WO2023228613A1 - ポリイミド、イミド化合物の製造方法、及び再生ポリイミドの製造方法 - Google Patents

ポリイミド、イミド化合物の製造方法、及び再生ポリイミドの製造方法 Download PDF

Info

Publication number
WO2023228613A1
WO2023228613A1 PCT/JP2023/014789 JP2023014789W WO2023228613A1 WO 2023228613 A1 WO2023228613 A1 WO 2023228613A1 JP 2023014789 W JP2023014789 W JP 2023014789W WO 2023228613 A1 WO2023228613 A1 WO 2023228613A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
group
main chain
compound
independently
Prior art date
Application number
PCT/JP2023/014789
Other languages
English (en)
French (fr)
Inventor
康太 安藤
輝彦 齊藤
穂波 伊延
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023228613A1 publication Critical patent/WO2023228613A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present disclosure relates to polyimide, a method for producing an imide compound, and a method for producing recycled polyimide.
  • thermosetting resins such as polyimide have excellent chemical resistance, so they tend to be difficult to dissolve in all kinds of solvents. Because this molded product has excellent heat resistance, it also tends to be difficult to melt and reuse, unlike thermoplastics such as polystyrene. Therefore, this molded article is difficult and inappropriate to be recycled or recycled, and is disposed of by landfilling or incineration.
  • the molded article includes a film.
  • thermosetting resins especially polyimide
  • the present disclosure aims to provide a new polyimide suitable for reuse.
  • the polyimide in one aspect of the present disclosure is Consists of a non-crosslinked structure including a main chain,
  • the main chain includes Si--O--C bonds.
  • the present disclosure provides a new polyimide suitable for reuse.
  • FIG. 1 is a flowchart regarding a method for producing an imide compound according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart regarding a method for manufacturing recycled polyimide according to an embodiment of the present disclosure.
  • FIG. 3 is a graph showing the 1 H-NMR spectrum of polyamic acid in Measurement Example 1.
  • FIG. 4 is a graph showing the infrared absorption spectrum of polyimide in Measurement Example 1.
  • FIG. 5 is a graph showing the 1 H-NMR spectrum of the polyimide decomposition product in Measurement Example 1.
  • Polyimide as an engineering plastic, has excellent heat resistance, mechanical properties, sliding properties, etc. Therefore, in recent years, demand for polyimide has increased rapidly in electrical and electronic equipment applications, automotive parts applications, aerospace industry applications, office equipment applications, and the like.
  • a polyimide film is produced by applying a coating solution containing polyamic acid, which is a precursor of polyimide, drying the resulting coating film, and then imidizing the polyamic acid through a dehydration cyclization reaction by heating etc. can.
  • Resin molded products such as polyimide films are extremely rigid and have good electrical properties, abrasion resistance, etc., as well as excellent chemical resistance and heat resistance.
  • polyimide is insoluble in chemicals such as organic solvents and does not melt even at high temperatures.
  • resin molded products such as polyimide films do not have sufficient bonding at the resin interface in the molded product, even if the molded product is re-produced after being crushed. Unable to obtain satisfactory characteristics.
  • Composite materials of polyimide and fiber materials such as glass fibers and carbon fibers are also known from the viewpoint of improving mechanical properties, insulation properties, etc.
  • polyimide has high heat resistance and solvent resistance, fiber materials are also crushed and disposed of by landfilling.
  • silicon-oxygen bonds can be used as bonds that can be formed and broken.
  • a silyl protecting group known as an alcohol protecting group the silicon-oxygen bond is cleaved by reaction with a fluorine anion, thereby allowing deprotection.
  • Patent Document 1 discloses alkaline hydrolysis of polyimide using a basic aqueous solution. According to this method, polyimide can be decomposed into low molecular weight substances. By decomposition, the polyimide film can be uniformly dissolved in the solvent. However, according to this method, it is difficult to reuse the decomposed products because the decomposed products have a complicated composition.
  • Patent Document 2 and 3 each disclose a polyimide containing a silicon atom.
  • the polyimides disclosed in these documents were not prepared with the assumption that they would be decomposed and reused.
  • the polyimide of Non-Patent Document 1 has a complicated crosslinked structure.
  • the polyimide of Non-Patent Document 1 has a crosslinked structure derived from a carbon-carbon triple bond and a crosslinked structure containing a silicon atom. This results in low degradability.
  • the polyimide of Non-Patent Document 1 is decomposed, the resulting decomposed product has a complicated crosslinked structure, making it difficult to reuse.
  • the polyimides of Patent Documents 2 and 3 tend to have low solvent resistance and high thermal expansion coefficients.
  • Polyimides tend to have high heat resistance, flame retardancy, and mechanical properties. Furthermore, since polyimide has high electrical insulation properties, it can be used as an insulating material or a substrate material for electronic circuits. The coefficient of linear thermal expansion of polyimide is extremely low for an organic material, and is close to that of metals. Therefore, when polyimide is used as an insulating material for electronic circuits, distortion due to thermal expansion with metal wiring is less likely to occur, and wiring can be processed with high precision.
  • Polyimide can usually be synthesized by condensing diamine and acid anhydride in equimolar amounts. For example, it can be synthesized by reacting a diamine and an acid anhydride in a highly polar organic solvent and heating the resulting polyamic acid at a high temperature.
  • the process of synthesizing polyimide by subjecting polyamic acid to heat treatment or the like may be referred to as imidization.
  • Polyimide molding method Polyimide usually does not have thermoplasticity and is insoluble in various organic solvents. Therefore, molding is performed by applying a solution containing a high concentration of polyamic acid as a precursor and imidizing it.
  • Polyimide decomposition method Molded polyimide products usually do not have thermoplasticity and are often insoluble in various solvents. Therefore, unlike thermoplastic resins, this molded product is difficult to melt and reuse. Regarding molded products, methods such as hydrolysis reaction under high temperature and high pressure conditions, decomposition and recovery methods using aqueous alkaline solutions, etc. have been proposed. However, decomposition under high temperature and high pressure conditions requires a large amount of energy input. When using a strong base for decomposition, a neutralization step is required after treatment.
  • polyimide properties such as thermal properties, mechanical properties, electrical insulation properties, optical properties, etc. can be appropriately designed according to the intended use by adjusting the types of diamines and acid anhydrides used as raw materials as necessary. be able to. Therefore, two or more types of diamines may be used in combination. For example, rigid and highly linear diamines and acid anhydrides may be selected to achieve low thermal expansion. However, polyimides composed only of rigid monomers tend to have poor entanglement between main chains. Therefore, if necessary, a method may be used in which polyimide is synthesized by partially mixing a diamine that can impart flexibility.
  • a diamine or acid anhydride having a fluorine-containing group such as a trifluoromethyl group may be selected.
  • a polyimide with a low dielectric constant and high transparency can be obtained.
  • diamines having a polysiloxane structure may be selected. In this case, the longer the polysiloxane structure in the diamine, the more clearly the polyimide has a phase-separated structure.
  • the properties of polyimide including the surface state, change significantly. Large changes in properties can result in polyimides that are soluble in organic solvents. This polyimide can be used for applications such as adhesives.
  • the polyimide according to the first aspect of the present disclosure is Consists of a non-crosslinked structure including a main chain,
  • the main chain includes Si--O--C bonds.
  • the polyimide according to the first aspect can be easily decomposed, for example, by reaction with a fluorine-containing compound. This polyimide is suitable for reuse.
  • the main chain may include a C—O—Si—OC bond.
  • the imide compound that is the decomposed product has, for example, two hydroxyl groups. This imide compound can be easily reused.
  • the main chain may include a group represented by -OSi(R 1 )(R 2 )O-, At least one oxygen atom contained in the group may bond to a carbon atom adjacent to the group to form the Si--O--C bond.
  • R 1 and R 2 may each independently contain at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • the non-crosslinked structure includes a first structural unit represented by the following formula (A1).
  • R 1 and R 2 independently of each other contain at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I
  • X and Y are each independently a divalent group containing at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I
  • Z is a tetravalent group containing at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I
  • At least one selected from the group consisting of X and Y may contain a carbon atom that combines with an adjacent oxygen atom to form the Si--O--C bond.
  • the non-crosslinked structure includes a second structural unit represented by the following formula (A2). Good too.
  • R 1 to R 10 independently of each other contain at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I
  • Z may be a tetravalent group containing at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • the imide compound that is the decomposed product has an alcohol structure such as a phenol structure at its terminal. This imide compound can be reused more easily.
  • the non-crosslinked structure includes a third structural unit represented by the following formula (A3).
  • A3 a third structural unit represented by the following formula (A3).
  • R 1 to R 12 each independently contain at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I; Good too.
  • the non-crosslinked structure includes a fourth structural unit represented by the following formula (A4).
  • R 1 to R 10 and R 13 to R 18 are each independently at least one selected from the group consisting of H, C, N, O, S, F, Cl, Br, and I. May contain two atoms.
  • the polyimides according to the sixth and seventh aspects tend to have excellent solvent resistance and thermal properties. Coating liquids containing polyamic acid, which is a precursor of polyimide, also tend to have excellent coating properties and film-forming properties.
  • the polyimide according to the sixth aspect and the seventh aspect can be easily decomposed by, for example, reaction with a fluorine-containing compound when unnecessary. When this polyimide is decomposed, an imide compound having a phenol structure at the end and suitable for reuse can be obtained.
  • R 1 and R 2 are each independently a hydrogen atom, or a carbonized carbon having 1 or more and 6 or less carbon atoms. It may be a hydrogen group.
  • the polyimide according to the eighth aspect can be easily synthesized. Furthermore, this polyimide can be easily decomposed, for example, by reaction with a fluorine-containing compound.
  • the polyimide according to the ninth aspect of the present disclosure has a main chain containing a Si-O-C bond, and the ratio of the number of silicon atoms contained in the main chain to the number of imide groups contained in the main chain is 2. % or more and 50% or less.
  • the polyimide according to the first or ninth aspect may have a weight average molecular weight of 1000 or more.
