WO2023221638A1 - 一种散热装置、连接结构及电子设备 - Google Patents

一种散热装置、连接结构及电子设备 Download PDF

Info

Publication number
WO2023221638A1
WO2023221638A1 PCT/CN2023/082503 CN2023082503W WO2023221638A1 WO 2023221638 A1 WO2023221638 A1 WO 2023221638A1 CN 2023082503 W CN2023082503 W CN 2023082503W WO 2023221638 A1 WO2023221638 A1 WO 2023221638A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
pipe
heat dissipation
heating device
heat
Prior art date
Application number
PCT/CN2023/082503
Other languages
English (en)
French (fr)
Inventor
何智
李春荣
袁保军
张昭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023221638A1 publication Critical patent/WO2023221638A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body

Definitions

  • Embodiments of the present application relate to the technical field of heat dissipation structures, and in particular, to a heat dissipation device, a connection structure and an electronic device.
  • heating devices such as chips
  • a device or component such as a single board
  • Related technologies can use heat pipes 3 or vapor chambers (VC) to uniform temperature.
  • the board connects the heat sinks 4 corresponding to the two chips 2 on the same single board 1. Since the heat pipe 3 is rigid, it cannot move when the heat pipe 3 is welded to the two radiators 4. This method can only be used in the case of the same single board 1.
  • the related technology can also use a liquid cooling method of pump body + pipeline + heat exchanger (HEX).
  • HEX pump body + pipeline + heat exchanger
  • the pump body 5 drives the refrigerant medium to flow in the pipeline 6 and passes through the branches of each single board branch 7.
  • the refrigerant medium absorbs the heat of the heating device, and the refrigerant medium gathers and exchanges heat in the heat exchanger 8 .
  • the heat-exchanged refrigerant medium is then sent to each single board branch 7 .
  • This method requires arranging the pump body 5, pipelines 6 and heat exchanger 8 (such as a liquid cooling tower) in the machine room, which takes up a lot of indoor space.
  • Embodiments of the present application provide a heat dissipation device, a connection structure and an electronic device, which solve the problem in the related art that it is difficult to achieve uniform temperature dissipation of heating devices on different components in a small space.
  • embodiments of the present application provide a heat dissipation device, including: a first radiator, a second radiator and a pipe; the first radiator has a first inner cavity, the second radiator has a second inner cavity, and the first radiator has a second inner cavity.
  • the radiator is in thermal contact with the first heating device located on the first component, and the second radiator is in thermal contact with the second heating device located on the second component; the first radiator and the second radiator are connected through a pipe, and the first radiator is in thermal contact with the second heating device located on the second component.
  • the inner cavity, the second inner cavity and the pipe are filled with refrigerant medium.
  • first component and the second component may be a single board or other structures, and the first heating device and the second heating device may be chips or other devices provided on the single board.
  • the first heat sink is in thermal contact with the first heat-generating device on the first component
  • the second heat sink is in thermal contact with the second heat-generating device on the second component
  • the first heat sink and the second heat sink are in thermal contact.
  • the radiators are connected through pipes, and the first radiator, the second radiator and the pipes are filled with refrigerant medium.
  • the heat generated by either one of the first heating device and the second heating device can be transferred to the refrigerant medium in the radiator through the corresponding radiator, and can be dissipated outward through the surface of the radiator.
  • the radiator corresponding to the high-temperature heating device transfers heat to the radiator corresponding to the low-temperature or non-working heating device through the refrigerant medium, thereby realizing the first heating device and the second heating device on different components.
  • Uniform temperature heat dissipation effect improve heat dissipation capacity.
  • the heat dissipation device is low-cost, It is easy to implement and deploy. There is no need to arrange large pump bodies, pipelines, heat exchangers, etc. in the machine room, and no additional indoor space is required.
  • the first component is a first single board, and/or the second component is a second single board.
  • the heat dissipation device of the embodiment of the present application is applied to multiple single boards to uniformly dissipate heat to the heating devices on different single boards.
  • the pipe is a heat pipe.
  • Both ends of the heat pipe are connected to the first radiator and the second radiator respectively. Either one of the first heating device and the second heating device generates heat to heat one end of the heat pipe. Heat is transferred from one end of the heat pipe to the other end. Share radiator resources to improve heat dissipation capacity.
  • the first radiator, the pipe and the second radiator are connected to form a circulation loop, and a pump body is connected to the pipe, and the pump body is used to drive the refrigerant medium to flow in the circulation loop.
  • a liquid path with a pump body is used to liquid-cool the first heating device and the second heating device, and the heat is dissipated outward through the first radiator and the second radiator. Share radiator resources to improve heat dissipation capacity.
  • the first radiator, the pipe and the second radiator are connected to form a circulation loop, and the pipe includes a first sub-pipe; the first radiator has a first liquid inlet and a first liquid outlet, and the first radiator has a first liquid inlet and a first liquid outlet.
  • the second radiator has a second liquid inlet and a second liquid outlet, wherein the first liquid outlet and the second liquid inlet are connected through the first sub-pipe.
  • the first sub-pipe includes a first liquid inlet pipe connected to the second liquid inlet, a first liquid outlet pipe connected to the first liquid outlet, and a first liquid inlet pipe connected to the first liquid outlet.
  • the first liquid outlet pipe and the first connecting pipe are connected through a pluggable joint.
  • a pluggable joint is used to connect one end of the first connecting pipe to the first liquid outlet pipe, thereby improving assembly efficiency and facilitating disassembly and maintenance.
  • both the pluggable connector and the first connecting tube are provided on the front panel or the back panel of the device.
  • Arranging the pluggable joint and the first connecting pipe on the same side component facilitates assembly of the first connecting pipe and the pluggable joint.
  • a second connecting pipe is further included, and the first connecting pipe and the second connecting pipe are arranged crosswise.
  • the first radiator, the pipe and the second radiator are connected to form a circulation loop, and a control valve is provided on the pipe, and the on-off switching of the pipe can be controlled through the control valve.
  • the heat generated by the heating devices on different boards is close to or equal.
  • the pump body and control valve are closed, the refrigerant medium in the circulation loop does not flow.
  • the heat generated by the heating device is conducted to the refrigerant medium in the radiator through the corresponding radiator. And dissipate heat to the outside through the radiator.
  • the first radiator, the pipe and the second radiator are connected to form a circulation loop, and a one-way valve is provided on the pipe.
