WO2023240929A1 - 电动助力转向的补偿方法、装置及车辆 - Google Patents

电动助力转向的补偿方法、装置及车辆 Download PDF

Info

Publication number
WO2023240929A1
WO2023240929A1 PCT/CN2022/133540 CN2022133540W WO2023240929A1 WO 2023240929 A1 WO2023240929 A1 WO 2023240929A1 CN 2022133540 W CN2022133540 W CN 2022133540W WO 2023240929 A1 WO2023240929 A1 WO 2023240929A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
damping
angular velocity
vehicle
friction
Prior art date
Application number
PCT/CN2022/133540
Other languages
English (en)
French (fr)
Inventor
刘昌业
白帆
张洪铭
蓝忠霞
沈伟
Original Assignee
上汽通用五菱汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上汽通用五菱汽车股份有限公司 filed Critical 上汽通用五菱汽车股份有限公司
Publication of WO2023240929A1 publication Critical patent/WO2023240929A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present application relates to the technical field of electric power steering systems, and in particular to a compensation method, device and vehicle for electric power steering.
  • the common power assist compensation method used in electric power steering systems in automobiles is: first, obtain the current rotation angle, current hand torque and current vehicle speed. Secondly, based on the current rotation angle, determine the angular velocity; based on the current hand torque and current vehicle speed, determine the target scale factor; then, based on the current vehicle speed and the preset correspondence, determine the target damping coefficient; finally, based on the angular velocity, target scale factor and target damping coefficient to determine the damping compensation moment.
  • the current power assist compensation method has the following problems: friction compensation and damping compensation are not disassembled and calculated, resulting in the inability to refine the compensation current of the steering assist motor in the electric power steering system with different angular speeds at the same vehicle speed.
  • the main purpose of this application is to provide a compensation method for electric power steering, aiming to solve the technical problems in the prior art that the compensation current of the electric power steering system is not accurate enough and the steering assist is not sensitive enough.
  • the compensation method for electric power steering includes:
  • Friction compensation parameters are determined based on the rotational angular velocity, and damping compensation parameters are determined based on the current vehicle speed;
  • the compensated friction force and the compensated damping value are respectively converted into partial output current of the steering assist motor.
  • the step of obtaining the rotation angular velocity of the steering wheel includes:
  • the rotation angular velocity is determined based on the number of pulse waves of the rotation angle signal per unit time.
  • the step of determining friction compensation parameters according to the rotational angular velocity further includes:
  • the rotation angular velocity is determined to be the upper limit angular velocity
  • the rotational angular velocity is determined to be the lower limit angular velocity.
  • the friction compensation parameters include friction force proportional values and angular velocity integral values, and the corresponding relationship between the rotational angular velocity and the friction compensation parameters is saved in a preset friction compensation table;
  • the step of determining friction compensation parameters based on the rotational angular velocity includes:
  • the friction compensation parameters are determined by searching a preset friction compensation table according to the rotation angular velocity.
  • the step of determining the compensation friction force according to the friction compensation parameter includes:
  • the magnitude of the compensation friction force is calculated based on the friction force proportional value and the angular velocity integral value
  • the step of converting the compensation friction force into part of the output current of the steering assist motor includes:
  • the direction of the partial output current corresponding to the friction force is determined according to the rotation direction of the steering wheel in the current vehicle state.
  • the step of determining damping compensation parameters according to the current speed of the vehicle further includes:
  • the vehicle speed index is determined to be the preset maximum index.
  • the corresponding relationship between the vehicle speed index and the damping compensation parameter is saved in a preset damping compensation table
  • the step of determining damping compensation parameters according to the current speed of the vehicle includes:
  • the damping compensation parameter is determined by searching the damping compensation table according to the vehicle speed index corresponding to the current vehicle speed of the vehicle.
  • the step of determining a compensation damping value based on the damping compensation parameters includes:
  • the damping compensation parameter determined by searching the damping compensation table using the vehicle speed index corresponding to the current vehicle speed of the vehicle is used as a basic parameter
  • the damping compensation parameter determined by searching the damping compensation table after adding 1 to the vehicle speed index corresponding to the current vehicle speed of the vehicle is used as an advanced parameter;
  • the growth value is obtained according to the advanced parameters, the basic parameters and the preset second coefficient, and the compensation damping value is obtained by adding the growth value to the basic parameters;
  • the step of converting the compensation damping value into partial output current of the steering assist motor includes:
  • the direction of the partial output current corresponding to the friction force is determined according to the rotation direction of the steering wheel in the current vehicle state.
  • this application also provides a compensation device for electric power steering.
  • the compensation device for electric power steering includes:
  • the EPS controller controls the power steering motor, the compensation method for electric power steering as described above is performed.
  • the present application also provides a vehicle, which vehicle includes the above-mentioned electric power steering compensation device, a memory, a processor, and a device stored on the memory and capable of running on the processor.
  • a computer program configured to implement the steps of the compensation method for electric power steering as described above.
  • Embodiments of the present application propose a compensation method, device and vehicle for electric power steering.
  • the compensation method for electric power steering includes: obtaining the rotation angular speed of the steering wheel and the current speed of the vehicle;
  • Determine the friction compensation parameter according to the rotation angular velocity determine the damping compensation parameter according to the current vehicle speed of the vehicle; determine the compensation friction force according to the friction compensation parameter, determine the compensation damping value according to the damping compensation parameter; combine the compensation friction force and The compensation damping values are respectively converted into partial output current of the steering assist motor.
  • the friction compensation and damping compensation values are converted into partial output current of the steering assist motor, and superimposed on the output of the steering assist motor, so that the output of the steering assist motor not only includes the basic
  • the power steering motor current, return current and neutral current are used to decompose friction compensation and damping compensation, distinguish friction compensation and damping compensation, and make the compensation current of the electric power steering system more accurate and the steering assist more sensitive.
  • Figure 1 is a schematic diagram of the terminal structure of the hardware operating environment involved in the embodiment of the present application.
  • Figure 2 is a schematic flow chart of an embodiment of an electric power steering compensation method according to the present application.
  • Figure 3 is a calculation schematic diagram of an embodiment of an electric power steering compensation method according to the present application.
  • Figure 1 is a schematic diagram of the terminal structure of the hardware operating environment involved in the embodiment of the present application.
  • the terminal device may include: a processor 1001, such as a central processing unit (CPU), a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005.
  • the communication bus 1002 is used to realize connection communication between these components.
  • the user interface 1003 may include a display screen (Display) and an input unit such as a keyboard (Keyboard).
  • the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface or a wireless interface (such as a Wireless-Fidelity (WI-FI) interface).
  • WI-FI Wireless-Fidelity
  • the memory 1005 may be a high-speed random access memory (Random Access Memory, RAM) memory or a stable non-volatile memory (Non-Volatile Memory, NVM), such as a disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the memory 1005 may optionally be a storage device independent of the aforementioned processor 1001.
  • Figure 1 does not constitute a limitation on the terminal device, and may include more or fewer components than shown, or combine certain components, or arrange different components.
  • memory 1005 as a storage medium may include an operating system, a data storage module, a network remote communication module, a user interface module and a computer program.