  • the polyimides according to the ninth and tenth aspects tend to have good solvent resistance and thermal properties.
  • the non-crosslinked structure may include a plurality of structural units.
  • the non-crosslinked structure may include the third structural unit represented by the formula (A3) and the fourth structural unit represented by the formula (A4).
  • the method for producing an imide compound according to the eleventh aspect of the present disclosure includes: Contacting the polyimide according to any one of the first to tenth aspects with a fluorine-containing compound; Reacting the polyimide and the fluorine-containing compound to obtain an imide compound that is a decomposition product of the polyimide; including.
  • an imide compound can be easily produced by decomposing polyimide.
  • the fluorine-containing compound may include a fluoride salt.
  • an imide compound can be produced using a relatively easily available and inexpensive fluoride salt.
  • the fluoride salt may include tetrabutylammonium fluoride.
  • an imide compound can be produced by decomposing polyimide at room temperature.
  • the method for producing recycled polyimide according to the fourteenth aspect of the present disclosure includes: Decomposing the polyimide according to any one of the first to tenth aspects to obtain a decomposed product of the polyimide; Synthesizing recycled polyimide using the decomposition product; including.
  • polyimide can be reused.
  • Polyimide P according to this embodiment has a Si--O--C bond in its main chain.
  • polyimide P includes a structural unit A having a Si--O--C bond in its main chain.
  • polyimide P may have a C—O—Si—O—C bond in its main chain.
  • an imide compound having two hydroxyl groups is obtained. This imide compound can be easily reused.
  • Polyimide P consists of a non-crosslinked structure. That is, polyimide P does not have a crosslinked structure, excluding those having a crosslinked structure. Specifically, polyimide P has a plurality of main chains, excluding those in which the plurality of main chains are crosslinked with each other. In other words, the polyimide P according to this embodiment has one main chain. In polyimide P, the main chain extends linearly, for example. Note that the polyimide P according to this embodiment has one main chain containing a Si--O--C bond and does not have multiple main chains. Such polyimide P may include a structural unit having a crosslinkable structure.
  • Polyimide P may have a group g represented by -OSi(R 1 )(R 2 )O-.
  • the above structural unit A may have the group g.
  • At least one oxygen atom contained in the group g is bonded to a carbon atom adjacent to the group g to form a Si--O--C bond, for example.
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 each independently contain at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • R 1 and R 2 may each independently contain at least one atom selected from the group consisting of H, C, O, F, Cl, Br and I.
  • R 1 and R 2 may independently be a hydrogen atom, a halogen atom, or a hydrocarbon group.
  • halogen atom examples include F, Cl, Br, I, and the like.
  • a halogen atom may be referred to as a halogen group.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited, and is, for example, 1 or more and 20 or less, may be 1 or more and 10 or less, or may be 1 or more and 6 or less.
  • the hydrocarbon group may be linear, branched, or cyclic.
  • hydrocarbon group examples include an aliphatic saturated hydrocarbon group, an alicyclic hydrocarbon group, an aliphatic unsaturated hydrocarbon group, and an aromatic hydrocarbon group.
  • the aliphatic saturated hydrocarbon group may be an alkyl group.
  • Examples of aliphatic saturated hydrocarbon groups include -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 , -CH(CH 3 )CH 2 CH 3 , -C(CH 3 ) 3 , -CH2CH ( CH3 ) 2 , -( CH2 ) 3CH3 , -( CH2 ) 4CH3 , -C( CH2CH3 ) ( CH3 ) 2 , -CH2C (CH 3 ) 3 , -(CH 2 ) 5 CH 3 , -(CH 2 ) 6 CH 3 , -(CH 2 ) 7 CH 3 , -(CH 2 ) 8 CH 3 , -(
  • Examples of the alicyclic hydrocarbon group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an adamantyl group.
  • Examples of aromatic hydrocarbon groups include phenyl groups.
  • R 1 and R 2 may independently be a hydrogen atom, a hydrocarbon group having 1 or more and 6 or less carbon atoms, a methyl group or a phenyl group, or a methyl group. .
  • R 1 and R 2 are hydrogen atoms or hydrocarbon groups having 1 or more and 6 or less carbon atoms, the steric hindrance of R 1 and R 2 is small, so that, for example, the reaction between polyimide P and a fluorine-containing compound is inhibited. Hateful. In other words, the reaction with the fluorine-containing compound can easily break the Si--O bonds in polyimide P, so polyimide P can be easily decomposed.
  • R 1 and R 2 are hydrogen atoms or hydrocarbon groups having 1 or more and 6 or less carbon atoms, the polyimide P tends to be easily synthesized because raw materials can be obtained relatively easily.
  • polyimide P the above structural unit A may be represented by the following formula (A1).
  • polyimide P may include a structural unit A1 represented by the following formula (A1).
  • R 1 and R 2 each independently contain at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • R 1 and R 2 include those mentioned above for group g.
  • X and Y are divalent groups containing at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I, independently of each other. At least one selected from the group consisting of X and Y includes, for example, a carbon atom that combines with an adjacent oxygen atom to form a Si--O--C bond.
  • X and Y may independently be a divalent hydrocarbon group which may have a substituent.
  • the divalent hydrocarbon group include an arylene group and an alkylene group.
  • Each of X and Y may be a phenylene group which may have a substituent.
  • substituents for the divalent hydrocarbon group include those mentioned above for R 1 and R 2 of group g.
  • Z is a tetravalent group containing at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • Examples of Z include a group represented by the following formula (i), a group represented by the following formula (ii), and the like.
  • R 11 and R 12 each independently contain at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • R 11 and R 12 include those mentioned above for R 1 and R 2 in group g.
  • Each of R 11 and R 12 may be a hydrogen atom.
  • R 13 to R 18 each independently contain at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • R 13 to R 18 include those mentioned above for R 1 and R 2 in group g.
  • Each of R 13 to R 18 may be a hydrogen atom.
  • Q is a single bond or a divalent group containing at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • the divalent group includes, for example, at least one functional group selected from the group consisting of an ether group, an acyl group, an ester group, and a sulfonyl group.
  • the divalent group may include an acyl group.
  • the divalent group may include a divalent hydrocarbon group instead of or in addition to the above functional group.
  • the divalent hydrocarbon group may further have a substituent other than the above-mentioned functional groups. Examples of the divalent hydrocarbon group include those mentioned above for X and Y.
  • polyimide P tends to have flexibility.
  • Z may be a group other than the group represented by formula (i) and the group represented by formula (ii).
  • Z may be a group containing an alicyclic hydrocarbon group.
  • polyimide P tends to have high transparency.
  • polyimide P may include a structural unit A2 represented by the following formula (A2).
  • R 1 to R 10 each independently contain at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • R 1 to R 10 include those mentioned above for R 1 and R 2 in group g.
  • Each of R 3 to R 10 may be a hydrogen atom.
  • Z is a tetravalent group containing at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I. Examples of Z include those described above for formula (A1).
  • the above structural unit A may be represented by the following formula (A3) or the following formula (A4).
  • the polyimide P may include at least one selected from the group consisting of the structural unit A3 represented by the following formula (A3) and the structural unit A4 represented by the following formula (A4).
  • R 1 to R 12 each independently contain at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • R 1 to R 12 include those mentioned above for R 1 and R 2 in group g.
  • R 1 to R 10 and R 13 to R 18 are each independently at least one selected from the group consisting of H, C, N, O, S, F, Cl, Br, and I. Contains atoms. Examples of R 1 to R 10 and R 13 to R 18 include those mentioned above for R 1 and R 2 in group g.
  • the content of the structural unit A in polyimide P is, for example, 2 mol% or more, may be 5 mol% or more, may be 10 mol% or more, may be 30 mol% or more, and may be 50 mol% or more. It may be mol% or more, 80 mol% or more, or 90 mol% or more.
  • the polyimide P may be substantially composed only of the structural unit A. However, depending on the case, the content of the structural unit A in the polyimide P may be 80 mol% or less.
  • Polyimide P may further contain other structural units B other than the above-mentioned structural unit A.
  • Constituent unit B typically does not contain Si--O--C bonds.
  • the structural unit B is represented by the following formula (B1), for example.
  • G is a divalent group containing at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • the divalent group includes, for example, at least one functional group selected from the group consisting of an ether group, an acyl group, an ester group, an amide group, a sulfide group, a disulfide group, and a sulfonyl group.
  • the divalent group may include an ether group.
  • the divalent group includes, for example, a divalent hydrocarbon group in addition to the above functional group.
  • the divalent hydrocarbon group may further have a substituent other than the above-mentioned functional groups. Examples of the divalent hydrocarbon group include those mentioned above for X and Y.
  • the divalent group may include a phenylene group as well as an ether group.
  • L is a tetravalent group containing at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I. Examples of L include those mentioned above for Z.
  • the structural unit B may be represented by the following formula (B2) or the following formula (B3).
  • the polyimide P may include at least one selected from the group consisting of the structural unit B2 represented by the following formula (B2) and the structural unit B3 represented by the following formula (B3).
  • R 19 to R 28 each independently contain at least one atom selected from the group consisting of H, C, N, O, S, F, Cl, Br and I.
  • R 19 to R 28 include those mentioned above for R 1 and R 2 in group g.
  • Each of R 19 to R 28 may be a hydrogen atom.
  • R 19 to R 26 and R 29 to R 34 are each independently at least one selected from the group consisting of H, C, N, O, S, F, Cl, Br, and I. Contains atoms. Examples of R 19 to R 26 and R 29 to R 34 include those mentioned above for R 1 and R 2 in group g. Each of R 19 to R 26 and R 29 to R 34 may be a hydrogen atom.
  • the content of structural unit B in polyimide P is not particularly limited, and is, for example, 98 mol% or less, may be 95 mol% or less, may be 90 mol% or less, or may be 70 mol% or less. It may be 50 mol% or less, 20 mol% or less, or 10 mol% or less.
  • Polyimide P does not need to contain structural unit B. However, depending on the case, the content of the structural unit B in the polyimide P may be 20 mol% or more.
  • Polyimide P may be represented by the following formula (1).
  • A means structural unit A
  • B means structural unit B
  • n, m and l are each independently arbitrary integers.
  • the physical properties of polyimide P represented by formula (1) can be easily adjusted based on the same molecular design as conventional polyimides.