  • the first heat sink faces away from the first heat-generating device and has a plurality of spaced distributions. of heat sink.
  • the heat generated by the operation of the first heating device is conducted to the heat sink through the first heat sink, and then transmitted to the surrounding environment by the heat sink, effectively improving the heat dissipation capability.
  • connection structure including the above-mentioned heat dissipation device and a first heating device and a second heating device.
  • the first heating device is in thermal contact with the first radiator, and the second heating device and the second heat dissipation device are in thermal contact. device thermal contact.
  • connection structure of the embodiment of the present application when there is a certain temperature difference between the heating devices on different components, the radiator corresponding to the high-temperature heating device transfers heat to the radiator corresponding to the low-temperature heating device through the refrigerant medium, thereby achieving uniform temperature of the heating devices on different components.
  • Heat dissipation effect improve heat dissipation capacity. There is no need to arrange large pump bodies, pipelines, heat exchangers, etc. in the machine room, and no additional indoor space is required.
  • the first component is a first single board
  • the second component is a second single board
  • the first single board and the second single board are stacked.
  • This method has a compact structure and takes up less space.
  • the heat dissipation device of the embodiment of the present application is used to form a cross-board thermal balancing system to achieve an even temperature heat dissipation effect of heating devices on different single boards.
  • the first component is located on a first electronic device, and the second component is located on a second electronic device.
  • the heating devices of components on different electronic devices share the heat dissipation device of the embodiment of the present application, forming a cross-board thermal balancing system to achieve an even temperature heat dissipation effect of the heating devices of different electronic devices.
  • embodiments of the present application provide an electronic device, including the above-mentioned heat dissipation device or the above-mentioned connection structure.
  • the heating devices on different components share the radiator, improving the overall heat dissipation capacity.
  • Figure 1 is a schematic structural diagram of two radiators on a single board connected through a heat pipe in the related art
  • Figure 2 is a schematic structural diagram of multiple single boards using liquid cooling in the related art
  • FIG. 3 is a schematic structural diagram of a heat dissipation device provided by an embodiment of the present application.
  • FIG. 4 is an exploded schematic diagram of a heat dissipation device provided by another embodiment of the present application.
  • Figure 5 is a three-dimensional assembly view of the heat dissipation device of Figure 4.
  • Figure 6 is an exploded perspective view of a heat dissipation device provided by another embodiment of the present application.
  • Figure 7 is a schematic structural diagram of another side of the partial structure of the heat dissipation device of Figure 6;
  • Figure 8 is a three-dimensional assembly view of the heat dissipation device of Figure 6;
  • Figure 9 is a three-dimensional assembly view of a heat dissipation device provided by another embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another side of part of the structure in the heat dissipation device of Figure 9;
  • FIG. 11 is a flow chart of a heat dissipation method for electronic equipment provided by an embodiment of the present application.
  • connection may be detachable.
  • the ground connection can also be a non-detachable connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • length The terms “length”, “width”, “top”, “bottom”, “front”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, The orientation or positional relationship indicated by “inside”, “outer”, etc.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • an embodiment of the present application provides a heat dissipation device 100, which includes: a first radiator 110a, a second radiator 110b, and a pipe 120; the first radiator 110a has a first inner cavity, and the second radiator 110a has a first inner cavity.
  • 110b has a second inner cavity, the first heat sink 110a is in thermal contact with the first heating device 201a located on the first component 200a, and the second heat sink 110b is in thermal contact with the second heating device 201b located on the second component 200b;
  • a radiator 110a and a second radiator 110b are connected through a pipe 120, and the first inner cavity, the second inner cavity and the pipe 120 are filled with refrigerant medium.
  • first component 200a and the second component 200b may be a single board or other structure
  • first heating device 201a and the second heating device 201b may be a chip or other device provided on the single board.
  • the refrigerant medium can be water, fluorinated liquid, thermal oil, etc.
  • the liquid refrigeration medium The substance will evaporate when it is heated, and the gaseous refrigerant medium will liquefy when it is cooled.
  • the refrigerant medium is applied to a liquid circuit with a pump body, it remains in a liquid state.
  • the first heat sink 110a is in thermal contact with the first heating device 201a on the first component 200a
  • the second heat sink 110b is in thermal contact with the second heating device 201b on the second component 200b
  • a radiator 110a and a second radiator 110b are connected through a pipe 120, and the first radiator 110a, the second radiator 110b and the pipe 120 are filled with refrigerant medium.
  • the heat generated by any one of the first heating device 201a and the second heating device 201b can be transferred to the refrigerant medium in the radiator through the corresponding radiator, and can be dissipated outward through the surface of the radiator.
  • the radiator corresponding to the high-temperature heating device transfers heat to the radiator corresponding to the low-temperature or non-working heating device through the refrigerant medium, thereby realizing the first heating device 201a and the second heating device 201a on different components.
  • Device 201b has uniform temperature heat dissipation effect and improves heat dissipation capacity.
  • the heat dissipation device 100 is low-cost, easy to implement, and easy to deploy. There is no need to arrange large pump bodies, pipelines, heat exchangers, etc. in the computer room, and no additional indoor space is required.
  • the first component 200a is a first single board
  • the second component 200b is a second single board.
  • the heat dissipation device 100 of the embodiment of the present application is applied to multiple single boards to uniformly dissipate heat to the heating devices on different single boards. Among them, there is an inactive heating device on the single board.
  • the single board can be in a backup state and consumes less power. The temperature of the heat sink corresponding to the inactive heating device is lower.
  • the first radiator 110a and the second radiator 110b can be set in a flat shell shape or box shape, and one side of the radiator can be attached to the corresponding heating device to facilitate the passage of heat generated by the heating device.
  • the radiator is transferred to the refrigerant medium inside the radiator.
  • pipe 120 is a heat pipe. Both ends of the heat pipe are connected to the first heat sink 110a and the second heat sink 110b respectively. There is capillary porous material inside the heat pipe. Either one of the first heating device 201a and the second heating device 201b generates heat to heat one end of the heat pipe. When either end of the heat pipe is heated, it becomes the evaporation end, while the other end dissipates heat outward and becomes the condensation end.
  • the refrigerant medium in the capillary porous material inside the evaporation end absorbs heat and evaporates. The gaseous refrigerant medium flows to the condensation end under a slight pressure difference and releases heat, and then condenses into a liquid refrigerant medium.
