が1~6のアルキレン基)を介して結合していることが好ましい。加水分解性シリル基が炭素数が1~25のアルキレン基を介して主鎖に結合していると、硬化性組成物の硬化物の柔軟性が向上する。
 加水分解性シリル基を有するポリアルキレンオキサイドにおいて、加水分解性シリル基は、主鎖の末端に、ウレタン結合を介して結合していてもよい。加水分解性シリル基がウレタン結合を介して主鎖の末端に結合していると、硬化性組成物の硬化物の柔軟性が向上する。硬化性組成物の硬化物の柔軟性が向上するので、加水分解性シリル基は、主鎖の末端に、ウレタン結合及びアルキレン基(好ましくは、炭素数が1~25のアルキレン基)を介して結合していることが好ましい。
 加水分解性シリル基を有するポリアルキレンオキサイドの数平均分子量は、3000以上が好ましく、10000以上がより好ましい。加水分解性シリル基を有するポリアルキレンオキサイドの数平均分子量は、50000以下が好ましく、30000以下がより好ましい。ポリアルキレンオキサイドの数平均分子量が3000以上であると、硬化性組成物の硬化物は400℃程度に加熱されても優れたゴム弾性を維持する。ポリアルキレンオキサイドの数平均分子量が50000以下であると、硬化性組成物の硬化物が、火災時の熱によって400℃程度に加熱されても優れたゴム弾性を保持し、火災時の熱によるシーリング部の寸法変化に円滑に追従し、シーリング部の充填状態を安定的に保持することができる。
 なお、本発明において、加水分解性シリル基を有するポリアルキレンオキサイドの数平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)法によって測定されたポリスチレン換算した値である。具体的には、加水分解性シリル基を有するポリアルキレンオキサイド6~7mgを採取し、採取したポリアルキレンオキサイドを試験管に供給した上で、試験管に0.05質量%のBHT(ジブチルヒドロキシトルエン)を含むo-DCB(オルトジクロロベンゼン)溶液を加えてポリアルキレンオキサイドの濃度が1mg/mLとなるように希釈して希釈液を作製する。
 溶解濾過装置を用いて145℃にて回転速度25rpmにて1時間に亘って上記希釈液を振とうして、BHTを含むo-DCB溶液にポリアルキレンオキサイドを溶解させて測定試料とする。この測定試料を用いてGPC法によってポリアルキレンオキサイドの数平均分子量を測定することができる。
 加水分解性シリル基を有するポリアルキレンオキサイドにおける数平均分子量は、例えば、下記測定装置及び測定条件にて測定することができる。
測定装置 TOSOH社製 商品名「HLC-8121GPC/HT」
測定条件 カラム:TSKgelGMHHR-H(20)HT×3本
         TSKguardcolumn-HHR(30)HT×1本
     移動相:o-DCB 1.0mL/分
     サンプル濃度:1mg/mL  
     検出器:ブライス型屈折計
     標準物質:ポリスチレン(TOSOH社製 分子量:500~8420000)
     溶出条件:145℃
     SEC温度:145℃
 硬化性樹脂中における加水分解性シリル基を有するポリアルキレンオキサイドの含有量は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上がより好ましく、90質量%以上がより好ましく、100質量%がより好ましい。
 加水分解性シリル基を有しているポリアルキレンオキサイドは、市販されているものを用いることができる。例えば、加水分解性シリル基を有しているポリアルキレンオキサイドとしては、カネカ社製 商品名「MSポリマー S-203」、「MSポリマー S-303」、「サイリルポリマー SAT-200」、「サイリルポリマー SAT-350」及び「サイリルポリマー SAT-400」;AGC社製 商品名「エクセスター S3620」、「エクセスターS2420」、「エクセスターS2410」及び「エクセスターS3430」などが挙げられる。
 主鎖がポリプロピレンオキサイドで且つポリプロピレンオキサイドの末端に(メトキシメチル)ジメトキシシリル基を有しているポリアルキレンオキサイドは、カネカ社から商品名「HS-2」にて市販されている。
 主鎖がポリプロピレンオキサイドで且つポリプロピレンオキサイドの末端にイソプロピルジメトキシメチルシリル基を有しているポリアルキレンオキサイドは、カネカ社から商品名「SAX720」にて市販されている。
[加水分解性シリル基を有するアクリル系重合体]
 加水分解性シリル基を有するアクリル系重合体に含有されている加水分解性シリル基としては、加水分解反応が穏やかであることから、アルコキシシリル基が好ましく、ジアルコキシシリル基がより好ましく、メチルジメトキシシリル基がより好ましい。
 加水分解性シリル基を有するアクリル系重合体において、1分子中の加水分解性シリル基の平均個数は、1個以上が好ましく、2個以上がより好ましい。加水分解性シリル基を有するアクリル系重合体において、1分子中の加水分解性シリル基の平均個数は、4個以下が好ましく、3個以下がより好ましい。加水分解性シリル基を有するアクリル系重合体において、1分子中の加水分解性シリル基の平均個数が上記範囲内にあると、硬化性組成物の硬化物は、400℃程度に加熱されても優れたゴム弾性を保持し、火災時の熱によるシーリング部の寸法変化に円滑に追従し、シーリング部の充填状態を安定的に保持することができる。更に、硬化性組成物の硬化物の燃焼残渣をシーリング部に安定的に保持することができ、建築構造物の耐火性能を維持することができる。加水分解性シリル基を有するアクリル系重合体は、その主鎖の両末端のうち少なくとも一方に加水分解性シリル基を有していることが好ましい。
 加水分解性シリル基を有するアクリル系重合体は、加水分解性シリル基を有さないアクリル系重合体と併用して使用してもよい。この場合、両者全体での1分子あたりの加水分解性シリル基の平均個数は、0.3個以上が好ましく、0.5以上がより好ましい。加水分解性シリル基の平均個数が0.3個以上であると、硬化性組成物の硬化性が向上する。一方、両者全体での1分子あたりの加水分解性シリル基の平均個数は、2.0個以下であることが好ましく、1.8個以下であることがより好ましい。加水分解性シリル基の平均個数が2.0個以下であると、硬化性組成物の硬化物が、雨水などの水分に晒された後に火災時の熱などによって加熱された場合であっても、優れたゴム弾性を維持することができる。
 アクリル系重合体への加水分解性シリル基の導入方法としては、特に限定されず、例えば、主鎖骨格を構成する単量体の共重合体に不飽和基を導入した後、加水分解性シリル基を有するヒドロシランを作用させてヒドロシリル化する方法などが挙げられる。
 なお、加水分解性シリル基を有するアクリル系重合体中における、1分子当たりの加水分解性シリル基の平均個数は、1H-NMRにより求められる加水分解性シリル基を有するアクリル系重合体中の加水分解性シリル基の濃度、及びGPC法により求められる加水分解性シリル基を有するアクリル系重合体の数平均分子量に基づいて算出する。
 加水分解性シリル基を有するアクリル系重合体の主鎖を構成する(メタ)アクリレート系モノマーとして、具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、5-ヒドロキシペンチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、3-ヒドロキシ-3-メチルブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-[アクリロイルオキシ]エチル-2-ヒドロキシエチルフタル酸、及び2-[アクリロイルオキシ]エチル-2-ヒドロキシプロピルフタル酸などが挙げられる。これらの(メタ)アクリレート系モノマーは、単独で用いられても二種以上が併用されてもよい。なお、(メタ)アクリレートは、メタクリレート及び/又はアクリレートを意味する。
 加水分解性シリル基を有するアクリル系重合体において、主鎖骨格を構成している重合体に用いられる単量体は、上述した(メタ)アクリレート系モノマーの他に、さらに他のモノマーを含んでいてもよい。他のモノマーとしては、例えば、スチレン、インデン、α-メチルスチレン、p-メチルスチレン、p-クロロスチレン、p-クロロメチルスチレン、p-メトキシスチレン、p-tert-ブトキシスチレン、ジビニルベンゼンなどのスチレン誘導体、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、安息香酸ビニル、珪皮酸ビニルなどのビニルエステル基を持つ化合物、無水マレイン酸、N-ビニルピロリドン、N-ビニルモルフォリン、メタクリロニトリル、アクリロニトリル、アクリルアミド、メタクリルアミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-ラウリルマレイミド、N-ベンジルマレイミド、n-プロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、tert-ブチルビニルエーテル、tert-アミルビニルエーテル、シクロヘキシルビニルエーテル、2-エチルヘキシルビニルエーテル、ドデシルビニルエーテル、オクタデシルビニルエーテル、2-クロロエチルビニルエーテル、エチレングリコールブチルビニルエーテル、トリエチレングリコールメチルビニルエーテル、安息香酸(4-ビニロキシ)ブチル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ブタン-1,4-ジオール-ジビニルエーテル、ヘキサン-1,6-ジオール-ジビニルエーテル、シクロヘキサン-1,4-ジメタノール-ジビニルエーテル、イソフタル酸ジ(4-ビニロキシ)ブチル、グルタル酸ジ(4-ビニロキシ)ブチル、コハク酸ジ(4-ビニロキシ)ブチルトリメチロールプロパントリビニルエーテル、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル、シクロヘキサン-1,4-ジメタノールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、3-アミノプロピルビニルエーテル、2-(N,N-ジエチルアミノ)エチルビニルエーテル、ウレタンビニルエーテル、ポリエステルビニルエーテルなどのビニロキシ基を持つ化合物などを挙げることができる。これらのモノマーは、単独で用いられても二種以上が併用されてもよい。
 加水分解性シリル基を有するアクリル系重合体の主鎖骨格は、ブチル(メタ)アクリレート及びステアリル(メタ)アクリレートを含む単量体の共重合体が好ましく、ブチルアクリレート及びステアリルアクリレートを含む単量体の共重合体がより好ましい。主鎖骨格が上記共重合体である、加水分解性シリル基を有するアクリル系重合体は、柔軟な主鎖骨格を有し、これにより硬化後に高いゴム弾性を発揮する硬化性組成物を提供することができる。このような硬化性組成物の硬化物は、雨水などの水分に晒された後に、火災時の熱などによって加熱された場合であっても、優れたゴム弾性を維持することができる。
 加水分解性シリル基を有するアクリル系重合体において、ブチル(メタ)アクリレート成分の含有量は、30質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がより好ましい。加水分解性シリル基を有するアクリル系重合体において、ブチル(メタ)アクリレート成分の含有量は、97質量%以下が好ましく、95質量%以下がより好ましく、85質量%以下がより好ましい。ブチル(メタ)アクリレート成分の含有量が30質量%以上であることによって、加水分解性シリル基を有するアクリル系重合体の主鎖骨格の柔軟性が向上し、これにより硬化後に高いゴム弾性を発揮する硬化性組成物を提供することができる。このような硬化性組成物の硬化物は、雨水などの水分に晒された後に、火災時の熱などによって加熱された場合であっても、優れたゴム弾性を維持することができる。