  • the network interface 1004 is mainly used for data communication with other devices;
  • the user interface 1003 is mainly used for data interaction with the user;
  • the processor 1001 and the memory 1005 in the terminal device of this application can be set in In the terminal device, the terminal device calls the computer program stored in the memory 1005 through the processor 1001 and performs the following operations:
  • Friction compensation parameters are determined based on the rotational angular velocity, and damping compensation parameters are determined based on the current vehicle speed;
  • the compensated friction force and the compensated damping value are respectively converted into partial output current of the steering assist motor.
  • processor 1001 can call the computer program stored in the memory 1005 and also perform the following operations:
  • the steps of obtaining the rotation angular velocity of the steering wheel include:
  • the rotation angular velocity is determined based on the number of pulse waves of the rotation angle signal per unit time.
  • processor 1001 can call the computer program stored in the memory 1005 and also perform the following operations:
  • the method further includes:
  • the rotation angular velocity is determined to be the upper limit angular velocity
  • the rotational angular velocity is determined to be the lower limit angular velocity.
  • processor 1001 can call the computer program stored in the memory 1005 and also perform the following operations:
  • the friction compensation parameters include friction force proportional values and angular velocity integral values, and the corresponding relationship between the rotational angular velocity and the friction compensation parameters is stored in a preset friction compensation table;
  • the step of determining friction compensation parameters based on the rotational angular velocity includes:
  • the friction compensation parameters are determined by searching a preset friction compensation table according to the rotation angular velocity.
  • processor 1001 can call the computer program stored in the memory 1005 and also perform the following operations:
  • the step of determining the compensation friction force according to the friction compensation parameter includes:
  • the magnitude of the compensation friction force is calculated based on the friction force proportional value and the angular velocity integral value
  • the step of converting the compensation friction force into part of the output current of the steering assist motor includes:
  • the direction of the partial output current corresponding to the friction force is determined according to the rotation direction of the steering wheel in the current vehicle state.
  • processor 1001 can call the computer program stored in the memory 1005 and also perform the following operations:
  • the step further includes:
  • the vehicle speed index is determined to be the preset maximum index.
  • processor 1001 can call the computer program stored in the memory 1005 and also perform the following operations:
  • the step of determining damping compensation parameters according to the current speed of the vehicle includes:
  • the damping compensation parameter is determined by searching the damping compensation table according to the vehicle speed index corresponding to the current vehicle speed of the vehicle.
  • processor 1001 can call the computer program stored in the memory 1005 and also perform the following operations:
  • the step of determining the compensation damping value according to the damping compensation parameter includes:
  • the damping compensation parameter determined by searching the damping compensation table using the vehicle speed index corresponding to the current vehicle speed of the vehicle is used as a basic parameter
  • the damping compensation parameter determined by searching the damping compensation table after adding 1 to the vehicle speed index corresponding to the current vehicle speed of the vehicle is used as an advanced parameter;
  • the growth value is obtained according to the advanced parameters, the basic parameters and the preset second coefficient, and the compensation damping value is obtained by adding the growth value to the basic parameters;
  • the step of converting the compensation damping value into partial output current of the steering assist motor includes:
  • the direction of the partial output current corresponding to the friction force is determined according to the rotation direction of the steering wheel in the current vehicle state.
  • FIG. 2 is a schematic flow chart of an embodiment of a compensation method for electric power steering of the present application.
  • the compensation method for electric power steering includes:
  • Step S10 Obtain the rotation angular velocity of the steering wheel and the current speed of the vehicle.
  • Step S20 Determine friction compensation parameters according to the rotational angular velocity, and determine damping compensation parameters according to the current vehicle speed of the vehicle.
  • Step S30 Determine the compensation friction force according to the friction compensation parameter, and determine the compensation damping value according to the damping compensation parameter.
  • Step S40 Convert the compensated friction force and the compensated damping value into partial output current of the steering assist motor respectively.
  • the compensation device that implements the electric power steering compensation method includes an EPS (Electric Power Steering, electric power steering system) controller, a steering wheel, a steering angle sensor, and a steering assist motor.
  • the EPS controller of the compensation device obtains the rotation angular speed of the steering wheel through the angle sensor, and reads and analyzes the CAN (Controller Area Network (Controller Area Network) signal to obtain the current speed of the vehicle.
  • EPS Electronic Power Steering, electric power steering system
  • the EPS controller of the compensation device obtains the rotation angular speed of the steering wheel through the angle sensor, and reads and analyzes the CAN (Controller Area Network (Controller Area Network) signal to obtain the current speed of the vehicle.
  • CAN Controller Area Network
  • the compensation device includes two functions: friction compensation and damping compensation.
  • the EPS controller identifies the vehicle status through the angle sensor and CAN, calculates the friction compensation parameters and damping compensation parameters, and then superimposes the corresponding compensation friction and compensation damping values to the steering assist motor. on the output.
  • the friction compensation parameters can be determined based on the rotational angular velocity. Friction compensation refers to overcoming the friction torque of the steering system (including the column, steering gear, intermediate shaft, etc.) to make the steering feel smoother. Among them, the friction compensation parameters are determined to overcome the friction torque of the steering system.
  • the compensation friction force required for friction torque; the damping compensation parameters can be determined according to the current speed of the vehicle.
  • Damping compensation refers to providing reverse control to improve the convergence of the vehicle, making the steering of the vehicle more stable and without oscillation when driving at high speed.
  • the compensation damping value is determined to make the steering of the vehicle more stable and avoid oscillation when driving at high speed.
  • the rotation angular velocity of the steering wheel and the current vehicle speed are obtained; the friction compensation parameters are determined according to the rotation angular velocity, and the damping compensation parameters are determined according to the current vehicle speed; the compensation friction force is determined according to the friction compensation parameters, and the compensation friction force is determined according to the friction compensation parameters.
  • the damping compensation parameter determines the compensation damping value; the compensation friction force and the compensation damping value are respectively converted into partial output current of the steering assist motor.
  • FIG. 3 is a calculation schematic diagram of an embodiment of an electric power steering compensation method of the present application.
  • the friction compensation and damping compensation values are converted into partial output current of the steering assist motor, and superimposed on the output of the steering assist motor, so that the output of the steering assist motor not only includes the basic
  • the power steering motor current, return current and neutral current are used to decompose friction compensation and damping compensation, distinguish friction compensation and damping compensation, and make the compensation current of the electric power steering system more accurate and the steering assist more sensitive.
  • the step of obtaining the rotation angular velocity of the steering wheel includes:
  • the rotation angular velocity is determined based on the number of pulse waves of the rotation angle signal per unit time.
  • the corner sensor is connected to the EPS controller through filtering and pull-up 5V hardware circuits. It is a corner signal in the form of PWM (Pulse Width Modulation, pulse width modulation). After calculation by the EPS controller, the corner angular speed is obtained. The specific calculation method is: count the number of pulse waves per unit time to determine the steering angular speed.