  • the liquid refrigerant medium then flows along the capillary porous material by capillary force. Return to the evaporation end, and in this continuous cycle, the heat is transferred from one end of the heat pipe to the other end. Share radiator resources to improve heat dissipation capacity.
  • the first heating device 201a and the second heating device 201b are respectively arranged on different single boards, and a heat pipe is connected between the first radiator 110a and the second radiator 110b, which can realize cooling of the radiator corresponding to the high-temperature heating device.
  • the medium transfers heat to the radiator corresponding to the low-temperature heating device.
  • the heat pipe can be set on the front panel or back panel 300 of the electronic device without occupying additional space in the computer room.
  • the first radiator 110a, the pipe 120 and the second radiator 110b are connected to form a circulation loop.
  • the pipe 120 is connected to a pump body 130.
  • the pump body 130 is used to drive the refrigerant medium. flow within the circulation loop.
  • the arrows on the pipes in Figures 4 and 5 indicate the flow direction of the refrigerant medium.
  • a liquid path with a pump body 130 is used to liquid-cool the first heating device 201a and the second heating device 201b, and the heat is dissipated outward through the first radiator 110a and the second radiator 110b.
  • the pipeline 120 can be installed on the single board and the second component 200b. It is conveniently located nearby and does not require additional space in the computer room.
  • the first radiator 110a, the pipe 120 and the second radiator 110b The pipe 120 includes a first sub-pipe 121; the first radiator 110a has a first liquid inlet 111a and a first liquid outlet 112a; the second radiator 110b has a second liquid inlet 111b and a second outlet. Liquid port 112b, wherein the first liquid outlet 112a and the second liquid inlet 111b are connected through the first sub-pipe 121. This solution can realize the communication between the first radiator 110a and the second radiator 110b.
  • the first liquid outlet 112a and the second liquid inlet 111b are connected through the first sub-pipe 121, and the second liquid outlet 112b, the first liquid inlet 111a (and more outlets of the radiator) are connected through other sub-pipes. liquid port and liquid inlet), forming a circulation loop, and the pump body 130 drives the refrigerant medium to flow in the circulation loop.
  • the heating devices on different components generate different amounts of heat, the heat of the high-temperature heating device is transferred to the refrigerant medium in the radiator through the radiator corresponding to the high-temperature heating device.
  • the refrigerant medium with high heat passes through the first sub-pipe 121 or other sub-pipes to the radiator corresponding to the low-temperature heating device or the non-working heating device to realize the sharing of radiator cooling resources and improve the overall heat dissipation effect.
  • the first sub-pipe 121 includes a third liquid inlet 111b connected to the first sub-pipe 121.
  • the first liquid outlet pipe 1212 and the first connecting pipe 1213 are connected through a pluggable joint 122 .
  • the first sub-pipe 121 is configured as a first liquid inlet pipe 1211, a first liquid outlet pipe 1212 and a first connecting pipe 1213.
  • the first liquid inlet pipe 1211 and the first liquid outlet pipe 1212 are respectively connected to the first liquid inlet pipe 1211 and the first liquid outlet pipe 1212.
  • a pluggable joint 122 is used to connect one end of the first connecting pipe 1213 to the first liquid outlet pipe 1212 to improve assembly efficiency. , easy to disassemble and maintain.
  • first liquid inlet pipe 1211 and the first connecting pipe 1213 may be connected directly or through a pluggable joint 122 .
  • the pluggable joint 122 is used between the first liquid inlet pipe 1211 and the first connecting pipe 1213, the assembly efficiency is improved and disassembly and maintenance are facilitated.
  • the first implementation method of the pluggable connector 122 the method of docking a male connector and a female connector, such as arranging the male connector and the female connector at one port of the first liquid outlet pipe 1212 and one port of the first connecting pipe 1213, respectively.
  • the detachable connection between the first liquid outlet pipe 1212 and the first connecting pipe 1213 can be realized.
  • the second way to implement the pluggable connector 122 is as follows: Referring to Figures 4 and 5, a plug 1221 and a socket 1222 are used. Both the plug 1221 and the socket 1222 have flow channels.
  • the plug 1221 is set at the port of the first liquid outlet pipe 1212
  • the socket 1222 is set on a predetermined structural member
  • one end of the flow channel of the socket 1222 is connected to one end of the first connecting pipe 1213
  • the other end of the flow channel of the socket 1222 is provided with the plug 1221
  • the pluggable connector 122 and the first connecting tube 1213 are both provided on the front panel or back panel 300 of the device.
  • the pluggable joint 122 and the first connecting tube 1213 are arranged on the same side component, which facilitates the assembly of the first connecting tube 1213 and the pluggable joint 122 .
  • both the first component 200a and the second component 200b are single boards.
  • the pluggable connector 122 takes the form of a plug 1221 and a socket 1222.
  • the socket 1222 is fixed on the back panel 300, and the connecting tube 1213 is connected between different sockets 1222.
  • Multiple single boards are arranged in a stack, and the liquid inlet pipes and liquid outlet pipes on different single boards are arranged toward the back panel 300 .
  • the ports of the liquid inlet pipes and the liquid outlet pipes are respectively provided with plugs 1221 .
  • the pluggable connector 122 also takes the form of a plug 1221 and a socket 1222.
  • the socket 1222 can be fixed on the front panel, which also facilitates the assembly of multiple single boards and the heat sink 100.
  • a second connecting pipe 1213a is also included, and the first connecting pipe 1213 and the second connecting pipe 1213a are arranged crosswise.
  • the second connecting pipe 1213a is a pipe connecting two radiators.
  • the second connecting pipe 1213a connects the first liquid inlet 111a of the first radiator 110a and the second liquid outlet 112b of the second radiator 110b.
  • the second connecting pipe 1213a connects two radiators.
  • the two connecting pipes connect the second liquid outlet 112b of the second radiator 110b and the liquid inlet of the other radiator.
  • Multiple connecting pipes are arranged crosswise so that multiple connecting pipes can be arranged on the same side, such as on the same vertical plane, so that limited space can be fully utilized.
  • a first component 200a having a first heating device 201a and a second component 200b having a second heating device 201b are configured, and a first heat sink 110a is provided on the first heating device 201a, A second heat sink 110b is provided on the second heating device 201b.
  • the two radiators are connected through a first sub-pipe 121 and a second sub-pipe 121a.