 加水分解性シリル基を有するアクリル系重合体において、ステアリル(メタ)アクリレート成分の含有量は、3質量%以上が好ましく、5質量%以上がより好ましく、15質量%以上がより好ましい。加水分解性シリル基を有するアクリル系重合体において、ステアリル(メタ)アクリレート成分の含有量は、70質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がより好ましい。ステアリル(メタ)アクリレート成分の含有量が3質量%以上であることによって、硬化性組成物の硬化物が火災時の熱などによって加熱された場合であっても、アクリル系重合体の主鎖骨格が切断され難くなる。これにより、硬化性組成物の硬化物の燃焼残渣をシーリング部に安定的に保持することができ、建築構造物の耐火性能を維持することができる。ステアリル(メタ)アクリレート成分の含有量が70質量%以下であることによって、加水分解性シリル基を有するアクリル系重合体の主鎖骨格の柔軟性が向上し、これにより硬化後に高いゴム弾性を発揮する硬化性組成物を提供することができる。このような硬化性組成物の硬化物は、雨水などの水分に晒された後に、火災時の熱などによって加熱された場合であっても、優れたゴム弾性を維持することができる。
 加水分解性シリル基を有するアクリル系重合体の重合方法としては、特に限定されず、公知の方法を用いることができ、例えば、フリーラジカル重合法、アニオン重合法、カチオン重合法、UVラジカル重合法、リビングアニオン重合法、リビングカチオン重合法、リビングラジカル重合法などの各種重合法などが挙げられる。
 加水分解性シリル基を有するアクリル系重合体の重量平均分子量は、1000~50000が好ましく、10000~40000がより好ましく、20000~38000が特に好ましい。重量平均分子量が上記範囲内である加水分解性シリル基を有するアクリル系重合体は、柔軟な主鎖骨格を有し、これにより硬化後に高いゴム弾性を発揮する硬化性組成物を提供することができる。このような硬化性組成物の硬化物は、雨水などの水分に晒された後に、火災時の熱などによって加熱された場合であっても、優れたゴム弾性を維持することができる。
 加水分解性シリル基を有するアクリル系重合体の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法によって測定されたポリスチレン換算した値を意味する。GPC法による測定においては、例えば、GPCカラムとして東ソー製Shodex KF800Dを用い、溶媒としてクロロホルムなどを用いることができる。
 硬化性樹脂中における加水分解性シリル基を有するアクリル系重合体の含有量は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上がより好ましく、90質量%以上がより好ましく、100質量%がより好ましい。
[加水分解性シリル基を有するウレタン樹脂]
 ウレタン樹脂は、ウレタン結合(-NHCOO-)が繰り返して形成されてなる主鎖を有する重合体をいう。加水分解性シリル基を有するウレタン樹脂は、ウレタン樹脂の主鎖に複数個の加水分解性シリル基を有している。加水分解性シリル基を有するウレタン樹脂は、ウレタン樹脂の主鎖の両末端に加水分解性シリル基を有することが好ましい。
 加水分解性シリル基を有するウレタン樹脂が有する加水分解性シリル基としては、加水分解反応が穏やかであることから、アルコキシシリル基が好ましい。アルコキシシリル基としては、ジアルコキシシリル基がより好ましく、ジメトキシシリル基及びメチルジメトキシシリル基がより好ましく、メチルジメトキシシリル基がより好ましい。なお、加水分解性シリル基を有するウレタン樹脂は、イソシアネート基を有していないことが好ましい。
 加水分解性シリル基を有するウレタン樹脂は、1分子中に平均して、1~4個の加水分解性シリル基を有していることが好ましい。加水分解性シリル基を有するウレタン樹脂における加水分解性シリル基の数が上記範囲内にあると、硬化性組成物の硬化物は、400℃程度に加熱されても優れたゴム弾性を保持し、火災時の熱によるシーリング部の寸法変化に円滑に追従し、シーリング部の充填状態を安定的に保持することができる。更に、硬化性組成物の硬化物の燃焼残渣をシーリング部に安定的に保持することができ、建築構造物の耐火性能を維持することができる。
 なお、加水分解性シリル基を有するウレタン樹脂中における、1分子当たりの加水分解性シリル基の平均個数は、1H-NMRにより求められるウレタン樹脂中の加水分解性シリル基の濃度、及びGPC法により求められるウレタン樹脂の数平均分子量に基づいて算出することができる。
 加水分解性シリル基を有するウレタン樹脂の重量平均分子量は、1000~50000が好ましく、2000~30000がより好ましく、3000~15000が特に好ましい。重量平均分子量が上記範囲内である加水分解性シリル基を有するウレタン樹脂は、柔軟な主鎖骨格を有し、これにより硬化後に高いゴム弾性を発揮する硬化性組成物を提供することができる。このような硬化性組成物の硬化物は、雨水などの水分に晒された後に、火災時の熱などによって加熱された場合であっても、優れたゴム弾性を維持することができる。
 加水分解性シリル基を有するウレタン樹脂の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法によって測定されたポリスチレン換算した値を意味する。GPC法による測定においては、例えば、GPCカラムとして東ソー製Shodex KF800Dを用い、溶媒としてクロロホルムなどを用いることができる。
 硬化性樹脂中における加水分解性シリル基を有するウレタン樹脂の含有量は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上がより好ましく、90質量%以上がより好ましく、100質量%がより好ましい。
[加水分解性シリル基を有するポリオレフィン系樹脂]
 ポリオレフィン系樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂などが挙げられる。加水分解性シリル基を有するポリオレフィン系樹脂は、ポリオレフィン系樹脂の主鎖に複数個の加水分解性シリル基を有している。加水分解性シリル基を有するポリオレフィン系樹脂は、ポリオレフィン系樹脂の主鎖の両末端に加水分解性シリル基を有することが好ましい。
[加水分解架橋性シリコーン樹脂]
 加水分解架橋性シリコーン樹脂は、シロキサン結合(-Si-O-)が繰り返して形成されてなる分子鎖を有する重合体をいう。加水分解性架橋性シリコーン樹脂は、シリコーン樹脂の主鎖を構成している珪素原子の一部に加水分解性基が結合している。
 加水分解性基としては、特に限定されず、例えば、水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基などが挙げられ、アルコシキ基が好ましい。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などが挙げられ、メトキシ基、エトキシ基が好ましい。
 加水分解架橋性シリコーン樹脂は、湿気又は架橋剤の存在下、必要に応じて触媒などを使用することによって、加水分解性基において縮合反応を生じて架橋構造を形成する。加水分解架橋性シリコーン樹脂が加水分解性基としてアルコキシ基を有している場合、アルコキシ基の一部が加水分解してヒドロキシ基を生成し、このヒドロキシ基とアルコキシ基とが脱アルコール縮合反応を生じて架橋構造を形成する。
 加水分解架橋性シリコーン樹脂中における加水分解性基の含有量は、5質量%以上が好ましく、10質量%以上がより好ましい。加水分解架橋性シリコーン樹脂中における加水分解性基の含有量は、50質量%以下が好ましく、40質量%以下がより好ましく、35質量%以下がより好ましい。
 加水分解架橋性シリコーン樹脂における25℃での粘度は、5Pa・s以上が好ましく、10mPa・s以上がより好ましく、13Pa・s以上がより好ましい。加水分解架橋性シリコーン樹脂における25℃での粘度は、25Pa・s以下が好ましく、22Pa・s以下がより好ましく、19Pa・s以下がより好ましい。なお、加水分解架橋性シリコーン樹脂の25℃での粘度は、B型粘度計(例えば、BROOKFIELD社製 製品名「DV-E 回転粘度計」)を用い、スピンドル(RV-2)の回転速度を10rpmに設定して測定された値をいう。
 硬化性樹脂中における加水分解架橋性シリコーン樹脂の含有量は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上がより好ましく、90質量%以上がより好ましく、100質量%がより好ましい。
[イソシアネート基を有するウレタンプレポリマー]
 イソシアネート基を有するウレタンプレポリマーとしては、ポリオールとポリイソシアネートとの反応物で且つ末端にイソシアネート基を有しているウレタンプレポリマーが挙げられる。ウレタンプレポリマーが有するイソシアネート基が、水の存在下にて、二酸化炭素を生成しながら尿素結合(-NHCONH-)を生成して架橋構造を形成する。なお、イソシアネート基を有するウレタンプレポリマーは、加水分解性シリル基を有していないことが好ましい。
 ポリオールは、ヒドロキシル基を一分子中に2個以上有する化合物である。ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオール、(メタ)アクリルポリオール、ポリブタジエンポリオール、水素添加されたポリブタジエンポリオールが挙げられる。なかでも、ポリエーテルポリオールが好ましい。これらのポリオールは、単独で用いられてもよく、二種以上を併用して用いてもよい。
 ポリエーテルポリオールとしては、ポリオキシアルキレンポリオールが挙げられる。ポリオキシアルキレンポリオールとしては、ポリオキシエチレンジオール(ポリエチレングリコール)、及びポリオキシプロピレンジオール(ポリプロピレングリコール)などのポリオキシアルキレンジオール;ポリオキシエチレントリオール、及びポリオキシプロピレントリオールなどのポリオキシアルキレントリオール、及びこれらを共重合させたポリエーテルポリオールなどが挙げられる。なかでも、ポリオキシアルキレントリオールが好ましく、ポリオキシプロピレントリオールが好ましい。
 ポリエーテルポリオールとして、上述したポリオキシアルキレンポリオールの2種以上を共重合したポリエーテルポリオールも挙げられる。例えば、ポリオキシエチレン・ポリオキシプロピレングリコール、及びポリオキシエチレン・ポリオキシプロピレントリオールが挙げられる。これらの共重合体は、ブロック共重合体、ランダム共重合体の何れであってもよい。ポリエーテルポリオールは、単独で用いられてもよく、二種以上を併用して用いてもよい。
 ポリエーテルポリオールの数平均分子量は、500~7000が好ましく、1000~6000がより好ましく、1500~5000がより好ましく、2000~4000がより好ましい。ポリエーテルポリオールの数平均分子量を上記範囲内とすることにより、硬化後に高いゴム弾性を発揮する硬化性組成物を提供することができる。このような硬化性組成物の硬化物は、雨水などの水分に晒された後に、火災時の熱などによって加熱された場合であっても、優れたゴム弾性を維持することができる。
 ポリエーテルポリオールの数平均分子量はゲル浸透クロマトグラフィー(GPC)法を用いて測定することができる。具体的には、試料を1.0質量%濃度となるようにテトラヒドロフラン(THF)に溶解させることにより試料溶液を調製する。この試料溶液を用いてGPC法により、標準ポリスチレンを基準として、屈折率検出計を用いてポリエーテルポリオールの数平均分子量を測定する。
 ポリイソシアネートは、イソシアネート基を一分子中に2個以上有する化合物である。ポリイソシアネートとしては、トリレンジイソシアネート(例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートなど)、ジフェニルメタンジイソシアネート(例えば、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネートなど)、1,4-フェニレンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、トリジンジイソシアネート、1,5-ナフタレンジイソシアネート、トリフェニルメタントリイソシアネートなどの芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ノルボルナンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン(H6XDI)、及びジシクロヘキシルメタンジイソシアネート(H12MDI)などの脂肪族及び/又は脂環式のポリイソシアネート;これらのカルボジイミド変性ポリイソシアネート、イソシアヌレート変性ポリイソシアネート、アロファネート変性体などが挙げられる。なかでも、芳香族ポリイソシアネートが好ましく、トリレンジイソシアネートがより好ましい。ポリイソシアネートは、単独で用いられてもよく、二種以上を併用して用いてもよい。