  • the ratio p of the number of silicon atoms to the number of imide groups is, for example, 2% or more. More specifically, in polyimide P having a main chain containing a Si-O-C bond, the ratio p of the number of silicon atoms contained in the main chain to the number of imide groups contained in the main chain is 2%. 50% or less.
  • the ratio p may be 2% or more and 40% or less, 2% or more and 30% or less, or 2% or more and 10% or less. In other words, the ratio p may satisfy 2% ⁇ p ⁇ 50%, 2% ⁇ p ⁇ 40%, 2% ⁇ p ⁇ 30%, or 2% ⁇ p ⁇ 10%.
  • polyimide P the main chain containing Si--O--C bonds is easily decomposed. Thereby, an imide compound which is a decomposition product of polyimide P can be easily obtained. Furthermore, the obtained imide compound exhibits good solubility in organic solvents and can be used for producing recycled polyimide.
  • the weight average molecular weight of polyimide P is, for example, 1000 or more, may be 2500 or more, may be 5000 or more, or may be 10000 or more.
  • the upper limit of the weight average molecular weight of polyimide P is not particularly limited, and is, for example, 1,000,000.
  • Polyimide P can be synthesized by a reaction between a diamine and a tetracarboxylic dianhydride.
  • tetracarboxylic dianhydride may be simply referred to as acid anhydride.
  • diamines for forming structural unit A include the following.
  • diamines for forming polyimide P include the following.
  • acid anhydrides for forming polyimide P include the following.
  • the physical properties of polyimide P can be appropriately adjusted by the combination of diamine and acid anhydride used in the synthesis.
  • Physical properties of polyimide P include heat resistance, solvent resistance, transparency, dielectric constant, coefficient of thermal expansion, and the like.
  • the diamine or acid anhydride contains an aromatic ring in its main chain and has a rigid structure, it is possible to improve the heat resistance and solvent resistance of polyimide P and adjust the coefficient of thermal expansion to a low value. can.
  • the diamine or acid anhydride contains an alicyclic hydrocarbon group, the transparency of polyimide P can be improved and the dielectric constant can be adjusted to a low value.
  • two or more diamines and acid anhydrides may be used in combination.
  • Polyimide P can achieve heat resistance and solvent resistance comparable to conventional polyimides. Therefore, polyimide P can be used for the same purposes as before.
  • polyimide P can be used as a substrate material or a resin included in a composite material such as fiber-reinforced plastic.
  • polyimide P has a Si--O--C bond in its main chain and has a non-crosslinked structure. Polyimide P having such a structure can be easily decomposed, and thereby an imide compound which is a decomposition product of polyimide P can be obtained.
  • the imide compound can be produced, for example, by the following method.
  • FIG. 1 is a flowchart regarding a method for producing an imide compound.
  • polyimide P is brought into contact with a fluorine-containing compound.
  • the fluorine-containing compound may include a fluoride salt. Fluoride salts are soluble in water, organic solvents, and the like.
  • the fluoride salt may be an inexpensive ammonium-based fluoride salt that is relatively easily available. Ammonium-based fluoride salts tend to have adequate solubility in solvents.
  • the fluoride salt may include tetrabutylammonium fluoride, which is an ammonium-based fluoride salt.
  • the polyimide P and the fluorine-containing compound may be contacted in a solvent.
  • a solvent for example, polar solvents such as water and tetrahydrofuran (THF) can be used.
  • step S12 polyimide P is reacted with a fluorine-containing compound.
  • the reaction between the polyimide P and the fluorine-containing compound can be carried out, for example, by leaving the polyimide P in contact with the fluorine-containing compound.
  • the reaction can be promoted by adjusting the amount of the fluorine-containing compound used, the reaction temperature, the presence or absence of stirring, and the like.
  • the recycled polyimide P1 can be produced, for example, by the following method.
  • FIG. 2 is a flowchart regarding the method for manufacturing recycled polyimide P1.
  • polyimide P is decomposed.
  • the polyimide P can be decomposed by, for example, steps S11 and S12 described above.
  • a decomposed product of polyimide P can be obtained.
  • the decomposition product of polyimide P is, for example, an imide compound having an alcohol structure at the end.
  • recycled polyimide P1 is synthesized using the decomposed product of polyimide P.
  • the conditions for synthesizing the recycled polyimide P1 can be appropriately set depending on the composition of the above decomposed product, the composition of the intended recycled polyimide P1, and the like. In this way, according to the manufacturing method of this embodiment, recycled polyimide P1 can be manufactured from polyimide P, and polyimide P can be reused.
  • an acid anhydride and a diamine were prepared as raw materials for polyimide synthesis.
  • the following Compound A manufactured by Tokyo Chemical Industry Co., Ltd.
  • Compound B manufactured by Sigma-Aldrich Co., Ltd.
  • the following Compound C and Compound D were prepared as diamines.
  • dimethylacetamide manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., super dehydration grade
  • a dimethylacetamide solution of polyamic acid was applied to the glass plate.
  • the dimensions of the glass plate were 5 cm square and 1 cm thick.
  • a film made of polyamic acid was obtained by heating and drying on a hot plate at 50° C. for 16 hours.
  • Example 1 By heating a film composed of polyamic acid on a hot plate at 80°C for 1 hour, at 100°C for 1 hour, and at 130°C for 1 hour, the results of Example 1 were obtained. Polyimide was obtained. Polyimide was identified by infrared absorption spectrum. When compared with the infrared absorption spectrum of polyamic acid, it was confirmed that in the infrared absorption spectrum of polyimide, absorption derived from imide groups increased at 1715 cm -1 .
  • Example 2 Polyimide of Example 2 was synthesized by the same method as Example 1, except that 0.682 g (2.5 mmol) of Compound C was used and 0.500 g (2.5 mmol) of Compound D. . Furthermore, when the synthesized polyimide was evaluated for degradability using the same method as in Example 1, the same results as in Example 1 were obtained.
  • Example 3 Polyimide of Example 3 was synthesized by the same method as Example 1, except that 0.137 g (0.5 mmol) of Compound C was used and 0.900 g (4.5 mmol) of Compound D. . Furthermore, when the synthesized polyimide was evaluated for degradability using the same method as in Example 1, the same results as in Example 1 were obtained.
  • Example 4 Polyimide of Example 4 was synthesized by the same method as Example 1, except that 0.068 g (0.25 mmol) of Compound C was used and 0.950 g (4.75 mmol) of Compound D. . Furthermore, when the synthesized polyimide was evaluated for degradability using the same method as in Example 1, the same results as in Example 1 were obtained.
  • Example 5 Polyimide of Example 5 was synthesized by the same method as Example 3 except that 1.610 g (5 mmol) of Compound B was used instead of Compound A. Furthermore, when the synthesized polyimide was evaluated for degradability using the same method as in Example 1, the same results as in Example 1 were obtained.
  • Example 6 Polyimide of Example 6 was synthesized in the same manner as in Example 1, except that 1.365 g (5 mmol) of Compound C was used and Compound D was not used. However, in Example 6, the viscosity of the dimethylacetamide solution of polyamic acid was low, and it was not possible to produce a film made of polyamic acid. Therefore, in Example 6, a powder made of polyamic acid was produced and the powder was heat-treated to obtain a powder made of polyimide. Furthermore, when the synthesized polyimide was evaluated for degradability using the same method as in Example 1, the same results as in Example 1 were obtained.
  • the degradability of the synthesized polyimide was evaluated using the same method as in Example 1. As a result, even when a THF solution containing tetrabutylammonium fluoride at a concentration of 1 mol/L was used and left at room temperature for 48 hours, the polyimide did not dissolve in the solution and no change was observed in appearance. . Similarly, no change in appearance was observed even after the product was allowed to stand at room temperature for 120 hours. In a comparative experiment, no change was observed in appearance when compared to when only THF was added to polyimide.
  • Comparative example 2 A polyimide of Comparative Example 2 was synthesized by the same method as Comparative Example 1, except that 1.610 g (5 mmol) of Compound B was used instead of Compound A.
  • the degradability of the synthesized polyimide was evaluated using the same method as in Example 1. As a result, even when a THF solution containing tetrabutylammonium fluoride at a concentration of 1 mol/L was used and left at room temperature for 48 hours, the polyimide did not dissolve in the solution and no change was observed in appearance. . Similarly, no change in appearance was observed even after the product was allowed to stand at room temperature for 120 hours. In a comparative experiment, no change was observed in appearance when compared to when only THF was added to polyimide.
  • ⁇ Measurement of weight average molecular weight> The molecular weight distribution of the polyamic acids synthesized in Examples and Comparative Examples was measured under the following conditions, and the weight average molecular weight was determined. The results are shown in Table 1.
  • ⁇ Measurement conditions device Liquid chromatograph device (Shimadzu Corporation, LC-Vp) Column: TSKgel SuperAWM-HLSuperAW2500 (manufactured by Tosoh Corporation) Eluent: N,N-dimethylformamide + 30 mmol/L lithium bromide + 10 mmol/L phosphoric acid Flow rate: 0.5 mL/min Injection volume: 40 ⁇ L Column temperature: 40°C Standard sample: Monodisperse polyethylene oxide, polyethylene glycol Detector: Differential refractometer (RI)
  • the degradability of polyimide dissolved in a THF solution containing TBAF is described as "good", and the degradability of polyimide that is not dissolved in a THF solution containing TBAF is described as “poor”.
  • the polyimide of the example having a Si--O--C bond in its main chain had better degradability than the comparative example and was suitable for reuse.
  • the polyimide of the example could be easily decomposed at room temperature by using a fluorine-containing compound.
  • Example 6 since the weight average molecular weight of the polyamic acid was relatively small at 1200, the viscosity of the polyamic acid solution in dimethylacetamide was low, resulting in poor coating and film forming properties.
  • the polyamic acid had a weight average molecular weight suitable for coating and film formation.
  • FIG. 3 is a graph showing the 1 H-NMR spectrum of polyamic acid in Measurement Example 1.
  • the 1 H-NMR spectrum of polyamic acid was as follows.
  • FIG. 4 is a graph showing the infrared absorption spectrum of polyimide in Measurement Example 1. As can be seen from FIG. 4, the infrared absorption spectrum of polyimide confirmed absorption derived from imide groups.
  • FIG. 5 is a graph showing the 1 H-NMR spectrum of the polyimide decomposition product in Measurement Example 1.
  • the decomposition product was identified as a compound represented by the following formula (3). This compound is obtained by cleaving the Si--O bonds of polyimide. The terminal O - of this compound formed a salt with + NBu 4 .
  • Polyimide P of the present disclosure tends to have excellent solvent resistance and thermal properties. Furthermore, polyimide P can be easily decomposed and removed when unnecessary. Therefore, polyimide P can be used as a substrate material or a resin included in a composite material such as fiber-reinforced plastic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本開示の一態様におけるポリイミドは、主鎖を含む非架橋構造からなる。前記主鎖は、Si-O-C結合を含む。前記主鎖は、C-O-Si-O-C結合を含んでいてもよい。前記主鎖は、例えば、-OSi(R1)(R2)O-で表される基を含む。前記基に含まれる少なくとも1つの酸素原子は、例えば、前記基に隣接する炭素原子と結合してSi-O-C結合を形成している。

