WO2023236423A1 - 免注塑磁钢铁芯检测方法及装置、系统 - Google Patents

免注塑磁钢铁芯检测方法及装置、系统 Download PDF

Info

Publication number
WO2023236423A1
WO2023236423A1 PCT/CN2022/127881 CN2022127881W WO2023236423A1 WO 2023236423 A1 WO2023236423 A1 WO 2023236423A1 CN 2022127881 W CN2022127881 W CN 2022127881W WO 2023236423 A1 WO2023236423 A1 WO 2023236423A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic steel
injection
core
iron core
device body
Prior art date
Application number
PCT/CN2022/127881
Other languages
English (en)
French (fr)
Inventor
杨波
王洪波
林文芳
孙银平
薛雷
郑荣威
Original Assignee
苏州范斯特机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州范斯特机械科技有限公司 filed Critical 苏州范斯特机械科技有限公司
Publication of WO2023236423A1 publication Critical patent/WO2023236423A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the invention relates to the field of electric motors, and in particular to an injection-free magnetic steel core detection method, device and system.
  • the permanent magnets in the rotor and the rotor core are important components.
  • the rotor core is made of stacked multi-layer silicon steel sheets with slots and holes.
  • the rotor core is provided with magnetic steel slots.
  • the permanent magnets are inserted into the magnet slots on the rotor core. Glue, injection molding and encapsulation are usually used to fix the permanent magnets in the magnet slots in the rotor core; however, an injection molding and packaging process will be added. , leading to increased costs and longer working hours.
  • a motor rotor magnet fixing structure recorded in application number 202020275463X uses spring fragments to rebound to assemble the magnets, saving the injection molding packaging process and improving production efficiency.
  • the rebound of the iron core spring directly affects the assembly quality of the magnetic steel and the iron core. There is no good research and evaluation method and equipment in the existing technology to use the rebound of the iron core spring to realize the assembly of the magnetic steel and the iron core. .
  • the purpose of the present invention is to provide an injection-free magnetic steel core detection device, which can determine whether the current core lamination scheme is correct by sensing the pressure changes caused by the elastic pieces in the magnetic steel groove of the core. Meet assembly requirements to achieve optimal injection-free assembly of the core.
  • the first object of the present invention is to provide an injection-free magnetic steel core detection device, including a device body inserted into the magnetic steel groove of the elastic core lamination; wherein ,
  • the device body has the same outer contour as the original magnetic steel placed in the magnetic steel tank;
  • a first force sensor is provided on one surface of the device body
  • the first force sensor When the device body is inserted into the magnetic steel groove, the first force sensor abuts against the opposite side of the elastic piece of the magnetic steel groove.
  • the elastic piece bends and rebounds and presses against the surface of the device body to form a The first pressure on the first force sensor; the first force sensor collects the first pressure to determine whether the assembly conditions of the magnetic steel core are met.
  • a second force sensor array is also provided on a surface of the device body; wherein the second force sensor array includes pressure sensors distributed in an array with several rows and columns on the surface of the device body. To collect several second pressures generated when the elastic pieces at different positions are pressed.
  • the device body also includes a data transmission module, a battery module, and a data storage module; wherein,
  • the data storage module is used to store the first pressure
  • the data transmission module is used to transmit the first pressure stored in the data storage module to an external computing device;
  • the battery module is used to provide power for electrical equipment in the device body.
  • the device body is of the same quality as the original magnetic steel placed in the magnetic steel tank.
  • the second object of the present invention is to provide an injection-free magnet steel core detection system, including: the injection-free magnet steel core detection device as described above, and a computing unit; wherein,
  • the calculation unit is used to obtain the first pressure collected by the injection-free magnet steel core detection device, and determine whether the first pressure meets the assembly conditions of the magnet steel core.
  • the injection-free magnet steel core detection device includes a data transmission module, a battery module, and a data storage module; wherein,
  • the data storage module is used to store the first pressure
  • the data transmission module is used to transmit the first pressure stored in the data storage module to a computing unit;
  • the battery module is used to provide power for electrical equipment in the device body.
  • the rotating platform includes a rotating drive motor and an iron core tooling; wherein,
  • the iron core tooling is used to clamp the assembled iron core, and at least one injection-free magnet iron core detection device is plugged into the iron core;
  • the rotary drive motor drives the iron core tooling to rotate together with the iron core.
  • the third object of the present invention is to provide an injection-free magnetic steel core detection method, which includes the following steps:
  • the lamination plan at least includes the extension amount h of the elastic pieces protruding from the magnetic steel grooves of the spring-type iron core laminations;
  • the steel core detection device forms a contact surface
  • the first force sensor located on the back of the contact surface of the injection-free magnetic steel core detection device acquires the pressure value and records it as the first pressure
  • the lamination plan also includes the number n of spring-type core laminations, the lamination position m of spring-type core laminations, the number k of spring pieces in the same magnetic steel groove, and the spacing between spring pieces in the same magnetic steel groove. p.
  • the assembly conditions of the magnetic steel core include static conditions and/or dynamic conditions; wherein,
  • the static condition at least includes a first pressure greater than a first threshold
  • the dynamic condition at least includes that the first pressure collected after the iron core tooling is driven by the rotation drive motor to rotate the assembled iron core together is greater than the second threshold.
  • the invention provides an injection-free magnetic steel core detection device, which includes a device body inserted into a magnetic steel groove of a spring-type iron core lamination; wherein, the device body is connected to the outer surface of the original magnetic steel placed in the magnetic steel groove.
  • the outlines are the same; the device body is provided with a first force sensor on one surface of the device body; when the device body is inserted into the magnetic steel groove, the first force sensor of the device body abuts against the opposite side of the elastic piece of the magnetic steel groove, and the device body elastic piece After bending, it rebounds and presses against the surface of the device body to form the first pressure on the first force sensor of the device body; the first force sensor of the device body collects the first pressure of the device body to determine whether the magnetic steel core is satisfied.
  • the invention also relates to an injection-free magnetic steel core detection system and method. By sensing the pressure changes caused by the shrapnel in the magnetic steel groove of the iron core, it can be judged whether the current iron core lamination scheme meets the assembly requirements, so as to achieve the optimal injection-free assembly of the iron core.
  • Figure 1 is a schematic structural diagram of the injection-free magnetic steel core detection device according to the present invention.
