WO2023228905A1 - 湿式紡糸法を用いて無機フィラー粒子を含有する生分解性繊維材料を連続的に製造する方法、及びその方法で製造された綿形状の骨再生材料 - Google Patents

湿式紡糸法を用いて無機フィラー粒子を含有する生分解性繊維材料を連続的に製造する方法、及びその方法で製造された綿形状の骨再生材料 Download PDF

Info

Publication number
WO2023228905A1
WO2023228905A1 PCT/JP2023/018963 JP2023018963W WO2023228905A1 WO 2023228905 A1 WO2023228905 A1 WO 2023228905A1 JP 2023018963 W JP2023018963 W JP 2023018963W WO 2023228905 A1 WO2023228905 A1 WO 2023228905A1
Authority
WO
WIPO (PCT)
Prior art keywords
poor solvent
solvent
spinning solution
fibers
fiber
Prior art date
Application number
PCT/JP2023/018963
Other languages
English (en)
French (fr)
Inventor
敏宏 春日
孝至 松原
雅洋 熊野
Original Assignee
国立大学法人名古屋工業大学
Orthorebirth株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋工業大学, Orthorebirth株式会社 filed Critical 国立大学法人名古屋工業大学
Priority to JP2024509002A priority Critical patent/JP7481699B2/ja
Publication of WO2023228905A1 publication Critical patent/WO2023228905A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random