Description

ポリイミド、イミド化合物の製造方法、及び再生ポリイミドの製造方法
 本開示は、ポリイミド、イミド化合物の製造方法、及び再生ポリイミドの製造方法に関する。
 ポリイミドなどの熱硬化性樹脂の成形品は、優れた耐薬品性を有するために、あらゆる溶媒に対して溶けにくい傾向がある。この成形品は、優れた耐熱性を有するために、ポリスチレンなどの熱可塑性プラスチックとは異なり、溶融して再利用することが難しい傾向もある。そのため、この成形品については、再生処理又は再資源化処理が困難かつ不適であり、埋め立てによる廃棄処分、又は焼却による廃棄処分が行われている。本明細書において、成形品には、フィルムが含まれる。
特開2013-87148号公報 特開2022-12362号公報 特開2021-195319号公報
 しかし、地球環境汚染問題、資源枯渇などの観点から、熱硬化性樹脂、特にポリイミド、を有効に再利用するための技術が求められている。
 本開示は、再利用に適した新たなポリイミドを提供することを目的とする。
 本開示の一態様におけるポリイミドは、
 主鎖を含む非架橋構造からなり、
 前記主鎖は、Si-O-C結合を含む。
 本開示は、再利用に適した新たなポリイミドを提供する。
図1は、本開示の一実施形態にかかるイミド化合物の製造方法に関するフローチャートである。 図2は、本開示の一実施形態にかかる再生ポリイミドの製造方法に関するフローチャートである。 図3は、測定例1におけるポリアミド酸の1H-NMRスペクトルを示すグラフである。 図4は、測定例1におけるポリイミドの赤外吸収スペクトルを示すグラフである。 図5は、測定例1におけるポリイミドの分解物の1H-NMRスペクトルを示すグラフである。
 (本開示の基礎となった知見)
 ポリイミドは、エンジニアリングプラスチックとして、優れた耐熱性、機械特性、摺動特性などを有する。そのため、近年、電気・電子機器用途、自動車部品用途、航空・宇宙産業用途、事務用機器用途などにおいて、急速にポリイミドの需要が高まっている。
 例えば、ポリイミドフィルムは、ポリイミドの前駆体であるポリアミド酸を含む塗布液を塗工し、得られた塗布膜を乾燥した後に、加熱などによる脱水環化反応によってポリアミド酸をイミド化することによって作製できる。ポリイミドフィルムなどの樹脂成形品は、極めて剛直であり、良好な電気特性、耐摩耗性などを有するとともに、優れた耐薬品性及び耐熱性を有する。一例として、ポリイミドは、有機溶剤などの薬品に不溶であり、高温下でも溶融しない。しかし、ポリイミドフィルムなどの樹脂成形品は、通常のエンジニアリングプラスチックを含む多くの樹脂とは異なり、破砕してから再度成形品を作製しても、成形品における樹脂界面の接合が不十分であり、満足できる特性が得られない。
 機械特性、絶縁性などを向上させる観点から、ポリイミドと、ガラス繊維、炭素繊維などの繊維材料との複合材料も知られている。しかし、ポリイミドの耐熱性及び耐溶剤性が高いため、繊維材料についても、粉砕して埋め立てによる廃棄処分が行われている。このように、複合材料から、ポリイミド及び繊維材料を分離し回収する技術も求められている。
 従来、ポリイミドを他の化合物に変換し、変換後の化合物を原料として再利用するケミカルリサイクルも検討されている。例えば、ポリイミドを酸又はアルカリの水溶液で加水分解することが試みられている。しかし、この方法では、得られる分解物が均一な成分ではないため、この分解物をリサイクルして作製された製品の特性が低い傾向がある。そのため、ポリイミドのマテリアルリサイクルプロセスには、改善の余地がある。
 ケミカルリサイクルを考える上で、形成及び切断が可能な結合として、ケイ素-酸素結合が利用されうる。例えば、アルコールの保護基として知られているシリル保護基では、フッ素アニオンとの反応によりケイ素-酸素結合が切断され、これにより、脱保護が可能である。
 特許文献1は、塩基性水溶液を用いたポリイミドのアルカリ加水分解を開示している。この方法によれば、ポリイミドを低分子量体へと分解することができる。分解によってポリイミドフィルムを溶媒に均一に溶解させることができる。しかし、この方法によれば、分解物が複雑な組成を有するため、分解物を再利用することが難しい。
 特許文献2、特許文献3及び非特許文献1のそれぞれには、ケイ素原子を含むポリイミドが開示されている。しかし、これらの文献に開示されたポリイミドは、分解して再利用することを想定して作製されたものではない。特に、非特許文献1のポリイミドは、複雑な架橋構造を有する。例えば、非特許文献1のポリイミドは、炭素―炭素の三重結合由来の架橋構造およびケイ素原子を含む架橋構造を有する。これにより、分解性が低い。また、非特許文献1のポリイミドが分解されたとしても、得られる分解物が複雑な架橋構造を有するため、再利用が難しい。特許文献2及び特許文献3のポリイミドでは、耐溶剤性が低く、熱膨張率が高い傾向もある。
 [ポリイミドの特性]
 ポリイミドは、高い耐熱性、難燃性、機械特性を有する傾向がある。さらに、ポリイミドは、高い電気絶縁性を有するため、電子回路の絶縁材料又は基板材料として用いられうる。ポリイミドの線熱膨張係数は、有機物としては非常に低く、金属に近い値である。そのため、ポリイミドを電子回路の絶縁材料として用いると、金属配線との熱膨張によるひずみが生じにくく、高い精度で配線加工を行うことができる。
 [ポリイミドの合成方法]
 ポリイミドは、通常、ジアミンと酸無水物とを等モル量で縮合させることによって合成することができる。一例として、ジアミンと酸無水物とを高極性の有機溶媒中で反応させて、得られたポリアミド酸を高温で加熱することによって合成することができる。本明細書では、ポリアミド酸に対して加熱処理などを行うことによってポリイミドを合成する工程をイミド化と呼ぶことがある。
 [ポリイミドの成形方法]
 ポリイミドは、通常、熱可塑性を有しておらず、各種の有機溶媒に不溶である。そのため、前駆体であるポリアミド酸を高濃度で含む溶液を塗布し、イミド化する方法によって成形を行う。
 [ポリイミドの分解方法]
 ポリイミドの成形品は、通常、熱可塑性を有しておらず、各種の溶剤に溶けない場合が多い。そのため、この成形品は、熱可塑性樹脂と異なり、溶融して再利用することが難しい。成形品については、高温高圧条件下での加水分解反応、アルカリ水溶液などを用いた分解及び回収方法などが提案されている。しかし、高温高圧条件での分解では、投入するエネルギー量が多い。分解に強塩基を用いる場合は、処理後に中和工程などが必要である。
 [ポリイミドの高機能化]
 ポリイミドでは、必要に応じて、原料として用いるジアミン及び酸無水物の種類を調整することによって、熱物性、機械特性、電気絶縁性、光学特性などの特性を目的とする用途に応じて適宜設計することができる。そのため、2種類以上のジアミンを組み合わせて用いることもある。例えば、低い熱膨張性を実現するために、剛直で直線性の高いジアミン及び酸無水物が選択されうる。しかし、剛直なモノマーのみから構成されるポリイミドでは、主鎖同士の絡み合いが乏しい傾向がある。そのため、必要に応じて、屈曲性を付与できるジアミンを一部混合してポリイミドを合成する方法が用いられうる。ポリイミドの誘電率及び吸水率を低下させるために、トリフルオロメチル基などの含フッ素基を有するジアミン又は酸無水物が選択されうる。また、脂環式の酸無水物を選択することによって、誘電率が低く、透明性が高いポリイミドが得られうる。ポリイミドに接着性及び可撓性を付与するために、ポリシロキサン構造を有するジアミンが選択されうる。この場合、ジアミン中のポリシロキサン構造が長ければ長いほど、ポリイミドは、明確な相分離構造を有する。このとき、表面状態をはじめとするポリイミドの特性が大きく変化することが知られている。特性が大きく変化することにより、有機溶媒に可溶であるポリイミドが得られうる。このポリイミドは、接着剤などの用途に用いられうる。
 以上のように、ポリイミドの技術分野では、物性面に寄与する分子構造の設計が多数行われている。一方、本発明者らの知る限り、ポリイミドについて、分解性を付与するなどの再利用を目的とする分子構造の設計はこれまで実現していない。本発明者らは、鋭意検討の結果、不要時などに簡便に分解できる新たなポリイミドを完成するに至った。
 (本開示に係る一態様の概要)
 本開示の第1態様にかかるポリイミドは、
 主鎖を含む非架橋構造からなり、
 前記主鎖は、Si-O-C結合を含む。
 第1態様にかかるポリイミドは、例えば、含フッ素化合物との反応により、容易に分解することができる。このポリイミドは、再利用に適している。
 本開示の第2態様において、例えば、第1態様にかかるポリイミドでは、前記主鎖は、C-O-Si-O-C結合を含んでいてもよい。
 第2態様にかかるポリイミドを含フッ素化合物によって分解した場合、分解物であるイミド化合物は、例えば、2つのヒドロキシル基を有する。このイミド化合物は、容易に再利用することができる。
 本開示の第3態様において、例えば、第1又は第2態様にかかるポリイミドでは、前記主鎖は、-OSi(R1)(R2)O-で表される基を含んでいてもよく、前記基に含まれる少なくとも1つの酸素原子は、前記基に隣接する炭素原子と結合して前記Si-O-C結合を形成していてもよい。前記基において、R1及びR2は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含んでいてもよい。
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つにかかるポリイミドでは、前記非架橋構造は、下記式(A1)で表される第1の構成単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000005
 前記式(A1)において、
  R1及びR2は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含み、
  X及びYは、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む2価の基であり、
  Zは、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む4価の基であり、
 X及びYからなる群より選ばれる少なくとも1つは、隣接する酸素原子と結合して前記Si-O-C結合を形成する炭素原子を含んでいてもよい。
 本開示の第5態様において、例えば、第1から第4態様のいずれか1つにかかるポリイミドでは、前記非架橋構造は、下記式(A2)で表される第2の構成単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000006
 前記式(A2)において、
  R1からR10は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含み、
  Zは、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む4価の基であってもよい。
 第3から第5態様にかかるポリイミドを含フッ素化合物によって分解した場合、分解物であるイミド化合物は、その末端に、フェノール構造などのアルコール構造を有する。このイミド化合物は、より簡便に再利用することができる。
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つにかかるポリイミドでは、前記非架橋構造は、下記式(A3)で表される第3の構成単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000007
 前記式(A3)において、R1からR12は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含んでいてもよい。
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つにかかるポリイミドでは、前記非架橋構造は、下記式(A4)で表される第4の構成単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000008
 前記式(A4)において、R1からR10及びR13からR18は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含んでいてもよい。
 第6態様及び第7態様にかかるポリイミドは、優れた耐溶剤性及び熱物性を有する傾向がある。このポリイミドの前駆体であるポリアミド酸を含む塗布液は、塗工性及び成膜性に優れる傾向もある。第6態様及び第7態様にかかるポリイミドは、不要時には、例えば、含フッ素化合物との反応により、容易に分解することができる。このポリイミドを分解した場合、末端にフェノール構造を有し、再利用に適したイミド化合物を得ることができる。
 本開示の第8態様において、例えば、第3から第7態様のいずれか1つにかかるポリイミドでは、R1及びR2は、互いに独立して、水素原子、又は炭素数1以上6以下の炭化水素基であってもよい。
 第8態様にかかるポリイミドは、容易に合成することができる。さらに、このポリイミドは、例えば、含フッ素化合物との反応により、容易に分解することができる。
 本開示の第9態様にかかるポリイミドは、Si-O-C結合を含む主鎖を備え、前記主鎖に含まれるイミド基の数に対する前記主鎖に含まれるケイ素原子の数の比率が、2%以上50%以下であってもよい。
 本開示の第10態様において、例えば、第1または第9態様にかかるポリイミドでは、重量平均分子量が1000以上であってもよい。
 第9及び第10態様にかかるポリイミドは、良好な耐溶剤性及び熱物性を有する傾向がある。
 本開示の一態様に係るポリイミドにおいて、前記非架橋構造は、複数の構成単位を含んでいてもよい。例えば、前記非架橋構造が、前記式(A3)で表される前記第3の構成単位及び前記式(A4)で表される前記第4の構成単位を含んでいてもよい。
 本開示の第11態様にかかるイミド化合物の製造方法は、
 第1から第10態様のいずれか1つにかかるポリイミドを含フッ素化合物と接触させることと、
 前記ポリイミドと前記含フッ素化合物とを反応させて、前記ポリイミドの分解物であるイミド化合物を得ることと、
を含む。
 第11態様によれば、ポリイミドを分解して、イミド化合物を容易に製造することができる。
 本開示の第12態様において、例えば、第11態様にかかる製造方法では、前記含フッ素化合物は、フッ化物塩を含んでいてもよい。
 第12態様によれば、比較的容易に入手できる安価なフッ化物塩を用いて、イミド化合物を製造することができる。
 本開示の第13態様において、例えば、第12態様にかかる製造方法では、前記フッ化物塩は、テトラブチルアンモニウムフルオリドを含んでいてもよい。
 第13態様によれば、例えば、室温下でポリイミドを分解して、イミド化合物を製造することができる。
 本開示の第14態様にかかる再生ポリイミドの製造方法は、
 第1から第10態様のいずれか1つにかかるポリイミドを分解して、前記ポリイミドの分解物を得ることと、
 前記分解物を用いて再生ポリイミドを合成することと、
を含む。
 第14態様によれば、ポリイミドを再利用することができる。
 以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