  • Figure 2 is a schematic structural diagram 2 of the injection-free magnetic steel core detection device according to the present invention.
  • Figure 3 is a modular schematic diagram of the injection-free magnetic steel core detection device according to the present invention.
  • Figure 4 is a modular schematic diagram of the injection-free magnet steel core detection system according to the present invention.
  • Figure 5 is a schematic diagram of the application scenario of the injection-free magnetic steel core detection device according to the present invention.
  • Figure 6 is a partial schematic diagram of the application scenario of the injection-free magnetic steel core detection device according to the present invention.
  • Figure 7 is a schematic structural diagram of the elastic piece rebounding according to the present invention.
  • Figure 8 is a schematic structural diagram of the magnetic steel tank according to the present invention.
  • Figure 9 is a schematic flow chart of the injection-free magnetic steel core detection method according to the present invention.
  • Injection-free magnet iron core detection device 100 Injection-free magnet iron core detection device 100, first force sensor 110, second force sensor array 120, data transmission module 170, battery module 180, data storage module 190, rotating table 200, rotation drive motor 210, iron core Tool 220, calculation unit 300, spring-type core lamination 500, magnetic steel groove 510, first magnetic steel groove 510a, second magnetic steel groove 510b, spring piece 511, first position 511a, second position 511b, magnetic steel 600 .
  • an injection-free magnetic steel core detection device 100 includes a device body inserted into the magnetic steel slot 510 of the elastic core lamination 500; wherein, the device The main body has the same outer contour as the original magnetic steel placed in the magnetic steel slot 510; a first force sensor 110 is provided on one surface of the device main body.
  • the injection-free magnetic steel core is formed by stacking several iron core laminations, of which there is at least one spring-type core lamination 500 , and the remaining core laminations do not have elastic pieces 511 in the magnetic steel grooves.
  • the first force sensor 110 When the device body is inserted into the magnetic steel groove 510, the first force sensor 110 abuts against the opposite side of the elastic piece 511 of the magnetic steel groove 510.
  • the elastic piece 511 bends and then rebounds and presses against the surface of the device body to form a pair of first force sensors.
  • the first pressure of the force sensor 110; the first force sensor 110 collects the first pressure to determine whether the assembly conditions of the magnetic steel core are met.
  • the elastic pieces 511 of the elastic iron core stacks 500 are bent and deformed due to extrusion.
  • the elastic pieces 511 are deformed to In the first position 511a, along with the deformation recovery force of the material, the elastic piece 511 gradually returns to the second position 511b, and forms a squeezing force on the device body in the second position 511b; due to the different recovery characteristics of different materials, the laminates have different thicknesses.
  • the recovery characteristics of different sizes and extension h of the elastic piece 511 are also different; in actual production, in order to make the iron core meet the assembly requirements, it is necessary to detect the pressure generated by the elastic piece 511.
  • the first force sensor 110 collects the amount of pressure.
  • the thickness of the core laminations was 0.27mm, and the protrusion amounts of the elastic pieces 511 were 1mm, 1.2mm, 1.5mm, 1.8mm, and 2mm respectively in the 2-piece or 4-piece elastic piece type iron core.
  • the data table of the first pressure obtained by using a spring piece (the first magnetic steel groove 510a as shown in Figure 8) when laminating 500.
  • the required assembly requirement is that the first pressure needs to be greater than 12N, it can be seen from the table that, When the protrusion h is 1.5mm and the lamination scheme using 4 laminations can meet the requirements, it meets the assembly conditions of the magnetic steel core.
  • the thickness of the core laminations was 0.27mm, and the protrusion amounts of the elastic pieces 511 were 1mm, 1.2mm, 1.5mm, 1.8mm, and 2mm respectively in the 2-piece or 4-piece elastic piece type core.
  • the data table of the first pressure obtained through two elastic pieces (the second magnetic steel groove 510b as shown in Figure 8) when laminating 500.
  • the required assembly requirement is that the first pressure needs to be greater than 14N
  • the protrusion h is 1.2mm and 4 laminations are used
  • the protrusion h is 1.5mm and 2 or 4 laminations are used
  • the protrusion h is 1.8mm and 4 laminations are used
  • a total of four kinds of laminations are used.
  • the chip solution can meet the requirements and meet the assembly conditions of the magnet steel core.
  • a second force sensor array 120 is also provided on a surface of the device body; as shown in FIG. 2 , the second force sensor array 120 includes arrays distributed in several rows and columns on the surface of the device body.
  • a pressure sensor is used to collect a plurality of second pressures generated when the shrapnel at different positions is pressed.
  • the force sensors on the second force sensor array 120 can respectively obtain the force of the multiple elastic pieces 511 acting on the device body.
  • Pressure as shown in Figure 5, uses four spring-type iron core laminations 500 and is in the first magnetic steel groove 510a, that is, the four force sensors in the second force sensor array 120 have pressure signals and are connected with the first force sensor array 120.
  • the pressure F 0 together forms the pressure information data unit U 0 ⁇ F 0 , F 11 , F 12 ,...F xy ⁇ , where x represents the number of rows of the sensor array, and y represents the number of columns of the sensor array.
  • the width of the force sensor contact surface on the second force sensor array 120 is greater than the extension h of the elastic piece 511 to avoid data confusion caused by one elastic piece 511 contacting too many force sensors.
  • first force sensor 110 and the second force sensor array 120 on the device body can be embedded-mounted sensors or can be configured as patch-mounted sensors. Any sensor used to obtain pressure changes should belong to this invention. The scope of protection applied for.
  • real-time data is collected on the pressure information data unit U i ⁇ F 0 , F 11 , F 12 ,...F xy ⁇ during the rotation process.
  • Collection i is the collection sequence number
  • the pressure information data unit can be analyzed According to the data changes in U 0 and U i , we can know which shrapnel 511 is abnormal.
  • the device body also includes a data transmission module 170, a battery module 180, and a data storage module 190; wherein the data storage module 190 is used to store the first pressure; the data transmission module 170 is used to transmit the data in the data storage module 190.
  • the first pressure is stored to an external computing device; the battery module 180 is used to provide power for electrical devices within the device body.
  • the first force sensor 110, the second force sensor array 120, the data transmission module 170, and the data storage module 190 are powered by the battery module 180, thereby simplifying the wiring work during detection and avoiding winding during the rotation. line; specifically, the data transmission module 170 can be configured to use data transmission methods such as USB data interface modules, Type-C data interface modules, etc. to facilitate the overall transmission of data to computing units with computing capabilities such as host computers, mobile terminal devices, etc.
  • Data analysis and processing; the data storage module 190 also stores the pressure information data unit U 0 and several sets of pressure information data units U i collected during the rotation.
