WO2023228830A1 - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
WO2023228830A1
WO2023228830A1 PCT/JP2023/018399 JP2023018399W WO2023228830A1 WO 2023228830 A1 WO2023228830 A1 WO 2023228830A1 JP 2023018399 W JP2023018399 W JP 2023018399W WO 2023228830 A1 WO2023228830 A1 WO 2023228830A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
ground
hole
connection
block
Prior art date
Application number
PCT/JP2023/018399
Other languages
English (en)
French (fr)
Inventor
大悟 武井
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Publication of WO2023228830A1 publication Critical patent/WO2023228830A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Definitions

  • the present invention relates to an inspection device.
  • Patent Document 1 describes a high frequency probe socket.
  • This probe socket includes a plurality of probes and a noise shielding body. A plurality of probes are inserted through the noise shielding body.
  • the high frequency characteristics of an object to be tested such as a semiconductor device may be tested using a testing device such as a high frequency probe socket described in Patent Document 1. In this inspection, it may be required to stably inspect the high frequency characteristics of the object to be inspected.
  • An example of the purpose of the present invention is to stably test the high frequency characteristics of an object to be tested.
  • Other objects of the invention will become apparent from the description herein.
  • One aspect of the present invention is probe and an insulating block provided with a first hole through which the probe is inserted; and a second hole communicating with the first hole through which the probe is inserted and having a diameter smaller than the diameter of the first hole; Equipped with In the inspection device, the ratio of the thickness of the insulating block to the depth of the first hole is 1.40 or less.
  • One aspect of the present invention is probe and a conductive block through which the probe is inserted; Equipped with In the inspection device, the conductive block has a convex portion that contacts the inspection substrate.
  • the high frequency characteristics of the object to be tested can be stably tested.
  • FIG. 2 is a top perspective view showing the inspection device according to the embodiment together with the inspection board. It is a downward perspective view showing an inspection device concerning an embodiment.
  • FIG. 2 is a diagram showing a cross section taken along line AA' in FIG. 1 together with an object to be inspected and a substrate to be inspected. 4 is an enlarged view of a portion of FIG. 3.
  • FIG. 3 is a cross-sectional view showing an inspection apparatus according to a comparative example together with an object to be inspected and a substrate to be inspected. 6 is an enlarged view of a portion of FIG. 5.
  • FIG. 5 is a top perspective view showing the inspection device according to the embodiment together with the inspection board. It is a downward perspective view showing an inspection device concerning an embodiment.
  • FIG. 2 is a diagram showing a cross section taken along line AA' in FIG. 1 together with an object to be inspected and a substrate to be inspected. 4 is an enlarged view of a portion of FIG. 3.
  • FIG. 3 is a cross-section
  • FIG. 1 is a top perspective view showing the inspection device 10 according to the embodiment together with the inspection board 30.
  • FIG. 2 is a downward perspective view showing the inspection device 10 according to the embodiment.
  • FIG. 3 is a diagram showing a cross section taken along line AA' in FIG. 1 together with the object to be inspected 20 and the inspection substrate 30.
  • FIG. 4 is an enlarged view of a portion of FIG. 3.
  • the Z direction is a direction parallel to the vertical direction.
  • the X direction is one of the horizontal directions perpendicular to the Z direction.
  • the Y direction is one of the horizontal directions perpendicular to the Z direction and the X direction.
  • the directions pointed by the arrows of the X, Y, and Z axes are defined as the left direction, the front direction, and the upward direction, respectively.
  • a white circle with a black dot indicating the Y direction indicates that the direction indicated by the Y-axis arrow is from the back of the page to the front.
  • the inspection device 10 includes two ground probes 110, six connection probes 120, a pin plate 130, a pin block 140, and a retainer 150.
  • each ground probe 110 has a ground barrel 112 and a ground plunger 114.
  • Each connection probe 120 has a connection barrel 122, a first connection plunger 124, and a second connection plunger 126.
  • an object to be inspected 20 is placed above the inspection device 10.
  • the object to be inspected 20 is, for example, a semiconductor device such as an integrated circuit (IC).
  • a test board 30 is arranged below the test device 10 .
  • the test board 30 is, for example, a wiring board such as a printed circuit board (PCB).
  • the object to be inspected 20 and the inspection board 30 are electrically connected to each other via the inspection device 10.
  • the two ground probes 110 When viewed from the Z direction, the two ground probes 110 are lined up substantially parallel to the X direction. In the example shown in FIG. 1, the two ground probes 110 are arranged on both sides in the X direction with respect to the horizontal center of the retainer 150 when viewed from the Z direction.
  • the six connection probes 120 include three connection probes 120 located on the left side of the two ground probes 110 and three connection probes 120 located on the right side of the two ground probes 110. There is.
  • the three connection probes 120 on the left side are arranged substantially parallel to the Y direction at substantially equal intervals.
  • the three connection probes 120 on the right side are arranged substantially parallel to the Y direction at substantially equal intervals.
  • the center connection probe 120 of the three connection probes 120 on the left side and the center connection probe 120 of the three connection probes 120 on the right side are connected to the two ground probes 110 in the X direction. They are lined up almost parallel.
  • the arrangement of the two ground probes 110 and the six connection probes 120 is not limited to the example described using FIG. 1.
  • the arrangement of the ground probe 110 and the connection probe 120 is changed as appropriate depending on conditions such as the arrangement of the electrodes of the object to be inspected 20 and the arrangement of the electrodes of the test substrate 30.
  • each ground probe 110 and each connection probe 120 will be described. Unless otherwise specified, the configuration described below for ground probe 110 applies equally to two ground probes 110. Unless otherwise specified, the configurations described below for the connection probes 120 apply similarly to the six connection probes 120.
  • the ground barrel 112 extends substantially parallel to the Z direction.
  • the gland barrel 112 is inserted into a gland insertion hole 160 provided in the pin block 140 and the retainer 150.
  • the pin block 140 and the retainer 150 serve as a support that supports the ground probe 110 substantially parallel to the Z direction.
  • the lower end of the ground insertion hole 160 does not penetrate the pin block 140 in the Z direction.
  • the lower end of the gland insertion hole 160 is located above the lower end surface of a convex portion 142 of the pin block 140, which will be described later, in the Z direction.
  • the lower end of the ground insertion hole 160 is located approximately at the center of the pin block 140 in the Z direction.
  • the lower end of the gland insertion hole 160 may be shifted upward or downward in the Z direction with respect to the approximate center of the pin block 140 in the Z direction.
  • the grand plunger 114 is arranged on the upper end side of the grand barrel 112.
  • the upper end of the gland insertion hole 160 is opened upward on the upper surface of the retainer 150.
  • the ground plunger 114 is urged upward by a spring (not shown) disposed inside the ground barrel 112. Therefore, the upper end of the ground plunger 114 can come into contact with the ground electrode 22 disposed on the lower surface of the object to be inspected 20 while the ground plunger 114 is biased upward.
  • connection barrel 122 extends substantially parallel to the Z direction.
  • the connection barrel 122 is inserted into a connection insertion hole 170 provided in the pin plate 130, pin block 140, and retainer 150.
  • the pin plate 130 and the retainer 150 serve as a support for supporting the connection probe 120.
  • the connection insertion hole 170 penetrates the retainer 150, the pin block 140, and the pin plate 130 in the Z direction between the upper surface of the retainer 150 and the lower surface of the pin plate 130.
  • the first connection plunger 124 is arranged on the upper end side of the connection barrel 122.