  • the first sub-pipe 121 includes a first liquid outlet pipe 1212, a first connecting pipe 1213 and a first liquid inlet pipe 1211 that can be connected in sequence.
  • the second sub-pipe 121a includes a second liquid outlet pipe 1212a, a second connecting pipe 1213a and a second liquid inlet pipe 1211a that can be connected in sequence. Referring to Figure 7, the first connecting pipe 1213 and the second connecting pipe 1213a are cross-distributed.
  • the first liquid outlet 112a of the first radiator 110a and the second liquid inlet 111b of the second radiator 110b are connected through the first sub-pipe 121, and the second radiator 110b is connected through the second sub-pipe 121a.
  • the second liquid outlet 112b is connected with the first liquid inlet 111a of the first radiator 110a to form a circulation loop.
  • the arrows on the pipes in Figures 7 and 8 indicate the flow direction of the refrigerant medium.
  • the pump body 130 can drive the refrigerant medium to flow in the circulation loop to realize the sharing of radiators on different components.
  • a first component 200a with a first heating device 201a, a second component 200b with a second heating device 201b, a third component 200c with a third heating device 201c and a third component 200c with a third heating device 201c are configured.
  • the fourth component 200d of the four heating devices 201d has a first radiator 110a on the first heating device 201a, a second radiator 110b on the second heating device 201b, and a third radiator on the third heating device 201c. 110c, the fourth heat sink 110d is provided on the fourth heating device 201d.
  • the four radiators are connected in sequence through the first sub-pipe 121, the second sub-pipe 121a, the third sub-pipe 121b and the fourth sub-pipe 121c.
  • Each sub-pipeline includes a liquid outlet pipe, a connecting pipe and a liquid inlet pipe connected in sequence. Referring to Figure 10, some connecting pipes in all sub-pipes are arranged in a crosswise manner.
  • the first liquid outlet 112a of the first radiator 110a and the second liquid inlet 111b of the second radiator 110b are connected through the first sub-pipe 121, and the second radiator 110b is connected through the second sub-pipe 121a.
  • the second liquid outlet 112b of the third radiator 110c is connected with the third liquid inlet 111c of the third radiator 110c, and the third liquid outlet 112c of the third radiator 110c and the fourth liquid inlet 111c of the fourth radiator 110d are connected through the third sub-pipe 121b.
  • the liquid inlet 111d is connected, and the fourth liquid outlet 112d of the fourth radiator 110d and the first liquid inlet 111a of the first radiator 110a are connected through the fourth sub-pipe 121c, forming a circulation loop.
  • the arrows on the pipes in Figures 9 and 10 indicate the flow direction of the refrigerant medium.
  • the pump body 130 can drive the refrigerant medium to flow in the circulation loop to realize the sharing of radiators on different components.
  • the heat sinks of different components can be shared to improve the overall heat dissipation capability. Additionally, located on the same component Multiple radiators can be connected in series or parallel to meet the needs of liquid connections on different components to form a circulation loop.
  • the first radiator 110a, the pipe 120 and the second radiator 110b are connected to form a circulation loop.
  • the pipe 120 is provided with a control valve 140, and the control valve 140 can control the flow of the pipe 120. On-off switching.
  • first component 200a and the second component 200b as single boards as an example, when it is determined that at least one of the single boards is in a backup state, or when it is determined that there are single boards with different power consumption, or when reading data in different single boards. temperature and determine that there is a predetermined temperature difference between different boards, open the pump body 130 and the control valve 140 to allow the refrigerant medium to flow in the circulation loop, and conduct the heat in the radiator corresponding to the high-temperature heating device to the low-temperature heating device or the non-working heating device Corresponding radiator.
  • the pump body 130 and the control valve 140 are closed, the refrigerant medium in the circulation loop does not flow, and the heating devices generate The heat is conducted to the refrigerant medium in the radiator through the corresponding radiator, and is dissipated to the outside through the radiator.
  • the control valve 140 may be a solenoid valve, and the solenoid valve facilitates the on-off switching of the control pipeline 120 .
  • the first radiator 110a, the pipe 120 and the second radiator 110b are connected to form a circulation loop, and the pipe 120 is provided with a one-way valve 150.
  • the one-way valve 150 is provided so that the refrigerant medium in the circulation circuit can only flow in the same direction and cannot flow in the opposite direction to prevent the refrigerant medium from flowing back into the radiator.
  • the first heat sink 110 a faces away from the first heat-generating device 201 a and has a plurality of spaced heat sinks 113 .
  • the first heat sink 110a has a plurality of heat sinks 113.
  • the heat generated by the operation of the first heating device 201a is conducted to the heat sink 113 through the first heat sink 110a, and then transmitted to the surrounding environment by the heat sink 113, effectively improving the heat dissipation capability.
  • the second heat sink 110b faces away from the second heat-generating device 201b and has a plurality of spaced-apart heat dissipation fins 113 .
  • the heat generated by the second heating device 201b can also be dissipated through the corresponding heat sink 113.
  • the embodiment of the present application provides a connection structure, including the above-mentioned heat dissipation device 100 and a first heating device 201a and a second heating device 201b.
  • the first heating device 201a and the first heat sink 110a are in thermal contact
  • the second heat-generating device 201b is in thermal contact with the second heat sink 110b.
  • connection structure of the embodiment of the present application when there is a certain temperature difference between the heating devices on different components, the radiator corresponding to the high-temperature heating device transfers heat to the radiator corresponding to the low-temperature heating device through the refrigerant medium, thereby achieving uniform temperature of the heating devices on different components.
  • Heat dissipation effect improve heat dissipation capacity. There is no need to arrange large pump bodies, pipelines, heat exchangers, etc. in the machine room, and no additional indoor space is required.
  • the first component 200a is a first single board
  • the second component 200b is a second single board
  • the first single board and the second single board are stacked.
  • This method has a compact structure and takes up less space.
  • a cross-board thermal balancing system is formed, which can achieve uniform temperature heat dissipation effect of heating devices of different single boards.
  • the second arrangement of components the first component 200a is located on the first electronic device, and the second component 200b is located on the second electronic device.
  • This method is an arrangement across electronic devices.
  • Thermal devices share the heat dissipation device 100 of the embodiment of the present application to form a cross-board thermal balancing system, which can achieve an even temperature heat dissipation effect of heating devices of different electronic devices.