 (実施形態)
 本実施形態にかかるポリイミドPは、Si-O-C結合を主鎖に有する。言い換えると、ポリイミドPは、Si-O-C結合を主鎖に有する構成単位Aを含む。ポリイミドPは、リサイクルの容易性の観点から、C-O-Si-O-C結合を主鎖に有していてもよい。例えば、C-O-Si-O-C結合を主鎖に有するポリイミドPを分解すると、2つのヒドロキシル基を有するイミド化合物が得られる。このイミド化合物は、容易に再利用することができる。
 ポリイミドPは、非架橋構造からなる。すなわち、ポリイミドPは、架橋構造を有しておらず、架橋構造を有するものを除く。詳細には、ポリイミドPは、複数の主鎖を有し、かつ当該複数の主鎖が互いに架橋されたものを除く。言い換えると、本実施形態にかかるポリイミドPでは、主鎖の数が1である。ポリイミドPにおいて、主鎖は、例えば、直線状に延びている。なお、本実施形態にかかるポリイミドPは、Si-O-C結合を含む1つの主鎖であり、複数の主鎖を有しない。このようなポリイミドPは、架橋性の構造を有する構成単位を含んでいてもよい。
 ポリイミドPは、-OSi(R1)(R2)O-で表される基gを有していてもよい。言い換えると、ポリイミドPにおいて、上記の構成単位Aが基gを有していてもよい。基gに含まれる少なくとも1つの酸素原子は、例えば、基gに隣接する炭素原子と結合してSi-O-C結合を形成している。
 上記の基gにおいて、R1及びR2は、互いに同じであってもよく、異なっていてもよい。R1及びR2は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。R1及びR2は、互いに独立して、H、C、O、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含んでいてもよい。R1及びR2は、互いに独立して、水素原子、ハロゲン原子又は炭化水素基であってもよい。
 ハロゲン原子としては、F、Cl、Br、Iなどが挙げられる。本明細書では、ハロゲン原子をハロゲン基と呼ぶことがある。
 炭化水素基の炭素数は、特に限定されず、例えば1以上20以下であり、1以上10以下であってもよく、1以上6以下であってもよい。炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。
 炭化水素基としては、脂肪族飽和炭化水素基、脂環式炭化水素基、脂肪族不飽和炭化水素基、芳香族炭化水素基などが挙げられる。脂肪族飽和炭化水素基は、アルキル基であってもよい。脂肪族飽和炭化水素基としては、-CH3、-CH2CH3、-CH2CH2CH3、-CH(CH32、-CH(CH3)CH2CH3、-C(CH33、-CH2CH(CH32、-(CH23CH3、-(CH24CH3、-C(CH2CH3)(CH32、-CH2C(CH33、-(CH25CH3、-(CH26CH3、-(CH27CH3、-(CH28CH3、-(CH29CH3、-(CH210CH3、-(CH211CH3、-(CH212CH3、-(CH213CH3、-(CH214CH3、-(CH215CH3、-(CH216CH3、-(CH217CH3、-(CH218CH3、-(CH219CH3などが挙げられる。脂環式炭化水素基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基などが挙げられる。脂肪族不飽和炭化水素基としては、-CH=CH2、-C≡CH、-C≡CCH3、-C(CH3)=CH2、-CH=CHCH3、-CH2CH=CH2などが挙げられる。芳香族炭化水素基としては、フェニル基などが挙げられる。
 R1及びR2は、互いに独立して、水素原子、又は炭素数1以上6以下の炭化水素基であってもよく、メチル基又はフェニル基であってもよく、メチル基であってもよい。R1及びR2が水素原子、又は炭素数1以上6以下の炭化水素基である場合、R1及びR2の立体障害が小さいため、例えば、ポリイミドPと含フッ素化合物との反応が阻害されにくい。言い換えると、含フッ素化合物との反応によって、ポリイミドPにおけるSi-O結合を容易に切断することができるため、ポリイミドPを容易に分解することができる。R1及びR2が水素原子、又は炭素数1以上6以下の炭化水素基である場合、原料を比較的容易に入手できるため、ポリイミドPを簡便に合成できる傾向もある。
 ポリイミドPにおいて、上記の構成単位Aは、下記式(A1)で表されてもよい。言い換えると、ポリイミドPは、下記式(A1)で表される構成単位A1を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000009
 式(A1)において、R1及びR2は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。R1及びR2の例としては、基gについて上述したものが挙げられる。
 X及びYは、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む2価の基である。X及びYからなる群より選ばれる少なくとも1つは、例えば、隣接する酸素原子と結合してSi-O-C結合を形成する炭素原子を含む。
 X及びYは、互いに独立して、置換基を有していてもよい2価の炭化水素基であってよい。2価の炭化水素基としては、アリーレン基、アルキレン基などが挙げられる。X及びYのそれぞれは、置換基を有していてもよいフェニレン基であってもよい。この場合、ポリイミドPを分解することによって、末端にフェノール構造を有し、再利用に適したイミド化合物を得ることができる。2価の炭化水素基の置換基としては、基gのR1及びR2について上述したものが挙げられる。
 Zは、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む4価の基である。Zとしては、下記式(i)で表される基、下記式(ii)で表される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(i)において、R11及びR12は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。R11及びR12の例としては、基gのR1及びR2について上述したものが挙げられる。R11及びR12のそれぞれは、水素原子であってもよい。
 式(ii)において、R13からR18は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。R13からR18の例としては、基gのR1及びR2について上述したものが挙げられる。R13からR18のそれぞれは、水素原子であってもよい。
 式(ii)において、Qは、単結合、又は、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む2価の基である。Qにおいて、2価の基は、例えば、エーテル基、アシル基、エステル基及びスルホニル基からなる群より選ばれる少なくとも1つの官能基を含む。2価の基は、アシル基を含んでいてもよい。2価の基は、上記の官能基に代えて、又は、上記の官能基とともに、2価の炭化水素基を含んでいてもよい。2価の炭化水素基は、上記の官能基以外の置換基をさらに有していてもよい。2価の炭化水素基としては、X及びYについて上述したものが挙げられる。
 Zが式(ii)で表される基である場合、ポリイミドPは、柔軟性を有する傾向がある。
 Zは、式(i)で表される基及び式(ii)で表される基以外の他の基であってもよい。一例として、Zは、脂環式炭化水素基を含む基であってもよい。この場合、ポリイミドPは、高い透明性を有する傾向がある。
 上記の構成単位Aは、下記式(A2)で表されてもよい。言い換えると、ポリイミドPは、下記式(A2)で表される構成単位A2を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000011
 式(A2)において、R1からR10は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。R1からR10の例としては、基gのR1及びR2について上述したものが挙げられる。R3からR10のそれぞれは、水素原子であってもよい。
 式(A2)において、Zは、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む4価の基である。Zの例としては、式(A1)について上述したものが挙げられる。
 上記の構成単位Aは、下記式(A3)又は下記式(A4)で表されてもよい。言い換えると、ポリイミドPは、下記式(A3)で表される構成単位A3、及び下記式(A4)で表される構成単位A4からなる群より選ばれる少なくとも1つを含んでいてもよい。
Figure JPOXMLDOC01-appb-C000012
 式(A3)において、R1からR12は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。R1からR12の例としては、基gのR1及びR2について上述したものが挙げられる。
 式(A4)において、R1からR10及びR13からR18は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。R1からR10及びR13からR18の例としては、基gのR1及びR2について上述したものが挙げられる。
 ポリイミドPにおける構成単位Aの含有率は、例えば2モル%以上であり、5モル%以上であってもよく、10モル%以上であってもよく、30モル%以上であってもよく、50モル%以上であってもよく、80モル%以上であってもよく、90モル%以上であってもよい。ポリイミドPは、実質的に構成単位Aのみから構成されていてもよい。ただし、場合によっては、ポリイミドPにおける構成単位Aの含有率は、80モル%以下であってもよい。
 ポリイミドPは、上記の構成単位A以外の他の構成単位Bをさらに含んでいてもよい。構成単位Bは、典型的には、Si-O-C結合を含まない。構成単位Bは、例えば、下記式(B1)で表される。
Figure JPOXMLDOC01-appb-C000013
 式(B1)において、Gは、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む2価の基である。Gにおいて、2価の基は、例えば、エーテル基、アシル基、エステル基、アミド基、スルフィド基、ジスルフィド基及びスルホニル基からなる群より選ばれる少なくとも1つの官能基を含む。2価の基は、エーテル基を含んでいてもよい。2価の基は、例えば、上記の官能基とともに2価の炭化水素基を含む。2価の炭化水素基は、上記の官能基以外の置換基をさらに有していてもよい。2価の炭化水素基としては、X及びYについて上述したものが挙げられる。2価の基は、エーテル基とともにフェニレン基を含んでいてもよい。
 Lは、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む4価の基である。Lの例としては、Zについて上述したものが挙げられる。
 構成単位Bは、下記式(B2)又は下記式(B3)で表されてもよい。言い換えると、ポリイミドPは、下記式(B2)で表される構成単位B2、及び下記式(B3)で表される構成単位B3からなる群より選ばれる少なくとも1つを含んでいてもよい。
Figure JPOXMLDOC01-appb-C000014
 式(B2)において、R19からR28は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。R19からR28の例としては、基gのR1及びR2について上述したものが挙げられる。R19からR28のそれぞれは、水素原子であってもよい。
 式(B3)において、R19からR26及びR29からR34は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。R19からR26及びR29からR34の例としては、基gのR1及びR2について上述したものが挙げられる。R19からR26及びR29からR34のそれぞれは、水素原子であってもよい。
 ポリイミドPにおける構成単位Bの含有率は、特に限定されず、例えば98モル%以下であり、95モル%以下であってもよく、90モル%以下であってもよく、70モル%以下であってもよく、50モル%以下であってもよく、20モル%以下であってもよく、10モル%以下であってもよい。ポリイミドPは、構成単位Bを含んでいなくてもよい。ただし、場合によっては、ポリイミドPにおける構成単位Bの含有率は、20モル%以上であってもよい。
 ポリイミドPは、下記式(1)で表されてもよい。
Figure JPOXMLDOC01-appb-C000015
 式(1)において、Aは、構成単位Aを意味し、Bは、構成単位Bを意味する。n、m及びlは、互いに独立して、任意の整数である。式(1)で表されるポリイミドPは、従来のポリイミドと同様の分子設計に基づいて、物性を調整しやすい。
 ポリイミドPにおいて、イミド基の数に対するケイ素原子の数の比率pは、例えば、2%以上である。より具体的には、Si-O-C結合を含む主鎖を備えるポリイミドPにおいて、当該主鎖に含まれるイミド基の数に対する当該主鎖に含まれるケイ素原子の数の比率pは、2%以上50%以下である。比率pは、2%以上40%以下であってもよく、2%以上30%以下であってもよく、2%以上10%以下であってもよい。言い換えると、比率pは、2%≦p≦50%、2%≦p≦40%、2%≦p≦30%、又は2%≦p≦10%を満たしていてもよい。比率pを上記の範囲に調整することによって、ポリイミドPの耐溶剤性及び熱物性が低下することを抑制できる。さらに、ポリイミドPの前駆体であるポリアミド酸を含む塗布液は、良好な粘度を有し、塗工性及び成膜性に優れる傾向もある。
 また、ポリイミドPにおいて、Si-O-C結合を含む主鎖は、容易に分解される。これにより、ポリイミドPの分解物であるイミド化合物を容易に得ることができる。また、得られたイミド化合物は、有機溶媒への良好な溶解性を示し、再生ポリイミドの製造に用いることができる。
 ポリイミドPの重量平均分子量は、例えば1000以上であり、2500以上であってもよく、5000以上であってもよく、10000以上であってもよい。ポリイミドPの重量平均分子量の上限値は、特に限定されず、例えば1000000である。
 ポリイミドPは、ジアミンとテトラカルボン酸二無水物との反応によって合成することができる。本明細書では、テトラカルボン酸二無水物を単に酸無水物と呼ぶことがある。構成単位Aを形成するためのジアミンの具体例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000016
 ポリイミドPを形成するための他のジアミンの具体例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000017
 ポリイミドPを形成するための酸無水物の具体例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000018