  • the upper end of the connection insertion hole 170 is opened upward on the upper surface of the retainer 150.
  • the upper end of the first connection plunger 124 can protrude upward from the upper surface of the retainer 150 through the upper end of the connection insertion hole 170.
  • the first connection plunger 124 is urged upward by a spring (not shown) disposed inside the connection barrel 122. Therefore, the upper end of the first connection plunger 124 can come into contact with the connection electrode 24 disposed on the lower surface of the object to be inspected 20 while the first connection plunger 124 is biased upward.
  • the second connection plunger 126 is arranged on the lower end side of the connection barrel 122.
  • the lower end of the connection insertion hole 170 is opened downward on the lower surface of the pin plate 130.
  • the second connection plunger 126 can protrude downward from the lower surface of the pin plate 130 through the lower end of the connection insertion hole 170.
  • the second connection plunger 126 is urged downward by a spring (not shown) disposed inside the connection barrel 122. Therefore, the lower end of the second connection plunger 126 can come into contact with the contact portion 34 disposed on the upper surface of the test board 30 while the second connection plunger 126 is urged downward.
  • an electrode (not shown) is arranged on the contact portion 34 of the test substrate 30.
  • connection electrode 24 of the object to be inspected 20 and the contact portion 34 of the inspection board 30 are electrically connected to each other via the connection probe 120.
  • the six connection probes 120 are independently power supply or signal probes.
  • the middle connection probe 120 of the three connection probes 120 on the left side shown in FIG. 1 is a power supply probe.
  • the two connection probes 120 on both sides are signal probes.
  • the middle connection probe 120 among the three connection probes 120 on the right side shown in FIG. 1 is a power supply probe.
  • the two connection probes 120 on both sides are signal probes.
  • the pin plate 130 is an insulating block such as a resin block. Pin plate 130 is arranged below pin block 140. As shown in FIGS. 1 and 2, the pin plate 130 has a substantially rectangular shape when viewed from the Z direction. However, the shape of the pin plate 130 is not limited to this example.
  • the pin block 140 is a conductive block such as a metal block. Pin block 140 is arranged between pin plate 130 and retainer 150 in the Z direction. As shown in FIGS. 1 and 2, the pin block 140 has a substantially rectangular shape when viewed from the Z direction. However, the shape of the pin block 140 is not limited to this example.
  • the retainer 150 is an insulating block such as a resin block.
  • the retainer 150 is arranged above the pin block 140 in the Z direction. As shown in FIGS. 1 and 2, the retainer 150 has a substantially rectangular shape when viewed from the Z direction. However, the shape of the retainer 150 is not limited to this example.
  • the pin plate 130 is provided with a through hole 132.
  • the through hole 132 penetrates the pin plate 130 in the Z direction.
  • a convex portion 142 is provided on the lower surface of the pin block 140.
  • the convex portion 142 passes through the through hole 132 of the pin plate 130 in the Z direction.
  • the lower end surface of the convex portion 142 is in contact with the ground contact portion 32 disposed on the upper surface of the test board 30.
  • a ground electrode (not shown) is arranged at the ground contact portion 32 of the test board 30. Thereby, the ground electrode 22 of the object to be inspected 20 and the ground contact portion 32 of the inspection board 30 can be electrically connected to each other via the ground probe 110, the pin block 140, and the convex portion 142.
  • the horizontal peripheral portion of the through hole 132 on the lower surface of the pin plate 130 faces the upper surface of the test board 30 in the Z direction with a gap 134 interposed therebetween.
  • the height of the convex portion 142 in the Z direction is greater than the thickness of the pin plate 130 in the Z direction. Therefore, the lower end surface of the convex portion 142 can be made to protrude further downward than the lower surface of the pin plate 130. Therefore, compared to the case where the lower surface of the pin plate 130 contacts the upper surface of the test board 30, the lower end surface of the convex portion 142 can be brought into contact with the ground contact portion 32 of the test board 30 more reliably.
  • the lower surface of the pin plate 130 may be in contact with the upper surface of the test board 30.
  • the two ground probes 110 are arranged at positions overlapping the convex portion 142 of the pin block 140 in the Z direction. Therefore, it is easier to electrically connect the two ground probes 110 and the convex portion 142 to each other, compared to the case where the two ground probes 110 are arranged at positions horizontally shifted from the corresponding position of the pin block 140. be able to. However, the two ground probes 110 may be arranged at positions horizontally shifted from the above-mentioned position of the pin block 140.
  • a portion of the gland insertion hole 160 that penetrates the retainer 150 in the Z direction includes a large diameter hole 162, a small diameter hole 164, and a tapered hole 166.
  • the large diameter hole 162 is located below the tapered hole 166.
  • the upper end of the large diameter hole 162 communicates with the lower end of the tapered hole 166.
  • the small diameter hole 164 is located above the tapered hole 166.
  • the lower end of the small diameter hole 164 communicates with the upper end of the tapered hole 166.
  • the horizontal diameter of the small diameter hole 164 is smaller than the horizontal diameter of the large diameter hole 162.
  • the horizontal diameter of the tapered hole 166 decreases from the bottom to the top.
  • the ground barrel 112 is provided with a wide portion 112a.
  • the horizontal diameter of the wide portion 112a of the ground barrel 112 is larger than the horizontal diameters of the upper and lower portions of the wide portion 112a of the ground barrel 112 in the Z direction.
  • the wide portion 112a is inserted into the large diameter hole 162.
  • the horizontal diameter of the wide portion 112a is smaller than the horizontal diameter of the large diameter hole 162.
  • the horizontal diameter of the wide portion 112a is greater than or equal to the horizontal diameter of the portion of the gland insertion hole 160 that penetrates the pin block 140 in the Z direction. Therefore, the lower surface of the wide portion 112a can be hooked onto the horizontal peripheral portion of the ground insertion hole 160 on the upper surface of the pin block 140. Thereby, the lower surface of the wide portion 112a can be brought into contact with the corresponding portion of the upper surface of the pin block 140. Therefore, the wide portion 112a and the upper surface of the pin block 140 can be electrically connected.
  • inspection device 10 is assembled as follows.
  • each ground probe 110 is inserted into the ground insertion hole 160 of the pin block 140 from above the pin block 140.
  • the wide portion 112a of the ground probe 110 is caught in the horizontal peripheral portion of the ground insertion hole 160 on the upper surface of the pin block 140.
  • each ground probe 110 is inserted into a large diameter hole 162, a small diameter hole 164, and a tapered hole 166 of the retainer 150.
  • each connection probe 120 is inserted into the connection insertion hole 170 of the pin block 140 and the retainer 150 from above the pin block 140.
  • the pin plate 130 and pin block 140 are stacked in the Z direction. As a result, the portion of each connection probe 120 located on the opposite side of the retainer 150 is inserted into the connection insertion hole 170 of the pin plate 130.
  • the inspection device 10 is assembled.
  • the lower part of the ground probe 110 is inserted into the ground insertion hole 160 of the pin block 140 before the upper part of the ground probe 110 is inserted into the large diameter hole 162, the small diameter hole 164, and the tapered hole 166. . Therefore, compared to the case where the upper part of the ground probe 110 is inserted into the large diameter hole 162, the small diameter hole 164, and the tapered hole 166, and then the lower part of the ground probe 110 is inserted into the ground insertion hole 160 of the pin block 140, The wide portion 112a of the ground probe 110 can be brought into reliable contact with the pin block 140.
  • FIG. 5 is a cross-sectional view showing an inspection apparatus 10K according to a comparative example together with an object to be inspected 20 and an inspection substrate 30.
  • FIG. 6 is an enlarged view of a portion of FIG. 5.
  • the inspection device 10K according to the comparative example is the same as the inspection device 10 according to the embodiment except for the following points.