  • first component 200a and the second component 200b may both be single boards.
  • An embodiment of the present application provides an electronic device, including the above-mentioned heat dissipation device 100 or the above-mentioned connection structure.
  • electronic equipment can be various terminal equipment, communication equipment, data centers, etc.
  • the heating devices on different components share the heat sink, thereby improving the overall heat dissipation capability.
  • An embodiment of the present application provides a heat dissipation method for electronic equipment.
  • the heat dissipation device A control valve 140 and a pump body 130 are provided on the pipeline 120 in 100 .
  • the heat dissipation method of the electronic device includes the following steps:
  • the pump body 130 and the control are turned on
  • the valve 140 allows the refrigerant medium to flow in the circulation loop and conducts the heat in the radiator corresponding to the high-temperature heating device to the radiator corresponding to the low-temperature heating device or the non-working heating device.
  • the pump body 130 and the control valve 140 are closed.
  • the pump body 130 and the control valve 140 are closed.
  • the refrigerant medium in the circulation loop does not flow, and the heat generated by the heating device is conducted to the refrigerant medium in the radiator through the radiator, and is dissipated to the outside through the radiator.
  • the radiator corresponding to the high-temperature heating device transfers heat to the radiator corresponding to the low-temperature or non-working heating device through the refrigerant medium, so that different units can be realized.
  • the heating device on the board has a uniform temperature heat dissipation effect and improves heat dissipation capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请实施例涉及一种散热装置、连接结构及电子设备。第一散热器(110a)和第一组件(200a)上的第一发热器件(201a)热接触,第二散热器(110b)和第二组件(200b)上的第二发热器件(201b)热接触,第一散热器(110a)和第二散热器(110b)通过管道(120)连通,且三者内填充有制冷介质。第一发热器件(201a)和第二发热器件(201b)任意一个产生的热量可经过对应的散热器传递至该散热器内的制冷介质,并通过该散热器的表面向外散热。在不同组件上的发热器件有一定温差时,高温发热器件对应的散热器通过制冷介质向低温或未工作发热器件对应的散热器传热,实现不同组件上的第一发热器件(201a)和第二发热器件(201b)均温散热效果,提升散热能力。该散热装置(100)低成本、易实现、易部署,无需在机房内布置大型的泵体、管路和换热器等,不用额外室内空间。

Description

一种散热装置、连接结构及电子设备
本申请要求于2022年05月20日提交国家知识产权局、申请号为202210559723.X、申请名称为“一种散热装置、连接结构及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及散热结构技术领域,尤其涉及一种散热装置、连接结构及电子设备。
背景技术
随着电子设备的发展,设备内的发热器件(如芯片)的功耗越来越大。对于一个设备或组件(如单板)上有多个发热器件的情况,为了实现不同发热器件的均温散热,参阅图1,相关技术可采用热管3或蒸汽腔(vapor chambers,VC)均温板将同一个单板1上的两个芯片2对应的散热器4连接起来。由于热管3是刚性的,将热管3焊接在两个散热器4上就不能移动,该方式只能用在同一个单板1的场合。参阅图2,相关技术还可以采用泵体+管路+换热器(heat exchanger,HEX)的液冷方式,泵体5驱动制冷介质在管路6中流动,经过各个单板支路7的制冷介质吸收发热器件的热量,制冷介质在换热器8汇聚和换热,换热后的制冷介质再送到各个单板支路7上。该方式需要在机房内布置泵体5、管路6和换热器8(如液冷塔)等,占用较多室内空间。
发明内容
本申请实施例提供一种散热装置、连接结构及电子设备,解决了相关技术中难以在空间较小的情况下,实现不同组件上的发热器件均温散热的问题。
本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种散热装置,包括:第一散热器、第二散热器和管道;第一散热器具有第一内腔,第二散热器具有第二内腔,第一散热器与位于第一组件上的第一发热器件热接触,第二散热器与位于第二组件上的第二发热器件热接触;第一散热器与第二散热器通过管道相连通,第一内腔、第二内腔和管道内填充有制冷介质。