  • the mass of the device body and the original magnetic steel placed in the magnetic steel tank 510 are the same to ensure that the rotational inertia of the actual iron core is consistent.
  • an injection-free magnetic steel core detection system 1000 includes:
  • the injection-free magnet steel core detection device 100 as described in Embodiment 1 above, and the calculation unit 300; wherein, the calculation unit 300 is used to obtain the first pressure collected by the injection-free magnet steel core detection device 100, and determine whether the first pressure satisfies the magnetic requirements. Steel core assembly conditions.
  • the injection-free magnet steel core detection device 100 is inserted into the magnet steel slot 510 to collect the first pressure.
  • the calculation unit 300 determines whether it is greater than the first threshold by obtaining the first pressure. If it is greater, the current detection is passed. , to meet the assembly conditions of magnet steel core.
  • the computing unit 300 can be electrically connected to the injection-free magnet steel core detection device 100 through cables to provide power support on the one hand, and to transmit detection data on the other hand.
  • the computing unit 300 can be configured as an electronic device capable of data analysis and processing, such as a host computer or a mobile terminal device.
  • the injection-free magnet steel core detection system 1000 of the present application can be built only through the first force sensor 110 and the calculation unit 300 of the injection-free magnet steel core detection device 100 in Figure 4; it should be understood that the injection-free magnet steel core detection system 1000 in Figure 4 Shown is one of many injection-free magnetic steel core detection systems 1000, not the only one.
  • a second force sensor array 120 is added to the injection-free magnetic steel core detection device 100, and the calculation unit 300 stores the pressure information data unit U 0 ⁇ F 0 , F 11 , F 12 ,... as described in Embodiment 1. ...F xy ⁇ for analysis and processing.
  • the injection-free magnet steel core detection device includes a data transmission module 170, a battery module 180, and a data storage module 190; wherein, the data storage module 190 is used to store the first pressure; data transmission The module 170 is used to transmit the first pressure stored in the data storage module 190 to the computing unit 300; the battery module 180 is used to provide power for electrical equipment in the device body.
  • the first force sensor 110, the second force sensor array 120, the data transmission module 170, and the data storage module 190 are powered by the battery module 180, thereby simplifying the wiring work during detection and avoiding winding during the rotation.
  • the injection-free magnet iron core detection system 1000 also includes a rotating platform 200; the rotating platform 200 includes a rotating drive motor 210 and an iron core tooling 220; wherein, the iron core
  • the core tool 220 is used to clamp the assembled iron core, and at least one injection-free magnet iron core detection device is plugged into the iron core; the rotation drive motor 210 drives the iron core tool 220 to rotate together with the iron core.
  • the rotating stage 200 provides a rotating environment for the iron core to detect changes in pressure during the rotation, thereby determining whether the assembly conditions for the magnetic iron core are met.
  • an injection-free magnetic steel core detection method includes the following steps:
  • a lamination plan for the spring-type core laminations 500 wherein, the lamination plan at least includes the protrusion amount h of the spring pieces 511 protruding from the magnetic steel grooves 510 of the spring-type core laminations 500; generally, in In the actual production process, the material and thickness of the core are determined according to the manufacturer's requirements, that is, in the actual testing process, the specific core material and the thickness of the core laminations are included; the extension is established through different extension amounts h. Output the lamination plan with specific core material and core lamination thickness, and use this to detect whether the current lamination plan meets the current injection-molding-free assembly requirements of the core.
  • the first force sensor 110 located on the back of the contact surface of the injection-free magnetic steel core detection device obtains the pressure value and records it as the first pressure
  • the lamination solution also includes the number n of spring-type iron core laminations 500 and the number k of spring pieces 511 in the same magnetic steel slot 510; as described in Table 1 and Table 2 in Embodiment 1, different n
  • Table 1 and Table 2 in Embodiment 1 different n
  • the lamination scheme also includes the spacing p of the elastic pieces 511 in the same magnetic steel groove 510, and the lamination position m of the elastic piece iron core laminations 500;
  • the injection-free magnetic steel core detection device is provided with a second force sensor array 120; wherein the second force sensor array 120 includes pressure sensors distributed in an array with several rows and columns on the surface of the device body.
  • a number of second pressures are generated when the elastic pieces at different positions are pressed; the different positions of the elastic pieces are characterized by the stacking position m and the spacing p; where the stacking position m is the number of pieces from the first stack, for example, in In Figure 5, the lamination positions m of the four spring-type core laminations 500 are (100, 200, 400, 500) respectively, which means that the positions m of the 100th, 200th, 400, and 500th lamination from the first lamination are replaced by Spring-type iron core stack 500; as shown in Figure 8, the pitch p represents the distance between two spring pieces 511; the force sensors on the second force sensor array 120 can respectively obtain the effects of multiple spring pieces 511 on the device.
  • the assembly conditions of the magnetic iron core include static conditions and/or dynamic conditions; wherein the static conditions at least include the first pressure being greater than the first threshold; the dynamic conditions at least include driving the iron core tool 220 through the rotational driving motor 210
  • the first pressure collected after the assembled iron cores rotate together is greater than the second threshold.
  • Dynamic conditions In order to avoid assembly failure of the iron core during the later rotation process, in particular, the first force sensor 110 and the second force sensor array 120 are used to obtain the pressure information data unit U i ⁇ F 0 , F 11 , during the rotation process. F 12 ,...F xy ⁇ perform real-time data collection (i is the collection sequence number) to dynamically monitor the pressure change of the shrapnel 511 against the magnet 600 during the rotation.
  • An injection-free magnet steel core which is a core formed by stacking lamination schemes that have passed the inspection by the injection-free magnet steel core detection device 100 in Embodiment 1 or the injection-free magnet steel core detection system 1000 in Embodiment 2; Or use the injection-free magnet iron core detection method in Example 3 to detect the iron core formed by stacking the passed lamination scheme.
  • a spring-type core laminate 500 with a core lamination thickness of 0.27mm has a spring-leaf protrusion h of 1.5mm; through two pieces or Four pieces of spring-type core laminations 500 are distributed in the core laminations to achieve injection-free core assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种免注塑磁钢铁芯检测装置(100),包括插接于弹片式铁芯叠片的磁钢槽(510)内的装置本体;其中,装置本体与磁钢槽(510)内放置的原磁钢(600)外轮廓相同;装置本体一表面上设有第一力传感器(110);当装置本体插入磁钢槽(510)内时,装置本体第一力传感器(110)抵靠在磁钢槽(510)的弹片的相对侧,装置本体弹片折弯后回弹并抵压至装置本体表面,以形成对装置本体第一力传感器(110)的第一压力;装置本体第一力传感器(110)采集装置本体第一压力,用以判断是否满足磁钢铁芯装配条件。还涉及免注塑磁钢铁芯检测系统及方法。通过感知铁芯磁钢槽内(510)弹片引起的压力变化,来判别当前铁芯叠片(500)方案是否满足装配要求,以实现铁芯的最优化免注塑装配。