  • the inspection device 10K according to the comparative example includes two upper ground probes 110K1, two lower ground probes 110K2, two connection probes 120K, a pin plate 130K, a pin block 140K, and a retainer 150K. .
  • each upper ground probe 110K1 has an upper ground barrel 112K1 and an upper ground plunger 114K1.
  • the upper gland barrel 112K1 is inserted into the upper part of the gland insertion hole 160K.
  • the upper part of the ground insertion hole 160K passes through the retainer 150K and the upper part of the pin block 140K in the Z direction.
  • the upper ground plunger 114K1 is arranged on the upper end side of the upper ground barrel 112K1.
  • the upper ground plunger 114K1 is biased upward. The upper end of the upper ground plunger 114K1 can come into contact with the ground electrode 22 of the object to be inspected 20.
  • the portion of the gland insertion hole 160K according to the comparative example that penetrates the retainer 150K in the Z direction includes a large diameter hole 162K, a small diameter hole 164K, and a tapered hole 166K.
  • each lower ground probe 110K2 has a lower ground barrel 112K2 and a lower ground plunger 114K2.
  • the lower gland barrel 112K2 is inserted into the lower part of the gland insertion hole 160K.
  • the lower portion of the ground insertion hole 160K passes through the pin plate 130K and the lower portion of the pin block 140K in the Z direction.
  • the lower gland plunger 114K2 is arranged at the lower end side of the lower gland barrel 112K2.
  • the lower ground plunger 114K2 is biased downward. The lower end of the lower ground plunger 114K2 can come into contact with the ground contact portion 32 of the test board 30.
  • the thickness T in the Z direction of the portion of the retainer 150 according to the embodiment through which the ground probe 110 is inserted is the same as the thickness T in the Z direction of the portion through which the upper ground probe 110K1 of the retainer 150K according to the comparative example is inserted. It is thinner than the thickness TK in the Z direction. Therefore, in the embodiment, the inductance in the retainer 150 can be reduced compared to the comparative example. Thereby, in the embodiment, the high frequency characteristics of the object to be inspected 20 can be stably inspected compared to the comparative example.
  • the thickness T in the Z direction of the above portion of the retainer 150 according to the embodiment is not limited to the following, but is, for example, 0.4 mm or more and 0.6 mm or less.
  • the depth D in the Z direction of the large diameter hole 162 according to the embodiment is deeper than the depth DK in the Z direction of the large diameter hole 162K according to the comparative example.
  • the depth D of the large diameter hole 162 according to the embodiment is not limited to the following, for example, it is 0.2 mm or more and 0.4 mm or less.
  • the ratio T/D of the thickness T to the depth D according to the embodiment is larger than the ratio TK/DK of the thickness TK to the depth DK according to the comparative example. It has become.
  • the loss (unit: dB) of the inspection device 10 was measured under a band condition of 8 GHz with the ratio T/D set to 1.30.
  • the ratio TK/DK was set to 1.50, and the loss (unit: dB) of the inspection device 10K was measured under conditions similar to those of the embodiment.
  • the loss in the embodiment was about 10 dB lower than the loss in the comparative example.
  • the ratio T/D according to the embodiment can be set to 1.40 or less, preferably 1.30 or less.
  • the lower limit of the ratio T/D according to the embodiment can be determined from the viewpoint of the strength of the retainer 150, for example.
  • the ratio T/D according to the embodiment may be, for example, 1.20 or more.
  • the pin block 140K is electrically connected to the ground contact portion 32 of the test board 30 via the lower ground probe 110K2.
  • the pin block 140K does not have the convex portion 142 whose lower end surface contacts the ground contact portion 32 as in the embodiment.
  • the pin block 140 is electrically connected to the ground contact portion 32 of the test board 30 via the convex portion 142. Therefore, the contact area between the lower end surface of the convex portion 142 and the ground contact part 32 of the test board 30 in the embodiment is larger than the contact area between the lower end of the lower ground probe 110K2 and the ground contact part 32 of the test board 30 in the comparative example. can do.
  • the ground connection between the pin block 140 and the test board 30 can be strengthened compared to the comparative example.
  • the high frequency characteristics of the object to be inspected 20 can be stably inspected compared to the comparative example.
  • the inspection device includes a probe, a first hole through which the probe is inserted, and a second hole communicating with the first hole and through which the probe is inserted and having a diameter smaller than the diameter of the first hole. , and a ratio of the thickness of the insulating block to the depth of the first hole is 1.40 or less.
  • the "probe” corresponds to the "ground probe” in the above embodiment.
  • the “insulating block” corresponds to the "retainer” in the above embodiment.
  • the "first hole” corresponds to the “large diameter hole” in the above embodiment.
  • the “second hole” corresponds to the "small diameter hole” in the above embodiment.
  • the smaller the ratio the more stable the high frequency characteristics of the object to be tested can be. Therefore, in the above embodiment, the high frequency characteristics of the object to be inspected can be tested stably, compared to the case where the ratio is higher than the numerical value in the above embodiment.
  • the inspection device further includes a conductive block through which the probe is inserted and which overlaps the insulating block, and after the probe is inserted into the conductive block, the probe is inserted into the first hole and the first hole. It is inserted through two holes.
  • the "conductive block” corresponds to the "pin block” in the above embodiment.
  • the probe can be brought into contact with the conductive block more reliably than in the case where the probe is inserted into the conductive block after the probe is inserted into the first hole and the second hole.
  • the inspection device includes a probe and a conductive block through which the probe is inserted, and the conductive block has a convex portion that contacts the test substrate.
  • the "probe” corresponds to the "ground probe” and "connection probe” in the above embodiment.
  • the "conductive block” corresponds to the "pin block” in the above embodiment.
  • the contact area between the convex portion and the test board can be made larger than the contact area between the probe and the test board when the probe is brought into contact with the test board. Therefore, in the above embodiment, the ground connection between the conductive block and the test board can be strengthened compared to the case where the probe is brought into contact with the test board. As a result, in the above-described aspect, the high frequency characteristics of the object to be tested can be tested more stably than when the probe is brought into contact with the testing board.
  • the inspection device further includes an insulating block provided with a through hole through which the convex portion passes, and at least a part of the surface of the insulating block on the side where the inspection board is located is connected to the insulating block through a gap. It faces the test board.
  • the "insulating block” corresponds to the "pin plate” in the above embodiment.
  • the convex portion can be brought into contact with the test board more reliably than when the insulating block contacts the test board.
  • the probe is arranged at a position overlapping the convex portion of the conductive block.
  • the probe and the protrusion can be electrically connected to each other more easily than when the probe is arranged at a position shifted from the position overlapping the protrusion of the conductive block.
  • 10K inspection device 20 object to be inspected, 22 ground electrode, 24 connection electrode, 30 inspection board, 32 ground contact part, 34 contact part, 110 ground probe, 110K1 upper ground probe, 110K2 lower ground probe, 112 ground barrel, 112K1 upper ground barrel, 112K2 lower ground barrel, 112a wide part, 114 ground plunger, 114K1 upper ground plunger, 114K2 lower ground plunger, 120, 120K connection probe, 122 connection barrel, 124 first connection plunger, 126 second connection plunger, 130,130K pin plate, 132 through hole, 134 gap, 140,140K pin block, 142 convex part, 150,150K retainer, 160,160K gland insertion hole, 162,162K large diameter hole, 164,164K small diameter hole, 166, 166K taper hole, 170 connection insertion hole