Definitions

  • the present invention relates to a method for continuously producing a biodegradable fiber material containing inorganic filler particles using a wet spinning method, and a cotton-shaped bone regenerating material produced by the method.
  • the present invention further relates to a method for producing a nonwoven fabric made of biodegradable fibers containing inorganic fillers using a wet spinning method.
  • polylactic acid is used as a matrix and composited with calcium salt particles ( ⁇ -type tricalcium phosphate, silicon-eluting calcium carbonate, hydroxyapatite, etc.) and made into fibers by electrospinning (ES). are used as bone regeneration materials.
  • Bone regeneration materials are generally used in the form of blocks or granules, but bone regeneration materials made of biodegradable fibers spun using this method have good moldability during surgery, and there are no concerns about them moving or falling off from the target site. It has excellent features that can solve the problem.
  • the inventors of the present invention used ES to receive biodegradable fibers ejected from a nozzle in a collector container filled with ethanol, collect and dry the fibers floating in the ethanol solution, and form them into a cotton shape. It has been extremely successful (US8853298).
  • a cotton-shaped bone regeneration material is a clinically excellent material because it can be easily adapted to any shape of the affected area during surgery.
  • PLGA In addition to polylactic acid, PLGA is used as a matrix resin for biodegradable fibers. PLGA is an excellent biodegradable resin that has higher bioabsorption than polylactic acid and has been approved for safety by the FDA. Therefore, recently, PLGA has been used as a matrix, composited with calcium salt particles, and made into fibers by ES. PLGA is synthesized by copolymerizing lactic acid and glycolic acid, but biodegradability can be controlled by adjusting the ratio of lactic acid and glycolic acid. Between PLGA (85:15) with 85% lactic acid and 15% glycolic acid and PLGA (75:25) with 75% lactic acid and 25% glycolic acid, PLGA (75:25) has higher degradability.
  • the lactic acid of polylactic acid exists in the crystalline L form and the amorphous D form, which is an optical isomer
  • PDLLA containing the D form is more sensitive than PLLA, which does not contain the D form but only the L form. It is also difficult to crystallize and is easily decomposed. Therefore, by copolymerizing PDLLA containing the D-isomer and PGA, it is possible to synthesize PDLLGA, which has much higher degradability than PLGA (PLLGA) that does not contain the D-isomer.
  • ES is an excellent method for producing bone regeneration materials made of biodegradable fibers because it can be made into fibers by incorporating inorganic filler particles that serve as osteogenic factors into a spinning solution.
  • ES requires special equipment and is expensive to manufacture.
  • in order to spin with ES it is necessary that inorganic particles are uniformly dispersed in the spinning solution. It is necessary to go through the following steps, which further increases manufacturing costs.
  • the inventors of the present invention have developed cell culture substrates using nonwoven fabrics manufactured using ES (patent numbers 6602999 and 6639035); It has been found that nonwoven fabrics can be used as excellent three-dimensional cell culture substrates because inorganic particles contained in the fibers are exposed on the surface of the fibers and exhibit good cell adhesion.
  • ES patent numbers 6602999 and 6639035
  • a spinning solution is prepared by adding inorganic filler particles to a solution of biodegradable resin dissolved in a good solvent and stirring to disperse them, and the thus prepared spinning solution is injected into a syringe and extruded from a nozzle.
  • the spinning solution that is ejected in the form of fibers from the nozzle enters the poor solvent, and the good solvent contained in the spinning solution is desorbed into the poor solvent and becomes fibers. If the permeation speed is too slow, it will be difficult for the spinning solution ejected from the nozzle to be fiberized in the poor solvent. Conversely, if the rate at which the good solvent permeates into the poor solvent is too fast, the spinning solution will clog the nozzle. In particular, when the spinning solution contains a large amount of inorganic particles, clogging is likely to occur at the part where the spinning solution is injected into the poor solvent from the narrow discharge opening of the nozzle.
  • the inventors of the present invention have conducted extensive studies and found that two types of poor solvents with different solubility are placed in upper and lower layers in the collector container of a wet spinning device. I came up with the idea of using something that satisfies the above criteria.
  • a spinning solution prepared by adding approximately the same amount of good solvent to the sample (inorganic particles and biodegradable resin) is extruded from the nozzle outlet of a wet spinning device into a collector container, and then The extruded spinning solution is introduced in the form of a fiber into a first poor solvent that has a small difference in solubility parameter from the good solvent, and then the spinning solution that has been introduced into the fiber is introduced into a first poor solvent that has a small difference in solubility parameter from the good solvent. It has been discovered that fibers containing a large amount of inorganic particles can be efficiently spun by injecting a second poor solvent that is larger than the first poor solvent.
  • the inventors of the present invention have proposed a method for producing biodegradable fibers containing inorganic filler particles using a wet spinning method, comprising: Pour a mixture of inorganic filler particles and biodegradable resin in a weight ratio of 50-80:50-20 into a mixing container, A predetermined amount of a good solvent is added to the mixture into the mixing container, and the biodegradable resin is dissolved in the good solvent and stirred to form a spinning solution in which the inorganic filler particles are dispersed in the solution.
  • the spinning solution filled in the syringe is extruded vertically downward at a predetermined extrusion speed from the discharge port of the injection needle having a predetermined diameter, and is ejected into a cylindrical collector container having a predetermined height.
  • the container includes a first poor solvent whose solubility parameter value has a first degree of deviation from the good solvent, and a first poor solvent whose solubility parameter value has a first degree of deviation from the good solvent, and a solubility parameter value which has a higher specific gravity than the first poor solvent and whose solubility parameter value has a first degree of deviation from the good solvent.
  • a second poor solvent having a second degree of deviation larger than the first degree of deviation is filled in upper and lower layers;
  • the spinning solution pushed out from the discharge port of the nozzle enters the first poor solvent in the collector container in the form of a fiber due to its own weight, and the spinning solution enters the first poor solvent in the form of a fiber.
  • the surface of is solidified by mutual diffusion of desorption of the good solvent and intrusion of the first poor solvent,
  • the fibrous spinning solution whose surface has been solidified continuously enters the second poor solvent filled under the first poor solvent in the collector container due to its own weight,
  • the fibrous spinning solution that has entered the second poor solvent causes mutual diffusion of desorption of the good solvent and intrusion of the second poor solvent into the interior of the spinning solution.
  • the solidified fibers become continuous long fibers without adhering to each other in the second poor solvent, and are suspended and deposited on the bottom of the collector container. , removing the fibers deposited on the bottom of the collector container from the collector container and drying them;
  • the present invention has been achieved, which is a method for producing biodegradable fibers containing inorganic filler particles using the wet spinning method.
  • the present inventors further provide a cotton-shaped bone regeneration material manufactured using a wet spinning method, the cotton-shaped bone regeneration material comprising: Pour a mixture of calcium salt particles and biodegradable resin in a weight ratio of 50-80:50-20 into a mixing container, A predetermined amount of a good solvent is added to the mixture into the mixing container, and the biodegradable resin is dissolved in the good solvent and stirred to form a spinning solution in which the calcium salt particles are dispersed in the solution.
  • the spinning solution filled in the syringe is extruded vertically downward at a predetermined extrusion speed from the discharge port of the injection needle having a predetermined diameter, and is ejected into a cylindrical collector container having a predetermined height.
  • the container includes a first poor solvent whose solubility parameter value has a first degree of deviation from the good solvent, and a first poor solvent whose solubility parameter value has a first degree of deviation from the good solvent, and a solubility parameter value which has a higher specific gravity than the first poor solvent and whose solubility parameter value has a first degree of deviation from the good solvent.
  • a second poor solvent having a second degree of deviation larger than the first degree of deviation is filled in upper and lower layers,
  • the spinning solution pushed out from the discharge port enters the first poor solvent in the collector container in the form of a fiber, and the surface of the spinning solution that enters the first poor solvent in the form of a fiber is It is solidified by mutual diffusion of the desorption of the good solvent and the intrusion of the first poor solvent,
  • the spinning solution whose surface has been solidified is continuously introduced into the second poor solvent filled below the first poor solvent in the collector container,
  • the spinning solution that has entered the second poor solvent causes mutual diffusion of desorption of the good solvent and intrusion of the second poor solvent to proceed inside the spinning solution.
  • the solidified fibers are further solidified and made into fibers, and the solidified fibers become continuous long fibers without adhering to each other in a second poor solvent, and are suspended and deposited in a cotton-like manner on the bottom of the collector container.
  • Manufactured by the step of taking out the fibers deposited in a cotton-like manner at the bottom of the collector container from the collector container and drying them.
  • the invention of the cotton-shaped bone regeneration material has been achieved.
  • the inventors of the present invention further provide a wet spinning apparatus for use in an improved wet spinning process, the apparatus comprising: A syringe for injecting a spinning solution prepared by dissolving 50-80% by weight of inorganic filler particles and 50-20% by weight of biodegradable resin into a mixing container, dissolving them in a good solvent, and stirring; a nozzle connected to the end of the syringe and having a discharge port at its tip; Equipped with a cylindrical collector container having a predetermined height, The collector container is an injection part for causing the spinning solution extruded from the discharge port of the nozzle to enter and pass through the first poor solvent; The spinning solution that has passed through the injection section is placed adjacent to the bottom of the injection section, has a higher specific gravity than the first poor solvent, and has a higher degree of deviation in solubility parameter value from the good solvent than the first poor solvent.
  • a fiber solidifying section for solidifying the fiber by injecting it into a second large poor solvent
  • a fiber recovery section adjacent to the bottom of the fiber solidification section for floating and depositing the fibers that have passed through the fiber solidification section and solidified on the bottom of the collector container in a cotton-like manner
  • the fiber solidifying section and the fiber collecting section are separably connected using a clamp, and the fiber collecting section is separated from the fiber solidifying section after the solidified fibers are suspended and deposited on the bottom of the fiber collecting section.
  • the amount of the good solvent added to the mixture of the inorganic filler particles and biodegradable resin is such that the inorganic filler particles are uniformly dispersed in the syringe without sinking into the solution, and the spinning solution is The amount is adjusted so that it can be made into fibers in a poor solvent by extruding it from the injection needle into the poor solvent.
  • the particle size of the ⁇ -TCP particles is 0.4 to 5 ⁇ m.
  • the spinning solution has a weight ratio of 0.7 to 1 with respect to Mixture 1, which is a mixture of ⁇ -TCP particles with a particle size of 3 to 5 ⁇ m and PDLLGA resin in a weight ratio of 50 to 80:50 to 20. It is prepared by adding and dissolving .3 of the amount of acetone.
  • the spinning solution has a weight ratio of 1 to 1 of a mixture of ⁇ -TCP particles having a particle size of 0.3 to 0.5 ⁇ m and PDLLGA resin in a weight ratio of 50-80:50-20. It is prepared by adding and dissolving acetone in an amount of .15 to 1.40.
  • the position of the interface between the first poor solvent and the second poor solvent placed in the collector container is set to be close to the discharge port of the nozzle. If the distance that the spinning solution injected in the form of fibers from the injection needle's discharge port passes through the first poor solvent, which has a small difference in solubility parameters from the good solvent, is long, the fibers that are injected from the nozzle's discharge port will break off on the way. Since it is easy to store, the height of the interface between the first poor solvent and the second poor solvent is set close to the nozzle outlet to prevent the incident fibers from being torn off midway. , allowing it to be deposited as one continuous fiber at the bottom of the collector vessel.
  • calcium phosphate particles are used as the inorganic filler particles, and more preferably ⁇ -TCP particles are used.
  • ⁇ -TCP containing silver is useful because it has antibacterial properties.
  • the cylindrical collector container of the wet spinning apparatus of the present invention has a height of 50 to 100 cm and is divided into an injection section, a fiber solidification section, and a fiber recovery section in order from the top.
  • the spinning solution extruded in the form of fibers from the discharge port of the nozzle passes through the first poor solvent in the injection section by its own weight, and then enters the second poor solvent in the fiber solidification section.
  • the fibers After passing through the fibers, the fibers are introduced into a fiber collection section also filled with a second poor solvent, and are suspended and deposited in the form of flocs at the bottom of the collector container.
  • the cotton-like fibers deposited at the bottom of the collector container can be obtained by separating the fiber collection part of the collector container from the fiber solidification part, taking them out from the collector container, collecting them, and drying them to obtain a cotton-like bone regeneration material. .
  • acetone is used as the good solvent
  • ethanol is used as the first poor solvent
  • water is used as the second poor solvent.
  • acetone is used as the good solvent
  • a mixed solution of acetone and water is used as the first poor solvent
  • water is used as the second poor solvent.
  • the good solvent is chloroform
  • the first poor solvent is ethanol
  • the second poor solvent is water
  • pure water is used as the second poor solvent. If all the solvents (good solvent, first poor solvent, and second poor solvent) contain chlorine, in the case of ⁇ -TCP containing silver, there is a possibility that it will react with the silver contained and produce AgCl. Therefore, it is preferable to use a solvent that does not contain chlorine.
  • the biodegradable fibers contain 50-80% by weight, more preferably 60-70% by weight of inorganic filler particles.
  • spinning is performed by extruding a spinning solution prepared by mixing resin and filler particles and dissolving them in an organic solvent from a syringe, so it is possible to easily prepare a spinning solution containing a large amount of inorganic filler particles. .
  • ES uses a slurry with low viscosity during spinning, it is necessary to greatly increase the dispersibility of inorganic filler particles in advance, and a special process is required to uniformly disperse a large amount of filler particles in the solution. (e.g.
  • wet spinning uses a slurry with a higher viscosity than ES, so there is no need for such a special process, and it is sufficient to disperse the particles in the solution by stirring. This is because the fluidity of the polymer liquid that fills the space between the particles becomes low and agglomeration can be prevented.
  • calcium phosphate particles are used as the inorganic filler particles, and more preferably ⁇ -TCP particles are used.
  • ⁇ -TCP particles are used.
  • the biodegradable resin comes into contact with body fluids, it is decomposed and ⁇ -TCP particles are eluted.
  • ⁇ -TCP is further dissolved and calcium ions and phosphorus ions are eluted, promoting bone formation through bone resorption and replacement.
  • ⁇ -TCP particles containing silver ions are used.
  • the silver ions contained in the ⁇ -TCP particles are eluted and exhibit antibacterial properties.
  • the entrance needle of the nozzle of the wet spinning device is 27G (inner diameter 0.19 ⁇ 0.02mm, outer diameter 0.41 ⁇ 0.01mm) or 22G (inner diameter 0.41 ⁇ 0.03mm, outer diameter 0). .72 ⁇ 0.02 mm), and the outer diameter of the fibers spun thereby is 80 to 200 ⁇ m. More preferably, the injection needle of the nozzle of the wet spinning device is 27G, and the outer diameter of the spun fiber is 100 to 150 ⁇ m.
  • a metal or plastic net is sunk in the bottom of the fiber collection section of the collector container, on which the wet-spun fibers are deposited, and when the net is pulled up, the fibers are still soft and form a non-woven fabric or cotton. If you put it in water, it will solidify in that shape.
  • a winding device is installed at the bottom of the collector container, and the fibers deposited through the second poor solvent are wound up with the winding device.