Description

免注塑磁钢铁芯检测方法及装置、系统 技术领域
本发明涉及电机领域,特别涉及一种免注塑磁钢铁芯检测方法及装置、系统。
背景技术
永磁同步电机中,转子内永磁体和转子铁芯为重要的组成零件,转子铁芯是由带有槽和孔特征的多层硅钢片堆叠而成,转子铁芯上设置有磁钢槽,永磁磁钢插入转子铁芯上的磁钢槽中,通常采用胶水、注塑和包封等工艺将永磁磁钢固定在转子铁芯中的磁钢槽中;但会增加一道注塑封装的工艺,导致成本提升,工时较长。
如申请号202020275463X中记载的一种电机转子磁钢固定结构,其采用弹片回弹来实现对磁钢的装配,节约了注塑封装工艺,提升了生产效率。
铁芯弹片的回弹情况直接影响着磁钢与铁芯的装配质量,现有技术中尚没有一个很好的研究与评价采用铁芯弹片回弹来实现磁钢与铁芯装配的方法与设备。
对此,急需一种方式来解决上述问题。
发明内容
针对现有技术中存在的不足之处,本发明的目的是提供一种免注塑磁钢铁芯检测装置,通过感知铁芯磁钢槽内弹片引起的压力变化,来判别当前铁芯叠片方案是否满足装配要求,以实现铁芯的最优化免注塑装配。
为了实现根据本发明的上述目的和其他优点,本发明的第一目的是提供一种免注塑磁钢铁芯检测装置,包括插接于弹片式铁芯叠片的磁钢槽内的装置本体;其中,
所述装置本体与该磁钢槽内放置的原磁钢外轮廓相同;
所述装置本体一表面上设有第一力传感器;
当所述装置本体插入磁钢槽内时,所述第一力传感器抵靠在磁钢槽的弹片的相对侧,所述弹片折弯后回弹并抵压至所述装置本体表面,以形成对所述第一力传感器的第一压力;所述第一力传感器采集所述第一压力,用以判 断是否满足磁钢铁芯装配条件。
优选地,所述装置本体一表面上还设有第二力传感器阵列;其中,所述第二力传感器阵列包括分布与所述装置本体表面上的若干行若干列呈阵列式的压力传感器,用以采集不同位置的所述弹片抵压时产生的若干第二压力。
优选地,所述装置本体还包括数据传输模块、电池模块、数据存储模块;其中,
所述数据存储模块用以存储所述第一压力;
所述数据传输模块用以传输所述数据存储模块中存储的所述第一压力至外部计算设备;
所述电池模块用以提供所述装置本体内用电设备的电力。
优选地,所述装置本体与该磁钢槽内放置的原磁钢质量相同。
本发明的第二目的是提供一种免注塑磁钢铁芯检测系统,包括:如上所述的免注塑磁钢铁芯检测装置,以及计算单元;其中,
所述计算单元用以获取免注塑磁钢铁芯检测装置采集的第一压力,判断所述第一压力是否满足磁钢铁芯装配条件。
优选地,所述免注塑磁钢铁芯检测装置包括数据传输模块、电池模块、数据存储模块;其中,
所述数据存储模块用以存储所述第一压力;
所述数据传输模块用以传输所述数据存储模块中存储的所述第一压力至计算单元;
所述电池模块用以提供所述装置本体内用电设备的电力。
优选地,还包括转动台;所述转动台包括旋转驱动电机、铁芯工装;其中,
所述铁芯工装用以装夹已完成装配的铁芯,所述铁芯中至少插接有一免注塑磁钢铁芯检测装置;
所述旋转驱动电机驱使所述铁芯工装带铁芯一起旋转。
本发明的第三目的是提供一种免注塑磁钢铁芯检测方法,包括以下步骤:
选择弹片式铁芯叠片的叠片方案;其中,叠片方案至少包括弹片式铁芯叠片的磁钢槽内伸出的弹片的伸出量h;
将免注塑磁钢铁芯检测装置插入按所述叠片方案完成叠片的免注塑磁钢铁芯的磁钢槽内;其中,磁钢槽边沿的弹片折弯后回弹以抵压在免注塑磁钢铁芯检测装置形成抵接面;
位于所述免注塑磁钢铁芯检测装置的抵接面背面上的第一力传感器获取压力值,并记为第一压力;
判断所述第一压力是否满足磁钢铁芯装配条件;
若不满足,则调整叠片方案。
优选地,所述叠片方案还包括弹片式铁芯叠片的数量n、弹片式铁芯叠片的叠片位置m、同一磁钢槽内弹片的数量k、同一磁钢槽内弹片的间距p。
优选地,所述磁钢铁芯装配条件包括静态条件和/或动态条件;其中,
所述静态条件至少包括第一压力大于第一阈值;
所述动态条件至少包括经旋转驱动电机驱使铁芯工装带动完成装配的铁芯一起旋转后采集的第一压力大于第二阈值。
与现有技术相比,本发明的有益效果是:
本发明提供一种免注塑磁钢铁芯检测装置,包括插接于弹片式铁芯叠片的磁钢槽内的装置本体;其中,装置本体装置本体与该磁钢槽内放置的原磁钢外轮廓相同;装置本体装置本体一表面上设有第一力传感器;当装置本体装置本体插入磁钢槽内时,装置本体第一力传感器抵靠在磁钢槽的弹片的相对侧,装置本体弹片折弯后回弹并抵压至装置本体装置本体表面,以形成对装置本体第一力传感器的第一压力;装置本体第一力传感器采集装置本体第一压力,用以判断是否满足磁钢铁芯装配条件。本发明还涉及免注塑磁钢铁芯检测系统及方法。通过感知铁芯磁钢槽内弹片引起的压力变化,来判别当前铁芯叠片方案是否满足装配要求,以实现铁芯的最优化免注塑装配。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为根据本发明所述的免注塑磁钢铁芯检测装置的结构示意图一;
图2为根据本发明所述的免注塑磁钢铁芯检测装置的结构示意图二;
图3为根据本发明所述的免注塑磁钢铁芯检测装置的模块化示意图;
图4为根据本发明所述的免注塑磁钢铁芯检测系统的模块化示意图;
图5为根据本发明所述的免注塑磁钢铁芯检测装置的应用场景示意图;
图6为根据本发明所述的免注塑磁钢铁芯检测装置的应用场景局部示意图;
图7为根据本发明所述的弹片回弹的结构示意图;
图8为根据本发明所述的磁钢槽的结构示意图;
图9为根据本发明所述的免注塑磁钢铁芯检测方法的流程示意图。
图中:免注塑磁钢铁芯检测装置100、第一力传感器110、第二力传感器阵列120、数据传输模块170、电池模块180、数据存储模块190、转动台200、旋转驱动电机210、铁芯工装220、计算单元300、弹片式铁芯叠片500、磁钢槽510、第一磁钢槽510a、第二磁钢槽510b、弹片511、第一位置511a、第二位置511b、磁钢600。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