 ウレタンプレポリマーの合成方法としては、ポリオールを70~120℃に加熱して溶融させた後、これにより得られた溶融物を減圧下で脱水した上で、溶融物に窒素雰囲気下でポリイソシアネートを添加し、上記ポリオールと上記ポリイソシアネートを反応させる方法が好ましく用いられる。
 ウレタンプレポリマーを合成する際には、ポリイソシアネートが有するイソシアネート基(NCO)の合計と、ポリオールが有するヒドロキシル基(OH)の合計とのモル比([NCO]/[OH])を、1.5~4.0とすることが好ましい。モル比を上記範囲内とすることにより、末端にイソシアネート基を有しているウレタンプレポリマーが得られる。
 イソシアネート基を有するウレタンプレポリマーの数平均分子量は、10000~50000が好ましく、20000~40000がより好ましい。数平均分子量が上記範囲内であるウレタンプレポリマーによれば、硬化後に高いゴム弾性を発揮する硬化性組成物を提供することができる。このような硬化性組成物の硬化物は、雨水などの水分に晒された後に、火災時の熱などによって加熱された場合であっても、優れたゴム弾性を維持することができる。
 イソシアネート基を有するウレタンプレポリマーの数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法によって測定されたポリスチレン換算した値を意味する。GPC法による測定においては、例えば、GPCカラムとして東ソー製Shodex KF800Dを用い、溶媒としてクロロホルムなどを用いることができる。
 硬化性樹脂中におけるイソシアネート基を有するウレタンプレポリマーの含有量は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上がより好ましく、90質量%以上がより好ましく、100質量%がより好ましい。
[乾燥硬化型アクリル系重合体]
 乾燥硬化型アクリル系重合体としては、アクリル系エマルジョン樹脂が挙げられる。アクリル系エマルジョン樹脂は、好ましくは、アクリル系モノマーを含む原料モノマーをエマルジョン重合することにより得られる。アクリル系エマルジョン樹脂は、水などの溶媒の揮発により凝集して硬化(固化)する。乾燥硬化型アクリル系重合体は、加水分解性シリル基を有していないことが好ましい。アクリル系エマルジョン樹脂は、加水分解性シリル基を有していないことが好ましい。
 アクリル系エマルジョン樹脂は、アクリル系モノマーを含む原料モノマーの重合体である。アクリル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、へキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及びブチルシクロヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート;アクリル酸、メタクリル酸、β-カルボキシエチル(メタ)アクリレート、2-(メタ)アクリロイルプロピオン酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸ハーフエステル、マレイン酸ハーフエステル、無水マレイン酸、無水イタコン酸等のカルボキシル基を有するアクリル系モノマー;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基を有するアクリル系モノマー;4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシヘキシル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレートなどの水酸基を有するアクリル系モノマー;エチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジアリルフタレート、ジビニルベンゼン、アリル(メタ)アクリレートなどが挙げられる。アクリル系モノマーは、単独で用いられてもよく、二種以上を併用して用いてもよい。
 アクリル系モノマーは、アルキル(メタ)アクリレート、カルボキシル基を有するアクリル系モノマー、及びグリシジル基を有するアクリル系モノマーを含んでいることが好ましく、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、アクリル酸、及びグリシジル(メタ)アクリレートを含んでいることがより好ましい。
 アクリル系エマルジョン樹脂中におけるアルキル(メタ)アクリレート成分の含有量は、30質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上がより好ましく、84質量%以上がより好ましく、89.5質量%以上がより好ましい。アクリル系エマルジョン樹脂中におけるアルキル(メタ)アクリレート成分の含有量は、98.89質量%以下が好ましく、98質量%以下がより好ましく、96.45質量%以下がより好ましく、95質量%以下がより好ましい。アルキル(メタ)アクリレート成分の含有量を上記範囲内とすることによって、硬化性組成物の硬化物は400℃程度に加熱されても優れたゴム弾性を維持する。
 アクリル系エマルジョン樹脂中におけるカルボキシル基を有するアクリル系モノマー成分の含有量は、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。アクリル系エマルジョン樹脂中におけるカルボキシル基を有するアクリル系モノマー成分の含有量は、5質量%以下が好ましく、3質量%以下がより好ましい。
 アクリル系エマルジョン樹脂中におけるグリシジル基を有するアクリル系モノマー成分の含有量は、0.01質量%以上が好ましく、0.05質量%以上がより好ましい。アクリル系エマルジョン樹脂中におけるグリシジル基を有するアクリル系モノマー成分の含有量は、1質量%以下が好ましく、0.5質量%以下がより好ましい。
 また、原料モノマーは、上述したアクリル系モノマー以外の他のモノマーを含んでいてもよい。他のモノマーとしては、メタクリロニトリル、アクリロニトリル、スチレン、p-クロルスチレン、ビニルナフタレン、塩化ビニル、臭化ビニル、弗化ビニル、酢酸ビニル、プロピオン酸ビニル、ベンゾエ酸ビニル、酪酸ビニル、ビニルメチルエーテル、ビニルイソブチルエーテル、ビニルメチルケトン、ビニルエチルケトン、メチルイソプロペニルケトン、N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール、N-ビニルピロリデンなどが挙げられる。なかでも、アクリロニトリルが好ましい。これらの他のモノマーは、単独で用いられてもよく、二種以上を併用して用いてもよい。
 アクリル系エマルジョン樹脂中におけるアクリロニトリル成分の含有量は、1質量%以上が好ましく、3質量%以上がより好ましい。アクリル系エマルジョン樹脂中におけるアクリロニトリル成分の含有量は、10質量%以下が好ましく、7質量%以下がより好ましい。アクリロニトリル成分の含有量を上記範囲内とすることによって、硬化性組成物の硬化物は400℃程度に加熱されても優れたゴム弾性を維持する。
 アクリル系エマルジョン樹脂の重量平均分子量は、10000以上が好ましく、50000以上がより好ましく、100000以上がより好ましい。また、アクリル系エマルジョン樹脂の重量平均分子量は、1000000以下が好ましく、800000以下がより好ましく、700000以下がより好ましく、500000以下がより好ましく、400000以下がより好ましい。アクリル系エマルジョン樹脂の重量平均分子量が10000以上であることによって、硬化性組成物の硬化物が雨水などの水分に晒された後に火災時の熱などによって加熱された場合であっても、優れたゴム弾性を維持することができる。アクリル系エマルジョン樹脂の重量平均分子量が1000000以下であることによって、硬化性組成物の硬化物は400℃程度に加熱されても優れたゴム弾性を維持する。
 アクリル系エマルジョン樹脂の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法によって測定されたポリスチレン換算した値を意味する。GPC法による測定においては、例えば、GPCカラムとして東ソー製Shodex KF800Dを用い、溶媒としてクロロホルムなどを用いることができる。
 アクリル系エマルジョン樹脂のガラス転移温度は、-80℃以上が好ましく、-75℃以上がより好ましく、-70℃以上がより好ましい。アクリル系エマルジョン樹脂のガラス転移温度は、-20℃以下が好ましく、-30℃以下がより好ましく、-35℃以下がより好ましく、-50℃以下がより好ましい。アクリル系エマルジョン樹脂のガラス転移温度が-80℃以上であることによって、硬化性組成物の硬化物が雨水などの水分に晒された後に、火災時の熱などによって加熱された場合であっても、優れたゴム弾性を維持することができる。アクリル系エマルジョン樹脂のガラス転移温度が-20℃以下であることによって、硬化性組成物の硬化物は400℃程度に加熱されても優れたゴム弾性を維持する。
 アクリル系エマルジョン樹脂のガラス転移温度[℃]は、アクリル系エマルジョン樹脂を構成する各モノマーの含有割合(質量分率)と各モノマーの単独重合体のガラス転移温度とを用いて、下記式(1)のフォックス(FOX)方程式から算出することができる。例えば、先ず、下記式(1)に基づいて絶対温度[K(ケルビン)]でのガラス転移温度を算出する。次に、算出されたガラス転移温度[K]から「273」を引いて得られた値を、アクリル系エマルジョン樹脂のガラス転移温度[℃]とする。
Figure JPOXMLDOC01-appb-M000001

(式(1)において、Tgは、アクリル系エマルジョン樹脂のガラス転移温度(K)であり、Wiはi種目のモノマーの含有割合(質量分率)であり、Tgiはi種目のモノマーの単独重合体のガラス転移温度(K)であり、nはモノマーの種類数を表す整数である。)
 なお、「モノマーの単独重合体のガラス転移温度」は、モノマーを単独重合させたホモポリマーのガラス転移温度とする。モノマーの単独重合体のガラス転移温度は、例えば、「ポリマーハンドブック 第4版」(POLYMER HANDBOOK Fourth Edition、John Wiley & Sons,Inc.、1999年)などの文献に記載された値を採用することができる。
 アクリル系エマルジョン樹脂は、粒子状であることが好ましい。これにより、アクリル系エマルジョン樹脂の凝集及び硬化(固化)を促進させることができる。
 硬化性組成物が、アクリル系エマルジョン樹脂を含んでいる場合、硬化性組成物は、水を含む水性溶媒をさらに含んでいることが好ましい。これにより、水を含む水性溶媒中にアクリル系エマルジョン樹脂を分散させた状態とすることができ、このような状態で水性溶媒を揮発させることで、アクリル系エマルジョン樹脂の凝集及び硬化(固化)を促進させることができる。
 水性溶媒としては、特に限定されず、例えば、水、水と水溶性有機溶媒(メタノール、エタノールなどの低級アルコール(炭素数5以下のアルコール))との混合溶媒が挙げられる。なかでも、水が好ましい。水性溶媒は、単独で用いられてもよく、二種以上を併用して用いてもよい。
 硬化性組成物中における水性溶媒の含有量は、アクリル系エマルジョン樹脂100質量部に対して、40質量部以上が好ましく、45質量部以上がより好ましく、50質量部以上がより好ましい。硬化性組成物中における水性溶媒の含有量は、アクリル系エマルジョン樹脂100質量部に対して、100質量部以下が好ましく、90質量部以下がより好ましく、80質量部以下がより好ましい。水性溶媒の含有量を上記範囲とすることにより、水性溶媒の揮発により、アクリル系エマルジョン樹脂の凝集及び硬化(固化)を促進させることができる。
 アクリル系エマルジョン樹脂は、好ましくは、エマルジョン重合(乳化重合)により得られたものである。エマルジョン重合では、例えば、水を含む水性溶媒中で、アクリル系モノマーを含む原料モノマーを、エマルジョン重合(乳化重合)させることにより、アクリル系エマルジョン樹脂が得られる。エマルジョン重合によれば、水を含む水性溶媒と、アクリル系エマルジョン樹脂とを含むアクリルエマルジョン組成物が得られる。アクリルエマルジョン組成物中では、水を含む水性溶媒中に、アクリル系エマルジョン樹脂が分散された状態で含まれている。