 ポリイミドPの物性は、合成に用いるジアミン及び酸無水物の組み合わせによって適切に調整することができる。ポリイミドPの物性としては、耐熱性、耐溶剤性、透明性、誘電率、熱膨張率などが挙げられる。一例として、ジアミン又は酸無水物が主鎖に芳香環を含み、剛直な構造を有する場合、ポリイミドPについて、耐熱性及び耐溶剤性を向上させるとともに、熱膨張率を低い値に調整することができる。ジアミン又は酸無水物が脂環式炭化水素基を含む場合、ポリイミドPについて、透明性を向上させるとともに、誘電率を低い値に調整することができる。ポリイミドPの合成において、ジアミン及び酸無水物のそれぞれは、2種類以上を組み合わせて用いてもよい。
 ポリイミドPでは、従来のポリイミドと同程度の耐熱性及び耐溶剤性を実現することができる。そのため、ポリイミドPは、従来と同じ用途に利用することができる。一例として、ポリイミドPは、基板材料、又は、繊維強化プラスチックなどの複合材料に含まれる樹脂として利用することができる。
 [イミド化合物の製造方法]
 上述のとおり、ポリイミドPは、Si-O-C結合を主鎖に有し、かつ非架橋構造からなる。このような構成を有するポリイミドPは、容易に分解することができ、これにより、ポリイミドPの分解物であるイミド化合物を得ることができる。
 イミド化合物は、例えば、次の方法によって製造することができる。図1は、イミド化合物の製造方法に関するフローチャートである。まず、ステップS11において、ポリイミドPを含フッ素化合物と接触させる。含フッ素化合物は、フッ化物塩を含んでいてもよい。フッ化物塩は、水、有機溶媒などに可溶である。フッ化物塩は、比較的容易に入手できる安価なアンモニウム系フッ化物塩であってもよい。アンモニウム系フッ化物塩は、溶剤に対して適切な溶解性を有する傾向がある。フッ化物塩は、アンモニウム系フッ化物塩であるテトラブチルアンモニウムフルオリドを含んでいてもよい。
 ステップS11では、溶媒中でポリイミドPと含フッ素化合物とを接触させてもよい。溶媒としては、例えば、水、テトラヒドロフラン(THF)などの極性溶媒を用いることができる。
 次に、ステップS12において、ポリイミドPを含フッ素化合物と反応させる。ポリイミドP及び含フッ素化合物の反応は、例えば、ポリイミドPを含フッ素化合物と接触させた状態で放置することによって行うことができる。ステップS12では、含フッ素化合物の使用量、反応温度、撹拌の有無などを調整することによって、反応を促進できる。
 ポリイミドPを含フッ素化合物と反応させると、ポリイミドPのSi-O結合が切断され、ポリイミドPが分解する。これにより、末端に、フェノール構造などのアルコール構造を有するイミド化合物が分解物として得られる。一例として、上述の構成単位A1を含むポリイミドPを分解した場合、下記式(2)で表されるイミド化合物を得ることができる。式(2)において、X、Y及びZは、式(A1)について上述したものと同じである。
Figure JPOXMLDOC01-appb-C000019
 [再生ポリイミドの製造方法]
 ポリイミドPの分解物については、さらなる分子変換を行うことができる。特に、分解物が、末端にアルコール構造を有するイミド化合物である場合、容易に分子変換を行うことができる。分子変換を行うことによって、ポリイミドPを再利用することができる。言い換えると、ポリイミドPをアップサイクルすることができる。一例として、ポリイミドPの分解物を用いて、再生ポリイミドP1を合成することもできる。再生ポリイミドP1の組成は、ポリイミドPと異なっていてもよく、同じであってもよい。
 再生ポリイミドP1は、例えば、次の方法によって製造することができる。図2は、再生ポリイミドP1の製造方法に関するフローチャートである。まず、ステップS21において、ポリイミドPを分解する。ポリイミドPの分解は、例えば、上述したステップS11及びS12によって行うことができる。ポリイミドPを分解することによって、ポリイミドPの分解物を得ることができる。上述のとおり、ポリイミドPの分解物は、例えば、末端にアルコール構造を有するイミド化合物である。ポリイミドPの分解によって、複数種類のイミド化合物が得られた場合は、必要に応じて、分離操作及び精製操作を行ってもよい。
 次に、ステップS22において、ポリイミドPの分解物を用いて再生ポリイミドP1を合成する。再生ポリイミドP1の合成条件は、上記の分解物の組成、目的とする再生ポリイミドP1の組成などに応じて適宜設定することができる。このように、本実施形態の製造方法によれば、ポリイミドPから再生ポリイミドP1を製造することができ、ポリイミドPを再利用することができる。
 以下、実施例により本開示をさらに詳細に説明する。なお、以下の実施例は一例であり、本開示は以下の実施例に限定されない。
 まず、ポリイミドの合成原料として、酸無水物及びジアミンを準備した。詳細には、酸無水物として、以下の化合物A(東京化成工業社製)及び化合物B(シグマアルドリッチ社製)を準備した。ジアミンとして、以下の化合物C及び化合物D(東京化成工業社製)を準備した。さらに、反応に用いる溶媒として、ジメチルアセトアミド(富士フィルム和光純薬社製、超脱水グレード)を準備した。
 [化合物Cの合成]
 化合物Cは、Thermochimica Acta 2019, 671, 119-126.に記載された方法に準拠して合成した。化合物Cは、1H-NMRにより同定した。
 <実施例1>
 [ポリイミドの合成]
 窒素雰囲気下で以下の操作を行うことによって、ポリイミドを合成した。まず、化合物Aを1.090g(5mmol)測り取り、ジメチルアセトアミド(超脱水)8.5gを加えた。得られた化合物Aのジメチルアセトアミド溶液を100rpm程度の回転数で撹拌しながら、別途計量した化合物C1.090g(4mmol)及び化合物D0.200g(1mmol)の混合物を加えた。このとき、混合物は、少量ずつ2分程度の時間をかけて溶液に加えた。溶液を室温にて30分撹拌することによって、ポリアミド酸のジメチルアセトアミド溶液を得た。
 次に、ポリアミド酸のジメチルアセトアミド溶液をガラス板に塗布した。ガラス板の寸法は、5cm角で厚さ1cmであった。次に、ホットプレート上で50℃にて16時間加熱し、乾燥させることによって、ポリアミド酸で構成されたフィルムを得た。
 ポリアミド酸で構成されたフィルムをホットプレート上で80℃にて1時間加熱する操作、100℃で1時間加熱する操作、及び、130℃で1時間加熱する操作を行うことによって、実施例1のポリイミドを得た。ポリイミドは、赤外吸収スペクトルによって同定した。ポリアミド酸の赤外吸収スペクトルと比較した場合、ポリイミドの赤外吸収スペクトルでは、1715cm-1において、イミド基に由来する吸収が増加していることを確認した。
 [分解性の評価]
 合成したポリイミド100mgに対して、1mol/Lの濃度でテトラブチルアンモニウムフルオリド(TBAF)を含むTHF溶液を3mL加え、室温で48時間静置した。ポリイミドは、上記のTHF溶液を加えた段階で当該溶液に溶解し始め、48時間後には完全に溶解した。実施例1のポリイミドは、テトラブチルアンモニウムフルオリドと反応することによって分解され、これにより、THF溶液に溶解したことが推定される。
 比較実験として、合成したポリイミド100mgに対してTHF3mLを加えた。このとき、ポリイミドは、室温で48時間静置してもTHFに溶解せず、96時間静置しても変化が全く見られなかった。
 <実施例2>
 化合物Cを0.682g(2.5mmol)用いたこと、及び、化合物Dを0.500g(2.5mmol)用いたことを除き、実施例1と同じ方法によって、実施例2のポリイミドを合成した。さらに、合成したポリイミドについて、実施例1と同じ方法によって分解性の評価を行ったところ、実施例1と同じ結果が得られた。
 <実施例3>
 化合物Cを0.137g(0.5mmol)用いたこと、及び、化合物Dを0.900g(4.5mmol)用いたことを除き、実施例1と同じ方法によって、実施例3のポリイミドを合成した。さらに、合成したポリイミドについて、実施例1と同じ方法によって分解性の評価を行ったところ、実施例1と同じ結果が得られた。
 <実施例4>
 化合物Cを0.068g(0.25mmol)用いたこと、及び、化合物Dを0.950g(4.75mmol)用いたことを除き、実施例1と同じ方法によって、実施例4のポリイミドを合成した。さらに、合成したポリイミドについて、実施例1と同じ方法によって分解性の評価を行ったところ、実施例1と同じ結果が得られた。
 <実施例5>
 化合物Aに代えて、化合物Bを1.610g(5mmol)用いたことを除き、実施例3と同じ方法によって、実施例5のポリイミドを合成した。さらに、合成したポリイミドについて、実施例1と同じ方法によって分解性の評価を行ったところ、実施例1と同じ結果が得られた。
 <実施例6>
 化合物Cを1.365g(5mmol)用いたこと、及び、化合物Dを用いなかったことを除き、実施例1と同様の方法によって、実施例6のポリイミドを合成した。ただし、実施例6では、ポリアミド酸のジメチルアセトアミド溶液の粘度が低く、ポリアミド酸で構成されたフィルムを作製することができなかった。そのため、実施例6では、ポリアミド酸で構成された粉体を作製し、この粉体に対して加熱処理を行うことによって、ポリイミドで構成された粉体を得た。さらに、合成したポリイミドについて、実施例1と同じ方法によって分解性の評価を行ったところ、実施例1と同じ結果が得られた。
 <比較例1>
 化合物Cを用いなかったこと、化合物Dを1.001g(5.0mmol)用いたこと、並びに、ポリアミド酸で構成されたフィルムについて、80℃にて1時間加熱する操作、100℃で1時間加熱する操作、130℃で1時間加熱する操作、及び150℃で1時間加熱する操作を行ったことを除き、実施例1と同じ方法によって、比較例1のポリイミドを合成した。
 合成したポリイミドについて、実施例1と同じ方法によって分解性の評価を行った。その結果、1mol/Lの濃度でテトラブチルアンモニウムフルオリドを含むTHF溶液を用いて、室温で48時間静置しても、ポリイミドは、溶液に溶解せず、見た目に変化は全く見られなかった。同様に、室温で120時間静置しても、見た目に変化は全く見られなかった。比較実験において、ポリイミドにTHFのみを加えた場合と比較しても、見た目に変化は全く見られなかった。
 <比較例2>
 化合物Aに代えて、化合物Bを1.610g(5mmol)用いたことを除き、比較例1と同じ方法によって、比較例2のポリイミドを合成した。
 合成したポリイミドについて、実施例1と同じ方法によって分解性の評価を行った。その結果、1mol/Lの濃度でテトラブチルアンモニウムフルオリドを含むTHF溶液を用いて、室温で48時間静置しても、ポリイミドは、溶液に溶解せず、見た目に変化は全く見られなかった。同様に、室温で120時間静置しても、見た目に変化は全く見られなかった。比較実験において、ポリイミドにTHFのみを加えた場合と比較しても、見た目に変化は全く見られなかった。
 <重量平均分子量の測定>
 実施例及び比較例で合成したポリアミド酸について、下記条件で分子量分布を測定し、重量平均分子量を特定した。結果を表1に示す。
・測定条件
装置:液体クロマトグラフ装置(島津製作所社製、LC-Vp)
カラム:TSKgel SuperAWM-HLSuperAW2500(東ソー社製)
溶離液:N,N-ジメチルホルムアミド+30mmol/L臭化リチウム+10mmol/Lリン酸
流速:0.5mL/min
注入量:40μL
カラム温度:40℃
標準試料:単分散ポリエチレンオキシド、ポリエチレングリコール
検出器:示差屈折計(RI)
Figure JPOXMLDOC01-appb-T000021
 表1において、TBAFを含むTHF溶液に溶解したポリイミドの分解性を「良好」と記載し、TBAFを含むTHF溶液に溶解しなかったポリイミドの分解性を「不良」と記載している。表1からわかるとおり、Si-O-C結合を主鎖に有する実施例のポリイミドは、比較例に比べて、良好な分解性を有し、再利用に適していた。特に、実施例のポリイミドは、含フッ素化合物を用いることによって、室温にて簡便に分解することができた。
 さらに、表1などからわかるとおり、使用する化合物Cの割合が増えれば増えるほど、ポリアミド酸の重量平均分子量が減少する傾向がある。この結果は、ポリアミド酸のケイ素原子部分が加水分解を受けやすく、ケイ素原子のモル分率に応じて、ポリアミド酸の主鎖における切断箇所が増加し、顕著に低分子量化しやすいことに起因していると推定される。
 実施例6では、ポリアミド酸の重量平均分子量が1200と比較的小さいため、ポリアミド酸のジメチルアセトアミド溶液の粘度が低く、塗工性及び成膜性が低かった。これに対して、実施例1から5では、ポリアミド酸は、塗工及び成膜に適した重量平均分子量を有していた。
 <測定例1>
 次に、ポリイミドの分子構造、その分解物の分子構造などを同定するために、以下の測定を行った。
 (NMRチューブ実験)
 [ポリアミド酸の合成]
 実施例6の約1/1000のスケールにて、重DMF溶媒を用いたNMRチューブ実験を実施した。この実験において、化合物Aの重DMF溶媒に対して化合物Cを加えると、室温で10分程度経過した段階で、ポリアミド酸の生成が1H-NMRにて確認できた。図3は、測定例1におけるポリアミド酸の1H-NMRスペクトルを示すグラフである。ポリアミド酸の1H-NMRスペクトルは、以下のとおりであった。
1H-NMR (600 MHz, DMF-d7), δ(ppm): 10.42 (s, 2H), 8.41-8.00 (s, 2H), 7.75 (m, 4H), 7.03 (m, 4H), 0.41 (t, J=5.4Hz, 6H).
 (ポリイミドの赤外吸収スペクトル)
 実施例6で合成したポリイミドについて赤外分光測定を行い、赤外吸収スペクトルを得た。図4は、測定例1におけるポリイミドの赤外吸収スペクトルを示すグラフである。図4からわかるとおり、ポリイミドの赤外吸収スペクトルからは、イミド基に由来する吸収が確認できた。
 (NMRチューブ実験)
 [ポリイミドの分解]
 実施例6で合成したポリイミドと重DMSO溶媒とをNMRチューブに加えて、1H-NMR測定を行った。その結果、ポリイミドが重DMSO溶媒に溶解せず、ポリイミドに由来するシグナルが得られなかった。次に、1mol/Lのテトラブチルアンモニウムフルオリドを含むTHF溶液を加え、すぐに1H-NMR測定を行った。これにより、ポリイミドの分解物に由来する1H-NMRシグナルが得られた。図5は、測定例1におけるポリイミドの分解物の1H-NMRスペクトルを示すグラフである。
 図5のグラフから、分解物は、下記式(3)で表される化合物であると同定した。この化合物は、ポリイミドのSi-O結合が切断されることによって得られる。この化合物の末端のO-は、+NBu4と塩を形成していた。
Figure JPOXMLDOC01-appb-C000022
 実施例1から5のポリイミドについても同様に、含フッ素化合物との反応によって、Si-O結合が切断され、分解物が生成すると考えられる。実施例1から6における分解性の評価では、ポリイミドから分解物が生成することにより、ポリイミドがTHF溶液に完全に溶解したと考えられる。
 本開示のポリイミドPは、耐溶剤性及び熱物性に優れる傾向がある。さらに、ポリイミドPは、不要時には、簡便に分解して除去することができる。そのため、ポリイミドPは、基板材料、又は、繊維強化プラスチックなどの複合材料に含まれる樹脂として利用することができる。