  • a nonwoven fabric whose fibers are aligned in the same direction can be obtained.
  • the amount of the sample (inorganic particles and biodegradable resin) and the good solvent can be uniformly dispersed without the sample particles sinking in the good solvent, and the spinning fibers extruded from the discharge port can be Since the amount of the solution is adjusted to allow fiberization in a poor solvent, it is possible to spin biodegradable fibers on a commercial basis using a wet spinning device.
  • the spinning solution extruded in the form of fibers into a poor solvent from the discharge port of the nozzle contains a resin solution (the specific gravity of polylactic acid is 1.24) and a large amount of inorganic particles (the specific gravity of ⁇ -TCP is 3.14). g/cm3), it settles downward in the poor solvent (the specific gravity of ethanol is around 0.8, the specific gravity of water is 1) due to its own weight, forming the first poor solvent and the second poor solvent.
  • the fibers pass through the poor solvent one after another, gradually become fibers during the sedimentation process, and are deposited on the bottom of the collector container, and the deposited fibers can be collected.
  • the second poor solvent that fills the fiber solidification section of the collector container of the wet spinning method apparatus of the present invention has a higher specific gravity than the first poor solvent that fills the injection section above it. Two layers are formed with the first poor solvent floating on top of the solvent. Therefore, by injecting the spinning solution into the first poor solvent from the discharge port of the device, the injected spinning solution in the form of fibers is divided into the first poor solvent and the second poor solvent, which have different solubility parameters due to their own weight. Since the spinning solution can be passed sequentially, the spinning solution can be gradually solidified and made into fibers during the process.
  • ethanol is hydrophilic, so if water coordinates around the hydrophilic groups during stirring, the ethanol molecules will be surrounded by water and mixed. It fits. Therefore, by slowly pouring ethanol onto water, it is preferable to create a state in which water is separated due to the difference in specific gravity, without coordinating water around the hydrophilic groups of ethanol.
  • the second poor solvent (e.g. water) used to solidify the spinning solution has a higher specific gravity than the good solvent (e.g. acetone), so the good solvent (e.g. Acetone immediately floats upwards and does not stay near the solidified fibers.As a result, after the good solvent is desorbed from the fibers, it floats near the fibers, solidifying the fibers and depositing them at the bottom of the collector container. Since the fibers do not melt, the accumulated fibers do not stick to each other and can be collected in the form of cotton from the collector container.
  • the good solvent e.g. acetone
  • biodegradable resin that has high solubility in a solvent as the biodegradable resin used in the present invention, there is no need to use a chlorinated solvent with high dissolving power (e.g. chloroform) as a good solvent for preparing the spinning solution.
  • a chlorinated solvent with high dissolving power e.g. chloroform
  • non-chlorinated solvents eg acetone
  • the biodegradable fiber produced by the wet spinning method according to one embodiment of the present invention has a long fiber length, and can be recovered by depositing approximately one continuous fiber in the form of cotton.
  • the cotton-shaped bone regeneration material deposited and collected in this way has wider spacing between the fibers than the cotton produced by ES, which allows cells to invade between the fibers, adhere to the fibers, and proliferate. It has a large microenvironment.
  • the biodegradable fibers produced by the wet spinning method of the present invention have fewer pores on the fiber surface, have a dense cross-sectional structure, and are better in shape retention than fibers spun by ES.
  • the biodegradable fiber produced by the wet spinning method of the present invention has a flat cross-sectional shape and has excellent cell adhesion.
  • the wet spinning method of the present invention applies physical force to extrude the spinning solution from the syringe to the discharge port, so there is a high degree of freedom in determining the content of filler particles in the spinning solution.
  • the particles form an uneven structure on the fiber surface. It is suitable for cell adhesion that the surface of the fiber has an uneven structure.
  • the PDLLGA dissolves in the body and the pH locally decreases, creating an acidic environment.
  • ⁇ -TCP dissolves in an acidic environment, releasing minute amounts of calcium and phosphate ions and contributing to the promotion of bone formation.
  • the biodegradable fiber produced by the wet spinning method of the present invention contains silver ion-containing ⁇ -TCP particles as a filler
  • the biodegradable resin dissolves in the body, the pH decreases, and the ⁇ -TCP filler becomes acidic.
  • the silver ions contained in the ⁇ -TCP particles are eluted and exhibit antibacterial properties.
  • antibacterial properties can be achieved in the late postoperative period after bone regeneration material is implanted into the body. can do.
  • acetone used as an organic solvent does not contain chlorine, so it does not produce silver chloride even when it comes into contact with silver.
  • the Ag ions contained in the ⁇ -TCP particles do not become AgCl but exist as Ag ions, so that the antibacterial properties of Ag ions can be exhibited. Furthermore, it does not turn black due to the generation of AgCl and exposure to light.
  • biodegradable fibers spun by the wet spinning method of the present invention are exposed on the surface of the fibers without being covered with resin, forming an uneven shape, so when administered to the human body, Demonstrates excellent cell adhesion.
  • FIG. 1 shows a conceptual diagram of a wet spinning method according to an embodiment of the present invention.
  • Figure 2 shows the shape of biodegradable fibers spun in the wet spinning method of one embodiment of the present invention (using acetone as a good solvent, ethanol as a first poor solvent, and water as a second poor solvent). This is a SEM photograph shown.
  • Figure 3 shows the unevenness of the surface of the biodegradable fibers spun in the wet spinning method of the embodiment of the present invention (using acetone as a good solvent, ethanol as a first poor solvent, and water as a second poor solvent). This is a SEM photo showing the FIG.
  • FIG. 4 is a conceptual diagram showing the degree of deviation in the Hansen solubility parameter between each solvent when acetone is used as a good solvent, ethanol is used as a first poor solvent, and water is used as a second poor solvent in the present invention.
  • FIG. 4 is a conceptual diagram showing a wet spinning apparatus used in the wet spinning method (using acetone as a good solvent, ethanol as a first poor solvent, and water as a second poor solvent) according to an embodiment of the present invention.
  • the PLLGA resin refers to a PLGA resin synthesized by copolymerization of lactic acid and glycolic acid containing only the L-form.
  • the polymerization ratio of PLLA and PGA is 85:15, it is called PLLGA (85:15), and when the polymerization ratio of PLLA and PGA is 75:25, it is called PLLGA (75:25).
  • the degradability of PLLGA can be increased by increasing the proportion of PGA.
  • a chlorinated solvent such as chloroform.
  • PDLLGA resin refers to PLGA resin synthesized by copolymerization of lactic acid and glycolic acid containing D-form and L-form. Lactic acid used in the synthesis of PLGA has the crystalline L form and the amorphous D form, which is an optical isomer. Poly(D-lactic acid) (PDLLA) exists, which contains D- and D-isomers. When the polymerization ratio of PDLLA and PGA is 75:25, it is referred to as PDLLGA (75:25). PDLLGA, which is a copolymer of PDLLA and PGA, has particularly high flexibility among PLGA.
  • the degradability of PDLLGA can be controlled by changing the polymerization ratio of PDLLA and PGA. Although it is difficult to numerically specify the amount of D-isomer contained in PDLLGA, in the present invention, the amount of D-isomer contained in PDLLGA resin is determined by the amount of D-isomer contained in PDLLGA resin. It has its own nature and is sufficient.
  • the wet spinning method refers to a method of solidifying into fibers by mutual diffusion of desorption of an organic solvent called a good solvent and intrusion of a poor solvent.
  • the selection of good and poor solvents affects the solidification rate of the polymer and the interdiffusion of the solvents, and determines the fiber morphology that achieves a balance in the rate of interdiffusion.
  • conditions are set and improved for fiberizing PDLLGA resin containing calcium phosphate particles to form a cotton shape.
  • a good solvent refers to a solvent used to dissolve a mixture of a biodegradable resin and calcium phosphate particles to prepare a spinning solution.
  • Chlorinated organic solvents such as chloroform have excellent ability to dissolve resins, but are toxic.
  • Acetone is inferior to chloroform in terms of solubility, but since it does not contain chlorine, it is excellent in safety for living organisms.
  • the PDLLGA resin used in the present invention does not require the use of toxic chlorinated organic solvents such as chloroform, and can use acetone, which is a highly safe non-chlorinated solvent.
  • the amount of good solvent is set at a ratio of 1:0.
  • An amount of 7 to 1.3 is preferred. More preferably, the ratio of both is about 1:1.
  • the ratio of the weight of good solvent (acetone) to 1 part of the sample exceeds 1.3, the particles sink in the syringe.
  • the amount of inorganic particles ( ⁇ -TCP) dispersed in the early and late stages of injection changes, resulting in a non-uniform product.
  • the amount of the good solvent (acetone) is less than 0.7, it will be difficult to extrude it from the discharge port of the nozzle.
  • the amount of good solvent (acetone) to the sample is within the range of 1:0.7 to 1.3 by weight, the spinning solution is extruded from the discharge port and dissolved in the poor solvent. could be made into fibers.
  • the amount of good solvent is such that the ratio of the inorganic filler particles and biodegradable resin to 1 by weight of the mixture is 1:1.15 to 1.
  • An amount of 40 is preferred.
  • the amount of acetone is 1.1 by weight relative to sample 1
  • the spinning solution is pumped from the syringe. It became difficult to extrude.
  • the weight ratio of acetone to sample 1 was 1.45, the ⁇ -TCP particles sedimented and separated in the solution over time.
  • a poor solvent is used in a coagulation bath as a solvent that does not dissolve the biodegradable resin.
  • a poor solvent is defined as a solvent when the solute-solvent interaction (free energy) is smaller than the arithmetic average of the solute-solute and solvent-solvent interactions in a specific substance-solvent system.
  • the poor solvent used in the method of the present invention is selected in consideration of the balance of interdiffusion with the organic solvent using the solubility parameter as an index.
  • ethanol or water in which PDLLGA is insoluble can be suitably used.
  • the biodegradable resin, good solvent, and poor solvent used in the method of the present invention can be selected using the degree of deviation of Hansen solubility parameter values as an index.
  • the speed at which a spinning solution prepared by dissolving biodegradable resin in a good solvent is extruded into a fiber from the nozzle outlet and solidified in a poor solvent is as follows: When the good solvent is acetone and the poor solvent is ethanol, It is determined by the degree of divergence between the Hansen solubility parameter values (vector values) determined by the interactions of acetone and ethanol: (i) polarizability, (ii) hydrogen bonding, and iii) dispersibility.
  • the Hansen solubility parameter value of the solute polymer should be close to the solubility parameter value of a good solvent (eg, acetone).
  • a good solvent eg, acetone.
  • the Hansen solubility parameter of ethanol at 25°C is 26.5 ⁇ [(MPa) 1/2 ]), and the Hansen solubility parameter of acetone is 20.0[(MPa) 1/2 ]), and the degree of deviation between the two is 9.8 [(MPa) 1/2 ] (see Figure 4). With this degree of deviation, the spinning solution does not solidify rapidly at the tip of the nozzle, so there is no fear that the spinning solution extruded from the discharge port will cause clogging.
  • the spinning solution is extruded from a nozzle in the form of fibers into the poor solvent.
  • the Hansen solubility parameter of water is 47.8 ⁇ [(MPa)1/ 2]
  • the Hansen solubility parameter of acetone is 20.0 ⁇ [(MPa) 1/2 ])
  • the degree of deviation between the two is 35.7 ⁇ [(MPa) 1/2 ] (see FIG. 4).
  • the degree of divergence in the Hansen solubility parameters of water and acetone for PDLLGA is considerably larger than that for PDLLGA between ethanol and acetone.
  • the spinning solution extruded from the nozzle solidifies rapidly in water, so if the injection speed and solidification are not balanced, the spinning solution will solidify at the tip of the nozzle and cannot be injected, making it impossible to form fibers. This often occurs, making it difficult to stably form fibers.
  • the specific gravity of water is considerably higher than that of acetone, the acetone eluted from the spinning solution does not accumulate at the bottom of the container but floats near the top surface. When good conditions are selected for spinning, the fibers do not stick together again due to acetone, and long continuous fibers can be produced.
  • the inventors of the present invention have carefully considered the above-mentioned behavior, and have continued to study the above behavior in a way that allows for stable spinning over a long period of time and allows the resulting fibers to become independent of each other to form a supple cotton shape.
  • a new wet spinning method in which a spinning solution is injected into a poor solvent with a small degree of deviation in solubility parameters, and then, before it is completely solidified, it is introduced into a poor solvent with a larger degree of deviation than the former and solidified. reached.
  • Example 1 (using ethanol/water as a poor solvent) The materials and equipment shown below were used.
  • ⁇ -TCP-100 A particle having a particle size of 1.7 mm or less was pulverized to about 4 ⁇ m ( ⁇ -TCP pulverized product).
  • - PDLLA:PGA (75:25): PURASORB PDLG7507 and Corbion Purac were used as PDLLGA.
  • ⁇ -TCP particles were exposed on the surface of the fiber, forming an uneven shape (see Figure 3).
  • the inventors confirmed whether the ⁇ -TCP particles exposed on the fiber surface were covered by the resin layer by immersing the sample in hydrochloric acid (the ⁇ -TCP particles on the fiber surface were covered by the resin layer). However, it was found that the ⁇ -TCP particles exposed on the surface of the sample fibers were not covered by the resin layer.
  • Example 2 (using a mixture of acetone and water/water as a poor solvent) The materials and equipment shown below were used.
  • ⁇ -TCP-100 A particle having a particle size of 1.7 mm or less was pulverized to about 4 ⁇ m ( ⁇ -TCP pulverized product).
  • the first poor solvent container (cylindrical) and the second poor solvent container (cylindrical) were fixed with clamps. After filling the second poor solvent container with distilled water, the mixed solvent solution of acetone and water was gently poured into the first poor solvent container. Due to the difference in specific gravity, water and the mixed solvent did not mix if left standing.
  • the acetone solvent in the spinning solution is exchanged with low concentration water in the first poor solvent (mixed solution of acetone and water) to solidify the surface of the spinning solution, but it does not solidify at the nozzle tip. It flowed out smoothly, and before it was completely exchanged inside, it came into contact with water, the second poor solvent, and proceeded to the bottom of the container where it accumulated.
  • acetone Since acetone has a lower specific gravity than water, it does not accumulate at the bottom of the container, but instead floats to the top. As a result, even after drawing for a long time, the fibers did not stick together again due to acetone, and long fibers were obtained. After wet spinning, the fibers were taken out and dried on a water-absorbing sheet at room temperature to obtain a cotton-shaped sample. 5. Fiber properties of the sample obtained i) The diameter of the fiber was approximately 110 ⁇ m, and the cross section of the fiber was approximately circular. ii) ⁇ -TCP particles were exposed on the surface of the fiber, forming an uneven shape.
  • the inventors confirmed whether the ⁇ -TCP particles exposed on the fiber surface were covered by the resin layer by immersing the sample in hydrochloric acid (the ⁇ -TCP particles on the fiber surface were covered by the resin layer). However, it was found that the ⁇ -TCP particles exposed on the surface of the sample fibers were not covered by the resin layer.
  • Comparative experiment 1 (100% ethanol)
  • a spinning experiment was conducted under the same conditions as in Example 1, except that the collector container was filled with only ethanol as a poor solvent. Results: Although the spinning solution filled in the syringe could be extruded smoothly into a fiber from the nozzle outlet (27G), the fiber shape could not be maintained in the ethanol and frequently broke.
  • Comparative experiment 2 (100% water)
  • a spinning experiment was conducted under the same conditions as in Example 1, except that the collector container was filled with only water as a poor solvent. Result: The spinning solution filled in the syringe clogged the nozzle outlet (27G), and the phenomenon that it could not enter the water frequently occurred.
  • the present invention has been explained above based on an example in which the spinning solution contains inorganic filler particles, but the wet spinning method using two types of poor solvents of the present invention is not limited to the case of producing cotton-shaped articles. , it is also possible to use it as a method for producing nonwoven fabrics.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Textile Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Artificial Filaments (AREA)
  • Materials For Medical Uses (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