 硬化性組成物がアクリル系エマルジョン樹脂を含んでいる場合、硬化性組成物は、水を含む水性溶媒及びアクリル系エマルジョン樹脂を含むアクリルエマルジョン組成物と、水難溶性リン系化合物と、必要に応じて添加される他の添加剤とを混合することによって製造されることが好ましい。
 硬化性組成物がアクリル系エマルジョン樹脂を含んでいる場合、硬化性組成物は、アクリルエマルジョン組成物に一般的に用いられる添加剤を含んでいてもよい。添加剤としては、防腐防黴剤、消泡剤、湿潤剤、乾燥調整剤、凍結防止剤、防錆剤、酸化防止剤、紫外線吸収剤、酸素吸収剤、光安定化剤などが挙げられる。添加剤は、単独で用いられてもよく、二種以上を併用して用いてもよい。上記添加剤の添加順序は特に制限されない。例えば、上記添加剤をアクリルエマルジョン組成物に添加した後に、このアクリルエマルジョン組成物及び水難溶性リン系化合物を混合して硬化性組成物を得る方法や、アクリルエマルジョン組成物、水難溶性リン系化合物、及び上記添加剤を混合して硬化性組成物を得る方法などが挙げられる。
 アクリル系エマルジョン樹脂は、公知のエマルジョン重合方法を用いて製造することができる。例えば、アクリル系モノマーを含む原料モノマーを、重合開始剤、並びに、必要に応じて界面活性剤の存在下にて、水を含む水性溶媒中でエマルジョン重合させて、アクリル系エマルジョン樹脂を得る方法が用いられる。上記方法により、水を含む水性溶媒中にアクリル系エマルジョン樹脂が分散されているアクリルエマルジョン組成物が得られる。
 原料モノマー及び重合開始剤は、それぞれ、反応系に、一括で供給してもよく、連続的又は間欠的に滴下して供給してもよい。アクリル系エマルジョン樹脂の製造方法の一例としては、例えば、アクリル系モノマーを含む原料モノマー、界面活性剤、及び水性溶媒を含む乳化液を、水性溶媒中に連続的又は間欠的に滴下して、原料モノマーを乳化重合させる方法が用いられる。
 乳化液は、公知の方法により作製できる。例えば、原料モノマー及び界面活性剤を水性溶媒に添加し、ホモジナイザー、超音波処理機、ナノマイザーなどの微細乳化機により分散させることで乳化液を得ることができる。
 重合開始剤は、乳化液に含まれていてもよく、乳化液を滴下する水性溶媒に含まれていてもよい。重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウムなどの過硫酸塩類;過酸化ベンゾイル、過酸化ラウロイル、o-クロロ過酸化ベンゾイル、o-メトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、1,1’-アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物等が挙げられる。重合開始剤は、単独で用いられてもよく、二種以上を併用して用いてもよい。重合開始剤は、原料モノマー100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~1質量部で使用されることが好ましい。
 界面活性剤としては、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、及び両性イオン界面活性剤の何れも用いることができる。なお、界面活性剤は、単独で用いられても二種以上が併用されてもよい。
 ノニオン性界面活性剤としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンソルビトールテトラオレエートなどが挙げられる。
 アニオン系界面活性剤としては、オレイン酸ナトリウム;ヒマシ油カリなどの脂肪酸油;ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウムなどのアルキル硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩;アルキルナフタレンスルホン酸塩;アルカンスルホン酸塩;ジオクチルスルホコハク酸ナトリウムなどのジアルキルスルホコハク酸塩;アルケニルコハク酸塩(ジカリウム塩);アルキルリン酸エステル塩;ナフタレンスルホン酸ホルマリン縮合物;ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸塩;ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。
 カチオン性界面活性剤としては、ラウリルアミンアセテート、ステアリルアミンアセテートなどのアルキルアミン塩;ラウリルトリメチルアンモニウムクロライドなどの第四級アンモニウム塩などが挙げられる。
 両性イオン界面活性剤としては、ラウリルジメチルアミンオキサイド、リン酸エステル
系界面活性剤、亜リン酸エステル系界面活性剤などが挙げられる。
 乳化重合の重合温度は、50~100℃が好ましく、65~85℃がより好ましい。また、乳化重合の重合時間は、1~12時間が好ましい。乳化重合の重合反応は、重合に対して不活性な不活性ガス(例えば、窒素ガス)の雰囲気下で行ってもよい。また、乳化重合終了後は、必要に応じて、アンモニア及びトリエチルアミン、ジメチルエタノールアミン等のアミン類;NaOH、KOH等の塩基を添加して、中和してもよい。
 硬化性樹脂中におけるアクリル系エマルジョン樹脂の含有量は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上がより好ましく、90質量%以上がより好ましく、100質量%がより好ましい。
[光架橋性重合体]
 光架橋性重合体は、分子中に光架橋性基を有しており、紫外線などの光を照射することによって分子間に化学結合を形成して架橋構造を形成して硬化する。
 光架橋性基としては、光照射によって化学結合を形成すればよい。光架橋性基としては、特に限定されず、例えば、チオール基、グリシジル基、オキセタニル基、ビニル基、(メタ)アクリロイル基、ベンゾフェノン基、ベンゾイン基、チオキサントン基などが挙げられ、ベンゾフェノン基、ベンゾイン基及びチオキサントン基が好ましく、ベンゾフェノン基がより好ましい。なお、(メタ)アクリロイルは、メタクリロイル又はアクリロイルを意味する。
 光架橋性重合体の主鎖構造は、特に限定されず、ポリオレフィン系樹脂、アクリル系樹脂、エポキシ系樹脂、シアノアクリレート系樹脂などが挙げられる。主鎖に光架橋性基を導入する方法としては、例えば、光架橋性基含有モノマーを含有するモノマー組成物を重合させる方法などが挙げられる。
 光架橋性基含有モノマーとしては、特に限定されず、例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-メトキシベンゾフェノン、4-(メタ)アクリロイルオキシエトキシ-4’-メトキシベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-ブロモベンゾフェノン、4-(メタ)アクリロイルオキシエトキシ-4’-ブロモベンゾフェノンなどが挙げられ、4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノンが好ましい。紫外線架橋性基含有モノマー(D)は、単独で用いられても二種以上が併用されてもよい。なお、(メタ)アクリロイルオキシは、メタクリロイルオキシ又はアクリロイルオキシを意味する。
 硬化性樹脂中における光架橋性重合体の含有量は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上がより好ましく、90質量%以上がより好ましく、100質量%がより好ましい。
[2液硬化性樹脂]
 2液硬化性樹脂としては、特に限定されず、例えば、イソシアネート系重合体、グリシジル系重合体などが挙げられる。
 イソシアネート系重合体は、ポリイソシアネートを含有する主剤と、ポリオールを含有する硬化剤とからなる2液型の硬化性樹脂である。主剤と硬化剤とを混合してポリイソシアネートとポリオールとを反応させることによってウレタン結合を形成して架橋し、硬化する。
 ポリイソシアネートとしては、例えば、芳香脂肪族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートなどが挙げられる。芳香脂肪族ジイソシアネートとしては、ジフェニルメタンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、1,3-ビス(1-イソシアナト-1-メチルエチル)ベンゼン、1,4-ビス(1-イソシアナト-1-メチルエチル)ベンゼン、ω,ω′-ジイソシアナト-1,4-ジエチルベンゼン、両末端にイソシアネート基を有するウレタンプレポリマーなどが挙げられる。
 脂肪族ジイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、2-メチル-ペンタン-1,5-ジイソシアネート、3-メチル-ペンタン-1,5-ジイソシアネート、リジンジイソシアネート、トリオキシエチレンジイソシアネートなどが挙げられる。
 脂環族ジイソシアネートとしては、例えば、イソホロンジイソシアネート、シクロヘキシルジイソシアネート、水素添加ジフェニルメタンジイソシアネート、ノルボルナンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート、水素添加テトラメチルキシレンジイソシアネートなどが挙げられる。
 ポリオールとしては、例えば、ポリウレタンポリオール、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、ポリオレフィンポリオール、ひまし油系ポリオールなどが挙げられる。
 グリシジル系重合体は、エポキシ樹脂を含有する主剤と、硬化剤とからなる2液型の硬化性樹脂である。エポキシ樹脂としては、特に限定されず、例えば、ビスフェノールAとエピクロロヒドリンとを反応させて得られるビスフェノールA型エポキシ樹脂、ビスフェノールFとエピクロロヒドリンとを反応させて得られるビスフェノールF型エポキシ樹脂、及び、これらの水添物、グリシジルエステル型エポキシ樹脂、ノボラック型エポキシ樹脂、ウレタン変性エポキシ樹脂、トリグリシジルイソシアヌレートなどの含窒素エポキシ樹脂、ポリブタジエン又はNBRを含有するゴム変性エポキシ樹脂などが挙げられる。
 硬化剤としては、特に限定されず、例えば、アミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤、イミダゾール系硬化剤、ポリメルカプラン系硬化剤などが挙げられる。
 アミン系硬化剤としては、例えば、ポリオキシプロピレントリアミン、ジエチレントリアミン、トリエチレンテトラミンなどの脂肪族ポリアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、2,4,6-トリス(ジメチルアミノメチル)フェノールなどの芳香族ポリアミンなどが挙げられる。
 酸無水物系硬化剤としては、例えば、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ピロメリット酸、無水ヘット酸、ドデセニル無水コハク酸などが挙げられる。ポリアミド系硬化剤としては、例えば、ダイマー酸などが挙げられる。
 硬化性樹脂中における2液硬化性樹脂の含有量は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がより好ましく、80質量%以上がより好ましく、90質量%以上がより好ましく、100質量%がより好ましい。
[水難溶性リン系化合物]
 硬化性組成物は、水難溶性リン系化合物を含有している。水難溶性リン系化合物としては、特に限定されず、例えば、亜リン酸アルミニウム、第1リン酸アルミニウム、第2リン酸アルミニウム、第3リン酸アルミニウム、メタリン酸アルミニウム、縮合リン酸アルミニウムなどの水難溶性無機リン系化合物、ポリリン酸メラム、ポリリン酸メラミン、ポリリン酸メレムなどの水難溶性有機リン系化合物などが挙げられ、水難溶性無機リン系化合物を含むことが好ましく、亜リン酸アルミニウム又は第一リン酸アンモニウムを含むことがより好ましく、亜リン酸アルミニウムを含むことがより好ましい。なお、水難溶性リン系化合物は、単独で用いられても二種以上が併用されてもよい。