  • the PWM signal includes two signals with constant frequency but changing duty cycle. The starting time of the determined angle is identified through the duty cycle.
  • the reason for setting up two channels is because it needs to be calibrated to determine whether the mechanism is damaged, and the two channels of signals are verified against each other.
  • the step of determining friction compensation parameters according to the rotational angular velocity further includes:
  • the rotation angular velocity is determined to be the upper limit angular velocity
  • the rotational angular velocity is determined to be the lower limit angular velocity.
  • the rotation angular speed input from the steering angle sensor to the EPS controller will first be limited to limit the steering wheel's rotation angular speed within the preset range of -300°/s and 300°/s. If it is not within the range, treat it as ⁇ 300. That is, if the rotation angular velocity is greater than the upper limit angular velocity of the preset range 300°/s, then the rotation angular velocity is determined to be the upper limit angular velocity 300°/s; if the rotation angular velocity is less than the lower limit angular velocity of the preset range, then the rotation angular velocity is determined to be the lower limit angular velocity -300°/ s.
  • the friction compensation parameters include friction force proportional values and angular velocity integral values, and the corresponding relationship between the rotational angular velocity and the friction compensation parameters is stored in a preset friction compensation table;
  • the step of determining friction compensation parameters based on the rotational angular velocity includes:
  • the friction compensation parameters are determined by searching a preset friction compensation table according to the rotation angular velocity.
  • Friction compensation parameters including friction force proportional value and angular velocity integral value.
  • the step of determining the compensation friction force according to the friction compensation parameter includes:
  • the magnitude of the compensation friction force is calculated based on the friction force proportional value and the angular velocity integral value
  • the step of converting the compensation friction force into part of the output current of the steering assist motor includes:
  • the direction of the partial output current corresponding to the friction force is determined according to the rotation direction of the steering wheel in the current vehicle state.
  • the calculation method of determining the compensation friction force based on the friction compensation parameters is: calculating the compensation friction force based on the friction force proportional value and the angular velocity integral value.
  • the magnitude is the friction force proportional value multiplied by the angular velocity integral value.
  • the specific method of converting the compensated friction force into the partial output current of the steering assist motor is: convert the compensated friction force into a value corresponding to the compensated friction force according to the compensated friction force and the preset first coefficient.
  • a fixed coefficient is used to convert the friction force into current.
  • the direction of the output current corresponding to the friction force is determined according to the rotation direction of the steering wheel in the current vehicle state. For example, if the turning angle or the steering wheel is turned to the left, it is positive, and the determined current is also positive; if the turning angle or the steering wheel is turned to the right, it is negative, and the determined current is also positive. burden.
  • the step of determining damping compensation parameters according to the current speed of the vehicle further includes:
  • the vehicle speed index is determined to be the preset maximum index.
  • Damping compensation is to improve the convergence of the car so that the steering is stable and does not oscillate when the vehicle is driving.
  • the damping compensation input of the EPS controller is the current speed of the vehicle in the CAN signal.
  • the vehicle speed index of the damping compensation table based on the current vehicle speed. For example, determine the vehicle speed index as ( Vehicle current speed/10+1), divided into segments.
  • the speed index is determined based on the current speed of the vehicle and the preset step size. For example, the current speed of the vehicle is 125km/h, and the preset step size is 10, which is determined by rounding up.
  • the vehicle speed index is 14; if the vehicle's current vehicle speed is not less than the preset vehicle speed, for example, the vehicle's current vehicle speed is 160km/h, then the vehicle speed index is determined to be the preset maximum index, such as 15.
  • the corresponding relationship between the vehicle speed index and the damping compensation parameter is saved in a preset damping compensation table
  • the step of determining damping compensation parameters according to the current speed of the vehicle includes:
  • the damping compensation parameter is determined by searching the damping compensation table according to the vehicle speed index corresponding to the current vehicle speed of the vehicle.
  • the corresponding relationship between the vehicle speed index corresponding to the vehicle's current vehicle speed and the damping compensation parameter is saved in the damping compensation table through calibration in advance, so that after the vehicle's current vehicle speed is determined from the CAN signal, the vehicle speed corresponding to the vehicle's current vehicle speed is directly determined.
  • the damping compensation parameter can be determined by indexing the damping compensation table.
  • the damping compensation parameter can be the damping value of the steering wheel.
  • the step of determining a compensation damping value based on the damping compensation parameters includes:
  • the damping compensation parameter determined by searching the damping compensation table using the vehicle speed index corresponding to the current vehicle speed of the vehicle is used as a basic parameter
  • the damping compensation parameter determined by searching the damping compensation table after adding 1 to the vehicle speed index corresponding to the current vehicle speed of the vehicle is used as an advanced parameter;
  • the growth value is obtained according to the advanced parameters, the basic parameters and the preset second coefficient, and the compensation damping value is obtained by adding the growth value to the basic parameters;
  • the step of converting the compensation damping value into partial output current of the steering assist motor includes:
  • the direction of the partial output current corresponding to the friction force is determined according to the rotation direction of the steering wheel in the current vehicle state.
  • the calculation method for determining the compensation damping value based on the damping compensation parameters is:
  • the current vehicle speed is 130km/h
  • the vehicle speed index is 14, and the damping compensation parameters obtained by searching the damping compensation table are used as the basic parameters; Add 1 to the vehicle speed index corresponding to the vehicle's current speed and then search the damping compensation table to determine the damping compensation parameters as advanced parameters.
  • the advanced parameters are the damping compensation parameters obtained by searching the damping compensation table when the vehicle speed index is 14+1; according to the advanced parameters , the basic parameters and the preset second coefficient to get the growth value. For example, use the advanced parameter minus the basic parameter and multiply it by the preset second coefficient to get the growth value. Then add the growth value to the basic parameters to get the compensation. damping value.
  • the specific method of converting the compensation damping value into the partial output current of the steering assist motor is: convert the compensation damping value into the partial output current corresponding to the compensation damping value, and then , determine the direction of the partial output current corresponding to the damping value according to the rotation direction of the steering wheel in the current vehicle state. For example, if the turning angle or the steering wheel is turned to the left, it is positive, and the determined current is also positive; if the turning angle or the steering wheel is turned to the right, it is negative, and the determined current is also negative. .
  • inventions of the present application also provide a compensation device for electric power steering.
  • the compensation device for electric power steering includes:
  • the EPS controller controls the power steering motor, the compensation method for electric power steering as described above is executed.
  • embodiments of the present application also provide a vehicle, which includes the compensation device for electric power steering as described above, a memory, a processor, and a computer program stored on the memory and executable on the processor. , the computer program is configured to implement the steps of the compensation method for electric power steering as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM) as mentioned above. , magnetic disk, optical disk), including several instructions to cause a terminal device (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种电动助力转向的补偿方法,包括:获得方向盘的转动角速度和车辆当前车速;根据转动角速度确定摩擦补偿参数,根据车辆当前车速确定阻尼补偿参数;根据摩擦补偿参数确定补偿摩擦力,根据阻尼补偿参数确定补偿阻尼值;将补偿摩擦力和补偿阻尼值分别转换为转向助力电机的部分输出电流。该方法将摩擦补偿和阻尼补偿进行分解,区分开摩擦补偿和阻尼补偿,使电动助力转向系统的补偿电流更精准、转向助力更灵敏。还提供一种电动助力转向的补偿装置和车辆。