湿式紡糸法を用いて無機フィラー粒子を含む生分解性繊維を製造する方法であって、無機フィラー粒子と生分解性樹脂を重量比50-80:50-20の割合で混合した混合物を良溶媒に溶解させて攪拌することによって調製した紡糸溶液を湿式紡糸装置のシリンジに充填して、入射針の吐出口から下方向に押し出してコレクター容器中に出射する。コレクター容器には、溶解パラメータ値が良溶媒に対して小さい乖離度を有する第1の貧溶媒と、前記第1の貧溶媒よりも比重が大きく尚且つ溶解パラメータ値が前記良溶媒に対して大きい乖離度を有する第2の貧溶媒が上下二層になって満たされている。注射針の吐出口から押し出された紡糸溶液は自重によりコレクター容器中の第1の貧溶媒に繊維状に入射し、次いで、第1の貧溶媒の下に満たされた前記第2の貧溶媒中に連続的に入射する。第2の貧溶媒の中に入射した前記繊維状の紡糸溶液は連続的な長繊維となって前記コレクター容器の底に浮遊堆積して綿形状を形成する。

Description

湿式紡糸法を用いて無機フィラー粒子を含有する生分解性繊維材料を連続的に製造する方法、及びその方法で製造された綿形状の骨再生材料
本発明は、湿式紡糸法を用いて無機フィラー粒子を含有する生分解性繊維材料を連続的に製造する方法、及びその方法で製造された綿形状の骨再生材料に関する。本発明はさらに、湿式紡糸法を用いて無機フィラーを含む生分解性繊維からなる不織布を製造する方法に関する。
骨再生医療の分野では、ポリ乳酸をマトリックスとして用いてカルシウム塩粒子(β型-リン酸三カルシウム、ケイ素溶出型炭酸カルシウム、ハイドロキシアパタイト等)と複合し、電界紡糸法(ES)により繊維化したものが骨再生材料として用いられている。骨再生材料は一般にブロックや顆粒形状で用いられることが多いが、この方法で紡糸した生分解性繊維からなる骨再生材料は、手術時の成形性が良く、目的部位からの移動・脱落の懸念を解決できる優れた特長を有している。本発明の発明者等は、ESを用いてノズルから出射された生分解性繊維をエタノールを満たしたコレクター容器で受けて、エタノール液中に浮遊する繊維を回収・乾燥することで綿形状化することに成功している(US8853298)。綿形状の骨再生材料は、手術時にあらゆる患部形状に対して容易に対応できるので、臨床上優れた材料である。
生分解性繊維のマトリクス樹脂としては、ポリ乳酸の他、PLGAが用いられている。PLGAはポリ乳酸よりも生体吸収性が高く、尚且つFDAで安全性が承認された優れた生分解性樹脂である。そこで、近時はPLGAをマトリックスとして用いてカルシウム塩粒子と複合し、ESにより繊維化することが行われている。PLGAは、乳酸とグリコール酸を共重合することによって合成されるが、乳酸とグリコール酸の比率を調整することで生分解性を制御することが可能である。乳酸85%:グリコール酸15%のPLGA(85:15)と、乳酸75%:グリコール酸25%のPLGA(75:25)では、PLGA(75:25)の方が、分解性が高い。他方、ポリ乳酸の乳酸には、結晶性のL体と光学異性体であるアモルファス性のD体とが存在し、D体を含むPDLLAは、D体を含まずにL体のみであるPLLAよりも結晶化しにくく、分解されやすい。そこで、D体を含むPDLLAとPGAを共重合することによって、D体を含まないPLGA(PLLGA)よりも分解性が格段に高いPDLLGAを合成することが可能である。
ESは、骨形成因子となる無機フィラー粒子を紡糸溶液に含有させて繊維化することができるので、生分解性繊維からなる骨再生材料を製造する方法として優れた方法である。しかし、ESはそのための特別な設備が必要で製造コストが高い。また、ESで紡糸するためには、紡糸溶液の中で無機粒子が均一に分散していることが必要なので、無機フィラー粒子を多量に含む繊維を紡糸するには、紡糸溶液の製造に混錬等の工程を踏む必要があり、それが製造コストをさらに高める。また、ESは高電圧をかけた紡糸溶液をノズルから出射させて電場を飛行させて繊維化するものであるため、分子量が低いPDLLGAを用いると、繊維形状の維持が困難になり、その結果PDLLGAを用いた生分解性繊維の紡糸が困難であった。
本発明の発明者等は、綿形状の骨再生材料に加えて、ESを用いて製造した不織布を用いた細胞培養基材を開発した(特許番号6602999、6639035)が、ESを用いて製造した不織布は繊維に含まれる無機粒子が繊維の表面に露出して良好な細胞接着性を発揮して、優れた3次元細胞培養培養基材として用いることができることが判明している。しかし、ESを使用することに伴う同様の課題が存在していた。
米国特許番号8853298号特許公報 米国特許番号6602999号特許公報
無機フィラー粒子を含む生分解性繊維を紡糸する方法としては、ESの他に湿式紡糸法を用いることが可能である。生分解性樹脂を良溶媒で溶かした溶液に無機フィラー粒子を投入して攪拌して分散させることによって紡糸溶液を調製し、そのようにして調製した紡糸溶液をシリンジに注入してノズルから押出すことによって紡糸溶液を吐出させて貧溶媒を満たしたコレクター容器に繊維状に出射することによって、貧溶媒中で無機フィラー粒子を含む複合生分解性繊維を紡糸することが可能である。
湿式紡糸法ではノズルから繊維状に出射された紡糸溶液が貧溶媒に入射して、紡糸溶液に含まれている良溶媒が貧溶媒中に脱離を通して繊維化するが、良溶媒が貧溶媒中に浸透する速度が遅すぎると、ノズルから出射された紡糸溶液が貧溶媒中で繊維化されるのが困難である。逆に、良溶媒が貧溶媒中に浸透する速度が速すぎると、紡糸溶液がノズルで詰まりが生じてしまう。特に、紡糸溶液に多量の無機粒子を含む場合は、ノズルの狭い吐出口から紡糸溶液が貧溶媒に射出される部分で詰まりが生じやすい。
上記課題を解決して効率的な湿式紡糸を実現するために、本発明の発明者等は鋭意検討を重ねた結果、湿式紡糸装置のコレクター容器に溶解度の異なる2種類の貧溶媒を上下二層にして満たしたものを用いることに想到した。即ち、試料(無機粒子と生分解性樹脂)に対して略同等の量の良溶媒を投入して調製した紡糸溶液を湿式紡糸装置のノズルの吐出口からコレクター容器に押し出し、ノズルの吐出口から押し出された紡糸溶液を良溶媒との溶解パラメータの差異が小さい第1の貧溶媒中に繊維状に入射し、次いで前記繊維状に入射された紡糸溶液を前記良溶媒との溶解パラメータの差異が第1の貧溶媒よりも大きい第2の貧溶媒に入射することによって、多量の無機粒子を含む繊維を効率的に紡糸することができることを発見した。
上記発見に基づいて、本発明の発明者等は、湿式紡糸法を用いて無機フィラー粒子を含む生分解性繊維を製造する方法であって、
 
無機フィラー粒子と生分解性樹脂を重量比50-80:50-20の割合で混合した混合物を混合容器に投入し、
 
前記混合物に対して所定の量の良溶媒を前記混合容器に投入し、前記生分解性樹脂を前記良溶媒に溶解させて攪拌することによって、前記無機フィラー粒子が溶液中に分散した紡糸溶液を調製し、
 
前記調製した紡糸溶液を湿式紡糸装置のシリンジに充填し、
 
前記シリンジに充填された前記紡糸溶液を所定の径を有する入射針の吐出口から垂直下方向に所定の押出速度で押し出して所定の高さを有する筒形状のコレクター容器中に出射し、前記コレクター容器には、溶解パラメータ値が前記良溶媒に対して第1の乖離度を有する第1の貧溶媒と、前記第1の貧溶媒よりも比重が大きく尚且つ溶解パラメータ値が前記良溶媒に対して前記第1の乖離度よりも大きい第2の乖離度を有する第2の貧溶媒が上下二層になって満たされており、
 
前記ノズルの吐出口から押し出された紡糸溶液は自重により前記コレクター容器中の前記第1の貧溶媒に繊維状に入射し、前記第1の貧溶媒の液中に繊維状に入射された紡糸溶液の表面が前記良溶媒の脱離と前記第1の貧溶媒の侵入の相互拡散によって固化され、
 
次いで、前記表面が固化された繊維状の紡糸溶液は自重により前記コレクター容器の前記第1の貧溶媒の下に満たされた前記第2の貧溶媒中に連続的に入射し、
 
前記第2の貧溶媒の中に入射した前記繊維状の紡糸溶液は、前記第2の貧溶媒の中で前記良溶媒の脱離と第2の貧溶媒の侵入の相互拡散を紡糸溶液の内部まで進行させることによってさらに固化して繊維化され、前記固化した繊維は前記第2の貧溶媒中で繊維同士が接着することなく連続的な長繊維となって前記コレクター容器の底に浮遊堆積し、
 
前記コレクター容器の底に堆積した繊維を前記コレクター容器から取り出して乾燥させる、
 
前記湿式紡糸法を用いて無機フィラー粒子を含む生分解性繊維を製造する方法、という発明に到達した。
本発明者等はさらに、湿式紡糸法を用いて製造された綿形状の骨再生材料であって、前記綿形状の骨再生材料は、
 
カルシウム塩粒子と生分解性樹脂を重量比50-80:50-20の割合で混合した混合物を混合容器に投入し、
 
前記混合物に対して所定の量の良溶媒を前記混合容器に投入し、前記生分解性樹脂を前記良溶媒に溶解させて攪拌することによって、前記カルシウム塩粒子が溶液中に分散した紡糸溶液を調製し、
 
前記調製した紡糸溶液を湿式紡糸装置のシリンジに充填し、
 
前記シリンジに充填された前記紡糸溶液を所定の径を有する入射針の吐出口から垂直下方向に所定の押出速度で押し出して所定の高さを有する筒形状のコレクター容器中に出射し、前記コレクター容器には、溶解パラメータ値が前記良溶媒に対して第1の乖離度を有する第1の貧溶媒と、前記第1の貧溶媒よりも比重が大きく且つ溶解パラメータ値が前記良溶媒に対して前記第1の乖離度よりも大きい第2の乖離度を有する第2の貧溶媒が上下二層になって満たされており、
 
前記吐出口から押し出された紡糸溶液は前記コレクター容器中の前記第1の貧溶媒に繊維状に入射し、前記第1の貧溶媒の液中に繊維状に入射された紡糸溶液の表面は前記良溶媒の脱離と第1の貧溶媒の侵入の相互拡散によって固化され、
 
次いで、前記表面が固化した紡糸溶液は、前記コレクター容器の前記第1の貧溶媒の下に満たされた前記第2の貧溶媒中に連続的に入射し、
 
前記第2の貧溶媒の中に入射した前記紡糸溶液は、前記第2の貧溶媒の中で前記良溶媒の脱離と第2の貧溶媒の侵入の相互拡散を紡糸溶液内部まで進行させることによってさらに固化して繊維化され、前記固化した繊維は第2の貧溶媒中で繊維同士が接着することなく連続的な長繊維となって前記コレクター容器の底に綿状に浮遊堆積し、
 