 「水難溶性リン系化合物」とは、25℃の水100gにリン系化合物を溶解させてなる飽和溶液の飽和濃度(溶解度)が0.03g/100g-H2O以下であるリン系化合物をいう。具体的には、25℃の水1000gに、沈殿物が僅かに生じる程度の過剰量のリン系化合物を供給して攪拌し溶解させて溶解液を作製する。溶解液をJIS P3801に準拠した5種Cのろ紙で吸引ろ過して溶解液中の不溶解分を除去して飽和溶液を作製する。飽和溶液を100℃に加熱して飽和溶液の水を蒸発させてリン系化合物の析出物を得る。この析出物の質量を測定し、この析出物の質量の1/10の値を溶解度(g/100g-H2O)とする。なお、不溶解分の除去工程においてろ紙に水分の一部が吸収されるが、水1000gに比して極めて僅かな量であるので、ろ紙に吸収された水の質量は、溶解度の値に影響を及ぼすことはなく無視することができる。
 硬化性組成物の硬化物は、例えば、建築構造物のシーリング部に充填されているが、壁部を構成しているパネル部材は火災時の熱によって収縮することがあり、この場合には、シーリング部が拡張して寸法変化を生じる。
 硬化性組成物中に水難溶性リン系化合物が含有されていると、硬化性組成物の硬化物は、400℃程度に加熱されても優れたゴム弾性を有すると共に、硬化性組成物の硬化物が燃焼して強固な燃焼残渣を形成し、火災時の熱によって生じるシーリング部の寸法変化に円滑に追従してシーリング部の充填状態を確実に保持し、シーリング部を通じた炎の回り込みを阻止することができ、建築構造物に優れた耐火性能を付与することができる。
 そして、水難溶性リン系化合物が含まれた硬化性組成物の硬化物は、雨水などの水分に晒された後においても、火災時の熱などによって400℃まで加熱されても優れたゴム弾性を維持していると共に、燃焼によって生成される燃焼残渣は硬く、シーリング部の寸法変化に円滑に追従してシーリング部に充填された状態を確実に維持し、建築構造物に優れた耐火性能を付与することができる。
 又、水難溶性リン系化合物が含まれた硬化性組成物は、雨水などの水分に長期間に亘って繰り返し晒されたとしても、白化などの変色を生じることはなく、長期間に亘って美麗な外観を維持することができる。
 更に、硬化性組成物が、水難溶性リン系化合物と加水分解性シリル基を有する重合体(好ましくは、加水分解性シリル基を有するポリアルキレンオキサイド)とを含むと、水難溶性リン系化合物は、上述の通り、火災時の熱によって400℃程度に加熱されても、優れたゴム弾性を維持する一方、加水分解性シリル基を有する重合体が形成している架橋構造が燃焼時の熱によって分解、切断されて分解残渣を生じ、この分解残渣が水難溶性リン系化合物の燃焼残渣に取り込まれることによって強固な燃焼残渣を形成し、この燃焼残渣は、シーリング部を充填した状態を確実に維持する。
 硬化性組成物中における水難溶性リン系化合物の含有量は、硬化性樹脂100質量部に対して、10質量部以上であり、20質量部以上が好ましく、30質量部以上がより好ましい。硬化性組成物中における水難溶性リン系化合物の含有量は、硬化性樹脂100質量部に対して、150質量部以下であり、120質量部以下が好ましく、100質量部以下がより好ましい。硬化性組成物中における水難溶性リン系化合物の含有量が上記範囲内であると、火災時の熱によって400℃程度まで加熱されても、硬化性組成物の硬化物は優れたゴム弾性を維持し、建築構造物のシーリング部の寸法変化に円滑に追従させてシーリング部の閉塞を確実に維持することができる。
[炭酸カルシウム]
 硬化性組成物は、炭酸カルシウムを含有していることが好ましい。炭酸カルシウムとしては、特に限定されず、例えば、コロイダル炭酸カルシウム、重質炭酸カルシウム、軽質炭酸カルシウムなどが挙げられ、コロイダル炭酸カルシウム及び重質炭酸カルシウムが好ましく、コロイダル炭酸カルシウムがより好ましい。炭酸カルシウムは、コロイダル炭酸カルシウム及び重質炭酸カルシウムを含有していることがより好ましい。
 炭酸カルシウムの平均粒子径は、0.01~5μmが好ましく、0.05~2.5μmがより好ましい。このような平均粒子径を有している炭酸カルシウムによれば、硬化性組成物の硬化物の燃焼残渣が優れた強度を有し、燃焼残渣は硬くなりすぎず亀裂を生じることがない。従って、目地部などのシーリング部を充填した状態を確実に維持し、建築構造物のパネル構造体に優れた耐火性能を付与することができる。なお、炭酸カルシウムの平均粒子径は、SEMによる観察でスケール測定し10個の粒子直径の算術平均によって算出された値をいう。粒子直径は、SEM(電子走査顕微鏡)によって得られた顕微鏡写真において、粒子を包囲し得る最小径の真円の直径とする。
 また、炭酸カルシウムは、脂肪酸や脂肪酸エステルなどにより表面処理されているのが好ましい。脂肪酸や脂肪酸エステルなどにより表面処理されている炭酸カルシウムによれば、硬化性組成物にチキソトロピー性を付与できると共に炭酸カルシウムが凝集することを抑制することができる。
 硬化性組成物中における炭酸カルシウムの含有量は、硬化性樹脂100質量部に対して、50質量部以上であり、70質量部以上が好ましく、100質量部以上がより好ましく、120質量部以上がより好ましい。硬化性組成物中における炭酸カルシウムの含有量は、硬化性樹脂100質量部に対して、300質量部以下であり、250質量部以下が好ましく、200質量部以下がより好ましく、160質量部以下がより好ましい。硬化性組成物中における炭酸カルシウムの含有量が50質量部以上であると、火災時の熱によって軟化した、硬化性樹脂の補強作用を奏し、硬化性組成物の硬化物の保形性が向上する。硬化性組成物中における炭酸カルシウムの含有量が300質量部以下であると、硬化性組成物の硬化物は、400℃程度に加熱されても優れたゴム弾性を保持し、火災時の熱によるシーリング部の寸法変化に円滑に追従し、シーリング部の充填状態を安定的に保持することができる。
[シラノール縮合触媒]
 硬化性組成物は、好ましくは、シラノール縮合触媒を含有している。硬化性組成物が加水分解性シリル基を有する重合体を含む場合、硬化性組成物は、シラノール縮合触媒をさらに含んでいることが好ましい。シラノール縮合触媒とは、加水分解性シリル基を有する重合体の加水分解性シリル基が加水分解することにより形成されたシラノール基同士の脱水縮合反応を促進させるための触媒である。
 シラノール縮合触媒としては、1,1,3,3-テトラブチル-1,3-ジラウリルオキシカルボニル-ジスタノキサン、ジブチル錫ジラウレート、ジブチル錫オキサイド、ジブチル錫ジアセテート、ジブチル錫フタレート、ビス(ジブチル錫ラウリン酸)オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫ビス(モノエステルマレート)、オクチル酸錫、ジブチル錫オクトエート、ジオクチル錫オキサイド、ジブチル錫ビス(トリエトキシシリケート)、ビス(ジブチル錫ビストリエトキシシリケート)オキサイド、及びジブチル錫オキシビスエトキシシリケートなどの有機錫系化合物;テトラ-n-ブトキシチタネート、及びテトライソプロポキシチタネートなどの有機チタン系化合物などが挙げられる。これらのシラノール縮合触媒は、単独で用いられても二種以上が併用されてもよい。
 シラノール縮合触媒としては、有機錫系化合物が好ましく、1,1,3,3-テトラブチル-1,3-ジラウリルオキシカルボニル-ジスタノキサン、及びジブチル錫ジアセテートが好ましい。このようなシラノール縮合触媒によれば、硬化性組成物の硬化速度を容易に調整することができる。
 硬化性組成物中におけるシラノール縮合触媒の含有量は、加水分解性シリル基を有する重合体100質量部に対して、0.001質量部以上が好ましく、0.01質量部以上がより好ましく、0.1質量部以上がより好ましく、0.2質量部以上がより好ましく、0.3質量部以上がより好ましい。硬化性組成物中におけるシラノール縮合触媒の含有量は、加水分解性シリル基を有する重合体100質量部に対して、10質量部以下が好ましく、8質量部以下がより好ましく、6質量部以下がより好ましく、5質量部以下がより好ましい。硬化性組成物中におけるシラノール縮合触媒の含有量が0.001質量部以上であると、硬化性組成物の硬化速度を速くして、硬化性組成物の硬化に要する時間の短縮化を図ることができる。硬化性組成物中におけるシラノール縮合触媒の含有量が10質量部以下であると、硬化性組成物が適度な硬化速度を有し、硬化性組成物の貯蔵安定性及び取扱性を向上させることができる。
[硬化触媒]
 硬化性組成物が、イソシアネート基を有するウレタンプレポリマーを含んでいる場合、硬化性組成物は、硬化触媒をさらに含んでいることが好ましい。硬化触媒は、水の存在下において、ウレタンプレポリマーが有するイソシアネート基が尿素結合を生成して架橋構造を形成する反応を促進させるための触媒である。
 硬化触媒としては、錫系硬化触媒、及びアミン系硬化触媒などが用いられる。錫系硬化触媒としては、例えば、酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、及びジオクタン酸第1錫などが挙げられる。アミン系硬化触媒としては、モルホリン系化合物が好ましい。モルホリン系化合物としては、具体的には、2,2’-ジモルホリノジエチルエーテル、ビス(2,6-ジメチルモルホリノエチル)エーテル、ビス(2-(2,6-ジメチル-4-モルホリノ)エチル)-(2-(4-モルホリノ)エチル)アミン、ビス(2-(2,6-ジメチル-4-モルホリノ)エチル)-(2-(2,6-ジエチル-4-モルホリノ)エチル)アミン、トリス(2-(4-モルホリノ)エチル)アミン、トリス(2-(4-モルホリノ)プロピル)アミン、トリス(2-(4-モルホリノ)ブチル)アミン、トリス(2-(2、6-ジメチル-4-モルホリノ)エチル)アミン、トリス(2-(2、6-ジエチル-4-モルホリノ)エチル)アミン、トリス(2-(2-エチル-4-モルホリノ)エチル)アミン、及びトリス(2-(2-エチル-4-モルホリノ)エチルアミンなどが挙げられる。なかでも、錫系硬化触媒が好ましく、ジブチル錫ジアセテートがより好ましい。硬化触媒は、単独で用いられても二種以上が併用されてもよい。
 硬化性組成物中における硬化触媒の含有量は、イソシアネート基を有するウレタンプレポリマー100質量部に対して、0.001質量部以上が好ましく、0.01質量部以上がより好ましく、0.1質量部以上がより好ましく、0.2質量部以上がより好ましく、0.3質量部以上がより好ましい。硬化性組成物中における硬化触媒の含有量は、イソシアネート基を有するウレタンプレポリマー100質量部に対して、5質量部以下が好ましく、1質量部以下がより好ましく、0.1質量部以下がより好ましい。
[ガラスフリット]
 硬化性組成物は、ガラスフリットを含有している必要はない。ガラスフリットは、硬化性組成物の硬化物の燃焼残渣において、硬化性樹脂及び/又は水難溶性リン系化合物同士を結合させるためのバインダーとして作用する。
 一方、硬化性組成物に水難溶性リン系化合物を含有させることによって、水難溶性リン系化合物の燃焼残渣が、硬化性樹脂の分解残渣を効果的に取り込み、強固な燃焼残渣を形成するので、バインダー成分を必要としない。
 硬化性組成物がガラスフリットを含有していないことによって、硬化性組成物の硬化物が硬くなり過ぎない。従って、火災時の熱によって脆くなったシーリング部構成部材と、硬化性組成物の硬化物との間において、硬さの相違が大きくなり、これに起因して、シーリング部構成部材に破壊点が形成されることを低減し、シーリング部構成部材が火災時に形態を安定的に維持させることができる。
 ガラスフリットを構成しているガラスとしては、たとえば、リン酸系ガラス、ホウ酸系ガラス、酸化ビスマス系ガラス、珪酸系ガラス、酸化ナトリウム系ガラスなどが挙げられ、リン酸系ガラス、ホウ酸系ガラスが好ましく、リン酸系ガラスがより好ましい。これらのガラスフリットは、B23、P25、ZnO、SiO2、Bi23、Al23、BaO、CaO、MgO、MnO2、ZrO2、TiO2、CeO2、SrO、V25、SnO2、Li2O、Na2O、K2O、CuO、Fe23などを所定の成分割合で調整して得ることができる。
[可塑剤]
 硬化性組成物は可塑剤を含有していることが好ましい。可塑剤としては、例えば、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ジヘキシル、フタル酸ビス(2-エチルヘキシル)、フタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジノニル、フタル酸ジイソデシル、フタル酸ジイソウンデシル、及びフタル酸ビスブチルベンジルなどのフタル酸エステル;ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコールなどのポリアルキレングリコール;リン酸トリクレジルなどが挙げられる。なかでも、ポリアルキレングリコールが好ましく、ポリプロピレングリコールがより好ましい。また、可塑剤としては、フタル酸エステルが好ましく、フタル酸ジオクチルがより好ましい。可塑剤は、23℃及び1.01×105Pa(1気圧)において液状であることが好ましい。