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

プローブと、前記プローブが挿通される第1孔と、前記第1孔と連通して前記プローブが挿通されて前記第1孔の径より径が小さい第2孔と、が設けられた絶縁性ブロックと、を備え、前記第1孔の深さに対する前記絶縁性ブロックの厚さの比が1.40以下である、検査装置。

Description

検査装置
 本発明は、検査装置に関する。
 近年、集積回路(IC)等の半導体装置を検査するための様々な検査装置が開発されている。例えば、特許文献1には、高周波用プローブソケットについて記載されている。このプローブソケットは、複数のプローブ及びノイズ遮蔽本体を備えている。複数のプローブは、ノイズ遮蔽本体に挿通されている。
特表2018-529951号公報
 例えば、特許文献1に記載の高周波用プローブソケット等の検査装置を用いて、半導体装置等の被検査対象の高周波特性が検査されることがある。この検査においては、被検査対象の高周波特性を安定して検査することが要求されることがある。
 本発明の目的の一例は、被検査対象の高周波特性を安定して検査することにある。本発明の他の目的は、本明細書の記載から明らかになるであろう。
 本発明の一態様は、
 プローブと、
 前記プローブが挿通される第1孔と、前記第1孔と連通して前記プローブが挿通されて前記第1孔の径より径が小さい第2孔と、が設けられた絶縁性ブロックと、
を備え、
 前記第1孔の深さに対する前記絶縁性ブロックの厚さの比が1.40以下である、検査装置である。
 本発明の一態様は、
 プローブと、
 前記プローブが挿通される導電性ブロックと、
を備え、
 前記導電性ブロックが検査基板に接触する凸部を有する、検査装置である。
 本発明の上記態様によれば、被検査対象の高周波特性を安定して検査することができる。
実施形態に係る検査装置を検査基板とともに示す上方斜視図である。 実施形態に係る検査装置を示す下方斜視図である。 図1のA-A´断面を被検査対象及び検査基板とともに示す図である。 図3の一部分の拡大図である。 比較例に係る検査装置を被検査対象及び検査基板とともに示す断面図である。 図5の一部分の拡大図である。
 以下、本発明の実施形態について、図面を用いて説明する。すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 図1は、実施形態に係る検査装置10を検査基板30とともに示す上方斜視図である。図2は、実施形態に係る検査装置10を示す下方斜視図である。図3は、図1のA-A´断面を被検査対象20及び検査基板30とともに示す図である。図4は、図3の一部分の拡大図である。
 方向を説明するために、X方向、Y方向及びZ方向を定義する。Z方向は、鉛直方向に平行な方向である。X方向は、Z方向に垂直な水平方向の一つである。Y方向は、Z方向及びX方向に垂直な水平方向の一つである。実施形態では、X方向が左右方向、Y方向が前後方向、Z方向が上下方向であるとして説明する。各図において、X軸、Y軸及びZ軸のそれぞれの矢印が指し示す方向をそれぞれ左方向、前方向及び上方向と定義する。図3及び図4において、Y方向を示す黒点付き白丸は、Y軸の矢印が指し示す方向が紙面の奥から手前に向かう方向であることを示している。
 図1に示すように、検査装置10は、2つのグランドプローブ110、6つの接続プローブ120、ピンプレート130、ピンブロック140及びリテーナ150を備えている。図3に示すように、各グランドプローブ110は、グランドバレル112及びグランドプランジャ114を有している。各接続プローブ120は、接続バレル122、第1接続プランジャ124及び第2接続プランジャ126を有している。
 図3に示すように、検査装置10の上方には、被検査対象20が配置されている。被検査対象20は、例えば、集積回路(IC)等の半導体装置である。検査装置10の下方には、検査基板30が配置されている。検査基板30は、例えば、プリント回路板(PCB)等の配線基板である。被検査対象20及び検査基板30は、検査装置10を介して電気的に互いに接続されている。
 図1を参照して、2つのグランドプローブ110及び6つの接続プローブ120の配置について説明する。
 Z方向から見て、2つのグランドプローブ110は、X方向に略平行に並んでいる。図1に示す例において、Z方向から見て、2つのグランドプローブ110は、リテーナ150の水平方向の中心に対してX方向の両側に配置されている。
 Z方向から見て、6つの接続プローブ120は、2つのグランドプローブ110の左側に位置する3つの接続プローブ120と、2つのグランドプローブ110の右側に位置する3つの接続プローブ120と、を含んでいる。Z方向から見て、左側の3つの接続プローブ120は、Y方向に略平行に略等間隔に並んでいる。Z方向から見て、右側の3つの接続プローブ120は、Y方向に略平行に略等間隔に並んでいる。Z方向から見て、左側の3つの接続プローブ120のうちの中央の接続プローブ120と、右側の3つの接続プローブ120のうちの中央の接続プローブ120と、は2つのグランドプローブ110とX方向に略平行に並んでいる。
 2つのグランドプローブ110及び6つの接続プローブ120の配置は、図1を用いて説明した例に限定されない。グランドプローブ110及び接続プローブ120の配置は、被検査対象20の電極の配置や検査基板30の電極の配置等の条件に応じて、適宜変更される。
 次に、図3を参照して、各グランドプローブ110及び各接続プローブ120の各々の構成について説明する。特に断りがない限り、グランドプローブ110について以下で説明する構成は、2つのグランドプローブ110に同様に適用される。特に断りがない限り、接続プローブ120について以下で説明する構成は、6つの接続プローブ120に同様に適用される。
 グランドバレル112は、Z方向に略平行に延在している。グランドバレル112は、ピンブロック140及びリテーナ150に設けられたグランド挿通孔160に挿通されている。これによって、ピンブロック140及びリテーナ150は、グランドプローブ110をZ方向に略平行に支持する支持体となっている。グランド挿通孔160の下端は、ピンブロック140をZ方向に貫通していない。図3に示す例において、グランド挿通孔160の下端は、ピンブロック140の後述する凸部142の下端面よりZ方向の上方に位置している。具体的には、図3に示す例において、グランド挿通孔160の下端は、ピンブロック140のZ方向の略中央部に位置している。ただし、グランド挿通孔160の下端は、ピンブロック140のZ方向の略中央部に対してZ方向の上方又は下方にずれていてもよい。