本发明的前述和其它目的、特征、方面和优点将变得更加明显,以令本领域技术人员参照说明书文字能够据以实施。在附图中,为清晰起见,可对形状和尺寸进行放大,并将在所有图中使用相同的附图标记来指示相同或相似的部件。在下列描述中,诸如中心、厚度、高度、长度、前部、背部、后部、左边、右边、顶部、底部、上部、下部等用词为基于附图所示的方位或位置关系。特别地,“高度”相当于从顶部到底部的尺寸,“宽度”相当于从左边到右边的尺寸,“深度”相当于从前到后的尺寸。这些相对术语是为了说明方便起见并且通常并不旨在需要具体取向。涉及附接、联接等的术语 (例如,“连接”和“附接”)是指这些结构通过中间结构彼此直接或间接固定或附接的关系、以及可动或刚性附接或关系,除非以其他方式明确地说明。
实施例1
如图1-图3、图5-图6所示,一种免注塑磁钢铁芯检测装置100,包括插接于弹片式铁芯叠片500的磁钢槽510内的装置本体;其中,装置本体与该磁钢槽510内放置的原磁钢外轮廓相同;装置本体一表面上设有第一力传感器110。在本实施例中,免注塑磁钢铁芯通过若干片铁芯叠片堆叠而成,其中至少存在一片弹片式铁芯叠片500,其余为的铁芯叠片的磁钢槽内无弹片511的普通铁芯叠片;如图5所示,存在四片弹片式铁芯叠片500,其余的铁芯叠片为普通铁芯叠片。
当装置本体插入磁钢槽510内时,第一力传感器110抵靠在磁钢槽510的弹片511的相对侧,弹片511折弯后回弹并抵压至装置本体表面,以形成对第一力传感器110的第一压力;第一力传感器110采集第一压力,用以判断是否满足磁钢铁芯装配条件。在本实施例中,装置本体插入免注塑磁钢铁芯的磁钢槽内过程中,弹片式铁芯叠片500的弹片511因挤压作用折弯形变,如图7所示,弹片511形变至第一位置511a,随着材料的形变恢复力,弹片511逐渐恢复至第二位置511b,并在第二位置511b形成对装置本体的挤压力;由于不同材料的恢复特性不同,叠片不同厚度尺寸、弹片511伸出量h不同的恢复特性亦不同;在实际生产中,为使得铁芯达到装配要求,需要对弹片511产生的压力进行检测,在本实施例中,通过对特定材料特定厚度的铁芯叠片在相同实验条件下,对弹片式铁芯叠片500的数量n、同一磁钢槽510内弹片511的数量k、弹片伸出量h进行检测,检测第一力传感器110采集的压力大小。
如表1所示,在本实验测试中,铁芯叠片厚度为0.27mm,弹片511伸出量分别为1mm、1.2mm、1.5mm、1.8mm、2mm在2片或4片弹片式铁芯叠片500时通过一个弹片(如图8种所示的第一磁钢槽510a)得到的第一压力的数据表,当所要求的装配要求为第一压力需大于12N时,从表中可知,在伸出量h为1.5mm并采用4片叠片的叠片方案可达到要求,满足磁钢铁芯装配条件。
表1
Figure PCTCN2022127881-appb-000001
如表2所示,在本实验测试中,铁芯叠片厚度为0.27mm,弹片511伸出量分别为1mm、1.2mm、1.5mm、1.8mm、2mm在2片或4片弹片式铁芯叠片500时通过两个弹片(如图8种所示的第二磁钢槽510b)得到的第一压力的数据表,当所要求的装配要求为第一压力需大于14N时,从表中可知,在伸出量h为1.2mm并采用4片叠片、伸出量h为1.5mm并采用2片或4片叠片、伸出量h为1.8mm并采用4片叠片共计四种叠片方案可达到要求,满足磁钢铁芯装配条件。
表2
Figure PCTCN2022127881-appb-000002
Figure PCTCN2022127881-appb-000003
在一些优选实施例中,装置本体一表面上还设有第二力传感器阵列120;如图2所示,第二力传感器阵列120包括分布与装置本体表面上的若干行若干列呈阵列式的压力传感器,用以采集不同位置的弹片抵压时产生的若干第二压力。在本实施例中,为进一步研究存在多个弹片511抵压磁钢600时产生的回弹情况,通过第二力传感器阵列120上的力传感器可分别获取多个弹片511各自作用于装置本体的压力,如图5所示,采用4片弹片式铁芯叠片500同时在第一磁钢槽510a情况下,即第二力传感器阵列120中的四个力传感器存在压力信号,并与第一压力F 0一起形成压力信息数据单元U 0{F 0,F 11,F 12,……F xy},其中,x表示传感器阵列的行数,y表示传感器阵列的列数。在本实施例中,如图6所示,第二力传感器阵列120上的力传感器接触面宽度大于弹片511伸出量h,避免一个弹片511接触过多的力传感器造成数据混乱。
应当理解,装置本体上的第一力传感器110、第二力传感器阵列120可采用嵌入式安装的传感器,也可配置成贴片式安装的传感器,任何用以获取压力变化的传感器都应属于本申请的保护范围。
在一些优选实施例中,为避免铁芯在后期转动过程中出现装配失效,对其转动过程中的压力信息数据单元U i{F 0,F 11,F 12,……F xy}进行实时数据采集(i为采集顺序号),以动态监测转动过程中弹片511抵压磁钢600的压力变化,当压力变化超出所允许的范围时,则不满足动态条件,同时可通过分析压力信息数据单元U 0与U i中的数据变化情况,知晓是具体哪些弹片511出现异常。在一些优选实施例中,装置本体还包括数据传输模块170、电池模块180、数据存储模块190;其中,数据存储模块190用以存储第一压力;数据传输模块170用以传输数据存储模块190中存储的第一压力至外部计算设备;电池模块180用以提供装置本体内用电设备的电力。在本实施例中,通过电池模块180给第一力传感器110、第二力传感器阵列120、数据传输模块170、数据存储模块190供电,从而简化检测时的布线工作,同时在转动过程中避免绕线;具体地,数据传输模块170可配置成利用USB数据接口模块、Type-C数据接口模块等数据传输方式;便于将数据整体传输至具有计算能力的计算 单元如上位机、移动终端设备等进行数据分析处理;数据存储模块190中还存储有压力信息数据单元U 0与以及在转动过程中采集的若干组压力信息数据单元U i
在一些优选实施例中,为仿真铁芯在实际工作中转动情况,装置本体与该磁钢槽510内放置的原磁钢质量相同,以确保与实际铁芯的转动惯量一致。
实施例2
如图4所示,一种免注塑磁钢铁芯检测系统1000,包括:
如上实施例1中记载的免注塑磁钢铁芯检测装置100,以及计算单元300;其中,计算单元300用以获取免注塑磁钢铁芯检测装置100采集的第一压力,判断第一压力是否满足磁钢铁芯装配条件。在本实施例中,通过免注塑磁钢铁芯检测装置100插入磁钢槽510内以采集第一压力,计算单元300通过获取第一压力来判断是否大于第一阈值,若大于,则当前检测通过,满足磁钢铁芯装配条件。在本实施例中,计算单元300可通过线缆与免注塑磁钢铁芯检测装置100电性连接,一方面提供电力支持,另一方面传输检测数据。计算单元300可配置成上位机、移动终端设备等具有数据分析处理的电子设备。
需要说明的是,仅通过图4中免注塑磁钢铁芯检测装置100的第一力传感器110与计算单元300即可搭建本申请的免注塑磁钢铁芯检测系统1000;应当理解,图4中所示为众多免注塑磁钢铁芯检测系统1000中的其中一种,非唯一一种。例如,在免注塑磁钢铁芯检测装置100中附加第二力传感器阵列120,计算单元300中即对如实施例1中记载的压力信息数据单元U 0{F 0,F 11,F 12,……F xy}进行分析处理。
在一些优选实施例中,如图4所示,免注塑磁钢铁芯检测装置包括数据传输模块170、电池模块180、数据存储模块190;其中,数据存储模块190用以存储第一压力;数据传输模块170用以传输数据存储模块190中存储的第一压力至计算单元300;电池模块180用以提供装置本体内用电设备的电力。在本实施例中,通过电池模块180给第一力传感器110、第二力传感器阵列120、数据传输模块170、数据存储模块190供电,从而简化检测时的布线工作,同时在转动过程中避免绕线;在本实施例中,为仿真铁芯在工作状态时的转动,免注塑磁钢铁芯检测系统1000还包括转动台200;转动台200 包括旋转驱动电机210、铁芯工装220;其中,铁芯工装220用以装夹已完成装配的铁芯,铁芯中至少插接有一免注塑磁钢铁芯检测装置;旋转驱动电机210驱使铁芯工装220带铁芯一起旋转。通过转动台200提供给铁芯一转动的环境,以检测在转动过程中压力的变化,从而判断是否满足磁钢铁芯装配条件。
实施例3
如图9所示,一种免注塑磁钢铁芯检测方法,包括以下步骤:
S410、选择弹片式铁芯叠片500的叠片方案;其中,叠片方案至少包括弹片式铁芯叠片500的磁钢槽510内伸出的弹片511的伸出量h;一般地,在实际生产过程中,铁芯的材料以及厚度根据厂商要求确定,即在实际检测过程中,包含有特定的铁芯的材料以及铁芯叠片的厚度;通过不同的伸出量h,来建立伸出量与特定铁芯材料、铁芯叠片厚度的叠片方案,并以此来检测当前的叠片方案是否满足当前铁芯免注塑装配的要求。
S420、将免注塑磁钢铁芯检测装置插入按叠片方案完成叠片的免注塑磁钢铁芯的磁钢槽510内;其中,磁钢槽510边沿的弹片511折弯后回弹以抵压在免注塑磁钢铁芯检测装置形成抵接面;
S430、位于免注塑磁钢铁芯检测装置的抵接面背面上的第一力传感器110获取压力值,并记为第一压力;
在一些实施例中,叠片方案还包括弹片式铁芯叠片500的数量n、同一磁钢槽510内弹片511的数量k;如在实施例1中表1及表2中记载的不同n、k、h下对应的第一压力的大小;在此不再赘述。在另一些优选实施例中,结合图2、图6、图8所示,叠片方案还包括同一磁钢槽510内弹片511的间距p、弹片式铁芯叠片500的叠片位置m;在本实施例中,免注塑磁钢铁芯检测装置设有第二力传感器阵列120;其中,第二力传感器阵列120包括分布与装置本体表面上的若干行若干列呈阵列式的压力传感器,用以采集不同位置的弹片抵压时产生的若干第二压力;弹片的不同位置通过叠片位置m以及间距p来表征;其中,叠片位置m为距离第一片叠片的片数,例如在图5中,4片弹片式铁芯叠片500的叠片位置m分别为(100,200,400,500),即表示分别在距离第一片叠片第100,200,400,500片的位置处替换成弹片式铁芯 叠片500;如图8所示,间距p表示两个弹片511之间的间隔的距离;通过第二力传感器阵列120上的力传感器可分别获取多个弹片511各自作用于装置本体的压力,并与第一压力F 0一起形成压力信息数据单元U 0{F 0,F 11,F 12,……F xy},其中,x表示传感器阵列的行数,y表示传感器阵列的列数。
S440、判断第一压力是否满足磁钢铁芯装配条件;
S451、若满足,则当前叠片方案检查通过;
S452、若不满足,则调整叠片方案。
在一些优选实施例中,磁钢铁芯装配条件包括静态条件和/或动态条件;其中,静态条件至少包括第一压力大于第一阈值;动态条件至少包括经旋转驱动电机210驱使铁芯工装220带动完成装配的铁芯一起旋转后采集的第一压力大于第二阈值。动态条件为避免铁芯在后期转动过程中出现装配失效,特别地,配合第一力传感器110、第二力传感器阵列120对其转动过程中的压力信息数据单元U i{F 0,F 11,F 12,……F xy}进行实时数据采集(i为采集顺序号),以动态监测转动过程中弹片511抵压磁钢600的压力变化,当压力变化超出所允许的范围时,则不满足动态条件,同时可通过分析压力信息数据单元U 0与U i中的数据变化情况,知晓是具体哪些弹片511出现异常;并根据异常情况针对性的调整叠片方案,以快速得到特定铁芯材料、铁芯叠片厚度的情况下铁芯的最优化叠片方案。
实施例4
一种免注塑磁钢铁芯,其利用实施例1中的免注塑磁钢铁芯检测装置100或实施例2中的免注塑磁钢铁芯检测系统1000检测通过的叠片方案堆叠而成的铁芯;或其利用实施例3中的免注塑磁钢铁芯检测方法检测通过的叠片方案堆叠而成的铁芯。
特别地,如实施例1中表1、表2所示,一种铁芯叠片厚度为0.27mm的弹片式铁芯叠片500,其弹片的伸出量h为1.5mm;通过2片或4片分布于铁芯叠片中的弹片式铁芯叠片500,实现免注塑式的铁芯装配。
以上所述仅为本说明书实施例而已,并不用于限制本说明书一个或多个 实施例。对于本领域技术人员来说,本说明书一个或多个实施例可以有各种更改和变化。凡在本说明书一个或多个实施例的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书一个或多个实施例的权利要求范围之内。本说明书一个或多个实施例本说明书一个或多个实施例本说明书一个或多个实施例本说明书一个或多个实施例。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。