前記コレクター容器の底に綿状に堆積した繊維を前記コレクター容器から取り出して乾燥させる、という工程によって製造される、
 
前記綿形状の骨再生材料、という発明に到達した。
本発明の発明者等はさらに、改良された湿式紡糸法に用いる湿式紡糸法装置であって、前記装置は、
 
無機フィラー粒子50-80重量%と生分解性樹脂50-20重量%の比率で両者を混合容器に投入し、良溶媒に溶解させて攪拌することによって調製した紡糸溶液を注入するシリンジと、
 
前記シリンジの端部に接続されて、先端に吐出口を備えたノズルと、
 
所定の高さを有する筒形状のコレクター容器を備え、
 
前記コレクター容器は、
前記ノズルの吐出口から押し出された紡糸溶液を第1の貧溶媒中に入射して通過させるための射出部と
 
前記射出部を通過した紡糸溶液を前記射出部の下に隣接し、前記第1の貧溶媒よりも比重が大きく、かつ前記良溶媒との溶解パラメータ値の乖離度が前記第1の貧溶媒よりも大きい第2の貧溶媒中に入射させて固化するための繊維固化部と、
 
前記繊維固化部の下に隣接し、前記繊維固化部を通過して固化した繊維を前記コレクター容器の底に綿状に浮遊堆積させて回収するための繊維回収部を有し、
 
前記繊維固化部と前記繊維回収部はクランプを用いて分離可能に接続されており、前記繊維回収部の底に前記固化した繊維が浮遊堆積した後に前記繊維回収部を前記繊維固化部から分離することによって、前記コレクター容器の底に堆積した繊維を回収することができる、
 