比如,第一组件和第二组件可以是单板或其它结构,第一发热器件、第二发热器件可以是设于单板上的芯片或其它器件。
本申请实施例的散热装置,第一散热器和第一组件上的第一发热器件热接触,第二散热器和第二组件上的第二发热器件热接触,第一散热器和第二散热器通过管道连通,第一散热器、第二散热器和管道内填充有制冷介质。第一发热器件和第二发热器件任意一个产生的热量可经过对应的散热器传递至该散热器内的制冷介质,并通过该散热器的表面向外散热。在不同组件上的发热器件有一定温差时,高温发热器件对应的散热器通过制冷介质向低温或未工作发热器件对应的散热器传热,实现不同组件上的第一发热器件和第二发热器件均温散热效果,提升散热能力。该散热装置低成本、 易实现、易部署,无需在机房内布置大型的泵体、管路和换热器等,不用额外室内空间。
在一种可选实现方式中,第一组件为第一单板,和/或,第二组件为第二单板。
将本申请实施例的散热装置应用在多个单板上,对不同单板上的发热器件均温散热。
在一种可选实现方式中,管道为热管。
热管的两端分别连接第一散热器和第二散热器。第一发热器件和第二发热器件任意一个工作产生热量,使热管的一端受热。热量由热管一端传至另外一端。共享散热器资源,提升散热能力。
在一种可选实现方式中,第一散热器、管道和第二散热器连通形成循环回路,管道上连接有泵体,泵体用于驱动制冷介质在循环回路内流动。
采用具有泵体的液路方式,对第一发热器件、第二发热器件进行液冷,并通过第一散热器和第二散热器向外散热。共享散热器资源,提升散热能力。
在一种可选实现方式中,第一散热器、管道和第二散热器连通形成循环回路,管道包括第一子管道;第一散热器具有第一进液口和第一出液口,第二散热器具有第二进液口和第二出液口,其中第一出液口和第二进液口通过第一子管道连通。
该方案可实现第一散热器和第二散热器的连通。
在一种可选实现方式中,第一子管道包括连接于第二进液口的第一进液管、连接于第一出液口的第一出液管,以及连接第一进液管和第一出液管的第一连接管。第一出液管和第一连接管之间通过可插拔接头连接。
在将第一组件组装至预定位置以后,采用可插拔接头将第一连接管的一端连接第一出液管,提升装配效率,便于拆卸维护。
在一种可选实现方式中,可插拔接头和第一连接管均设置在设备的前面板或背面板。
将可插拔接头和第一连接管布置在同一侧部件上,这样便于第一连接管和可插拔接头的装配。
在一种可选实现方式中,还包括第二连接管,第一连接管和第二连接管交叉设置。
将多个连接管交叉设置,使得多个连接管可以布置在同一侧,这样能充分利用有限空间。
在一种可选实现方式中,第一散热器、管道和第二散热器连通形成循环回路,管道上设置有控制阀,通过控制阀可控制管道的通断切换。
不同单板上的发热器件产生的热量接近或相等,关闭泵体和控制阀,循环回路内的制冷介质不流动,发热器件产生的热量通过对应的散热器传导至该散热器内的制冷介质,并通过该散热器向外部散热。
在一种可选实现方式中,第一散热器、管道和第二散热器连通形成循环回路,管道上设置有单向阀。
设置单向阀,使得循环回路中的制冷介质只能沿同一方向流动,而不能反向流动,防止制冷介质回流至散热器内。
在一种可选实现方式中,第一散热器背对第一发热器件一侧且具有多个间隔分布 的散热片。第一发热器件工作产生的热量经过第一散热器传导至散热片,再由散热片传送至周围环境,有效提升散热能力。
第二方面,本申请实施例提供一种连接结构,包括上述的散热装置以及第一发热器件和第二发热器件,第一发热器件和第一散热器热接触,第二发热器件和第二散热器热接触。
本申请实施例的连接结构,在不同组件上的发热器件有一定温差时,高温发热器件对应的散热器通过制冷介质向低温发热器件对应的散热器传热,实现不同组件上的发热器件均温散热效果,提升散热能力。无需在机房内布置大型的泵体、管路和换热器等,不用额外室内空间。
在一种可选实现方式中,第一组件为第一单板,第二组件为第二单板,第一单板与第二单板层叠设置。
这种方式结构紧凑,占用空间较小。采用本申请实施例的散热装置,形成跨板的热均衡系统,实现不同单板的发热器件的均温散热效果。
在一种可选实现方式中,第一组件位于第一电子设备上,第二组件位于第二电子设备上。
不同电子设备上的组件的发热器件共用本申请实施例的散热装置,形成跨板的热均衡系统,实现不同电子设备的发热器件的均温散热效果。
第三方面,本申请实施例提供一种电子设备,包括上述的散热装置,或上述的连接结构。
由于采用上述散热装置或连接结构,不同组件上的发热器件共享散热器,提升整体散热能力。
附图说明
图1为相关技术中的单板上两个散热器通过热管连接的结构示意图;
图2为相关技术中的多个单板采用液冷方式的结构示意图;
图3为本申请实施例提供的散热装置的结构示意图;
图4为本申请另一实施例提供的散热装置的分解示意图;
图5为图4的散热装置的立体装配图;
图6为本申请另一实施例提供的散热装置的立体分解图;
图7为图6的散热装置中的部分结构的另一侧结构示意图;
图8为图6的散热装置的立体装配图;
图9为本申请另一实施例提供的散热装置的立体装配图;
图10为图9的散热装置中的部分结构的另一侧结构示意图;
图11为本申请实施例提供的电子设备的散热方法的流程图。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作为申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或 改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
参阅图3至图5,本申请实施例提供一种散热装置100,包括:第一散热器110a、第二散热器110b和管道120;第一散热器110a具有第一内腔,第二散热器110b具有第二内腔,第一散热器110a与位于第一组件200a上的第一发热器件201a热接触,第二散热器110b与位于第二组件200b上的第二发热器件201b热接触;第一散热器110a与第二散热器110b通过管道120相连通,第一内腔、第二内腔和管道120内填充有制冷介质。
比如,第一组件200a和第二组件200b可以是单板或其它结构,第一发热器件201a、第二发热器件201b可以是设于单板上的芯片或其它器件。
制冷介质可以是水、氟化液、导热油等等。制冷介质应用于热管时,液态制冷介 质在遇热时会蒸发,气态制冷介质在遇冷时会液化。制冷介质应用于具有泵体的液路时,保持为液态。
本申请实施例的散热装置100,第一散热器110a和第一组件200a上的第一发热器件201a热接触,第二散热器110b和第二组件200b上的第二发热器件201b热接触,第一散热器110a和第二散热器110b通过管道120连通,第一散热器110a、第二散热器110b和管道120内填充有制冷介质。第一发热器件201a和第二发热器件201b任意一个产生的热量可经过对应的散热器传递至该散热器内的制冷介质,并通过该散热器的表面向外散热。在不同组件上的发热器件有一定温差时,高温发热器件对应的散热器通过制冷介质向低温或未工作发热器件对应的散热器传热,实现不同组件上的第一发热器件201a和第二发热器件201b均温散热效果,提升散热能力。该散热装置100低成本、易实现、易部署,无需在机房内布置大型的泵体、管路和换热器等,不用额外室内空间。