 グランドプランジャ114は、グランドバレル112の上端側に配置されている。グランド挿通孔160の上端は、リテーナ150の上面において上方に向けて開口されている。これによって、グランドプランジャ114の上端は、グランド挿通孔160の上端を通じて、リテーナ150の上面より上方に向けて突出可能になっている。グランドプランジャ114は、グランドバレル112の内部に配置された不図示のスプリングによって上方に向けて付勢されている。したがって、グランドプランジャ114の上端は、グランドプランジャ114が上方に向けて付勢された状態で、被検査対象20の下面に配置されたグランド電極22に接触可能になっている。
 接続バレル122は、Z方向に略平行に延在している。接続バレル122は、ピンプレート130、ピンブロック140及びリテーナ150に設けられた接続挿通孔170に挿通されている。これによって、ピンプレート130及びリテーナ150は、接続プローブ120を支持する支持体となっている。接続挿通孔170は、リテーナ150の上面とピンプレート130の下面との間で、リテーナ150、ピンブロック140及びピンプレート130をZ方向に貫通している。
 第1接続プランジャ124は、接続バレル122の上端側に配置されている。接続挿通孔170の上端は、リテーナ150の上面において上方に向けて開口されている。これによって、第1接続プランジャ124の上端は、接続挿通孔170の上端を通じて、リテーナ150の上面より上方に向けて突出可能になっている。第1接続プランジャ124は、接続バレル122の内部に配置された不図示のスプリングによって上方に向けて付勢されている。したがって、第1接続プランジャ124の上端は、第1接続プランジャ124が上方に向けて付勢された状態で、被検査対象20の下面に配置された接続電極24に接触可能になっている。
 第2接続プランジャ126は、接続バレル122の下端側に配置されている。接続挿通孔170の下端は、ピンプレート130の下面において下方に向けて開口されている。これによって、第2接続プランジャ126の下端は、接続挿通孔170の下端を通じて、ピンプレート130の下面より下方に向けて突出可能になっている。第2接続プランジャ126は、接続バレル122の内部に配置された不図示のスプリングによって下方に向けて付勢されている。したがって、第2接続プランジャ126の下端は、第2接続プランジャ126が下方に向けて付勢された状態で、検査基板30の上面に配置された接触部34に接触可能になっている。検査基板30の接触部34には、例えば、不図示の電極が配置されている。
 被検査対象20の接続電極24と、検査基板30の接触部34と、は接続プローブ120を介して互いに電気的に接続されている。6つの接続プローブ120は、互いに独立して電源用又は信号用のプローブとなっている。例えば、図1に示した左側の3つの接続プローブ120のうちの中央の接続プローブ120は、電源用のプローブである。図1に示した左側の3つの接続プローブ120のうちの両側の2つの接続プローブ120は、信号用のプローブである。図1に示した右側の3つの接続プローブ120のうちの中央の接続プローブ120は、電源用のプローブである。図1に示した右側の3つの接続プローブ120のうちの両側の2つの接続プローブ120は、信号用のプローブである。
 次に、図1~図3を参照して、ピンプレート130、ピンブロック140及びリテーナ150について説明する。
 ピンプレート130は、樹脂ブロック等の絶縁性ブロックである。ピンプレート130は、ピンブロック140の下方に配置されている。図1及び図2に示すように、Z方向から見て、ピンプレート130は、略四角形形状となっている。ただし、ピンプレート130の形状はこの例に限定されない。
 ピンブロック140は、金属ブロック等の導電性ブロックである。ピンブロック140は、Z方向においてピンプレート130及びリテーナ150の間に配置されている。図1及び図2に示すように、Z方向から見て、ピンブロック140は、略四角形形状となっている。ただし、ピンブロック140の形状はこの例に限定されない。
 リテーナ150は、樹脂ブロック等の絶縁性ブロックである。リテーナ150は、Z方向においてピンブロック140の上方に配置されている。図1及び図2に示すように、Z方向から見て、リテーナ150は、略四角形形状となっている。ただし、リテーナ150の形状はこの例に限定されない。
 図2及び図3に示すように、ピンプレート130には、貫通孔132が設けられている。貫通孔132は、ピンプレート130をZ方向に貫通している。ピンブロック140の下面には、凸部142が設けられている。凸部142は、ピンプレート130の貫通孔132をZ方向に貫通している。図3に示すように、凸部142の下端面は、検査基板30の上面に配置されたグランド接触部32に接触している。検査基板30のグランド接触部32には、例えば、不図示のグランド電極が配置されている。これによって、グランドプローブ110、ピンブロック140及び凸部142を介して、被検査対象20のグランド電極22と、検査基板30のグランド接触部32と、を電気的に互いに接続することができる。
 図3に示すように、ピンプレート130の下面の貫通孔132の水平方向の周辺部分は、隙間134を介して検査基板30の上面とZ方向に対向している。言い換えると、凸部142のZ方向の高さがピンプレート130のZ方向の厚さより大きくなっている。このため、凸部142の下端面をピンプレート130の下面よりも下方に向けて突出させることができる。したがって、ピンプレート130の下面が検査基板30の上面に接触する場合と比較して、凸部142の下端面を検査基板30のグランド接触部32に確実に接触させることができる。ただし、ピンプレート130の下面は、検査基板30の上面に接触していてもよい。
 2つのグランドプローブ110は、ピンブロック140の凸部142とZ方向に重なる位置に配置されている。したがって、2つのグランドプローブ110がピンブロック140の当該位置から水平方向にずれた位置に配置されている場合と比較して、2つのグランドプローブ110及び凸部142を電気的に互いに接続しやすくすることができる。ただし、2つのグランドプローブ110は、ピンブロック140の上記位置から水平方向にずれた位置に配置されていてもよい。