前記改良された湿式紡糸法に用いる湿式紡糸法装置、という発明に到達した。
好ましくは、前記無機フィラー粒子と生分解性樹脂の混合物に対して加える良溶媒の量は、前記シリンジ内で無機フィラー粒子が溶液中に沈んでしまうことなく均一に拡散し、尚且つ紡糸溶液を前記注射針から貧溶媒中に押し出すことによって貧溶媒中で繊維化することができる量に調整されている。
好ましくは、前記β-TCP粒子の粒径は、0.4~5μmである。
好ましくは、前記紡糸溶液は、粒子径が3~5μmのβ-TCP粒子とPDLLGA樹脂を重量比50-80:50-20の割合で混合した混合物1に対して重量比で0.7~1.3の量のアセトンを加えて溶解することによって調製される。
好ましくは、前記紡糸溶液は、粒子径が0.3~0.5μmのβ-TCP粒子とPDLLGA樹脂を重量比50-80:50-20の割合で混合した混合物1に対して重量比で1.15~1.40の量のアセトンを加えて溶解することによって調製される。
好ましくは、前記コレクター容器に入れる第1の貧溶媒と第2の貧溶媒の界面の位置がノズルの吐出口から近い位置にくるように設定する。入射針の吐出口から繊維状に射出された紡糸溶液が良溶媒との溶解パラメータの差異が小さい第1の貧溶媒を通過する距離が長いとノズルの吐出口から入射した繊維が途中でちぎれてしまいやすいので、第1の貧溶媒と第2の貧溶媒の界面の高さ位置がノズルの吐出口から近い位置にくるようにすることで、入射した繊維が途中でちぎれてしまうのを防いで、一本の連続した繊維としてコレクター容器の底に堆積させることが可能になる。
好ましくは、無機フィラー粒子はリン酸カルシウム粒子を用い、より好ましくはβ―TCP粒子を用いる。さらには、銀を含むβ-TCPは抗菌性があるので有用である。
好ましくは、本発明の湿式紡糸装置の筒形状のコレクター容器は、高さが50~100cmあり、上から順に射出部と繊維固化部と繊維回収部に区分されている。ノズルの吐出口から繊維状に押し出された紡糸溶液はその自重によって、射出部中の第1の貧溶媒を通過し、その後繊維固化部の第2の貧溶媒の中に入射され、繊維固化部を通過した後、同じく第2の貧溶媒が満たされた繊維回収部に導入されて、コレクター容器の底に綿状に浮遊堆積する。コレクター容器の底に堆積した綿状の繊維は、コレクター容器の繊維回収部を繊維固化部から分離してコレクター容器から取り出して回収して乾燥させることによって綿形状の骨再生材料を得ることができる。
好ましくは、良溶媒はアセトンを用い、第1の貧溶媒はエタノールを用い、第2の貧溶媒は水を用いる。
好ましくは、良溶媒はアセトンを用い、第1の貧溶媒はアセトンと水の混合溶液を用い、第2の貧溶媒は水を用いる。
好ましくは、良溶媒はクロロホルムを用い、第1の貧溶媒はエタノールを用い、第2の貧溶媒は水を用いる。
好ましくは、第2の貧溶媒は純水を用いる。全溶媒 (良溶媒、第1の貧溶媒、第2の貧溶媒の全て)が塩素を含むと銀を含むβ-TCPの場合には含まれた銀と反応してAgClを生成する可能性があるので、塩素を含まない溶媒であることが好ましい。
好ましくは、前記生分解性繊維は、無機フィラー粒子を50-80重量%、より好ましくは、60-70重量%含む。湿式紡糸法は、樹脂とフィラー粒子を混合して有機溶剤で溶かすことによって調整した紡糸溶液をシリンジから押し出すことによって紡糸するので、多量の無機フィラー粒子を含む紡糸溶液を容易に調製することができる。ESでは紡糸時のスラリーの粘性が低いものを使用するため、予め無機フィラー粒子の分散性を非常に高めておく必要があり、多量のフィラー粒子を溶液中に均一に分散させるための特別な工程(例:混錬)が必要であるが、湿式紡糸法では、ESより高い粘性のスラリーを用いるためそのような特別な工程を踏むことなく、攪拌によって粒子を溶液中に分散させるだけで足りる。これは、粒子間を埋めるポリマー液の流動性が低くなり凝集を防ぐことができるためである。
好ましくは、無機フィラー粒子はリン酸カルシウム粒子を用い、さらに好ましくはβ-TCP粒子を用いる。生分解性樹脂が体液に接して分解されてβ-TCP粒子が溶出し、さらにβ-TCPが溶かされて、カルシウムイオン、リンイオンを溶出し、骨吸収置換による骨形成が促進される。
好ましくは、β-TCP粒子は銀イオンを含有するβ-TCPの粒子を用いる。生分解性繊維から溶出したβ-TCP粒子が溶かされるに伴い、β-TCP粒子に含有される銀イオンが溶出し、抗菌性を発揮する。
好ましくは、湿式紡糸装置のノズルの入射針は27G(内径0.19±0.02mm、外径0.41±0.01mm)、または、22G(内径0.41±0.03mm、外径0.72±0.02mm)を用い、それによって紡糸される繊維の外径は80~200μmである。より好ましくは、湿式紡糸装置のノズルの注射針は27Gを用い、紡糸繊維の外径は100~150μmである。発明者等が別に実験したところでは、ノズルの入射針に22Gを用いた場合には樹脂濃度16.7~20.5重量%、押出速度3ml/hで良好に紡糸できたが、樹脂濃度15.3重量%では粘性が低く無機粒子がシリンジ内で沈降しやすく不均質な繊維となった。樹脂濃度が26.5重量%では粘性が高く押出しが容易でなくなった。22Gを用いて押し出した繊維は太く、ゴワゴワしていた。他方、ノズルの太さが27Gを用いると適正な樹脂濃度の範囲はもっと狭くなったが、紡糸溶液の樹脂濃度20重量%、押出速度3ml/hで良好に紡糸できた。繊維の径は22Gを用いた場合よりも細く、ゴワゴワした感じが少なく、製品としてより優れたものが得られる。
ES法と異なり、湿式紡糸法は紡糸溶液を単純に押し出すことによってノズルから吐出させるので、紡糸溶液の樹脂濃度は吐出速度と繊維の太さに合わせて、比較的自由に設定することができるが、紡糸溶液の適正な樹脂濃度はノズルの太さによって変わる。
好ましくは、金属又はプラスチック製の網をコレクター容器の繊維回収部の底に沈めておき、その上に湿式紡糸した繊維を堆積させて、その網を引き揚げると繊維はまだ柔らかいので不織布状または綿形状になり、それをそのまま水につければ、そのままの形で固まる。
好ましくは、コレクター容器の底に巻き取り器具を設置しておき、第二の貧溶媒を通って堆積する繊維を巻き取り器具で巻き取る。巻き取り器具の巻き取り速度を速くすることによって、繊維の方向が揃った不織布が得られる。
本発明では、試料(無機粒子と生分解性樹脂)と良溶媒の量が、試料の粒子が良溶媒中で沈んでしまうことなく均一に拡散することができ、かつ吐出口から押し出された紡糸溶液を貧溶媒中で繊維化することが可能な量に調整されているので、湿式紡糸装置を用いて生分解性繊維を商業ベースで紡糸することが可能である。
本発明の湿式紡糸方法では、ノズルの吐出口から貧溶媒中に繊維状に押し出された紡糸溶液は、樹脂溶液(ポリ乳酸の比重は1.24)に多量の無機粒子(β-TCPの比重は3.14g/cm3)を多量に含んでいるものなので、紡糸溶液の自重によって貧溶媒(エタノールの比重は0.8前後、水の比重は1)中を下方に沈降して第1の貧溶媒と第2の貧溶媒を順次通過し、沈降の過程で徐々に繊維化してコレクター容器の底に堆積し、堆積した繊維を回収することができる。
本発明の湿式紡糸法装置のコレクター容器の繊維固化部に満たす第2の貧溶媒は、その上の射出部に満たす第1の貧溶媒よりも比重が大きいので、比重の違いによって第2の貧溶媒の上に第1の貧溶媒が浮いた状態で二層を形成する。そのため、紡糸溶液を装置の吐出口から第1の貧溶媒に射出することによって、繊維状に射出された紡糸溶液を、その自重により溶解パラメータが異なる第1の貧溶媒と第2の貧溶媒に順次通過させることができるので、その過程で紡糸溶液を徐々に固化して繊維化することができる。但し、第1の貧溶媒にエタノール、第2の貧溶媒に水を用いる場合は、エタノールは親水性なので、撹拌して親水基の周辺に水が配位すればエタノール分子を水が囲んで混ざり合ってしまう。そこで、水の上にエタノールをゆっくり注ぐことによって、エタノールの親水基の周りに水を配位させずに、比重の違いで分離した状態を作り出すことが好ましい。
本発明の好ましい実施態様において、紡糸溶液の固化に用いる第2の貧溶媒(例:水)は、良溶媒(例:アセトン)よりも比重が大きいので、繊維から脱離した良溶媒(例:アセトンは直ちに上方に浮上して固化した繊維の近辺に留まることがない。その結果、良溶媒が繊維から脱離した後繊維の近辺に漂うことによって、固化してコレクター容器の底に堆積した繊維を溶かすことがないので、堆積した繊維は互いに付着せずコレクター容器から綿形状に回収することができる。
本発明で用いる生分解性樹脂は、溶媒に対する溶解性の高い樹脂を選択することによって、紡糸溶液の調製に用いる良溶媒として、溶解力の高い塩素系溶媒(例:クロロホルム)を用いる必要はなく、非塩素系溶媒(例:アセトン)を用いることができる。
本発明の一つの実施態様の湿式紡糸法で作製した生分解性繊維は繊維の長さが長く、ほぼ一本の連続した繊維を綿状に堆積させて回収することができる。このようにして堆積回収した綿形状の骨再生材料は、ESで作製した綿と比べて、繊維と繊維の間の間隔が広く、繊維間に細胞が侵入して繊維接着して増殖するための大きな微細環境を有する。
本発明の湿式紡糸法で作製した生分解性繊維はESで紡糸した繊維よりも、繊維表面の孔数が少なく、緻密な断面構造を有し、形状維持に優れている。
本発明の湿式紡糸法で作製した生分解性繊維は、扁平な断面形状を有しており、細胞の接着性に優れている。
本発明の湿式紡糸法は、ES法と異なり紡糸溶液を物理的力を加えてシリンジから吐出口に押し出すものなので、紡糸溶液中のフィラー粒子の含有量については自由度が高い。リン酸カルシウムを50重量%、より好ましくは60重量%、さらに好ましくは70重量%含有させることで、粒子が繊維表面に凹凸構造を形成する。繊維の表面が凹凸構造を有することは、細胞接着にとって好適である。
本発明の湿式紡糸法で作製したPDLLGA樹脂繊維からなる綿形状の骨再生材料は、体内に埋植された後PDLLGAが体内で溶解して局所的にpHが低下して酸性の環境を作り出す。その結果、酸性の環境下でβ―TCPが溶解して、微量のカルシウムイオンとリン酸イオンを溶出徐放して、骨形成の促進に寄与する。
本発明の湿式紡糸法で作製する生分解性繊維に銀イオン含有 β-TCP粒子をフィラーとして含有させると、生分解性樹脂が体内で溶解してpHが低下して、β-TCPフィラーが酸性の環境下で溶解し、その結果、β-TCP粒子に含有されている銀イオンが溶出して抗菌性を発揮する。これによって、本発明の湿式紡糸法で作製するPDLLGA繊維と銀イオン含有β-TCP粒子を組み合わせて用いることによって、骨再生材料を体内に埋植した後の術後後期における抗菌性の発揮を実現することができる。
本発明の湿式紡糸法では、有機溶媒として用いるアセトンは塩素を含まないので、銀と接触しても塩化銀を生成しない。その結果、β―TCP粒子に含有されるAgイオンがAgClとならずに、Agイオンとして存在するので、Agイオンの抗菌性が発揮できる。また、AgClが生成して光があたることによって黒く変色することもない。
本発明の湿式紡糸法で紡糸された生分解性繊維は、含有されている無機粒子が繊維の表面に樹脂に覆われることなく露出して凹凸形状を形成しているため、人体に投与したときに優れた細胞接着性を発揮する。
図1は、本発明の実施例の湿式紡糸法の概念図を示す。 図2は、本発明の一つの実施態様の湿式紡糸法(良溶媒としてアセトン、第1の貧溶媒としてエタノール、第2の貧溶媒として水を使用)において、紡糸した生分解性繊維の形状を示すSEM写真である。 図3は、本発明の実施例の湿式紡糸法(良溶媒としてアセトン、第1の貧溶媒としてエタノール、第2の貧溶媒として水を使用)において、紡糸した生分解性繊維の表面の凹凸形状を示すSEM写真である。 図4は、本発明において、良溶媒としてアセトン、第1の貧溶媒としてエタノール、第2の貧溶媒として水を用いる場合において各溶媒相互間のハンセン溶解度パラメータの乖離度を示す概念図である。 図4は、本発明の実施例の湿式紡糸法(良溶媒としてアセトン、第1の貧溶媒としてエタノール、第2の貧溶媒として水を使用)に用いる湿式紡糸装置を示す概念図である。
定義
以下、本発明の実施態様を図面を参照しながら詳細に説明する。
定義
<PLLGA樹脂>
本発明においてPLLGA樹脂とは、L体のみを含む乳酸とグリコール酸の共重合によって合成されたPLGA樹脂をいう。PLLAとPGAの重合比率が85:15のものをPLLGA(85:15)と称し、PLLAとPGAの重合比率が75:25のものをPLLGA(75:25)と称する。PLLGAはPGAの比率を高めることによって分解性を高めることができる。PLLGAを溶剤で溶かすにはクロロホルム等の塩素系溶剤を用いることが必要である。 
<PDLLGA樹脂>
本発明においてPDLLGA樹脂とは、D体とL体を含む乳酸とグリコール酸の共重合によって合成されたPLGA樹脂をいう。PLGAの合成に用いられる乳酸には、結晶性のL体と光学異性体であるアモルファス性のD体とが存在し、PLAにはL体のみからなるポリ(L-乳酸)(PLLA)とL体とD体を含むポリ(D―乳酸)(PDLLA)が存在する。PDLLAとPGAの重合比率が75:25のものをPDLLGA(75:25)と称する。このPDLLAとPGAの共重合体であるPDLLGAはPLGAの中でも、特に高い柔軟性を有する。PDLLGAは、PDLLAとPGAとの重合比率を変化させることによって分解性を制御することが可能である。PDLLGAに含まれるD体の量を数値的に特定するのは困難であるが、本発明において、PDLLGA樹脂に含まれるD体の量は、D体を含むことによって樹脂がアセトンで溶解可能な分解性を有し、かつそれで足りる。
<湿式紡糸法>
本発明において湿式紡糸法とは、良溶媒と呼ばれる有機溶剤の脱離と貧溶媒の侵入の相互拡散によって繊維の形に固化させる方法をいう。良溶媒と貧溶媒の選択がポリマーの固化速度や溶媒の相互拡散に影響し、この相互拡散の速度のバランスが得られる繊維の形態を決める。本発明の湿式紡糸法の好ましい実施態様では、リン酸カルシウム粒子を含むPDLLGA樹脂を繊維化して綿形状を形成するための条件設定と改良がなされている。
<良溶媒>
本発明において良溶媒とは、生分解性樹脂とリン酸カルシウム粒子の混合物を溶解して紡糸溶液を調製するために用いられる溶剤をいう。クロロホルム等の塩素系の有機溶剤は、樹脂を溶解する力に優れるが、毒性がある。アセトンは、溶解性の点でクロロホルムに劣るが塩素を含まないので、生体に対する安全性に優れる。本発明で用いるPDLLGA樹脂は、クロロホルム等の塩素系有機溶剤毒性を用いる必要がなく、安全性の高い非塩素系溶剤であるアセトンを用いることができる。
本発明において紡糸溶液を調製するにあたって、無機フィラー粒子の粒径が4μm程度である場合には、良溶媒の量は無機フィラー粒子と生分解性樹脂の混合物の重量1に対する比率が1:0.7~1.3の量が好ましい。さらに好ましくは両者が略1:1の比率とする。本発明の発明者等が実施した実験では、試料(無機フィラー粒子と生分解性樹脂の混合物)1に対する良溶媒(アセトン)の重量の比率が1.3より多くなると、粒子がシリンジ中で沈みやすくなり、射出初期と後期で分散されている無機粒子(β-TCP)の量が変わってきて製品として不均質となる。逆に、良溶媒(アセトン)の量が0.7より少ないと、ノズルの吐出口から押し出すのが困難になる。試料(β-TCPとPDLLGA樹脂の混合物)に対する良溶媒(アセトン)の量が重量比1:0.7~1.3の範囲内であると、吐出口から紡糸溶液を押し出して、貧溶媒中で繊維化することができた。
無機フィラー粒子の粒径が0.3~0.5μm程度である場合には、良溶媒の量は無機フィラー粒子と生分解性樹脂の混合物の重量1に対する比率が1:1.15~1.40の量が好ましい。本発明者の発明者等が粒子径0.4μmのβ-TCP粒子を用いて行った実験によると、試料1に対してアセトンの量が重量比で1.1だと紡糸溶液をシリンジからポンプで押出すのが困難になった。逆に、試料1に対してアセトンの量が重量比で1.45だと時間の経過と共に溶液中でβ-TCP粒子が沈降・分離してしまった。
<貧溶媒>
本発明において貧溶媒とは、生分解性樹脂を溶かさない溶媒として凝固浴液に用いられる。貧溶媒とは、講学上、特定の物質-溶媒系で溶質-溶媒間の相互作用(自由エネルギー)が溶質-溶質間,溶媒-溶媒間の相互作用の算術平均より小さいとき,この溶媒をこの溶質に対して貧溶媒であるというが、本発明の方法に用いる貧溶媒は、溶解パラメータを指標として、有機溶媒との相互拡散のバランスを考慮して選択される。本発明では、生分解性樹脂としてPDLLGAを用いる場合には、PDLLGAが不溶であるエタノール又は水を好適に用いることができる。
 <Hansen溶解パラメータ値の乖離度>
本発明の方法において用いる生分解性樹脂、良溶媒、貧溶媒はHansen溶解パラメータ値の乖離度を指標として選択することができる。良溶媒を用いて生分解性樹脂を溶解して調製した紡糸溶液がノズルの吐出口から繊維状に押し出されて貧溶媒中で固化する速度は、良溶媒がアセトンで貧溶媒がエタノールの場合、アセトンとエタノールの(i) 分極性、(ii) 水素結合性、iii) 分散性の相互作用で決まるHansen溶解パラメータ値(ベクトル値)の乖離度によって決まる。溶質であるポリマーのHansen溶解パラメータ値は良溶媒(例:アセトン)の溶解パラメータ値の近くにあるはずである。25℃におけるエタノールのHansen 溶解パラメータは26.5δ[(MPa)1/2])であり、アセトンのHansen溶解パラメータは20.0[(MPa)1/2])であり、両者の乖離度は9.8[(MPa)1/2]である(図4参照)。この乖離度では、ノズル先端で紡糸溶液が急激に固化することがないので、吐出口から押し出された紡糸溶液が詰まりを生じる恐れがない。しかし、エタノールのHansen溶解パラメータ値がアセトンのHansen溶解パラメータ値近いのである程度のポリマーの溶解を許し、繊維状に押し出された紡糸溶液がエタノール中を沈降する過程で繊維の形状を維持できずに、途中でちぎれてしまいやすい。また、エタノールは比重がアセトンとほぼ同じなので、エタノール中で紡糸繊維から脱離したアセトンは、そのまま繊維の近辺にただよって、紡糸繊維を溶かす働きをするので、紡糸溶液の繊維化にとって望ましくないという問題もある。
良溶媒としてアセトンを用いて紡糸溶液を調製し、貧溶媒として水を用いて紡糸溶液をノズルから繊維状に貧溶媒中に押し出すと、水のHansen 溶解パラメータは47.8δ[(MPa)1/2]であり、アセトンのHansen 溶解パラメータは20.0δ[(MPa)1/2])であり、両者の乖離度は35.7δ[(MPa)1/2]である(図4参照)。PDLLGAに対する水とアセトンのHansen 溶解パラメータの乖離度は、PDLLGAに対するエタノールとアセトンに対する乖離度よりもかなり大きい。その結果、ノズルから押し出された紡糸溶液は水中で急激に固化するので、射出速度と固化のバランスが合わないと繊維化せずにノズル先端で紡糸溶液が固化して射出できず、繊維化できないことがしばしば生じ、安定的に繊維化させることが難しい。他方、水の比重はアセトンよりかなり大きいので紡糸溶液から溶出したアセトンは容器の底には溜まらず、上面付近に浮いてくる。良い条件が選ばれて紡糸できた際には、繊維同士が再度アセトンによりくっつくなどのことは起こらず、長い連続的な繊維が可能である。本発明の発明者等は、以上の挙動を熟考して鋭意検討を続け、長く安定的に紡糸でき、かつ得られる繊維同士が独立してしなやかな綿形状となるように、良溶媒とのHansen溶解パラメータの乖離度が小さい貧溶媒に紡糸溶液を射出し、続いてまだ完全に固化しない内に同乖離度が前者より大きな貧溶媒に進入させて固化させるという、新規な湿式紡糸法を発明するに至った。
実施例1(貧溶媒としてエタノール/水を用いる)
以下に示す材料及び装置を使用した。
・β型リン酸三カルシウム(Ca3(PO4)2):太平化学産業株式会社β-TCP-100。
粒径1.7mm以下のものを4μm程度に粉砕したもの(β―TCP粉砕品)を用いた。
・PDLLGAとしてPDLLA:PGA(75:25):PURASORB PDLG7507、Corbion Puracを用いた。
・エタノール:キシダ化学一級 純度99.5%
・アセトン:和光純薬 試薬特級純度99.5+%
・水:精製水
・紡糸溶液押出用入射ノズル:テルモ注射針27G(内径0.2mm、外径0.4mm)
円筒形状のコレクター容器(図1参照)を蒸留水で一定の高さまで満たした後、静かにエタノールを注いだ。エタノールの比重は、789kg/m3(20℃)であり水より小さいので、静置しておけば水とエタノールは混じり合うことはない。
1.紡糸溶液の調製
β-TCPとPDLLGAを7:3の重量比で混合し、アセトンに溶解させ、一晩混合し、ポリマー濃度20%の紡糸溶液を調製した。
2.紡糸条件
湿式紡糸装置の入射針(テルモ注射針27G)をコレクター容器に垂直下方向に向けて設置して、押出速度 3ml/hでコレクター容器のエタノール中に押し出した。
3.紡糸溶液の繊維化
i) シリンジから押し出された紡糸溶液は、ノズルの吐出口で詰まりを生じることなくコレクター容器のエタノール中に繊維状に入射した。
ii) エタノールに入射した繊維状紡糸溶液は表面が固化し、内部まで完全にアセトンが抜ける前にコレクター容器のエタノールの下に満たされた水に入射し、水中を通過してコレクター容器の底に溜まった(図2参照)。
4.綿形状物の回収
コレクター容器の底に浮遊堆積してたまった繊維を水で洗浄し、さらに、溶媒を除去するために一晩保持した。その後吸水シートを用いて水を除去し、常温乾燥して綿形状のサンプルを得た。
5.得られたサンプルの繊維の性状
i) 繊維の径は、約130μmで、繊維の断面は略楕円形状であった。
ii) 繊維の表面にはβ-TCP粒子が露出して凹凸形状を形成していた(図3参照)。
発明者等は、繊維表面に露出したβ-TCP粒子が樹脂層によって覆われているかどうかを、サンプルを塩酸に浸漬することによって確認した(繊維の表面のβ-TCP粒子が樹脂層によって覆われていればβ-TCP粒子は塩酸によって溶かされることはない)ところ、サンプルの繊維の表面に露出したβ-TCP粒子は樹脂層によって覆われていないことが判明した。
実施例2(貧溶媒としてアセトンと水の混合液/水を用いる)
以下に示す材料及び装置を使用した。
・β型リン酸三カルシウム(Ca3(PO4)2):太平化学産業株式会社β-TCP-100。
粒径1.7mm以下のものを4μm程度に粉砕したもの(β―TCP粉砕品)を用いた。
・PDLLGAとしてPDLLA:PLGA (75:25) (PURASORB PDLG7507、Corbion Purac)を用いた。
・蒸留水
・アセトン:和光純薬 試薬特級純度99.5+%
・アセトンと水を重量比で8:2に混合し、十分に撹拌したものを第1の貧溶媒として用いた。
・紡糸溶液押出用入射ノズル:テルモ注射針27G(内径0.2mm、外径0.4mm)
・第1の貧溶媒(アセトン:水=8:2の混合溶媒)容器:直径15mm、高さ50mmの円筒を用いた。
・第2の貧溶媒(水)容器:直径90 mm、高さ300mmの円柱型容器を使用した。第1の貧溶媒容器(筒状)と第2の貧溶媒容器(円柱状)とをクランプで固定した。
第2の貧溶媒容器を蒸留水で満たした後、静かにアセトンと水の混合溶媒液を第1の貧溶媒容器に注いだ。比重差により、静置しておけば水と混合溶媒は混じり合うことはなかった。
1.紡糸溶液の調製
β-TCPとPDLLGAを7:3 重量比で混合し、アセトンに溶解させ、一晩混合し、ポリマー濃度20%の紡糸溶液を調製した。
2.紡糸条件
注射針(口径27G)を垂直下方向に向けて設置して、押出速度 3ml/hでエ第1の貧溶媒(アセトンと水)中に押出した。
3.紡糸溶液の繊維化
i) シリンジから押し出された紡糸溶液は、ノズルの吐出口で固化して詰まりを生じることなくコレクター容器の第1の貧溶媒(アセトンと水)中に繊維状に入射した。
ii) 第1の貧溶媒(アセトンと水)に入射した繊維状紡糸溶液は表面が固化し、内部まで完全にアセトンがぬける前にコレクター容器の下に満たされた第2の貧溶媒(水)に入射し、水中を通過してコレクター容器の底に溜まった(図2参照)。
4.綿形状物の回収
紡糸溶液中の溶媒のアセトンは第1の貧溶媒(アセトンと水の混合溶液)中の低濃度の水と交換されて紡糸溶液表面は固化するが、ノズル先で固化することなくスムーズに流れ出て、内部まで完全に交換される前に第2の貧溶媒の水と接するようになり、そのまま容器の底まで進行して溜まっていった。アセトンの比重が水より小さいので容器の底には溜まらず、上面付近に浮いてくる。その結果、長時間線引きしても繊維同士が再度アセトンによりくっつくなどのことは起こらず、長い繊維が得られた。
湿式紡糸後、繊維を取り出し、吸水シート上で常温乾燥して綿形状の試料を得ることができた。
5.得られたサンプルの繊維の性状
i) 繊維の径は約110μmで、繊維の断面は略円形状であった。
ii) 繊維の表面にはβ-TCP粒子が露出して凹凸形状を形成していた。
発明者等は、繊維表面に露出したβ-TCP粒子が樹脂層によって覆われているかどうかを、サンプルを塩酸に浸漬することによって確認した(繊維の表面のβ-TCP粒子が樹脂層によって覆われていればβ-TCP粒子は塩酸によって溶かされることはない)ところ、サンプルの繊維の表面に露出したβ-TCP粒子は樹脂層によって覆われていないことが判明した。
比較実験1(エタノール100%)
実験内容:実施例1と同様の条件で、但し貧溶媒としてエタノールのみをコレクター容器に満たして、紡糸実験を実施した。
結果:シリンジに充填した紡糸溶液はノズルの吐出口(27G)から繊維状にスムーズに押し出すことができたが、エタノール中で繊維形状を維持できずにちぎれてしまうことが頻発した。
比較実験2(水100%)
実験内容:実施例1と同様の条件で、但し貧溶媒として水のみをコレクター容器に満たして、紡糸実験を実施した。
結果:シリンジに充填した紡糸溶液はノズルの吐出口(27G)で詰まってしまい、水中に入射できない現象が頻発した。
以上、本発明を紡糸溶液に無機フィラー粒子を含有する実施例に即して説明したが、本発明の2種類の貧溶媒を用いた湿式紡糸法は、綿形状物を作製する場合に限らず、不織布を作製する方法としても用いることも可能である。
 