在一些实施例中,第一组件200a为第一单板,第二组件200b为第二单板。将本申请实施例的散热装置100应用在多个单板上,对不同单板上的发热器件均温散热。其中,单板上有未工作发热器件,该单板可以处于备份状态,功耗较小,未工作发热器件对应的散热器的温度较低。
在设置散热器时,第一散热器110a、第二散热器110b可设置为偏平的壳状或盒状,散热器的一侧可贴合在对应的发热器件上,便于发热器件产生的热量经过散热器传递至散热器内的制冷介质中。
在一些实施例中,参阅图3,管道120为热管。热管的两端分别连接第一散热器110a和第二散热器110b。热管内有毛细多孔材料。第一发热器件201a和第二发热器件201b任意一个工作产生热量,使热管的一端受热。当热管的任意一端受热就作为蒸发端,而另一端向外散热就成为冷凝端。蒸发端内部毛细多孔材料中的制冷介质吸热蒸发,气态制冷介质在微小压力差下流向冷凝端并放热,重新凝结成液态制冷介质,液态制冷介质再沿毛细多孔材料靠毛细力的作用流回蒸发端,如此不断循环,热量由热管一端传至另外一端。共享散热器资源,提升散热能力。
示例性的,第一发热器件201a、第二发热器件201b分别设置在不同单板上,第一散热器110a、第二散热器110b之间连接热管,能实现高温发热器件对应的散热器通过制冷介质向低温发热器件对应的散热器传热。在设置热管时,热管可设置在电子设备的前面板或背面板300,不会额外占用机房空间。
在一些实施例中,参阅图4、图5,第一散热器110a、管道120和第二散热器110b连通形成循环回路,管道120上连接有泵体130,泵体130用于驱动制冷介质在循环回路内流动。图4、图5中管道上的箭头表示制冷介质的流动方向。
采用具有泵体130的液路方式,对第一发热器件201a、第二发热器件201b进行液冷,并通过第一散热器110a和第二散热器110b向外散热。共享散热器资源,提升散热能力。在第一组件200a和第二组件200b是单板时,可选用小型的泵体130并设置在单板上,满足对循环回路中的制冷介质的驱动即可,管道120可设置在单板及其附近,布置方便,无需额外占用机房室内空间。
在一些实施例中,参阅图4、图5,第一散热器110a、管道120和第二散热器110b 连通形成循环回路,管道120包括第一子管道121;第一散热器110a具有第一进液口111a和第一出液口112a,第二散热器110b具有第二进液口111b和第二出液口112b,其中第一出液口112a和第二进液口111b通过第一子管道121连通。该方案可实现第一散热器110a和第二散热器110b的连通。
通过第一子管道121将第一出液口112a和第二进液口111b连接,并通过其它子管道连接好第二出液口112b、第一进液口111a(以及更多散热器的出液口与进液口),形成循环回路,通过泵体130驱动制冷介质在循环回路中流动。在不同组件上的发热器件产生不同热量时,高温发热器件的热量经过该高温发热器件对应的散热器传导至该散热器内的制冷介质中,带有高热量的制冷介质经过第一子管道121或其它子管道传送至低温发热器件或未工作发热器件对应的散热器处,实现散热器散热资源的共享,提升整体散热效果。
为了便于第一散热器110a和第二散热器110b通过第一子管道121连接,在一些实施例中,参阅图4、图5,第一子管道121包括连接于第二进液口111b的第一进液管1211、连接于第一出液口112a的第一出液管1212,以及连接第一进液管1211和第一出液管1212的第一连接管1213。第一出液管1212和第一连接管1213之间通过可插拔接头122连接。
本实施例中,将第一子管道121设置为第一进液管1211、第一出液管1212和第一连接管1213,第一进液管1211和第一出液管1212分别连接至第二进液口111b和第一出液口112a,在将第一组件200a组装至预定位置以后,采用可插拔接头122将第一连接管1213的一端连接第一出液管1212,提升装配效率,便于拆卸维护。
此外,第一进液管1211和第一连接管1213之间可直接连接或通过可插拔接头122连接。第一进液管1211和第一连接管1213之间采用可插拔接头122时,提升装配效率,便于拆卸维护。
在设置可插拔接头122时有多种可选的实现方式。
第一种可插拔接头122的实现方式:公接头和母接头对接的方式,比如将公接头和母接头分别设置在第一出液管1212的一端口和第一连接管1213的一端口,就能实现第一出液管1212和第一连接管1213的可拆卸连接。
第二种可插拔接头122的实现方式:参阅图4、图5,采用插头1221和插座1222的方式,插头1221和插座1222均具有流道。比如将插头1221设置在第一出液管1212的端口,插座1222设置在预定结构件上,插座1222流道的一端和第一连接管1213的一端连接,插座1222流道的另一端供插头1221插接,在插头1221插在插座1222时就能实现第一出液管1212和第一连接管1213的可拆卸连接。
在一些实施例中,参阅图4、图5,可插拔接头122和第一连接管1213均设置在设备的前面板或背面板300。将可插拔接头122和第一连接管1213布置在同一侧部件上,这样便于第一连接管1213和可插拔接头122的装配。
示例性的,参阅图4、图5,第一组件200a和第二组件200b均为单板。可插拔接头122采用插头1221和插座1222的方式,插座1222固定在背面板300上,连接管1213连接在不同的插座1222之间。多个单板层叠设置,不同单板上的进液管和出液管朝向背面板300设置,进液管和出液管的端口分别设置插头1221。在装配好单板后, 将插头1221插在背面板300的插座1222,使各个单板上的散热器连接形成循环回路。这样便于多个单板和散热装置100的装配。
在其他实施例中,可插拔接头122还采用插头1221和插座1222的方式,插座1222可固定在前面板上,这样也便于多个单板和散热装置100的装配。
在一些实施例中,参阅图4、图5,还包括第二连接管1213a,第一连接管1213和第二连接管1213a交叉设置。第二连接管1213a为连接两个散热器的管,比如第二连接管1213a连接第一散热器110a的第一进液口111a和第二散热器110b的第二出液口112b,又比如第二连接管连接第二散热器110b的第二出液口112b和另一散热器的进液口。将多个连接管交叉设置,使得多个连接管可以布置在同一侧,比如同一竖直面上,这样能充分利用有限空间。
示例性的,参阅图6至图8,配置具有第一发热器件201a的第一组件200a和具有第二发热器件201b的第二组件200b,第一发热器件201a上设有第一散热器110a,第二发热器件201b上设有第二散热器110b。这两个散热器之间通过第一子管道121和第二子管道121a连接。第一子管道121包括可依次连接的第一出液管1212、第一连接管1213和第一进液管1211。第二子管道121a包括可依次连接的第二出液管1212a、第二连接管1213a和第二进液管1211a。结合图7,第一连接管1213和第二连接管1213a交叉分布。