Claims (10)

  1. 免注塑磁钢铁芯检测装置,其特征在于,包括插接于弹片式铁芯叠片(500)的磁钢槽(510)内的装置本体;其中,
    所述装置本体与该磁钢槽(510)内放置的原磁钢外轮廓相同;
    所述装置本体一表面上设有第一力传感器(110);
    当所述装置本体插入磁钢槽(510)内时,所述第一力传感器(110)抵靠在磁钢槽(510)的弹片(511)的相对侧,所述弹片(511)折弯后回弹并抵压至所述装置本体表面,以形成对所述第一力传感器(110)的第一压力;所述第一力传感器(110)采集所述第一压力,用以判断是否满足磁钢铁芯装配条件;若不满足,则调整叠片方案;其中,叠片方案至少包括弹片式铁芯叠片(500)的磁钢槽(510)内伸出的弹片(511)的伸出量h,弹片式铁芯叠片(500)的数量n;
    免注塑磁钢铁芯通过若干片铁芯叠片堆叠而成,包括至少存在一片弹片式铁芯叠片(500),其余为的铁芯叠片的磁钢槽内无弹片(511)的普通铁芯叠片。
  2. 根据权利要求1所述的免注塑磁钢铁芯检测装置,其特征在于:所述装置本体一表面上还设有第二力传感器阵列(120);其中,所述第二力传感器阵列(120)包括分布与所述装置本体表面上的若干行若干列呈阵列式的压力传感器,用以采集不同位置的所述弹片抵压时产生的若干第二压力。
  3. 根据权利要求1或2所述的免注塑磁钢铁芯检测装置,其特征在于:所述装置本体还包括数据传输模块(170)、电池模块(180)、数据存储模块(190);其中,
    所述数据存储模块(190)用以存储所述第一压力;
    所述数据传输模块(170)用以传输所述数据存储模块(190)中存储的所述第一压力至外部计算设备;
    所述电池模块(180)用以提供所述装置本体内用电设备的电力。
  4. 根据权利要求1或2所述的免注塑磁钢铁芯检测装置,其特征在于:所述装置本体与该磁钢槽(510)内放置的原磁钢质量相同。
  5. 免注塑磁钢铁芯检测系统,其特征在于,包括:如权利要求1所述的 免注塑磁钢铁芯检测装置,以及计算单元(300);其中,
    所述计算单元(300)用以获取免注塑磁钢铁芯检测装置采集的第一压力,判断所述第一压力是否满足磁钢铁芯装配条件。
  6. 根据权利要求5所述的免注塑磁钢铁芯检测系统,其特征在于:所述免注塑磁钢铁芯检测装置包括数据传输模块(170)、电池模块(180)、数据存储模块(190);其中,
    所述数据存储模块(190)用以存储所述第一压力;
    所述数据传输模块(170)用以传输所述数据存储模块(190)中存储的所述第一压力至计算单元(300);
    所述电池模块(180)用以提供所述装置本体内用电设备的电力。
  7. 根据权利要求6所述的免注塑磁钢铁芯检测系统,其特征在于:还包括转动台(200);所述转动台(200)包括旋转驱动电机(210)、铁芯工装(220);其中,
    所述铁芯工装(220)用以装夹已完成装配的铁芯,所述铁芯中至少插接有一免注塑磁钢铁芯检测装置;
    所述旋转驱动电机(210)驱使所述铁芯工装(220)带铁芯一起旋转。
  8. 一种免注塑磁钢铁芯检测方法,其特征在于,包括以下步骤:
    选择弹片式铁芯叠片(500)的叠片方案;其中,叠片方案至少包括弹片式铁芯叠片(500)的磁钢槽(510)内伸出的弹片(511)的伸出量h,弹片式铁芯叠片(500)的数量n;
    将免注塑磁钢铁芯检测装置插入按所述叠片方案完成叠片的免注塑磁钢铁芯的磁钢槽(510)内;其中,磁钢槽(510)边沿的弹片(511)折弯后回弹以抵压在免注塑磁钢铁芯检测装置形成抵接面;其中,免注塑磁钢铁芯通过若干片铁芯叠片堆叠而成,包括至少存在一片弹片式铁芯叠片(500),其余为的铁芯叠片的磁钢槽内无弹片(511)的普通铁芯叠片;
    位于所述免注塑磁钢铁芯检测装置的抵接面背面上的第一力传感器(110)获取压力值,并记为第一压力;
    判断所述第一压力是否满足磁钢铁芯装配条件;
    若不满足,则调整叠片方案。
  9. 根据权利要求8所述的免注塑磁钢铁芯检测方法,其特征在于:所述叠片方案还包括弹片式铁芯叠片(500)的叠片位置m、同一磁钢槽(510)内弹片(511)的数量k、同一磁钢槽(510)内弹片(511)的间距p。
  10. 根据权利要求8所述的免注塑磁钢铁芯检测方法,其特征在于,所述磁钢铁芯装配条件包括静态条件和/或动态条件;其中,
    所述静态条件至少包括第一压力大于第一阈值;
    所述动态条件至少包括经旋转驱动电机(210)驱使铁芯工装(220)带动完成装配的铁芯一起旋转后采集的第一压力大于第二阈值。
PCT/CN2022/127881 2022-06-08 2022-10-27 免注塑磁钢铁芯检测方法及装置、系统 WO2023236423A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210640122.1 2022-06-08
CN202210640122.1A CN114720040B (zh) 2022-06-08 2022-06-08 免注塑磁钢铁芯检测方法及装置、系统

Publications (1)

Publication Number Publication Date
WO2023236423A1 true WO2023236423A1 (zh) 2023-12-14