Claims (14)

  1.  主鎖を含む非架橋構造からなり、
     前記主鎖は、Si-O-C結合を含む、
     ポリイミド。
  2.  前記主鎖は、C-O-Si-O-C結合を含む、
     請求項1に記載のポリイミド。
  3.  前記主鎖は、-OSi(R1)(R2)O-で表される基を含み、
     前記基に含まれる少なくとも1つの酸素原子は、前記基に隣接する炭素原子と結合して前記Si-O-C結合を形成しており、
     前記基において、R1及びR2は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む、
     請求項1又は2に記載のポリイミド。
  4.  前記非架橋構造は、下記式(A1)で表される第1の構成単位を含む、
     請求項1から3のいずれか1項に記載のポリイミド。
    Figure JPOXMLDOC01-appb-C000001
     前記式(A1)において、
      R1及びR2は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含み、
      X及びYは、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む2価の基であり、
      Zは、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む4価の基であり、
     X及びYからなる群より選ばれる少なくとも1つは、隣接する酸素原子と結合して前記Si-O-C結合を形成する炭素原子を含む。
  5.  前記非架橋構造は、下記式(A2)で表される第2の構成単位を含む、
     請求項1から4のいずれか1項に記載のポリイミド。
    Figure JPOXMLDOC01-appb-C000002
     前記式(A2)において、
      R1からR10は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含み、
      Zは、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む4価の基である。
  6.  前記非架橋構造は、下記式(A3)で表される第3の構成単位を含む、
     請求項1から5のいずれか1項に記載のポリイミド。
    Figure JPOXMLDOC01-appb-C000003
     前記式(A3)において、R1からR12は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。
  7.  前記非架橋構造は、下記式(A4)で表される第4の構成単位を含む、
     請求項1から6のいずれか1項に記載のポリイミド。
    Figure JPOXMLDOC01-appb-C000004
     前記式(A4)において、R1からR10及びR13からR18は、互いに独立して、H、C、N、O、S、F、Cl、Br及びIからなる群より選ばれる少なくとも1つの原子を含む。
  8.  R1及びR2は、互いに独立して、水素原子、又は炭素数1以上6以下の炭化水素基である、
     請求項3から7のいずれか1項に記載のポリイミド。
  9.  Si-O-C結合を含む主鎖を備え、
    前記主鎖に含まれるイミド基の数に対する前記主鎖に含まれるケイ素原子の数の比率が、2%以上50%以下である、
     ポリイミド。
  10.  重量平均分子量が1000以上である、
     請求項1または9に記載のポリイミド。
  11.  請求項1から10のいずれか1項に記載のポリイミドを含フッ素化合物と接触させることと、
     前記ポリイミドと前記含フッ素化合物とを反応させて、前記ポリイミドの分解物であるイミド化合物を得ることと、
    を含む、
     イミド化合物の製造方法。
  12.  前記含フッ素化合物は、フッ化物塩を含む、
     請求項11に記載の製造方法。
  13.  前記フッ化物塩は、テトラブチルアンモニウムフルオリドを含む、
     請求項12に記載の製造方法。
  14.  請求項1から10のいずれか1項に記載のポリイミドを分解して、前記ポリイミドの分解物を得ることと、
     前記分解物を用いて再生ポリイミドを合成することと、
    を含む、
     再生ポリイミドの製造方法。
PCT/JP2023/014789 2022-05-24 2023-04-12 ポリイミド、イミド化合物の製造方法、及び再生ポリイミドの製造方法 WO2023228613A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-084848 2022-05-24
JP2022084848 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023228613A1 true WO2023228613A1 (ja) 2023-11-30