 次に、図4を参照して、グランドプローブ110の上端部及びその周辺について説明する。
 グランド挿通孔160のリテーナ150をZ方向に貫通する部分は、大径孔162、小径孔164及びテーパ孔166を含んでいる。大径孔162は、テーパ孔166の下方に位置している。大径孔162の上端は、テーパ孔166の下端に連通している。小径孔164は、テーパ孔166の上方に位置している。小径孔164の下端は、テーパ孔166の上端に連通している。小径孔164の水平方向の直径は、大径孔162の水平方向の直径未満となっている。テーパ孔166の水平方向の直径は、下方から上方に向かうにつれて減少している。
 グランドバレル112には幅広部112aが設けられている。グランドバレル112の幅広部112aの水平方向の直径は、グランドバレル112の幅広部112aのZ方向の上方部分及び下方部分の水平方向の直径より大きくなっている。幅広部112aは、大径孔162に挿通されている。幅広部112aの水平方向の直径は、大径孔162の水平方向の直径未満となっている。幅広部112aの水平方向の直径は、グランド挿通孔160のピンブロック140をZ方向に貫通する部分の水平方向の直径以上となっている。したがって、幅広部112aの下面を、ピンブロック140の上面のグランド挿通孔160の水平方向の周辺部分に引っ掛けることができる。これによって、幅広部112aの下面を、ピンブロック140の上面の当該部分に接触させることができる。このため、幅広部112aと、ピンブロック140の上面と、を電気的に接続することができる。
 次に、図3及び図4を参照して、検査装置10の組立方法の一例について説明する。この例において、検査装置10は、以下のように組み立てられる。
 まず、ピンブロック140の上方から各グランドプローブ110をピンブロック140のグランド挿通孔160に挿通させる。これによって、グランドプローブ110の幅広部112aがピンブロック140の上面のグランド挿通孔160の水平方向の周辺部分に引っ掛かる。
 次いで、ピンブロック140及びリテーナ150をZ方向に重ねる。これによって、ピンブロック140の上方にリテーナ150が配置される。各グランドプローブ110の上部分がリテーナ150の大径孔162、小径孔164及びテーパ孔166に挿通される。
 次いで、ピンブロック140及びリテーナ150を上下反転させる。これによって、リテーナ150の上方にピンブロック140が配置される。次いで、リテーナ150の上方にピンブロック140が配置された状態で、ピンブロック140の上方から各接続プローブ120をピンブロック140及びリテーナ150の接続挿通孔170に挿通させる。次いで、ピンプレート130及びピンブロック140をZ方向に重ねる。これによって、各接続プローブ120のリテーナ150の反対側に位置する部分がピンプレート130の接続挿通孔170に挿通される。
 このようにして、検査装置10が組み立てられている。
 上述した例では、グランドプローブ110の上部分を大径孔162、小径孔164及びテーパ孔166に挿通する前に、グランドプローブ110の下部分をピンブロック140のグランド挿通孔160に挿通している。このため、グランドプローブ110の上部分を大径孔162、小径孔164及びテーパ孔166に挿通した後にグランドプローブ110の下部分をピンブロック140のグランド挿通孔160に挿通する場合と比較して、グランドプローブ110の幅広部112aをピンブロック140に確実に接触させることができる。
 図5は、比較例に係る検査装置10Kを被検査対象20及び検査基板30とともに示す断面図である。図6は、図5の一部分の拡大図である。比較例に係る検査装置10Kは、以下の点を除いて、実施形態に係る検査装置10と同様である。
 図5に示すように、比較例に係る検査装置10Kは、2つの上部グランドプローブ110K1、2つの下部グランドプローブ110K2、2つの接続プローブ120K、ピンプレート130K、ピンブロック140K及びリテーナ150Kを備えている。
 図5に示すように、各上部グランドプローブ110K1は、上部グランドバレル112K1及び上部グランドプランジャ114K1を有している。上部グランドバレル112K1は、グランド挿通孔160Kの上部分に挿通されている。グランド挿通孔160Kの上部分は、リテーナ150Kと、ピンブロック140Kの上部分と、をZ方向に貫通している。上部グランドプランジャ114K1は、上部グランドバレル112K1の上端側に配置されている。上部グランドプランジャ114K1は、上方に向けて付勢されている。上部グランドプランジャ114K1の上端は、被検査対象20のグランド電極22に接触可能になっている。
 図6に示すように、比較例に係るグランド挿通孔160Kのリテーナ150KをZ方向に貫通する部分は、大径孔162K、小径孔164K及びテーパ孔166Kを含んでいる。
 図5に示すように、各下部グランドプローブ110K2は、下部グランドバレル112K2及び下部グランドプランジャ114K2を有している。下部グランドバレル112K2は、グランド挿通孔160Kの下部分に挿通されている。グランド挿通孔160Kの下部分は、ピンプレート130Kと、ピンブロック140Kの下部分と、をZ方向に貫通している。下部グランドプランジャ114K2は、下部グランドバレル112K2の下端側に配置されている。下部グランドプランジャ114K2は、下方に向けて付勢されている。下部グランドプランジャ114K2の下端は、検査基板30のグランド接触部32に接触可能になっている。
 実施形態と、比較例と、を比較する。
 図4及び図6に示すように、実施形態に係るリテーナ150のグランドプローブ110が挿通される部分のZ方向の厚さTは、比較例に係るリテーナ150Kの上部グランドプローブ110K1が挿通される部分のZ方向の厚さTKより薄くなっている。したがって、実施形態では、比較例と比較して、リテーナ150におけるインダクタンスを低減することができる。これによって、実施形態においては、比較例と比較して、被検査対象20の高周波特性を安定して検査することができる。実施形態に係るリテーナ150の上記部分のZ方向の厚さTは、以下に限定されないが、例えば、0.4mm以上0.6mm以下である。
 図4及び図6に示すように、実施形態に係る大径孔162のZ方向の深さDは、比較例に係る大径孔162KのZ方向の深さDKより深くなっている。実施形態に係る大径孔162の深さDは、以下に限定されないが、例えば、0.2mm以上0.4mm以下である。