 可塑剤がポリマーである場合、可塑剤の数平均分子量は、1000以上が好ましく、2000以上がより好ましい。可塑剤がポリマーである場合、可塑剤の数平均分子量は、10000以下が好ましく、5000以下がより好ましく、3000未満がより好ましい。可塑剤の数平均分子量が上記範囲内である場合、硬化性組成物の硬化物は、400℃程度に加熱されても優れたゴム弾性を維持していると共に、硬化性組成物の硬化物の燃焼残渣をシーリング部に安定的に保持することができる。
 なお、本発明において、可塑剤がポリマーである場合、可塑剤の数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法によって、ポリスチレン換算されて測定された値である。具体的な測定方法や測定条件は、上述したポリアルキレンオキサイドと同様である。
 硬化性組成物中における可塑剤の含有量は、硬化性樹脂100質量部に対して、1質量部以上が好ましく、10質量部以上がより好ましい。硬化性組成物中における可塑剤の含有量は、硬化性樹脂100質量部に対して、50質量部以下が好ましく、40質量部以下がより好ましい。
[脱水剤]
 硬化性組成物は、脱水剤をさらに含んでいるのが好ましい。脱水剤によれば、硬化性組成物を保存している際に、空気中などに含まれている水分によって硬化性組成物が硬化することを抑制することができる。
 脱水剤としては、ビニルトリメトキシシラン、ジメチルジメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、フェニルトリメトキシシラン、及びジフェニルジメトキシシランなどのシラン化合物;並びにオルトギ酸メチル、オルトギ酸エチル、オルト酢酸メチル、及びオルト酢酸エチル等のエステル化合物などを挙げることができる。これらの脱水剤は、単独で用いられても二種以上が併用されてもよい。なかでも、ビニルトリメトキシシランが好ましい。
 硬化性組成物中における脱水剤の含有量は、硬化性樹脂100質量部に対して、0.5質量部以上が好ましく、1質量部以上がより好ましい。硬化性組成物中における脱水剤の含有量は、硬化性樹脂100質量部に対して、20質量部以下が好ましく、15質量部以下がより好ましい。硬化性組成物中における脱水剤の含有量が0.5質量部以上であると、脱水剤により得られる効果が十分に得られる。また、硬化性組成物中における脱水剤の含有量が20質量部以下であると、硬化性組成物が優れた硬化性を有する。
[他の添加剤]
 硬化性組成物は、チキソ性付与剤、酸化防止剤、紫外線吸収剤、顔料、染料、沈降防止剤、アミノシランカップリング剤、エポキシシランカップリング剤、揺変剤及び溶剤など他の添加剤を含んでいてもよい。なかでも、チキソ性付与剤、紫外線吸収剤、及び酸化防止剤が好ましく挙げられる。
 硬化性組成物は、アミノシランカップリング剤を含有していることが好ましい。アミノシランカップリング剤を用いることにより、硬化性組成物の硬化物のゴム弾性や接着性を向上させることができる。なお、アミノシランカップリング剤とは、一分子中にアルコキシ基が結合した珪素原子と、窒素原子を含有する官能基とを含有している化合物を意味する。
 アミノシランカップリング剤として、具体的には、3-アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N,N’-ビス-〔3-(トリメトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス-〔3-(トリエトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス-〔3-(メチルジメトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス-〔3-(トリメトキシシリル)プロピル〕ヘキサメチレンジアミン、N,N’-ビス-〔3-(トリエトキシシリル)プロピル〕ヘキサメチレンジアミン等が挙げられる。これらのアミノシランカップリング剤は、単独で用いられても二種以上が併用されてもよい。
 なかでも、アミノシランカップリング剤としては、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、及びN-(2-アミノエチル)-3-アミノプロピルトリエトキシシランが好ましく挙げられ、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランがより好ましく挙げられる。
 硬化性組成物中におけるアミノシランカップリング剤の含有量は、硬化性樹脂100質量部に対して、1~10質量部が好ましく、1~5質量部がより好ましい。アミノシランカップリング剤の含有量が上記範囲内であると、硬化性組成物の硬化物のゴム弾性や接着性を向上させることができる。
 硬化性組成物は、エポキシシランカップリング剤を含有していることが好ましい。エポキシシランカップリング剤を用いることにより、硬化性組成物の硬化物のゴム弾性や接着性を向上させることができる。
 エポキシシランカップリング剤とは、一分子中にアルコキシ基が結合した珪素原子と、エポキシ基を含有する官能基とを含む化合物を意味する。エポキシシランカップリング剤としては、特に限定されず、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルエチルジエトキシシラン、及び2-(3,4エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられ、3-グリシドキシプロピルトリエトキシシランが好ましい。
 硬化性組成物中におけるエポキシシランカップリング剤の含有量は、硬化性樹脂100質量部に対して、0.3質量部以上が好ましく、0.4質量部以上がより好ましく、0.45質量部以上がより好ましく、0.5質量部以上がより好ましい。硬化性組成物におけるエポキシシランカップリング剤の含有量は、硬化性樹脂100質量部に対して、20質量部以下が好ましく、10質量部以下がより好ましく、6質量部以下がより好ましく、4質量部以下が特に好ましい。エポキシシランカップリング剤の含有量が0.3質量部以上であると、硬化性組成物の硬化性及び接着性が向上する。
 チキソ性付与剤は、硬化性組成物にチキソトロピー性を発現せることができるものであればよい。チキソ性付与剤としては、水添ひまし油、脂肪酸ビスアマイド、ヒュームドシリカなどが好ましく挙げられる。
 硬化性組成物中におけるチキソ性付与剤の含有量は、硬化性樹脂100質量部に対して、0.1質量部以上が好ましく、1質量部以上がより好ましい。硬化性組成物中におけるチキソ性付与剤の含有量は、硬化性樹脂100質量部に対して、200質量部以下が好ましく、150質量部以下がより好ましい。硬化性組成物中におけるチキソ性付与剤の含有量が0.1質量部以上であると、硬化性組成物にチキソトロピー性を効果的に付与することができる。また、硬化性組成物中におけるチキソ性付与剤の含有量が200質量部以下であると、硬化性組成物が適度な粘度を有し、硬化性組成物の取扱性が向上する。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤などが挙げられ、ベンゾトリアゾール系紫外線吸収剤が好ましい。硬化性組成物中における紫外線吸収剤の含有量は、硬化性樹脂100質量部に対して、0.1質量部以上が好ましい。硬化性組成物中における紫外線吸収剤の含有量は、硬化性樹脂100質量部に対して、20質量部以下が好ましく、10質量部以下がより好ましい。
 酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤、及びポリフェノール系酸化防止剤などが挙げられ、ヒンダードフェノール系酸化防止剤が好ましく挙げられる。硬化性組成物中における酸化防止剤の含有量は、硬化性樹脂100質量部に対して、0.1質量部以上が好ましく、0.3質量部以上がより好ましい。硬化性組成物中における酸化防止剤の含有量は、硬化性樹脂100質量部に対して、20質量部以下が好ましく、10質量部以下がより好ましい。
[光安定剤]
 硬化性組成物は、ヒンダードアミン系光安定剤を含んでいることが好ましい。ヒンダードアミン系光安定剤によれば、硬化後に優れたゴム弾性をより長期間に亘って維持することができる硬化性組成物を提供することができる。
 ヒンダードアミン系光安定剤としては、例えば、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート及びメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートの混合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとの重縮合物などが挙げられる。
 ヒンダードアミン系光安定剤としては、NOR型ヒンダードアミン系光安定剤が好ましく挙げられる。NOR型ヒンダードアミン系光安定剤によれば、硬化後に経時的なゴム弾性の低下が抑制されている硬化性組成物を提供することができる。
 NOR型ヒンダードアミン系光安定剤は、ピペリジン環骨格に含まれている窒素原子(N)に酸素原子(O)を介してアルキル基(R)が結合しているNOR構造を有している。NOR構造におけるアルキル基の炭素数は、1~20が好ましく、1~18がより好ましく、18が特に好ましい。アルキル基としては、直鎖状のアルキル基、分岐鎖状のアルキル基、及び、環状のアルキル基(飽和脂環式炭化水素基)が挙げられる。
 直鎖状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基などが挙げられる。分岐鎖状のアルキル基としては、例えば、イソプロピル、イソブチル、sec-ブチル、tert-ブチルなどが挙げられる。環状のアルキル基(飽和脂環式炭化水素基)としては、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基などが挙げられる。また、アルキル基を構成している水素原子が、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)又はヒドロキシル基などで置換されていてもよい。
 NOR型ヒンダードアミン系光安定剤としては、下記式(I)で示されるヒンダードアミン系光安定剤が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 NOR型ヒンダードアミン系光安定剤を用いる場合、NOR型ヒンダードアミン系光安定剤と、ベンゾトリアゾール系紫外線吸収剤又はトリアジン系紫外線吸収剤とを組み合わせて用いることが好ましい。これにより、硬化後に経時的なゴム弾性の低下がより高く抑制されている硬化性組成物を提供することができる。
 硬化性組成物中におけるヒンダードアミン系光安定剤の含有量は、硬化性樹脂100質量部に対して、0.01質量部以上が好ましく、0.1質量部以上がより好ましい。硬化性組成物中におけるヒンダードアミン系光安定剤の含有量は、硬化性樹脂100質量部に対して、20質量部以下が好ましく、10質量部以下がより好ましい。
[硬化性組成物]
 硬化性組成物は、硬化性樹脂と、水難溶性リン系化合物と、必要に応じて添加されるシラノール縮合触媒や添加剤とを混合することによって製造することができる。なお、硬化性組成物は、水系溶媒に懸濁又は乳化させて懸濁液又は乳化液の形態であってもよい。硬化性組成物は、溶媒に溶解させた溶解液の形態であってもよい。なお、水溶媒としては、例えば、エチルアルコール、メチルアルコール、イソプロピルアルコールなどのアルコール、水などが挙げられる。溶媒としては、例えば、キシレン、トルエン、アセトンなどが挙げられる。
 硬化性組成物はその硬化後において、即ち、硬化性組成物の硬化物は、23℃の水に1週間浸漬させた際の溶出率が、3%以下であることが好ましく、2.8%以下であることがより好ましく、2.5%以下であることがより好ましく、2.0%以下であることがより好ましい。硬化性組成物の硬化物は上記溶出率が3%以下であると、雨水などの水分に晒された後においても、優れたゴム弾性を維持することができる。したがって、このような硬化性組成物の硬化物は、シーリング部の寸法変化に長期間に亘って円滑に追従することができる。