Description

电动助力转向的补偿方法、装置及车辆
本申请要求于2022年6月16日申请的、申请号为202210680008.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动助力转向系统的技术领域,尤其涉及一种电动助力转向的补偿方法、装置及车辆。
背景技术
目前,应用于汽车的电动助力转向系统常见的助力补偿方式为:首先,获取当前转动角度、当前手力矩和当前车速。其次,基于当前转动角度,确定角速度;基于当前手力矩和当前车速,确定目标比例因子;接着,基于当前车速和预设对应关系,确定目标阻尼系数;最后,基于角速度、目标比例因子和目标阻尼系数,确定阻尼补偿力矩。但是,目前的助力补偿方式存在以下问题:未将摩擦补偿和阻尼补偿进行拆解计算,导致不能精细化相同车速下不同角速度的电动助力转向系统中转向助力电机的补偿电流。
技术问题
本申请的主要目的在于提供一种电动助力转向的补偿方法,旨在解决现有技术中电动助力转向系统的补偿电流不够精准、转向助力不够灵敏的技术问题。
技术解决方案
为实现上述目的,本申请提供一种电动助力转向的补偿方法,所述电动助力转向的补偿方法,包括:
获取方向盘的转动角速度和车辆当前车速;
根据所述转动角速度确定摩擦补偿参数,根据所述车辆当前车速确定阻尼补偿参数;
根据所述摩擦补偿参数确定补偿摩擦力,根据所述阻尼补偿参数确定补偿阻尼值;
将所述补偿摩擦力和所述补偿阻尼值分别转换为转向助力电机的部分输出电流。
在一实施例中,所述获取方向盘的转动角速度的步骤,包括:
获取转角传感器的转角信号;
根据所述转角信号在单位时间内的脉冲波的数量确定所述转动角速度。
在一实施例中,所述根据所述转动角速度确定摩擦补偿参数的步骤之前,还包括:
判断所述转动角速度是否处于预设范围内;
若所述转动角速度大于预设范围的上限角速度,则确定所述转动角速度为所述上限角速度;
若所述转动角速度小于预设范围的下限角速度,则确定所述转动角速度为所述下限角速度。
在一实施例中,所述摩擦补偿参数包括摩擦力比例值和角速度积分值,在预设摩擦补偿表中保存所述转动角速度与所述摩擦补偿参数的对应关系;
所述根据所述转动角速度确定摩擦补偿参数的步骤,包括:
根据所述转动角速度查找预设摩擦补偿表确定所述摩擦补偿参数。
在一实施例中,所述根据所述摩擦补偿参数确定补偿摩擦力的步骤,包括:
根据所述摩擦力比例值和所述角速度积分值计算得到所述补偿摩擦力的大小;
所述将所述补偿摩擦力转换为转向助力电机的部分输出电流的步骤,包括:
根据所述补偿摩擦力和预设第一系数将所述补偿摩擦力的大小转换为补偿摩擦力对应的部分输出电流的大小;
根据当前车辆状态中方向盘的转动方向确定摩擦力对应的部分输出电流的方向。
在一实施例中,所述根据所述车辆当前车速确定阻尼补偿参数的步骤之前,还包括:
判断所述车辆当前车速是否小于预设车速;
若所述车辆当前车速小于预设车速,则根据所述车辆当前车速和预设步长确定车速索引;
若所述车辆当前车速不小于预设车速,则确定车速索引为预设最大索引。
在一实施例中,在预设阻尼补偿表中保存所述车速索引与所述阻尼补偿参数的对应关系;
所述根据所述车辆当前车速确定阻尼补偿参数的步骤,包括:
根据所述车辆当前车速对应的所述车速索引查找所述阻尼补偿表确定所述阻尼补偿参数。
在一实施例中,所述根据所述阻尼补偿参数确定补偿阻尼值的步骤,包括:
以所述车辆当前车速对应的所述车速索引查找所述阻尼补偿表确定得到的所述阻尼补偿参数作为基础参数;
以所述车辆当前车速对应的所述车速索引加1后查找所述阻尼补偿表确定得到的所述阻尼补偿参数作为进阶参数;
根据所述进阶参数、所述基础参数和预设第二系数得到增长值,在所述基础参数上加上所述增长值得到所述补偿阻尼值;
所述将所述补偿阻尼值转换为转向助力电机的部分输出电流的步骤,包括:
将所述补偿阻尼值的大小转换为补偿阻尼值对应的部分输出电流的大小;
根据当前车辆状态中方向盘的转动方向确定摩擦力对应的部分输出电流的方向。
此外,为实现上述目的,本申请还提供一种电动助力转向的补偿装置,所述电动助力转向的补偿装置,包括:
EPS控制器和转向助力电机;
所述EPS控制器控制所述转向助力电机时执行如上所述的电动助力转向的补偿方法。
此外,为实现上述目的,本申请还提供一种车辆,所述车辆包括如上所述的电动助力转向的补偿装置、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序配置为实现如上所述的电动助力转向的补偿方法的步骤。
有益效果
本申请实施例提出的一种电动助力转向的补偿方法、装置及车辆,所述电动助力转向的补偿方法,包括:获取方向盘的转动角速度和车辆当前车速;
根据所述转动角速度确定摩擦补偿参数,根据所述车辆当前车速确定阻尼补偿参数;根据所述摩擦补偿参数确定补偿摩擦力,根据所述阻尼补偿参数确定补偿阻尼值;将所述补偿摩擦力和所述补偿阻尼值分别转换为转向助力电机的部分输出电流。
在计算得到摩擦补偿参数和阻尼补偿参数之后,再将补偿摩擦力和补偿阻尼值分别转换为转向助力电机的部分输出电流,叠加到转向助力电机的输出上,使转向助力电机的输出不仅包括基本助力转向电机电流、回正电流和中位电流,从而将摩擦补偿和阻尼补偿进行分解,区分开摩擦补偿和阻尼补偿,使电动助力转向系统的补偿电流更精准、转向助力更灵敏。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图;
图2为本申请一种电动助力转向的补偿方法一实施例的流程示意图;
图3为本申请一种电动助力转向的补偿方法一实施例的计算示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的终端结构示意图。