 図4及び図6に示すように、実施形態に係る上記深さDに対する上記厚さTの比T/Dは、比較例に係る上記深さDKに対する上記厚さTKの比TK/DKより大きくなっている。実施形態において、上記比T/Dを1.30として、8GHzの帯域条件下において検査装置10の損失(単位:dB)を測定した。比較例において当該比TK/DKを1.50として、実施形態の条件と同様の条件下において検査装置10Kの損失(単位:dB)を測定した。実施形態における損失は、比較例における損失より、約10dB低かった。このため、実施形態に係る上記比T/Dが小さくなるほど、被検査対象20の高周波特性を安定して検査することができるといえる。したがって、実施形態に係る上記比T/Dは、1.40以下、好ましくは1.30以下にすることができる。
 実施形態に係る上記比T/Dの下限は、例えば、リテーナ150の強度の観点から決定することができる。例えば、実施形態に係る比T/Dが小さくなるほど、リテーナ150の強度が低下する傾向がある。このため、実施形態に係る上記比T/Dは、例えば、1.20以上にしてもよい。
 比較例では、図5に示すように、下部グランドプローブ110K2を介してピンブロック140Kが検査基板30のグランド接触部32に電気的に接続されている。比較例では、実施形態のような、下端面がグランド接触部32に接触する凸部142がピンブロック140Kには無い。これに対して、実施形態では、図3に示すように、凸部142を介してピンブロック140が検査基板30のグランド接触部32に電気的に接続されている。したがって、実施形態における凸部142の下端面と検査基板30のグランド接触部32との接触面積は、比較例における下部グランドプローブ110K2の下端と検査基板30のグランド接触部32との接触面積より大きくすることができる。このため、実施形態においては、比較例と比較して、ピンブロック140と検査基板30とのグランド接続を強化することができる。これによって、実施形態においては、比較例と比較して、被検査対象20の高周波特性を安定して検査することができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 本明細書によれば、以下の態様の検査装置が提供される。
(態様1)
 態様1では、検査装置が、プローブと、前記プローブが挿通される第1孔と、前記第1孔と連通して前記プローブが挿通されて前記第1孔の径より径が小さい第2孔と、が設けられた絶縁性ブロックと、を備え、前記第1孔の深さに対する前記絶縁性ブロックの厚さの比が1.40以下である。
 「プローブ」は、上述の実施形態の「グランドプローブ」に相当する。「絶縁性ブロック」は、上述の実施形態の「リテーナ」に相当する。「第1孔」は、上述の実施形態の「大径孔」に相当する。「第2孔」は、上述の実施形態の「小径孔」に相当する。
 上述の態様によれば、当該比が小さくなるほど、被検査対象の高周波特性を安定して検査することができる。このため、上述の態様においては、当該比が上述の態様における数値より高い場合と比較して、被検査対象の高周波特性を安定して検査することができる。
(態様2)
 態様2では、検査装置が、前記プローブが挿通され、前記絶縁性ブロックと重なる導電性ブロックをさらに備え、前記導電性ブロックに前記プローブが挿通された後、前記プローブを前記第1孔及び前記第2孔に挿通させている。
 「導電性ブロック」は、上述の実施形態の「ピンブロック」に相当する。
 上述の態様によれば、プローブを第1孔及び第2孔に挿通した後にプローブを導電性ブロックに挿通する場合と比較して、プローブを導電性ブロックに確実に接触させることができる。
(態様3)
 態様3では、検査装置が、プローブと、前記プローブが挿通される導電性ブロックと、を備え、前記導電性ブロックが検査基板に接触する凸部を有している。
 「プローブ」は、上述の実施形態の「グランドプローブ」、「接続プローブ」に相当する。「導電性ブロック」は、上述の実施形態の「ピンブロック」に相当する。
 上述の態様によれば、凸部と検査基板との接触面積を、プローブを検査基板に接触させる場合におけるプローブと検査基板との接触面積より大きくすることができる。このため、上述の態様においては、プローブを検査基板に接触させる場合と比較して、導電性ブロックと検査基板とのグランド接続を強化することができる。これによって、上述の態様においては、プローブを検査基板に接触させる場合と比較して、被検査対象の高周波特性を安定して検査することができる。
(態様4)
 態様4では、検査装置が、前記凸部が貫通する貫通孔が設けられた絶縁性ブロックをさらに備え、前記絶縁性ブロックの前記検査基板が位置する側の面の少なくとも一部分が隙間を介して前記検査基板に対向している。
 「絶縁性ブロック」は、上述の実施形態の「ピンプレート」に相当する。
 上述の態様によれば、絶縁性ブロックが検査基板に接触する場合と比較して、凸部を検査基板に確実に接触させることができる。
(態様5)
 態様5では、前記プローブが、前記導電性ブロックの前記凸部と重なる位置に配置されている。
 上述の態様によれば、導電性ブロックの凸部と重なる位置からずれた位置にプローブが配置されている場合と比較して、プローブ及び凸部を電気的に互いに接続しやすくすることができる。
 この出願は、2022年5月27日に出願された日本出願特願2022-086638号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10,10K 検査装置、20 被検査対象、22 グランド電極、24 接続電極、30 検査基板、32 グランド接触部、34 接触部、110 グランドプローブ、110K1 上部グランドプローブ、110K2 下部グランドプローブ、112 グランドバレル、112K1 上部グランドバレル、112K2 下部グランドバレル、112a 幅広部、114 グランドプランジャ、114K1 上部グランドプランジャ、114K2 下部グランドプランジャ、120,120K 接続プローブ、122 接続バレル、124 第1接続プランジャ、126 第2接続プランジャ、130,130K ピンプレート、132 貫通孔、134 隙間、140,140K ピンブロック、142 凸部、150,150K リテーナ、160,160K グランド挿通孔、162,162K 大径孔、164,164K 小径孔、166,166K テーパ孔、170 接続挿通孔