 なお、硬化性組成物の硬化物を23℃の水に1週間浸漬させた際の溶出率の測定は、下記の手順に従って行うことができる。先ず、硬化性組成物を23℃及び相対湿度50%の雰囲気下にて1週間養生させて硬化物を作製し、この硬化物5.00gを量り取り、サンプルとする。次に、水を入れるための容器を用意し、この容器の質量(W1)を測定する。容器に水100mLを入れ、水中にサンプルの全体を完全に浸漬させた状態で、容器に蓋をして密閉し、23℃雰囲気下に1週間静置する。次に、サンプルを水中から取り除き、容器を60℃で1週間放置して、容器中の残った水分完全に蒸発乾燥させることにより、容器中に析出物を析出させる。その後、上記容器の質量(W2)を測定する。そして、下記式(2)に基づいて、容器の質量(W2)から容器の質量(W1)を引くことにより、算出された値を容器中に残った析出物の質量とし、この析出物の質量をサンプルの水浸漬前の質量(5.00g)で除することにより溶出率(%)を算出する。
  溶出率(%)=100×(W2-W1)/5.00   式(2)
 硬化性組成物はその硬化後において、即ち、硬化性組成物の硬化物は、ShoreAによる23℃でのゴム弾性が、5以上であることが好ましく、10以上であることがより好ましい。硬化性組成物はその硬化後において、即ち、硬化性組成物の硬化物は、ShoreAによる23℃でのゴム弾性が50以下が好ましく、40以下がより好ましい。硬化性組成物の硬化物は、ShoreAによる23℃でのゴム弾性が5以上であると、硬化性組成物の硬化物は、火災時の熱による加熱にもかかわらず優れたゴム弾性を有し、シーリング部の拡張に円滑に追従し、シーリング部の閉塞を安定的に維持することができる。硬化性組成物の硬化物は、ShoreAによる23℃でのゴム弾性が50以下であると、火災時において、硬化性組成物の硬化物が硬くなり過ぎず、火災時の熱によって脆くなったシーリング部構成部材の硬さと、硬化性組成物の硬化物の硬さとの相違が大きいことに起因して、シーリング部構成部材に破壊点が形成されることを低減し、シーリング部構成部材の形態を火災時に安定的に維持させることができて好ましい。なお、硬化性組成物の硬化物におけるShoreAによるゴム弾性は、硬化性組成物を23℃及び相対湿度50%の雰囲気下にて1週間養生して硬化させて硬化物を作製し、この硬化物について、測定温度23℃において、JIS K6253に準拠してA型デュロメータを用いて測定された値をいう。
 硬化性組成物はその硬化後において、硬化性組成物の硬化物は、600℃での燃焼後に23℃にて1時間放置後のShoreAによる23℃でのゴム弾性が40以上であることが好ましい。600℃での燃焼後に23℃にて1時間放置後のShoreAによる23℃でのゴム弾性が40以上であると、硬化性組成物の硬化物の燃焼残渣をシーリング部に安定的に保持させておくことができ、シーリング部の閉塞を安定的に維持することができる。
 なお、硬化性組成物の硬化物において、600℃での燃焼後に23℃にて1時間放置後のShoreAによる23℃でのゴム弾性は下記の要領で測定される。硬化性組成物を23℃及び相対湿度50%の雰囲気下にて1週間養生して硬化させて硬化物を作製する。硬化性組成物の硬化物100gをサンプルとして用意する。サンプルを燃焼炉内に供給する。サンプルを燃焼炉にて600℃で30分間に亘って燃焼させる。サンプルを燃焼させて得られた燃焼残渣を燃焼終了後、直ちに23℃の雰囲気下に1時間放置する。次に、燃焼残渣について、ShoreAによるゴム弾性をJIS K6253に準拠して測定温度23℃にてA型デュロメータを用いて測定する。
 硬化性組成物は、シーリング材として好適に用いることができる。硬化性組成物をシーリング材として用いてパネル構造体を構築することができる。硬化性組成物を建築構造物のシーリング部に施工してパネル構造体を構築する方法としては、硬化性組成物をシーリング部に充填した後に養生させて硬化させる方法が用いられる。得られるパネル構造体は、建築構造物のパネル配設部と、建築構造物のパネル配設部に配設されたパネル部材と、パネル配設部とパネル部材との対向面間に充填された硬化性組成物の硬化物とを含む。
 パネル部材としては、例えば、モルタル板、フレキシブルボード、石膏ボード、ケイ酸カルシウム板、中質繊維板、パーティクルボード、木質系合板、硬質繊維板などが挙げられる。なかでも、石膏ボードが好ましい。
 パネル配設部としては、建築構造物の壁部が挙げられる。壁部としては、例えば、外壁部、内壁部、天井部などが挙げられ、なかでも外壁部が好ましい。
 シーリング部は、特に限定されず、例えば、建築構造物において形成されたパネル配設部とこのパネル配設部に配設されるパネル部材との間に形成される隙間、互いに隣接するパネル部材の対向面間に形成される隙間などが挙げられる。また、
 シーリング構造体は、シーリング部構成部材と、このシーリング部構成部材間に充填された硬化性組成物の硬化物とを含む。
 パネル配設部やパネル部材を構成する材料としては、特に制限されないが、石膏ボードを用いることにより、耐火性能に優れるパネル構造体を提供することができる。したがって、パネル構造体において、パネル配設部及びパネル部材のうち少なくとも一方は、石膏ボードであることが好ましい。
 そして、火災時において、パネル構造体を構成しているパネル部材は、火災時の熱によって300℃程度まで加熱されて収縮を生じることがあり、このような場合、シーリング部が拡張する。一方、硬化性組成物の硬化物は、火災時の熱による400℃程度までの加熱時においても優れたゴム弾性を保持し且つ円滑に膨張するので、シーリング部の拡張に円滑に追従し、シーリング部の閉塞状態を確実に維持することができる。
 硬化性組成物の硬化物は、火災時の熱による燃焼によって強固な燃焼残渣を生成し、この燃焼残渣は、火災時においても建築構造物のシーリング部を充填して閉塞した状態を確実に保持してシーリング部を通じた炎の回り込みを阻止し、建築構造物のパネル構造体に優れた耐火性能を付与することができる。
 本発明の硬化性組成物は、その硬化物が、400℃程度まで加熱されても優れたゴム弾性を有する。従って、硬化性組成物をシーリング材として用いた場合、硬化性組成物の硬化物は、火災時において、シーリング部の拡張が生じても、シーリング部の拡張に円滑に追従し、シーリング部の閉塞状態を安定的に維持することができる。
 本発明の硬化性組成物は、その硬化物の燃焼により生成された燃焼残渣が強固であり、この燃焼残渣は、火災時においてもシーリング部を充填し閉塞した状態を確実に保持してシーリング部を通じた炎の回り込みを阻止し、建築構造物のパネル構造体に優れた耐火性能を付与することができる。
 本発明の硬化性組成物は、水難溶性リン系化合物を含有しているので、雨水などの水分に長期間に亘って繰り返し晒された後においても、硬化物は、400℃程度まで加熱されても優れたゴム弾性を有していると共に、燃焼残渣も硬く、火災時の熱などによって生じるシーリング部の寸法変化に追従しながら、シーリング部を充填した状態を確実に維持することができ、建築構造物に優れた耐火性能を付与することができる。
 以下に、本発明を実施例を用いてより具体的に説明するが、本発明はこれに限定されない。
 実施例及び比較例の硬化性組成物の製造において下記の原料を使用した。
[硬化性樹脂]
[加水分解性シリル基を有するポリアルキレンオキサイド]
・加水分解性シリル基を有するポリアルキレンオキサイド(1)(主鎖骨格がポリプロピレンオキサイドからなり且つ主鎖の末端にウレタン結合及びアルキレン基を介することなくメチルジメトキシシリル基を有するポリアルキレンオキサイド、数平均分子量:16000、旭硝子社製 商品名「エクセスターS3430」)
・加水分解性シリル基を有するポリアルキレンオキサイド(2)(主鎖骨格がポリアルキレンオキサイドからなり且つ主鎖の両末端にウレタン結合及びメチレン基を介してメチルジメトキシシリル基を有するポリアルキレンオキサイド、重量平均分子量:50,000、数平均分子量:30,000、1分子中のメチルジメトキシシリル基の平均個数:2.0個、ワッカー社製 商品名「STP-E30」
[加水分解性シリル基を有するアクリル系重合体]
・アクリル系重合体(主鎖骨格がブチルアクリレート-ステアリルアクリレート共重合体(ブチルアクリレート成分の含有量:70質量%、ステアリルアクリレート成分の含有量:30質量%)からなり、主鎖骨格の末端にメチルジメトキシシリル基を有しているアクリル系重合体、カネカ社製 商品名「SA310S」、1分子中のメチルジメトキシシリル基の平均個数:2.0個、重量平均分子量:34,000)
[イソシアネート基を有するウレタンプレポリマー]
 反応容器内に、ポリオキシプロピレントリオール(AGC社製 商品名「エクセノール3030」、数平均分子量3,000)60質量部を投入し、減圧下にて110℃で6時間加熱して脱水した。次いで、反応容器内を80℃に加熱し、窒素雰囲気下で、トリレンジイソシアネート(三井化学社製 商品名「TDI-80」)10質量部[モル比(NCO)/(OH)=2.0]を攪拌しながら添加し、さらに24時間攪拌混合し、末端にイソシアネート基を有しているウレタンプレポリマー(数平均分子量30,000)を得た。得られたウレタンプレポリマーは、加水分解性シリル基を有していなかった。
[乾燥硬化型アクリル系重合体]
 攪拌装置、還流冷却管、温度計及び滴下ロートを備えた反応器に、水20.6質量部、及びアニオン性界面活性剤(三洋化成工業社製 製品名「エレミノールES-70」)0.05質量部を投入し、68℃に加熱した。次に、上記反応器内を攪拌しながら、上記反応器に、重合開始剤として過硫酸アンモニウムの10質量%水溶液を1.7質量部投入した。
 一方、2-エチルヘキシルアクリレート88.4質量部、ブチルアクリレート5質量部、アクリロニトリル5質量部、アクリル酸1.5質量部、及びグリシジルメタクリレート0.1質量部を含む原料モノマーと、アニオン性界面活性剤(三洋化成工業社製 製品名「エレミノールES-70」)2.7質量部と、ノニオン性界面活性剤(第一工業製薬社製 製品名「ノイゲンET-160」)2.1質量部とを、水44.4質量部に添加して、高速攪拌機で分散乳化させて、乳化液を作製した。
 得られた乳化液を滴下ロートにて上記反応器内に4時間かけて連続的に滴下した。この間、重合温度は72~75℃に保ち、滴下終了後75~80℃で熟成反応を3時間行うことにより、原料モノマーをエマルジョン重合させて、粒子状のアクリル系エマルジョン樹脂を得た。
 エマルジョン重合後、反応器内を30℃に放冷した。次に、上記反応器内に、アンモニアの25質量%水溶液0.63質量部と、消泡剤(旭電化社製、商品名「アデカネートB-940」)0.01質量部と、防腐防黴剤(クラリアントジャパン社製、クロロアセトアミド)0.46質量部と、湿潤剤(三洋化成工業社製、商品名「ノニポール110」)の60質量%水溶液3質量部とを添加して混合した。これにより、水性溶媒としての水中に、粒子状のアクリル系エマルジョン樹脂(重量平均分子量:232,000、ガラス転移温度(Tg):-62.8℃)が分散されたアクリルエマルジョン組成物(不揮発分:60.1質量%、粘度(23℃)4650mPa・s、pH:4.8)を得た。なお、アクリル系エマルジョン樹脂は、加水分解性シリル基を有していなかった。
[リン系化合物]
・亜リン酸アルミニウム(水難溶性リン系化合物、溶解度:0.01g/100g-H2O)
・第一リン酸アルミニウム(水難溶性リン系化合物、溶解度:0.01g/100g-H2O)
・ポリリン酸アンモニウム1(溶解度:0.5g/100g-H2O)
・ポリリン酸アンモニウム2(マイクロカプセル化ポリリン酸アンモニウム、溶解度:0.09g/100g-H2O)
[シラノール縮合触媒]
・シラノール縮合触媒(1)(1,1,3,3-テトラブチル-1,3-ジラウリルオキシカルボニル-ジスタノキサン、日東化成社製 商品名「ネオスタンU-130」)
・シラノール縮合触媒(2)(ジブチル錫ジアセテート)
[硬化触媒]
・硬化触媒(1)(ジブチル錫ジアセテート)
[炭酸カルシウム]
・コロイダル炭酸カルシウム(白石工業社製 商品名「CCR」、平均粒子径:0.08μm)
・重質炭酸カルシウム(日東粉化社製 商品名「NCC2310」、平均粒子径:1μm)
[アミノシランカップリング剤]
・N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製 商品名「KBM-603」
[エポキシシランカップリング剤]
・3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製 商品名「KBM-403」