如图1所示,该终端设备可以包括:处理器1001,例如中央处理器(Central Processing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如无线保真(Wireless-Fidelity,WI-FI)接口)。存储器1005可以是高速的随机存取存储器(Random Access Memory,RAM)存储器,也可以是稳定的非易失性存储器(Non-Volatile Memory,NVM),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的结构并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种存储介质的存储器1005中可以包括操作系统、数据存储模块、网络远程通信模块、用户接口模块以及计算机程序。
在图1所示的终端设备中,网络接口1004主要用于与其他设备进行数据通信;用户接口1003主要用于与用户进行数据交互;本申请终端设备中的处理器1001、存储器1005可以设置在终端设备中,所述终端设备通过处理器1001调用存储器1005中存储的计算机程序,并执行以下操作:
获取方向盘的转动角速度和车辆当前车速;
根据所述转动角速度确定摩擦补偿参数,根据所述车辆当前车速确定阻尼补偿参数;
根据所述摩擦补偿参数确定补偿摩擦力,根据所述阻尼补偿参数确定补偿阻尼值;
将所述补偿摩擦力和所述补偿阻尼值分别转换为转向助力电机的部分输出电流。
进一步地,处理器1001可以调用存储器1005中存储的计算机程序,还执行以下操作:
所述获取方向盘的转动角速度的步骤,包括:
获取转角传感器的转角信号;
根据所述转角信号在单位时间内的脉冲波的数量确定所述转动角速度。
进一步地,处理器1001可以调用存储器1005中存储的计算机程序,还执行以下操作:
所述根据所述转动角速度确定摩擦补偿参数的步骤之前,还包括:
判断所述转动角速度是否处于预设范围内;
若所述转动角速度大于预设范围的上限角速度,则确定所述转动角速度为所述上限角速度;
若所述转动角速度小于预设范围的下限角速度,则确定所述转动角速度为所述下限角速度。
进一步地,处理器1001可以调用存储器1005中存储的计算机程序,还执行以下操作:
所述摩擦补偿参数包括摩擦力比例值和角速度积分值,在预设摩擦补偿表中保存所述转动角速度与所述摩擦补偿参数的对应关系;
所述根据所述转动角速度确定摩擦补偿参数的步骤,包括:
根据所述转动角速度查找预设摩擦补偿表确定所述摩擦补偿参数。
进一步地,处理器1001可以调用存储器1005中存储的计算机程序,还执行以下操作:
所述根据所述摩擦补偿参数确定补偿摩擦力的步骤,包括:
根据所述摩擦力比例值和所述角速度积分值计算得到所述补偿摩擦力的大小;
所述将所述补偿摩擦力转换为转向助力电机的部分输出电流的步骤,包括:
根据所述补偿摩擦力和预设第一系数将所述补偿摩擦力的大小转换为补偿摩擦力对应的部分输出电流的大小;
根据当前车辆状态中方向盘的转动方向确定摩擦力对应的部分输出电流的方向。
进一步地,处理器1001可以调用存储器1005中存储的计算机程序,还执行以下操作:
所述根据所述车辆当前车速确定阻尼补偿参数的步骤之前,还包括:
判断所述车辆当前车速是否小于预设车速;
若所述车辆当前车速小于预设车速,则根据所述车辆当前车速和预设步长确定车速索引;
若所述车辆当前车速不小于预设车速,则确定车速索引为预设最大索引。
进一步地,处理器1001可以调用存储器1005中存储的计算机程序,还执行以下操作:
在预设阻尼补偿表中保存所述车速索引与所述阻尼补偿参数的对应关系;
所述根据所述车辆当前车速确定阻尼补偿参数的步骤,包括:
根据所述车辆当前车速对应的所述车速索引查找所述阻尼补偿表确定所述阻尼补偿参数。
进一步地,处理器1001可以调用存储器1005中存储的计算机程序,还执行以下操作:
所述根据所述阻尼补偿参数确定补偿阻尼值的步骤,包括:
以所述车辆当前车速对应的所述车速索引查找所述阻尼补偿表确定得到的所述阻尼补偿参数作为基础参数;
以所述车辆当前车速对应的所述车速索引加1后查找所述阻尼补偿表确定得到的所述阻尼补偿参数作为进阶参数;
根据所述进阶参数、所述基础参数和预设第二系数得到增长值,在所述基础参数上加上所述增长值得到所述补偿阻尼值;
所述将所述补偿阻尼值转换为转向助力电机的部分输出电流的步骤,包括:
将所述补偿阻尼值的大小转换为补偿阻尼值对应的部分输出电流的大小;
根据当前车辆状态中方向盘的转动方向确定摩擦力对应的部分输出电流的方向。
本申请实施例提供了一种电动助力转向的补偿方法,参照图2,图2为本申请一种电动助力转向的补偿方法一实施例的流程示意图。在本实施例中,电动助力转向的补偿方法,包括:
步骤S10,获取方向盘的转动角速度和车辆当前车速。
步骤S20,根据所述转动角速度确定摩擦补偿参数,根据所述车辆当前车速确定阻尼补偿参数。
步骤S30,根据所述摩擦补偿参数确定补偿摩擦力,根据所述阻尼补偿参数确定补偿阻尼值。
步骤S40,将所述补偿摩擦力和所述补偿阻尼值分别转换为转向助力电机的部分输出电流。
在本实施例中,实现电动助力转向的补偿方法的补偿装置包括EPS(Electric Power Steering,电动助力转向系统)控制器,方向盘,转角传感器以及转向助力电机。补偿装置的EPS控制器通过转角传感器获取方向盘的转动角速度,并通过读取并解析CAN(Controller Area Network,控制器域网)信号得到车辆当前车速。
补偿装置包括摩擦补偿和阻尼补偿两个功能,EPS控制器通过转角传感器和CAN识别车辆状态,计算得到摩擦补偿参数和阻尼补偿参数,从而将对应的补偿摩擦力和补偿阻尼值叠加到转向助力电机的输出上。可根据转动角速度确定摩擦补偿参数,摩擦补偿是指克服转向系统(包括管柱,方向机,中间轴等)的摩擦力矩,使转向手感更顺滑,其中,根据摩擦补偿参数确定克服转向系统的摩擦力矩所需的补偿摩擦力;可根据车辆当前车速确定阻尼补偿参数,阻尼补偿是指提供反向控制从而改善汽车收敛性,使车辆高速行驶时转向更加稳定、以及不发生摆振,其中,根据阻尼补偿参数确定使车辆高速行驶时转向更加稳定、以及不发生摆振的补偿阻尼值。