Claims (14)

  1. 湿式紡糸法を用いて無機フィラー粒子を含む生分解性繊維を製造する方法であって、
     
    無機フィラー粒子と生分解性樹脂を重量比50-80:50-20の割合で混合した混合物を混合容器に投入し、
     
    前記混合物に対して所定の量の良溶媒を前記混合容器に投入し、前記生分解性樹脂を前記良溶媒に溶解させて攪拌することによって、前記無機フィラー粒子が溶液中に分散した紡糸溶液を調製し、
     
    前記調製した紡糸溶液を湿式紡糸装置のシリンジに充填し、
     
    前記シリンジに充填された前記紡糸溶液を所定の径を有する入射針の吐出口から垂直下方向に所定の押出速度で押し出して所定の高さを有する筒形状のコレクター容器中に出射し、前記コレクター容器には、溶解パラメータ値が前記良溶媒に対して第1の乖離度を有する第1の貧溶媒と、前記第1の貧溶媒よりも比重が大きく尚且つ溶解パラメータ値が前記良溶媒に対して前記第1の乖離度よりも大きい第2の乖離度を有する第2の貧溶媒が上下二層になって満たされており、
     
    前記ノズルの吐出口から押し出された紡糸溶液は自重により前記コレクター容器中の前記第1の貧溶媒に繊維状に入射し、前記第1の貧溶媒の液中に繊維状に入射された紡糸溶液の表面が前記良溶媒の脱離と前記第1の貧溶媒の侵入の相互拡散によって固化され、
     
    次いで、前記表面が固化された繊維状の紡糸溶液は自重により前記コレクター容器の前記第1の貧溶媒の下に満たされた前記第2の貧溶媒中に連続的に入射し、
     
    前記第2の貧溶媒の中に入射した前記繊維状の紡糸溶液は、前記第2の貧溶媒の中で前記良溶媒の脱離と第2の貧溶媒の侵入の相互拡散を紡糸溶液の内部まで進行させることによってさらに固化して繊維化され、前記固化した繊維は前記第2の貧溶媒中で繊維同士が接着することなく連続的な長繊維となって前記コレクター容器の底に浮遊堆積し、
     
    前記コレクター容器の底に堆積した繊維を前記コレクター容器から取り出して乾燥させる、
     
    前記湿式紡糸法を用いて無機フィラー粒子を含む生分解性繊維を製造する方法。
     
  2. 前記生分解性樹脂がPDLLGAであり、前記良溶媒がアセトンであり、前記第1の貧溶媒がエタノールであり、前記第2の貧溶媒が水である、請求項1に記載の方法。
     
  3. 前記生分解性樹脂がPDLLGAであり、前記良溶媒がアセトンであり、前記第1の貧溶媒がアセトンと水の混合溶液であり、前記第2の貧溶媒が水である、請求項1に記載の方法。
     