Claims (5)

  1.  プローブと、
     前記プローブが挿通される第1孔と、前記第1孔と連通して前記プローブが挿通されて前記第1孔の径より径が小さい第2孔と、が設けられた絶縁性ブロックと、
    を備え、
     前記第1孔の深さに対する前記絶縁性ブロックの厚さの比が1.40以下である、検査装置。
  2.  前記プローブが挿通され、前記絶縁性ブロックと重なる導電性ブロックをさらに備え、
     前記導電性ブロックに前記プローブが挿通された後、前記プローブを前記第1孔及び前記第2孔に挿通させる、請求項1に記載の検査装置。
  3.  プローブと、
     前記プローブが挿通される導電性ブロックと、
    を備え、
     前記導電性ブロックが検査基板に接触する凸部を有する、検査装置。
  4.  前記凸部が貫通する貫通孔が設けられた絶縁性ブロックをさらに備え、
     前記絶縁性ブロックの前記検査基板が位置する側の面の少なくとも一部分が隙間を介して前記検査基板に対向している、請求項3に記載の検査装置。
  5.  前記プローブが、前記導電性ブロックの前記凸部と重なる位置に配置されている、請求項3又は4に記載の検査装置。
PCT/JP2023/018399 2022-05-27 2023-05-17 検査装置 WO2023228830A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-086638 2022-05-27
JP2022086638A JP2023174031A (ja) 2022-05-27 2022-05-27 検査装置

Publications (1)

Publication Number Publication Date
WO2023228830A1 true WO2023228830A1 (ja) 2023-11-30

Family

ID=88919238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018399 WO2023228830A1 (ja) 2022-05-27 2023-05-17 検査装置

Country Status (3)

Country Link
JP (1) JP2023174031A (ja)
TW (1) TW202411664A (ja)
WO (1) WO2023228830A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125988A (ja) * 2004-10-28 2006-05-18 Yokowo Co Ltd 検査ユニットの製法
JP2007178164A (ja) * 2005-12-27 2007-07-12 Yokowo Co Ltd 検査ユニット
WO2009001731A1 (ja) * 2007-06-22 2008-12-31 Nhk Spring Co., Ltd. 導電性接触子ホルダおよび導電性接触子ユニット
JP2010038837A (ja) * 2008-08-07 2010-02-18 Yokowo Co Ltd 誤挿入防止型ケルビン検査用治具
JP2010175371A (ja) * 2009-01-29 2010-08-12 Yokowo Co Ltd 検査ソケット
JP2012117845A (ja) * 2010-11-29 2012-06-21 Seiken Co Ltd 接触検査用治具
JP2016102696A (ja) * 2014-11-27 2016-06-02 株式会社ヨコオ 検査ユニット
WO2019049482A1 (ja) * 2017-09-08 2019-03-14 株式会社エンプラス 電気接続用ソケット

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125988A (ja) * 2004-10-28 2006-05-18 Yokowo Co Ltd 検査ユニットの製法
JP2007178164A (ja) * 2005-12-27 2007-07-12 Yokowo Co Ltd 検査ユニット
WO2009001731A1 (ja) * 2007-06-22 2008-12-31 Nhk Spring Co., Ltd. 導電性接触子ホルダおよび導電性接触子ユニット
JP2010038837A (ja) * 2008-08-07 2010-02-18 Yokowo Co Ltd 誤挿入防止型ケルビン検査用治具
JP2010175371A (ja) * 2009-01-29 2010-08-12 Yokowo Co Ltd 検査ソケット
JP2012117845A (ja) * 2010-11-29 2012-06-21 Seiken Co Ltd 接触検査用治具
JP2016102696A (ja) * 2014-11-27 2016-06-02 株式会社ヨコオ 検査ユニット
WO2019049482A1 (ja) * 2017-09-08 2019-03-14 株式会社エンプラス 電気接続用ソケット

Also Published As

Publication number Publication date
TW202411664A (zh) 2024-03-16
JP2023174031A (ja) 2023-12-07

Similar Documents

Publication Publication Date Title
KR101493871B1 (ko) 웨이퍼 검사장치의 인터페이스 구조
US7322829B2 (en) Land grid array connector
US8248091B2 (en) Universal array type probe card design for semiconductor device testing
JP7335507B2 (ja) 検査用ソケット
US20190302144A1 (en) Test socket
US7056130B1 (en) Socket connector with inspection datum windows
KR102622884B1 (ko) 전기적 접속장치
US20060284634A1 (en) Testing assembly for electrical test of electronic package and testing socket thereof
WO2023228830A1 (ja) 検査装置
KR100272715B1 (ko) 프로브유닛 및 검사용 헤드
US20110156740A1 (en) Probe card
US6650134B1 (en) Adapter assembly for connecting test equipment to a wireless test fixture
US6433565B1 (en) Test fixture for flip chip ball grid array circuits
US7559773B2 (en) Electrical connecting apparatus
KR102241061B1 (ko) 프로브 블록 조립체
JP2009145165A (ja) 半導体集積回路用ソケット
KR102456348B1 (ko) 인터포저 및 이를 구비하는 테스트 소켓
US7425837B2 (en) Spatial transformer for RF and low current interconnect
CN112748322B (zh) 测试治具及测试组件
WO2023008227A1 (ja) プローブカード
JP2014032111A (ja) 検査治具
WO2023047962A1 (ja) コンタクトユニット及び検査治具
KR20090047314A (ko) 기판 검사 장치
JP2024076447A (ja) 電気的接続装置
KR101407871B1 (ko) 탄성체 테스트 소켓 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811703

Country of ref document: EP

Kind code of ref document: A1