在本实施例中,获取方向盘的转动角速度和车辆当前车速;根据所述转动角速度确定摩擦补偿参数,根据所述车辆当前车速确定阻尼补偿参数;根据所述摩擦补偿参数确定补偿摩擦力,根据所述阻尼补偿参数确定补偿阻尼值;将所述补偿摩擦力和所述补偿阻尼值分别转换为转向助力电机的部分输出电流。
参照图3,图3为本申请一种电动助力转向的补偿方法一实施例的计算示意图。在计算得到摩擦补偿参数和阻尼补偿参数之后,再将补偿摩擦力和补偿阻尼值分别转换为转向助力电机的部分输出电流,叠加到转向助力电机的输出上,使转向助力电机的输出不仅包括基本助力转向电机电流、回正电流和中位电流,从而将摩擦补偿和阻尼补偿进行分解,区分开摩擦补偿和阻尼补偿,使电动助力转向系统的补偿电流更精准、转向助力更灵敏。
在一实施例中,所述获取方向盘的转动角速度的步骤,包括:
获取转角传感器的转角信号;
根据所述转角信号在单位时间内的脉冲波的数量确定所述转动角速度。
转角传感器通过滤波和上拉5V硬件电路接入到EPS控制器,为PWM(Pulse Width Modulation,脉宽调制)形式的转角信号,经过EPS控制器计算后得出转角角速度。具体计算方式为:统计单位时间内的脉冲波的数量确定方向盘的转动角速度。PWM信号包括两路频率不变但占空比发生变化的信号,通过占空比从而识别出确定角度的起始时间。另外,设置两路的原因是因为需要校正,判断机构是否损坏,两路信号互相进行校验。
在一实施例中,所述根据所述转动角速度确定摩擦补偿参数的步骤之前,还包括:
判断所述转动角速度是否处于预设范围内;
若所述转动角速度大于预设范围的上限角速度,则确定所述转动角速度为所述上限角速度;
若所述转动角速度小于预设范围的下限角速度,则确定所述转动角速度为所述下限角速度。
转角传感器输入到EPS控制器的转动角速度,首先会对其进行限幅,限制方向盘的转动角速度在预设范围-300°/s和300°/s范围内。如果不在范围内,按±300处理。即如果转动角速度大于预设范围的上限角速度300°/s,则确定转动角速度为上限角速度300°/s;如果转动角速度小于预设范围的下限角速度,则确定转动角速度为下限角速度-300°/s。
在一实施例中,所述摩擦补偿参数包括摩擦力比例值和角速度积分值,在预设摩擦补偿表中保存所述转动角速度与所述摩擦补偿参数的对应关系;
所述根据所述转动角速度确定摩擦补偿参数的步骤,包括:
根据所述转动角速度查找预设摩擦补偿表确定所述摩擦补偿参数。
预先在预设摩擦补偿表中通过标定后保存转动角速度与摩擦补偿参数的对应关系,从而在接收到转角传感器输入EPS控制器的转动角速度时,直接根据转动角速度查找预设摩擦补偿表即可确定包括摩擦力比例值和角速度积分值的摩擦补偿参数。
在一实施例中,所述根据所述摩擦补偿参数确定补偿摩擦力的步骤,包括:
根据所述摩擦力比例值和所述角速度积分值计算得到所述补偿摩擦力的大小;
所述将所述补偿摩擦力转换为转向助力电机的部分输出电流的步骤,包括:
根据所述补偿摩擦力和预设第一系数将所述补偿摩擦力的大小转换为补偿摩擦力对应的部分输出电流的大小;
根据当前车辆状态中方向盘的转动方向确定摩擦力对应的部分输出电流的方向。
具体根据摩擦补偿参数确定补偿摩擦力的计算方法为:根据摩擦力比例值和角速度积分值计算得到补偿摩擦力的大小,比如大小为摩擦力比例值乘上角速度积分值。
在计算得到补偿摩擦力大小之后,具体将补偿摩擦力转换为转向助力电机的部分输出电流的方法为:根据补偿摩擦力和预设第一系数将补偿摩擦力的大小转换为补偿摩擦力对应的部分输出电流的大小,比如摩擦力比例值*角速度积分值*固定的预设第一系数=补偿电流大小。其中,用固定的系数将摩擦力大小换算成电流大小。然后,根据当前车辆状态中方向盘的转动方向确定摩擦力对应的部分输出电流的方向,比如,转角或方向盘往左为正、决定电流也为正;转角或方向盘往右为负、决定电流也为负。
在一实施例中,所述根据所述车辆当前车速确定阻尼补偿参数的步骤之前,还包括:
判断所述车辆当前车速是否小于预设车速;
若所述车辆当前车速小于预设车速,则根据所述车辆当前车速和预设步长确定车速索引;
若所述车辆当前车速不小于预设车速,则确定车速索引为预设最大索引。
阻尼补偿是为了改善汽车收敛性,使车辆行驶时转向稳定和不摆振。EPS控制器的阻尼补偿输入是CAN信号中的车辆当前车速,在根据车辆当前车速确定阻尼补偿参数之前,还需要根据车辆当前车速的大小确定查找阻尼补偿表的车速索引,比如确定车速索引为(车辆当前车速/10+1),进行分段划分。
如果车辆当前车速小于预设车速比如140km/h,则根据车辆当前车速和预设步长确定车速索引,比如车辆当前车速为125km/h,预设步长为10,通过向上取整的方式确定车速索引为14;如果车辆当前车速不小于预设车速,比如车辆当前车速为160km/h,则确定车速索引为预设最大索引比如15。
在一实施例中,在预设阻尼补偿表中保存所述车速索引与所述阻尼补偿参数的对应关系;
所述根据所述车辆当前车速确定阻尼补偿参数的步骤,包括:
根据所述车辆当前车速对应的所述车速索引查找所述阻尼补偿表确定所述阻尼补偿参数。
同样的,预先在阻尼补偿表中通过标定后保存车辆当前车速对应的车速索引与阻尼补偿参数之间的对应关系,从而在从CAN信号中确定车辆当前车速之后,直接根据车辆当前车速对应的车速索引查找阻尼补偿表即可确定阻尼补偿参数,比如阻尼补偿参数可以是转动方向盘的阻尼值。
在一实施例中,所述根据所述阻尼补偿参数确定补偿阻尼值的步骤,包括:
以所述车辆当前车速对应的所述车速索引查找所述阻尼补偿表确定得到的所述阻尼补偿参数作为基础参数;
以所述车辆当前车速对应的所述车速索引加1后查找所述阻尼补偿表确定得到的所述阻尼补偿参数作为进阶参数;
根据所述进阶参数、所述基础参数和预设第二系数得到增长值,在所述基础参数上加上所述增长值得到所述补偿阻尼值;
所述将所述补偿阻尼值转换为转向助力电机的部分输出电流的步骤,包括:
将所述补偿阻尼值的大小转换为补偿阻尼值对应的部分输出电流的大小;
根据当前车辆状态中方向盘的转动方向确定摩擦力对应的部分输出电流的方向。
具体根据阻尼补偿参数确定补偿阻尼值的计算方法为:
将车辆当前车速对应的车速索引查找阻尼补偿表确定得到的阻尼补偿参数作为基础参数,比如车辆当前车速为130km/h,车速索引为14,查找阻尼补偿表得到的阻尼补偿参数作为基础参数;将车辆当前车速对应的车速索引加1后查找阻尼补偿表确定得到的阻尼补偿参数作为进阶参数,比如进阶参数为车速索引为14+1查找阻尼补偿表得到的阻尼补偿参数;根据进阶参数、基础参数和预设第二系数得到增长值,比如,使用进阶参数减去基础参数的差乘以预设第二系数,得到增长值,再在基础参数上加上增长值便得到了补偿阻尼值。
同样的,在计算得到补偿阻尼值大小之后,具体将补偿阻尼值转换为转向助力电机的部分输出电流的方法为:将补偿阻尼值的大小转换为补偿阻尼值对应的部分输出电流的大小,然后,根据当前车辆状态中方向盘的转动方向确定阻尼值对应的部分输出电流的方向,比如,转角或方向盘往左为正、决定电流也为正;转角或方向盘往右为负、决定电流也为负。
此外,本申请实施例还提供一种电动助力转向的补偿装置,所述电动助力转向的补偿装置,包括:
EPS控制器和转向助力电机;
所述EPS控制器控制所述转向助力电机时执行如上所述的电动助力转向的补偿方法。
此外,本申请实施例还提供一种车辆,所述车辆包括如上所述的电动助力转向的补偿装置、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序配置为实现如上所述的电动助力转向的补偿方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种电动助力转向的补偿方法,其中,所述电动助力转向的补偿方法,包括:
    获取方向盘的转动角速度和车辆当前车速;
    根据所述转动角速度确定摩擦补偿参数,根据所述车辆当前车速确定阻尼补偿参数;
    根据所述摩擦补偿参数确定补偿摩擦力,根据所述阻尼补偿参数确定补偿阻尼值;
    将所述补偿摩擦力和所述补偿阻尼值分别转换为转向助力电机的部分输出电流。
  2. 如权利要求1所述的电动助力转向的补偿方法,其中,所述获取方向盘的转动角速度的步骤,包括:
    获取转角传感器的转角信号;
    根据所述转角信号在单位时间内的脉冲波的数量确定所述转动角速度。
  3. 如权利要求2所述的电动助力转向的补偿方法,其中,所述根据所述转动角速度确定摩擦补偿参数的步骤之前,还包括:
    判断所述转动角速度是否处于预设范围内;
    若所述转动角速度大于预设范围的上限角速度,则确定所述转动角速度为所述上限角速度;
    若所述转动角速度小于预设范围的下限角速度,则确定所述转动角速度为所述下限角速度。
  4. 如权利要求3所述的电动助力转向的补偿方法,其中,所述摩擦补偿参数包括摩擦力比例值和角速度积分值,在预设摩擦补偿表中保存所述转动角速度与所述摩擦补偿参数的对应关系;
    所述根据所述转动角速度确定摩擦补偿参数的步骤,包括:
    根据所述转动角速度查找预设摩擦补偿表确定所述摩擦补偿参数。
  5. 如权利要求4所述的电动助力转向的补偿方法,其中,所述根据所述摩擦补偿参数确定补偿摩擦力的步骤,包括:
    根据所述摩擦力比例值和所述角速度积分值计算得到所述补偿摩擦力的大小;
    所述将所述补偿摩擦力转换为转向助力电机的部分输出电流的步骤,包括:
    根据所述补偿摩擦力和预设第一系数将所述补偿摩擦力的大小转换为补偿摩擦力对应的部分输出电流的大小;
    根据当前车辆状态中方向盘的转动方向确定摩擦力对应的部分输出电流的方向。
  6. 如权利要求1所述的电动助力转向的补偿方法,其中,所述根据所述车辆当前车速确定阻尼补偿参数的步骤之前,还包括:
    判断所述车辆当前车速是否小于预设车速;
    若所述车辆当前车速小于预设车速,则根据所述车辆当前车速和预设步长确定车速索引;
    若所述车辆当前车速不小于预设车速,则确定车速索引为预设最大索引。
  7. 如权利要求6所述的电动助力转向的补偿方法,其中,在预设阻尼补偿表中保存所述车速索引与所述阻尼补偿参数的对应关系;
    所述根据所述车辆当前车速确定阻尼补偿参数的步骤,包括:
    根据所述车辆当前车速对应的所述车速索引查找所述阻尼补偿表确定所述阻尼补偿参数。
  8. 如权利要求7所述的电动助力转向的补偿方法,其中,所述根据所述阻尼补偿参数确定补偿阻尼值的步骤,包括:
    以所述车辆当前车速对应的所述车速索引查找所述阻尼补偿表确定得到的所述阻尼补偿参数作为基础参数;
    以所述车辆当前车速对应的所述车速索引加1后查找所述阻尼补偿表确定得到的所述阻尼补偿参数作为进阶参数;
    根据所述进阶参数、所述基础参数和预设第二系数得到增长值,在所述基础参数上加上所述增长值得到所述补偿阻尼值;
    所述将所述补偿阻尼值转换为转向助力电机的部分输出电流的步骤,包括:
    将所述补偿阻尼值的大小转换为补偿阻尼值对应的部分输出电流的大小;
    根据当前车辆状态中方向盘的转动方向确定摩擦力对应的部分输出电流的方向。
  9. 一种电动助力转向的补偿装置,其中,所述电动助力转向的补偿装置,包括:
    EPS控制器和转向助力电机;
    所述EPS控制器控制所述转向助力电机时执行如权利要求1至8中任一项所述的电动助力转向的补偿方法。
  10. 一种车辆,其中,所述车辆包括如权利要求9所述的电动助力转向的补偿装置、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序配置为实现如权利要求1至8中任一项所述的电动助力转向的补偿方法的步骤。
PCT/CN2022/133540 2022-06-16 2022-11-22 电动助力转向的补偿方法、装置及车辆 WO2023240929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210680008.1 2022-06-16
CN202210680008.1A CN114919642B (zh) 2022-06-16 2022-06-16 电动助力转向的补偿方法、装置及车辆