  4. 前記無機フィラー粒子と生分解性樹脂の混合物に対して加える良溶媒の量は、前記シリンジ内で無機フィラー粒子が溶液中に沈んでしまうことなく均一に拡散し、尚且つ紡糸溶液を前記入射針から貧溶媒中に押し出すことによって貧溶媒中で繊維化することができる量に調整されている請求項1又は2に記載の方法。
     
  5. 前記コレクター容器から取り出して乾燥して得られた繊維の外径は80~200μmである、請求項1又は2に記載の方法。
     
  6. 前記入射針の吐出口の口径は0.17~0.21mm(27G)であり、前記コレクター容器から取り出して乾燥して得られた繊維の外径は100~150μmである、請求項1又は2に記載の方法。
     
  7. 前記無機フィラー粒子はカルシウム塩粒子である、請求項1又は2に記載の方法。
     
  8. 湿式紡糸法を用いて製造された綿形状の骨再生材料であって、前記綿形状の骨再生材料は、
     
    カルシウム塩粒子と生分解性樹脂を重量比50-80:50-20の割合で混合した混合物を混合容器に投入し、
     
    前記混合物に対して所定の量の良溶媒を前記混合容器に投入し、前記生分解性樹脂を前記良溶媒に溶解させて攪拌することによって、前記カルシウム塩粒子が溶液中に分散した紡糸溶液を調製し、
     
    前記調製した紡糸溶液を湿式紡糸装置のシリンジに充填し、
     
    前記シリンジに充填された前記紡糸溶液を所定の径を有する入射針の吐出口から垂直下方向に所定の押出速度で押し出して所定の高さを有する筒形状のコレクター容器中に出射し、前記コレクター容器には、溶解パラメータ値が前記良溶媒に対して第1の乖離度を有する第1の貧溶媒と、前記第1の貧溶媒よりも比重が大きく且つ溶解パラメータ値が前記良溶媒に対して前記第1の乖離度よりも大きい第2の乖離度を有する第2の貧溶媒が上下二層になって満たされており、
     
    前記吐出口から押し出された紡糸溶液は前記コレクター容器中の前記第1の貧溶媒に繊維状に入射し、前記第1の貧溶媒の液中に繊維状に入射された紡糸溶液の表面は前記良溶媒の脱離と第1の貧溶媒の侵入の相互拡散によって固化され、
     
    次いで、前記表面が固化した紡糸溶液は、前記コレクター容器の前記第1の貧溶媒の下に満たされた前記第2の貧溶媒中に連続的に入射し、
     
    前記第2の貧溶媒の中に入射した前記紡糸溶液は、前記第2の貧溶媒の中で前記良溶媒の脱離と第2の貧溶媒の侵入の相互拡散を紡糸溶液内部まで進行させることによってさらに固化して繊維化され、前記固化した繊維は第2の貧溶媒中で繊維同士が接着することなく連続的な長繊維となって前記コレクター容器の底に綿状に浮遊堆積し、
     
    前記コレクター容器の底に綿状に堆積した繊維を前記コレクター容器から取り出して乾燥させる、という工程によって製造される、
     
    前記綿形状の骨再生材料。
     
  9. 前記生分解性樹脂がPDLLGAであり、前記良溶媒がアセトンであり、前記第1の貧溶媒がエタノールであり、前記第2の貧溶媒が水である、請求項8に記載の骨再生材料。
     
  10. 前記生分解性樹脂がPDLLGAであり、前記良溶媒がアセトンであり、前記第1の貧溶媒がアセトンと水の混合溶液であり、前記第2の貧溶媒が水である、請求項8に記載の骨再生材料。
     
  11. 前記無機フィラー粒子と生分解性樹脂の混合物に対して加える良溶媒の量は、前記シリンジ内で無機フィラー粒子が溶液中に沈んでしまうことなく均一に拡散し、尚且つ紡糸溶液を前記入射針から貧溶媒中に押し出すことによって貧溶媒中で繊維化することができる量に調整されている請求項8又は9に記載の骨再生材料。
     
  12. 改良された湿式紡糸法に用いる湿式紡糸法装置であって、前記装置は、
     
    無機フィラー粒子50-80重量%と生分解性樹脂50-20重量%の比率で両者を混合容器に投入し、良溶媒に溶解させて攪拌することによって調製した紡糸溶液を注入するシリンジと、
     
    前記シリンジの端部に接続されて、先端に吐出口を備えたノズルと、
     
    所定の高さを有する筒形状のコレクター容器を備え、
     
    前記コレクター容器は、
    前記ノズルの吐出口から押し出された紡糸溶液を第1の貧溶媒中に入射して通過させるための射出部と
     
    前記射出部を通過した紡糸溶液を前記射出部の下に隣接し、前記第1の貧溶媒よりも比重が大きく、かつ前記良溶媒との溶解パラメータ値の乖離度が前記第1の貧溶媒よりも大きい第2の貧溶媒中に入射させて固化するための繊維固化部と、
     
    前記繊維固化部の下に隣接し、前記繊維固化部を通過して固化した繊維を前記コレクター容器の底に綿状に浮遊堆積させて回収するための繊維回収部を有し、
     
    前記繊維固化部と前記繊維回収部は分離可能に接続されており、前記繊維回収部の底に前記固化した繊維が浮遊堆積した後に前記繊維回収部を前記繊維固化部から分離することによって、前記コレクター容器の底に堆積した繊維を回収することができる、
    前記改良された湿式紡糸法に用いる湿式紡糸法装置。
     
  13. 前記生分解性樹脂がPDLLGAであり、前記良溶媒がアセトンであり、前記第1の貧溶媒がエタノールであり、前記第2の貧溶媒が水である、請求項12に記載の湿式紡糸法装置。
     
  14. 前記生分解性樹脂がPDLLGAであり、前記良溶媒がアセトンであり、前記第1の貧溶媒がアセトンと水の混合溶液であり、前記第2の貧溶媒が水である、請求項12に記載の湿式紡糸法装置。
     
PCT/JP2023/018963 2022-05-23 2023-05-22 湿式紡糸法を用いて無機フィラー粒子を含有する生分解性繊維材料を連続的に製造する方法、及びその方法で製造された綿形状の骨再生材料 WO2023228905A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024509002A JP7481699B2 (ja) 2022-05-23 2023-05-22 湿式紡糸法を用いて無機フィラー粒子を含有する生分解性繊維材料を連続的に製造する方法、及びその方法で製造された綿形状の骨再生材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263344913P 2022-05-23 2022-05-23
US63/344,913 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023228905A1 true WO2023228905A1 (ja) 2023-11-30

Family

ID=88468998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018963 WO2023228905A1 (ja) 2022-05-23 2023-05-22 湿式紡糸法を用いて無機フィラー粒子を含有する生分解性繊維材料を連続的に製造する方法、及びその方法で製造された綿形状の骨再生材料

Country Status (2)

Country Link
JP (3) JP7370029B1 (ja)
WO (1) WO2023228905A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509028A (ja) * 2013-02-19 2016-03-24 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 化学勾配
JP2018019944A (ja) * 2016-08-04 2018-02-08 国立大学法人 名古屋工業大学 生分解性繊維からなる骨再生用材料、及び骨再生用材料を製造するための方法
WO2019054970A2 (en) * 2017-09-13 2019-03-21 Yeditepe Universitesi PROCESS FOR THE PRODUCTION OF PLGA FIBERS AS TISSUE SCAFFOLDING AND THE PLGA FIBERS PRODUCED ACCORDING TO THIS METHOD

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006349544C1 (en) 2006-10-23 2013-11-28 Eth Zurich Implant material
JP7357308B2 (ja) 2020-11-24 2023-10-06 国立大学法人 名古屋工業大学 綿形状の骨再生用材料の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509028A (ja) * 2013-02-19 2016-03-24 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 化学勾配
JP2018019944A (ja) * 2016-08-04 2018-02-08 国立大学法人 名古屋工業大学 生分解性繊維からなる骨再生用材料、及び骨再生用材料を製造するための方法
WO2019054970A2 (en) * 2017-09-13 2019-03-21 Yeditepe Universitesi PROCESS FOR THE PRODUCTION OF PLGA FIBERS AS TISSUE SCAFFOLDING AND THE PLGA FIBERS PRODUCED ACCORDING TO THIS METHOD

Also Published As

Publication number Publication date
JP2023172940A (ja) 2023-12-06
JPWO2023228905A1 (ja) 2023-11-30
JP2023172968A (ja) 2023-12-06
JP7460993B2 (ja) 2024-04-03
JP7481699B2 (ja) 2024-05-13
JP7370029B1 (ja) 2023-10-27

Similar Documents

Publication Publication Date Title
Gao et al. Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering
JP7357306B2 (ja) 綿形状の骨再生用材料の製造方法
JP6251462B1 (ja) エレクトロスピニング法を用いて生分解性繊維からなる骨再生用材料を製造するための方法
Martínez-Pérez et al. Scaffolds for tissue engineering via thermally induced phase separation
CN102203175B (zh) 聚合物材料
JPH04501109A (ja) ポリラクチド組成物
EP1588724A2 (en) Composite material comprising fibrous organic material and fibrous calcium phosphate
CN100346861C (zh) 血液过滤材料及其制造方法
Repanas et al. Coaxial electrospinning as a process to engineer biodegradable polymeric scaffolds as drug delivery systems for anti-inflammatory and anti-thrombotic pharmaceutical agents
Park et al. Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering
MX2014007279A (es) Fibras de polilactido.
CN105246973A (zh) 用于制备纳米结构化可生物降解聚合物材料的组合物,所获得的材料及其应用
WO2023228905A1 (ja) 湿式紡糸法を用いて無機フィラー粒子を含有する生分解性繊維材料を連続的に製造する方法、及びその方法で製造された綿形状の骨再生材料
JP2003328229A (ja) 生分解性多孔質極細中空糸及びその製造方法
WO2013074099A1 (en) Three-dimensional porous biodegradable cell scaffold
JP4283158B2 (ja) 有機多孔体の製造方法
WO1983001632A1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JP7228848B2 (ja) エレクトロスピニング法を用いて製造した生分解性繊維材料を綿状に回収する方法、及びその方法を用いて製造された綿状の骨再生用材料
JP3058579B2 (ja) 嫌気処理用濾材の製造方法
WO2003090920A1 (en) Core-assisted formation of microcapsules
TWI634914B (zh) 由生物可分解性纖維組成的骨再生用材料,以及用於製造骨再生用材料的方法
KR101410536B1 (ko) 키토산 및 나노생활성유리로 형성된 다공성 로드를 포함하는 이중 기공 구조의 스캐폴드
CN117106175A (zh) 一种3d打印一步法制备聚l-谷氨酸苄酯基纳米纤维骨支架的方法
KR20060036709A (ko) 다공성 연속체로 된 생체 조직공학용 고분자 지지체의제조방법 및 지지체
KR20090120363A (ko) 알긴산 나트륨을 함유한 기능성 부직포의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024509002

Country of ref document: JP

Kind code of ref document: A