Family

ID=82233021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127881 WO2023236423A1 (zh) 2022-06-08 2022-10-27 免注塑磁钢铁芯检测方法及装置、系统

Country Status (2)

Country Link
CN (1) CN114720040B (zh)
WO (1) WO2023236423A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720040B (zh) * 2022-06-08 2022-10-14 苏州范斯特机械科技有限公司 免注塑磁钢铁芯检测方法及装置、系统
CN117060619B (zh) * 2023-10-11 2024-03-01 天蔚蓝电驱动科技(江苏)有限公司 铁芯叠、转子和电机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182388A (ja) * 1995-12-21 1997-07-11 Daikin Ind Ltd 永久磁石型電動機の着磁方法
JPH09272483A (ja) * 1996-04-09 1997-10-21 Yamaha Motor Co Ltd 制動検出装置
KR20010010272A (ko) * 1999-07-19 2001-02-05 김상태 자동차클러치디스크용 쿠션스프링 겹침측정방법 및 장치
JP2010257706A (ja) * 2009-04-23 2010-11-11 Japan Atomic Energy Agency ダイアフラム型差圧式圧力スイッチ及び圧力検出システム
CN111130242A (zh) * 2020-03-09 2020-05-08 华域汽车电动系统有限公司 一种永磁同步电机转子磁钢固定结构
CN211239490U (zh) * 2020-03-09 2020-08-11 华域汽车电动系统有限公司 一种电机转子磁钢固定结构
CN114279611A (zh) * 2021-12-14 2022-04-05 无锡市飞沪科技有限公司 全智能继电器动静簧片校正装置、方法、设备及存储介质
CN114577455A (zh) * 2022-03-03 2022-06-03 武汉电信器件有限公司 一种光模块解锁功能检测装置及其使用方法
CN114720040A (zh) * 2022-06-08 2022-07-08 苏州范斯特机械科技有限公司 免注塑磁钢铁芯检测方法及装置、系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125115A (ja) * 2009-12-09 2011-06-23 Hitachi Ltd 磁石埋込式回転電機
JP6495747B2 (ja) * 2015-06-05 2019-04-03 株式会社三井ハイテック 積層鉄心の検査装置及び積層鉄心の検査方法
DE102017103619A1 (de) * 2017-02-22 2018-08-23 Ebm-Papst St. Georgen Gmbh & Co. Kg Elektromotor, Innenrotor und Rotorblech
US10879775B2 (en) * 2018-05-23 2020-12-29 Ford Global Technologies, Llc Surface treatments of electrical steel core devices
CN108847732A (zh) * 2018-08-22 2018-11-20 芜湖飞龙汽车电子技术研究院有限公司 一种电子水泵电机转子总成
CN211460926U (zh) * 2019-12-05 2020-09-11 殷进 临床监测用压力传感器的固定装置
CN211859750U (zh) * 2020-02-17 2020-11-03 威睿电动汽车技术(宁波)有限公司 一种转子铁芯及电机
CN211239489U (zh) * 2020-03-09 2020-08-11 华域汽车电动系统有限公司 永磁同步电机转子磁钢的固定结构
CN216699634U (zh) * 2021-12-10 2022-06-07 苏州范斯特机械科技有限公司 具有90度回转的单键轴孔的转子铁芯及其冲压模具

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182388A (ja) * 1995-12-21 1997-07-11 Daikin Ind Ltd 永久磁石型電動機の着磁方法
JPH09272483A (ja) * 1996-04-09 1997-10-21 Yamaha Motor Co Ltd 制動検出装置
KR20010010272A (ko) * 1999-07-19 2001-02-05 김상태 자동차클러치디스크용 쿠션스프링 겹침측정방법 및 장치
JP2010257706A (ja) * 2009-04-23 2010-11-11 Japan Atomic Energy Agency ダイアフラム型差圧式圧力スイッチ及び圧力検出システム
CN111130242A (zh) * 2020-03-09 2020-05-08 华域汽车电动系统有限公司 一种永磁同步电机转子磁钢固定结构
CN211239490U (zh) * 2020-03-09 2020-08-11 华域汽车电动系统有限公司 一种电机转子磁钢固定结构
CN114279611A (zh) * 2021-12-14 2022-04-05 无锡市飞沪科技有限公司 全智能继电器动静簧片校正装置、方法、设备及存储介质
CN114577455A (zh) * 2022-03-03 2022-06-03 武汉电信器件有限公司 一种光模块解锁功能检测装置及其使用方法
CN114720040A (zh) * 2022-06-08 2022-07-08 苏州范斯特机械科技有限公司 免注塑磁钢铁芯检测方法及装置、系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEN- RONG SONG, CHEN KAI- LONG: "Synchronal Measuring the Gap?Over Stroke and Pressure between Two Pieces of Relay Springs Online ", MECHANICAL ENGINEER, vol. 1, 10 January 2007 (2007-01-10), pages 136 - 138, XP093113102 *

Also Published As

Publication number Publication date
CN114720040B (zh) 2022-10-14
CN114720040A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023236423A1 (zh) 免注塑磁钢铁芯检测方法及装置、系统
JP5522748B2 (ja) 組電池モジュール
US9462361B2 (en) Sealed audio speaker design
EP1876668A3 (en) Sheet-type secondary battery and manufacturing method therefor
EP4109617A3 (en) Electrochemical apparatus and electronic apparatus
JP6659483B2 (ja) 電極タブとバスバとの接合状態の検査方法
CN112404725A (zh) 极耳焊接装置及方法
CN213122174U (zh) 单体电芯绝缘测试装置
CN106684452A (zh) 一种入壳机以及该入壳机的盖板入壳定位检测机构
CN106289020A (zh) 一种检测锂离子电池极耳弯折的方法
CN212136620U (zh) 一种改善软包电池顶封的软封限位封头
JP2006107789A5 (zh)
US20210111444A1 (en) Battery module and apparatus
JP2009217939A (ja) 燃料電池セパレータ
JP3176201U (ja) コンデンサの充電劣化診断装置のクランプ
CN202317509U (zh) 叠层焊接机真空吸持机构
CN214313278U (zh) 电芯热压装置
JP5621417B2 (ja) スタック及び双極型二次電池
CN203883699U (zh) 尺蠖仿生装置
CN217983431U (zh) 电池模组堆叠装置
JP2017147107A (ja) 蓄電装置モジュールの製造方法及び装置
CN217425463U (zh) 电池测试用辅助工装
CN220584376U (zh) 一种电池极组的短路测试装置
CN214622882U (zh) 绝缘性测试装置
CN220316384U (zh) 料盘定位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945552

Country of ref document: EP

Kind code of ref document: A1