Family

ID=88919139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014789 WO2023228613A1 (ja) 2022-05-24 2023-04-12 ポリイミド、イミド化合物の製造方法、及び再生ポリイミドの製造方法

Country Status (1)

Country Link
WO (1) WO2023228613A1 (ja)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179631A (en) * 1962-01-26 1965-04-20 Du Pont Aromatic polyimide particles from polycyclic diamines
US3338859A (en) * 1966-06-30 1967-08-29 Dow Corning Silicone polyimides
US3529017A (en) * 1966-01-06 1970-09-15 Du Pont Alkaline hydrolysis of polyimides
JPS5729029A (en) * 1980-07-28 1982-02-16 Hitachi Chem Co Ltd Liquid crystal sandwiching substrate
JPS5742732A (en) * 1980-08-27 1982-03-10 Hitachi Chem Co Ltd Production of polyamido acid silicone type intermediate and polyimidoisoindoloquinazolinedione/silicone copolymer resin
JPS5742733A (en) * 1980-08-27 1982-03-10 Hitachi Chem Co Ltd Production of polyamido acid silane type intermediate and polyimidosilane copolymer resin
JPS60166325A (ja) * 1984-02-09 1985-08-29 Sumitomo Bakelite Co Ltd 耐熱性樹脂の製造方法
JPS60243122A (ja) * 1984-04-02 1985-12-03 ゼネラル・エレクトリツク・カンパニイ ケイ素官能化ノルボルナンカルボキシイミドおよびその製造方法
JPH05310936A (ja) * 1992-05-07 1993-11-22 Toshiba Silicone Co Ltd ポリイミド・ポリシロキサン複合体およびその製造方法
JP2008280424A (ja) * 2007-05-10 2008-11-20 Toyobo Co Ltd ポリイミドの分解・回収方法
JP2012224579A (ja) * 2011-04-19 2012-11-15 Nissan Chem Ind Ltd クマリン型酸二無水物、その製造法及びポリイミド
JP2012224578A (ja) * 2011-04-19 2012-11-15 Nissan Chem Ind Ltd ビスフェニルアゾベンゼン型酸二無水物、その製造法及びポリイミド
JP2013010897A (ja) * 2011-06-30 2013-01-17 Nissan Chem Ind Ltd テトラヒドロペンタレン型酸二無水物、その製造法及びポリイミド
JP2013087148A (ja) * 2011-10-14 2013-05-13 Toray Ind Inc ポリイミドのアルカリ加水分解方法およびポリイミド金属積層体からの低分子量体および金属の回収方法
JP2014025066A (ja) * 2012-07-27 2014-02-06 Samsung Electronics Co Ltd ポリイミドコポリマーと無機粒子との複合体組成物、この製造方法、これを含む成形品及び前記成形品を備えるディスプレイ装置
WO2017002860A1 (ja) * 2015-06-30 2017-01-05 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
JP2017008311A (ja) * 2015-06-17 2017-01-12 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. ポリイミド樹脂及びこれを含むメタルクラッド積層板

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179631A (en) * 1962-01-26 1965-04-20 Du Pont Aromatic polyimide particles from polycyclic diamines
US3529017A (en) * 1966-01-06 1970-09-15 Du Pont Alkaline hydrolysis of polyimides
US3338859A (en) * 1966-06-30 1967-08-29 Dow Corning Silicone polyimides
JPS5729029A (en) * 1980-07-28 1982-02-16 Hitachi Chem Co Ltd Liquid crystal sandwiching substrate
JPS5742732A (en) * 1980-08-27 1982-03-10 Hitachi Chem Co Ltd Production of polyamido acid silicone type intermediate and polyimidoisoindoloquinazolinedione/silicone copolymer resin
JPS5742733A (en) * 1980-08-27 1982-03-10 Hitachi Chem Co Ltd Production of polyamido acid silane type intermediate and polyimidosilane copolymer resin
JPS60166325A (ja) * 1984-02-09 1985-08-29 Sumitomo Bakelite Co Ltd 耐熱性樹脂の製造方法
JPS60243122A (ja) * 1984-04-02 1985-12-03 ゼネラル・エレクトリツク・カンパニイ ケイ素官能化ノルボルナンカルボキシイミドおよびその製造方法
JPH05310936A (ja) * 1992-05-07 1993-11-22 Toshiba Silicone Co Ltd ポリイミド・ポリシロキサン複合体およびその製造方法
JP2008280424A (ja) * 2007-05-10 2008-11-20 Toyobo Co Ltd ポリイミドの分解・回収方法
JP2012224579A (ja) * 2011-04-19 2012-11-15 Nissan Chem Ind Ltd クマリン型酸二無水物、その製造法及びポリイミド
JP2012224578A (ja) * 2011-04-19 2012-11-15 Nissan Chem Ind Ltd ビスフェニルアゾベンゼン型酸二無水物、その製造法及びポリイミド
JP2013010897A (ja) * 2011-06-30 2013-01-17 Nissan Chem Ind Ltd テトラヒドロペンタレン型酸二無水物、その製造法及びポリイミド
JP2013087148A (ja) * 2011-10-14 2013-05-13 Toray Ind Inc ポリイミドのアルカリ加水分解方法およびポリイミド金属積層体からの低分子量体および金属の回収方法
JP2014025066A (ja) * 2012-07-27 2014-02-06 Samsung Electronics Co Ltd ポリイミドコポリマーと無機粒子との複合体組成物、この製造方法、これを含む成形品及び前記成形品を備えるディスプレイ装置
JP2017008311A (ja) * 2015-06-17 2017-01-12 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. ポリイミド樹脂及びこれを含むメタルクラッド積層板
WO2017002860A1 (ja) * 2015-06-30 2017-01-05 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス

Similar Documents

Publication Publication Date Title
Mathews et al. Synthesis, characterization, and properties of fully aliphatic polyimides and their derivatives for microelectronics and optoelectronics applications
JP2843044B2 (ja) 新規な可溶性ポリイミドシロキサン及びそれらの製造方法
JP4947989B2 (ja) ポリイミド前駆体溶液、ポリイミド多孔質フィルム、およびそれらの製造方法
Wang et al. Synthesis and properties of fluorinated polyimides with multi-bulky pendant groups
JP7403448B2 (ja) 硬化性組成物
Sun et al. Materials with low dielectric constant and loss and good thermal properties prepared by introducing perfluorononenyl pendant groups onto poly (ether ether ketone)
JP5985977B2 (ja) ポリイミド樹脂溶液
Zhou et al. Synchronously improved wave-transparent performance and mechanical properties of cyanate ester resins via introducing fluorine-containing linear random copolymer
Zhang et al. Trisilanolphenyl-POSS nano-hybrid poly (biphenyl dianhydride-p-phenylenediamine) polyimide composite films: miscibility and structure-property relationship
Yang et al. Synthesis and characterization of fluorinated polyimides derived from novel unsymmetrical diamines
Liu et al. Epoxy/polyhedral oligomeric silsesquioxane nanocomposites from octakis (glycidyldimethylsiloxy) octasilsesquioxane and small‐molecule curing agents
Kim et al. Ternary composites of linear and hyperbranched polyimides with nanoscale silica for low dielectric constant, high transparency, and high thermal stability
JPH0267320A (ja) 2,2―ビス(アミノフェニル)ヘキサフルオロプロパンから誘導したコポリイミド
Sangermano et al. Synthesis of new fluorinated allyl ethers for the surface modification of thiol–ene ultraviolet‐curable formulations
KR102249696B1 (ko) 실란 커플링제 및 그의 제조 방법, 프라이머 조성물 및 도료 조성물
WO2023228613A1 (ja) ポリイミド、イミド化合物の製造方法、及び再生ポリイミドの製造方法
Park et al. Synthesis and characterization of a novel silicon-containing epoxy resin
Huang et al. Fluorinated intrinsic low-k materials at high frequency with good dielectric performance and excellent hydrophobicity
CN108243613B (zh) 基于聚酰亚胺的嵌段共聚物和包含其的基于聚酰亚胺的膜
JP4907142B2 (ja) 芳香族ポリアミド酸、ポリイミド及び配線基板用積層体
Yuan et al. The effect of the vanillin-derived diene compound on the thermal, dielectric and mechanical properties of epoxy resins
Zhang et al. Decreasing the dielectric constant and water uptake of co-polyimide films by introducing bulky spirobifluorene and cross-linked tetrafluorostyrol groups
KR102140776B1 (ko) 사다리 구조의 폴리실세스퀴옥산을 포함하는 유무기 복합 폴리이미드 및 이의 제조방법
JPH02202950A (ja) シリコンポリイミド前駆体組成物
JPH0676554B2 (ja) 含フッ素ポリイミド組成物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811491

Country of ref document: EP

Kind code of ref document: A1