[酸化防止剤]
・ヒンダードフェノール系酸化防止剤(BASFジャパン社製 製品名「イルガノックス1010」)
[可塑剤]
・可塑剤(ジオクチルフタレート)
[乾燥調整剤]
・乾燥調整剤(ポリオキシエチレンアルキルフェニルエーテル、三洋化成工業社製 商品名「ノニポール110」)
[凍結防止剤]
・凍結防止剤(エチレングリコール)
(実施例1~7、比較例1~3)
 加水分解性シリル基を有するポリアルキレンオキサイド(1)、加水分解性シリル基を有するポリアルキレンオキサイド(2)、加水分解性シリル基を有するアクリル系重合体、イソシアネート基を有するウレタンプレポリマー、リン系化合物、シラノール縮合触媒、硬化触媒(1)、炭酸カルシウム、アミノシランカップリング剤、エポキシシランカップリング剤、及びヒンダードフェノール系酸化防止剤を表1に示した配合量となるようにして、プラネタリーミキサーを用いて真空雰囲気下にて60分間に亘って均一になるまで混合することによって硬化性組成物を得た。
(実施例8)
 アクリルエマルジョン組成物、リン系化合物、炭酸カルシウム、ヒンダードフェノール系酸化防止剤、可塑剤、乾燥調整剤、凍結防止剤を、プラネタリーミキサーを用いて60分間に亘って均一になるまで混合することによって硬化性組成物を得た。得られた硬化性組成物中における各成分の配合量は、表1に示した通りとした。
 得られた硬化性組成物について、硬化物を23℃の水に1週間浸漬させた際の溶出率を上記の要領で測定し、その結果を表1に示した。なお、表1において、「硬化物を23℃の水に1週間浸漬させた際の溶出率」は、「溶出率(水浸漬後)」と表記した。
 得られた硬化性組成物について、硬化物のShoreAによる23℃でのゴム弾性、硬化物の600℃での燃焼後に23℃にて1時間放置後のShoreAによる23℃でのゴム弾性を上記の要領で測定し、その結果を表1に示した。
 得られた硬化性組成物について、23℃の水に浸漬後の硬化物の600℃での燃焼後に23℃にて1時間放置後のShoreAによる23℃でのゴム弾性を下記の要領で測定し、その結果を表1に示した。
 なお、表1において、「硬化物のShoreAによる23℃でのゴム弾性」は「ゴム弾性(燃焼前)」、「600℃での燃焼後に23℃にて1時間放置後のShoreAによる23℃でのゴム弾性」は「ゴム弾性(燃焼後)」、「23℃の水に浸漬後の硬化物の600℃での燃焼後に23℃にて1時間放置後のShoreAによる23℃でのゴム弾性」は「ゴム弾性(水浸漬及び燃焼後)」と表記した。
[ゴム弾性(水浸漬及び燃焼後)]
 硬化性組成物を23℃及び相対湿度50%の雰囲気下にて1週間養生して硬化させて硬化物を作製した。硬化性組成物の硬化物100gをサンプルとして用意した。サンプル100gを23℃の水1000gに3日間に亘って浸漬した。サンプルを水から取り出して23℃にて6時間に亘って乾燥させた。サンプルを燃焼炉内に供給した。サンプルを燃焼炉にて600℃で30分間に亘って燃焼させた。サンプルを燃焼させて得られた燃焼残渣を燃焼終了後、直ちに23℃の雰囲気下に1時間放置した。燃焼残渣について、ShoreAによるゴム弾性をJIS K6253に準拠して測定温度23℃にてA型デュロメータを用いて測定した。
Figure JPOXMLDOC01-appb-T000003
 本発明の硬化性組成物は、その硬化物が、400℃程度まで加熱されても優れたゴム弾性を有する。さらに、硬化性組成物は、燃焼により強固な燃焼残渣を生成することができる。したがって、硬化性組成物は、シーリング材として好適に用いることができる。
 (関連出願の相互参照)
 本出願は、2022年6月15日に出願された日本国特許出願第2022-096483号に基づく優先権を主張し、この出願の開示はこれらの全体を参照することにより本明細書に組み込まれる。

Claims (11)

  1.  硬化性樹脂100質量部と、
     水難溶性リン系化合物10~150質量部と、を含有することを特徴とするシーリング材用硬化性組成物。
  2.  硬化性樹脂は、加水分解性シリル基を有するポリアルキレンオキサイド、加水分解性シリル基を有するアクリル系重合体、イソシアネート基を有するウレタンプレポリマー、及び乾燥硬化型アクリル系重合体よりなる群から選択される少なくとも一種を含むことを特徴とする請求項1に記載のシーリング材用硬化性組成物。
  3.  硬化性樹脂が、加水分解性シリル基を有するポリアルキレンオキサイドである請求項1に記載のシーリング材用硬化性組成物。
  4.  水難溶性リン系化合物は、亜リン酸アルミニウムを含有していることを特徴とする請求項1に記載のシーリング材用硬化性組成物。
  5.  硬化性組成物が、シラノール縮合触媒を含有することを特徴とする請求項3に記載のシーリング材用硬化性組成物。
  6.  硬化性組成物は、硬化後に23℃の水に1週間浸漬させた際の溶出率が、3%以下であることを特徴とする請求項1に記載のシーリング材用硬化性組成物。
  7.  建築構造物のパネル配設部と、
     上記建築構造物のパネル配設部に配設されたパネル部材と、
     上記パネル配設部と上記パネル部材との対向面間に充填された、請求項1に記載のシーリング材用硬化性組成物の硬化物とを含むパネル構造体。
  8.  パネル配設部が、建築構造物の外壁部、内壁部、又は天井部である請求項7に記載のパネル構造体。
  9.  パネル配設部及びパネル部材のうち少なくとも一方が、石膏ボードである請求項7に記載のパネル構造体。
  10.  互いに隣接するパネル部材と、
     上記パネル部材間に形成された目地部に充填された、請求項1に記載のシーリング材用硬化性組成物の硬化物とを含むパネル構造体。
  11.  パネル部材が、石膏ボードである請求項10に記載のパネル構造体。
PCT/JP2022/047915 2021-06-18 2022-12-26 シーリング材用硬化性組成物及びこの硬化性組成物を用いたパネル構造体 WO2023243124A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021101981 2021-06-18
JP2022096483A JP2023001074A (ja) 2021-06-18 2022-06-15 シーリング材用硬化性組成物及びこの硬化性組成物を用いたパネル構造体
JP2022-096483 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023243124A1 true WO2023243124A1 (ja) 2023-12-21

Family

ID=84687331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047915 WO2023243124A1 (ja) 2021-06-18 2022-12-26 シーリング材用硬化性組成物及びこの硬化性組成物を用いたパネル構造体

Country Status (2)

Country Link
JP (1) JP2023001074A (ja)
WO (1) WO2023243124A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881674A (ja) * 1994-09-13 1996-03-26 Mitsui Kinzoku Toryo Kagaku Kk 防火性シーリング材
JPH08253761A (ja) * 1995-03-17 1996-10-01 Chisso Corp 耐火性シーリング材
JP2007155015A (ja) * 2005-12-06 2007-06-21 Denki Kagaku Kogyo Kk 耐火二層管継手
WO2017126654A1 (ja) * 2016-01-20 2017-07-27 積水化学工業株式会社 耐火性樹脂組成物
WO2019146565A1 (ja) * 2018-01-25 2019-08-01 セメダイン株式会社 形成方法、及び耐火性を有する一液常温湿気硬化型反応性ホットメルト組成物
JP2021113313A (ja) * 2020-01-17 2021-08-05 積水フーラー株式会社 硬化性組成物及びこの硬化性組成物を用いたパネル構造体
WO2022097740A1 (ja) * 2020-11-06 2022-05-12 積水化学工業株式会社 熱膨張性耐火材組成物、熱膨張性耐火材、及び熱膨張性耐火材の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881674A (ja) * 1994-09-13 1996-03-26 Mitsui Kinzoku Toryo Kagaku Kk 防火性シーリング材
JPH08253761A (ja) * 1995-03-17 1996-10-01 Chisso Corp 耐火性シーリング材
JP2007155015A (ja) * 2005-12-06 2007-06-21 Denki Kagaku Kogyo Kk 耐火二層管継手
WO2017126654A1 (ja) * 2016-01-20 2017-07-27 積水化学工業株式会社 耐火性樹脂組成物
WO2019146565A1 (ja) * 2018-01-25 2019-08-01 セメダイン株式会社 形成方法、及び耐火性を有する一液常温湿気硬化型反応性ホットメルト組成物
JP2021113313A (ja) * 2020-01-17 2021-08-05 積水フーラー株式会社 硬化性組成物及びこの硬化性組成物を用いたパネル構造体
WO2022097740A1 (ja) * 2020-11-06 2022-05-12 積水化学工業株式会社 熱膨張性耐火材組成物、熱膨張性耐火材、及び熱膨張性耐火材の製造方法

Also Published As

Publication number Publication date
JP2023001074A (ja) 2023-01-04

Similar Documents

Publication Publication Date Title
US7135518B2 (en) Curable compositions, sealing material, and adhesive
JP7429972B2 (ja) 合成樹脂組成物、耐火材料、シーリング材、接着剤及び目地構造
CN111699216B (zh) 工作缝用单组分型固化性组合物
KR101554248B1 (ko) 경화성 조성물
JP2006052168A (ja) 新規メルカプトシラン化合物、それを用いた硬化性樹脂、及び、それを用いた硬化性樹脂組成物
JP2016172442A (ja) 防水構造および防水構造の形成方法
JP2005082750A (ja) 接着性に優れた硬化性組成物
WO2023243124A1 (ja) シーリング材用硬化性組成物及びこの硬化性組成物を用いたパネル構造体
JP5180938B2 (ja) 外壁の無目地構造用弾性パテ組成物
JP4429666B2 (ja) シーリング材組成物
JP7175510B2 (ja) 硬化性組成物及びこれを用いてなる目地構造
JP2007211121A (ja) 硬化性樹脂の製造方法、および該製造方法により調製された硬化性樹脂
JP2008127421A (ja) 硬化性組成物
JP7377512B2 (ja) 硬化性組成物及びその製造方法
JP7473144B2 (ja) 電子材料用硬化性樹脂組成物
JP7359158B2 (ja) 硬化性組成物
JP2002121407A (ja) 硬化性組成物
TWI845582B (zh) 濕氣硬化型熱熔接著劑及其製造方法
JP2005281495A (ja) 硬化性組成物
JP2007138030A (ja) 硬化性組成物及びシーリング材組成物
JP2023061915A (ja) 硬化性樹脂組成物
TW202403022A (zh) 電子材料用硬化性樹脂組成物
WO2021230095A1 (ja) 湿気硬化型ホットメルト接着剤
JP2022025203A (ja) 硬化性組成物
JP2020164608A (ja) 湿気硬化性樹脂組成物および硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946939

Country of ref document: EP

Kind code of ref document: A1