Publications (1)

Publication Number Publication Date
WO2023240929A1 true WO2023240929A1 (zh) 2023-12-21

Family

ID=82814616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133540 WO2023240929A1 (zh) 2022-06-16 2022-11-22 电动助力转向的补偿方法、装置及车辆

Country Status (2)

Country Link
CN (1) CN114919642B (zh)
WO (1) WO2023240929A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114919642B (zh) * 2022-06-16 2024-05-10 上汽通用五菱汽车股份有限公司 电动助力转向的补偿方法、装置及车辆
CN115339508B (zh) * 2022-09-02 2024-04-09 一汽解放汽车有限公司 电动助力转向控制方法、装置、计算机设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014721A (ja) * 2003-06-25 2005-01-20 Toyota Motor Corp 車輌用電動式パワーステアリング装置
US20080189014A1 (en) * 2005-11-02 2008-08-07 Mitsubishi Electric Corp. Vehicular steering apparatus
KR20130139081A (ko) * 2012-06-12 2013-12-20 현대자동차주식회사 Mdps 시스템의 마찰 보상 장치 및 그 방법
CN108674482A (zh) * 2018-05-18 2018-10-19 北京汽车股份有限公司 电动助力转向系统、控制方法、及车辆
CN113799872A (zh) * 2021-09-17 2021-12-17 东风汽车集团股份有限公司 一种基于线控转向路感模拟的控制方法及系统
CN114919642A (zh) * 2022-06-16 2022-08-19 上汽通用五菱汽车股份有限公司 电动助力转向的补偿方法、装置及车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698613B2 (ja) * 2000-03-28 2005-09-21 光洋精工株式会社 電動パワーステアリング装置
JP4019825B2 (ja) * 2002-07-09 2007-12-12 株式会社ジェイテクト 電動パワーステアリング装置
JP5055741B2 (ja) * 2005-11-01 2012-10-24 日本精工株式会社 電動パワーステアリング装置の制御装置
CN101377657B (zh) * 2007-08-31 2012-03-07 同济大学 具有鲁棒稳定性能的电动助力转向系统
CN103863393B (zh) * 2012-12-17 2016-05-18 联创汽车电子有限公司 电动助力转向系统的摩擦补偿方法
CN105292246B (zh) * 2015-12-07 2018-01-02 长春工业大学 汽车电动助力转向摩擦补偿控制方法
KR102419464B1 (ko) * 2016-01-20 2022-07-11 주식회사 만도 전동식 조향 장치 및 전동식 조향 장치의 저온 상황 시 토크 상승 저감 방법
CN110576898B (zh) * 2018-06-07 2022-03-11 华创车电技术中心股份有限公司 机动车辆转向控制系统及转向控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014721A (ja) * 2003-06-25 2005-01-20 Toyota Motor Corp 車輌用電動式パワーステアリング装置
US20080189014A1 (en) * 2005-11-02 2008-08-07 Mitsubishi Electric Corp. Vehicular steering apparatus
KR20130139081A (ko) * 2012-06-12 2013-12-20 현대자동차주식회사 Mdps 시스템의 마찰 보상 장치 및 그 방법
CN108674482A (zh) * 2018-05-18 2018-10-19 北京汽车股份有限公司 电动助力转向系统、控制方法、及车辆
CN113799872A (zh) * 2021-09-17 2021-12-17 东风汽车集团股份有限公司 一种基于线控转向路感模拟的控制方法及系统
CN114919642A (zh) * 2022-06-16 2022-08-19 上汽通用五菱汽车股份有限公司 电动助力转向的补偿方法、装置及车辆

Also Published As

Publication number Publication date
CN114919642B (zh) 2024-05-10
CN114919642A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2023240929A1 (zh) 电动助力转向的补偿方法、装置及车辆
US20170137057A1 (en) Electric power steering apparatus
JP4411514B2 (ja) 電動パワーステアリング装置
US20120303218A1 (en) Electric steering device
EP3495244B1 (en) Electric power steering apparatus
US20150066302A1 (en) Control apparatus of motor driven power steering
EP3282576A1 (en) Motor control device and electric power steering device equipped with same
KR20210135738A (ko) 전동식 조향시스템의 제어 장치 및 방법
US11511795B2 (en) Dither noise management in electric power steering systems
CN114275038B (zh) 方向盘的振动抑制方法、装置、车辆及存储介质
JPH10264838A (ja) 操舵制御装置
KR20190076803A (ko) 전동식 파워 스티어링 시스템의 토크 보상 장치 및 방법
JP2000016320A (ja) 電動パワーステアリング装置
JP2002193120A (ja) 電動パワーステアリング装置
JP2003170844A (ja) 電動パワーステアリング装置の制御装置
JP2005255081A (ja) 電動パワーステアリング制御装置
EP2184217B1 (en) Electrical power steering control device
CN111319675A (zh) 电子控制装置、控制方法及电子控制程序
CN113635961A (zh) 一种分布式驱动汽车转向控制方法、控制装置及汽车
CN114919652B (zh) 随速摩擦力的控制方法、装置、设备及计算机存储介质
JP2020192927A (ja) 車両用操向装置
JP5322588B2 (ja) 電動式パワーステアリング制御装置
CN117565969B (zh) 线控转向力矩信号校正与叠加方法、装置、设备及车辆
TWI778558B (zh) 電動載具的驅動系統及其驅動控制方法
CN114312985A (zh) 车辆控制方法、装置、设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946595

Country of ref document: EP

Kind code of ref document: A1