结合图8,通过第一子管道121将第一散热器110a的第一出液口112a和第二散热器110b的第二进液口111b连通,通过第二子管道121a将第二散热器110b的第二出液口112b和第一散热器110a的第一进液口111a连通,形成循环回路。图7、图8中管道上的箭头表示制冷介质的流动方向,泵体130可带动循环回路中的制冷介质流动,实现不同组件上的散热器的共享。
示例性的,参阅图9、图10,配置具有第一发热器件201a的第一组件200a、具有第二发热器件201b的第二组件200b,具有第三发热器件201c的第三组件200c和具有第四发热器件201d的第四组件200d,第一发热器件201a上设有第一散热器110a,第二发热器件201b上设有第二散热器110b,第三发热器件201c上设有第三散热器110c,第四发热器件201d上设有第四散热器110d。这四个散热器之间依次通过第一子管道121、第二子管道121a、第三子管道121b和第四子管道121c连接。每个子管道包括依次连接的出液管、连接管和进液管结合图10,所有子管道中的部分连接管交叉设置。
结合图9,通过第一子管道121将第一散热器110a的第一出液口112a和第二散热器110b的第二进液口111b连通,通过第二子管道121a将第二散热器110b的第二出液口112b和第三散热器110c的第三进液口111c连通,通过第三子管道121b将第三散热器110c的第三出液口112c和第四散热器110d的第四进液口111d连通,通过第四子管道121c将第四散热器110d的第四出液口112d和第一散热器110a的第一进液口111a连通,形成循环回路。图9、图10中管道上的箭头表示制冷介质的流动方向,泵体130可带动循环回路中的制冷介质流动,实现不同组件上的散热器的共享。
可以理解的,还可以配置两个以上其他数量的组件,通过本申请实施例的散热装置100,实现不同组件的散热器共享,提升整体散热能力。此外,位于同一组件上的 多个散热器可串联或并联,满足不同组件上的液路连接形成循环回路即可。
在一些实施例中,参阅图6至图8,第一散热器110a、管道120和第二散热器110b连通形成循环回路,管道120上设置有控制阀140,通过控制阀140可控制管道120的通断切换。
以第一组件200a、第二组件200b是单板为例说明,在判断出其中至少一个单板处于备份状态,或者在判断出存在不同功耗的单板,或者在读取不同单板内的温度并判断出不同单板存在预定温差时,打开泵体130和控制阀140,使制冷介质在循环回路流动,将高温发热器件对应的散热器内的热量传导至低温发热器件或未工作发热器件对应的散热器。
在判断出不同单板不存在预定温差时,此时,不同单板上的发热器件产生的热量接近或相等,关闭泵体130和控制阀140,循环回路内的制冷介质不流动,发热器件产生的热量通过对应的散热器传导至该散热器内的制冷介质,并通过该散热器向外部散热。
其中,控制阀140可以是电磁阀,电磁阀便于控制管道120的通断切换。
在一些实施例中,参阅图6,第一散热器110a、管道120和第二散热器110b连通形成循环回路,管道120上设置有单向阀150。
设置单向阀150,使得循环回路中的制冷介质只能沿同一方向流动,而不能反向流动,防止制冷介质回流至散热器内。
在一些实施例中,参阅图3至图6,第一散热器110a背对第一发热器件201a一侧且具有多个间隔分布的散热片113。
第一散热器110a具有多个散热片113,第一发热器件201a工作产生的热量经过第一散热器110a传导至散热片113,再由散热片113传送至周围环境,有效提升散热能力。
此外,第二散热器110b背对第二发热器件201b一侧且具有多个间隔分布的散热片113。第二发热器件201b产生的热量也能通过相应的散热片113进行散热。
参阅图3至图10,本申请实施例提供一种连接结构,包括上述的散热装置100以及第一发热器件201a和第二发热器件201b,第一发热器件201a和第一散热器110a热接触,第二发热器件201b和第二散热器110b热接触。
本申请实施例的连接结构,在不同组件上的发热器件有一定温差时,高温发热器件对应的散热器通过制冷介质向低温发热器件对应的散热器传热,实现不同组件上的发热器件均温散热效果,提升散热能力。无需在机房内布置大型的泵体、管路和换热器等,不用额外室内空间。
在布置具有发热器件的组件时有不同的可选实现方式。
第一种组件的布置方式:参阅图8、图9,第一组件200a为第一单板,第二组件200b为第二单板,第一单板与第二单板层叠设置。这种方式结构紧凑,占用空间较小。采用本申请实施例的散热装置100,形成跨板的热均衡系统,可实现不同单板的发热器件的均温散热效果。
第二种组件的布置方式:第一组件200a位于第一电子设备上,第二组件200b位于第二电子设备上。这种方式是跨电子设备的布置方式,不同电子设备上的组件的发 热器件共用本申请实施例的散热装置100,形成跨板的热均衡系统,可实现不同电子设备的发热器件的均温散热效果。
其中,第一组件200a和第二组件200b可均为单板。
本申请实施例提供一种电子设备,包括上述的散热装置100,或上述的连接结构。
其中,电子设备可以是各种终端设备、通信设备、数据中心等等。
由于采用上述散热装置100或连接结构,不同组件上的发热器件共享散热器,提升整体散热能力。
本申请实施例提供一种电子设备的散热方法,参阅图6至图8,以第一组件200a、第二组件200b是单板为例说明,多个单板采用上述的散热装置100,散热装置100中的管道120上设置有控制阀140和泵体130。结合图11,该电子设备的散热方法包括以下步骤:
在判断出其中至少一个单板处于备份状态,或者在判断出存在不同功耗的单板后,读取不同单板内的温度并判断出不同单板存在预定温差时,开启泵体130和控制阀140,使制冷介质在循环回路流动,将高温发热器件对应的散热器内的热量传导至低温发热器件或未工作发热器件对应的散热器。
在判断出单板不处于备份状态,或者在判断出不存在不同功耗的单板后,关闭泵体130和控制阀140。在读取不同单板内的温度并判断出不同单板不存在预定温差时,关闭泵体130和控制阀140。此时,循环回路内的制冷介质不流动,发热器件产生的热量通过散热器传导至散热器内的制冷介质,并通过散热器向外部散热。
本申请实施例电子设备的散热方法,在不同单板上的发热器件有一定温差时,高温发热器件对应的散热器通过制冷介质向低温或未工作发热器件对应的散热器传热,实现不同单板上的发热器件均温散热效果,提升散热能力。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种散热装置,其特征在于,包括:第一散热器、第二散热器和管道;
    所述第一散热器具有第一内腔,所述第二散热器具有第二内腔,所述第一散热器与位于第一组件上的第一发热器件热接触,所述第二散热器与位于第二组件上的第二发热器件热接触;
    所述第一散热器与所述第二散热器通过所述管道相连通,所述第一内腔、所述第二内腔和所述管道内填充有制冷介质。
  2. 根据权利要求1所述的散热装置,其特征在于,所述第一散热器、所述管道和所述第二散热器连通形成循环回路,所述管道上连接有泵体,所述泵体用于驱动所述制冷介质在所述循环回路内流动;
    或,所述管道为热管。
  3. 根据权利要求2所述的散热装置,其特征在于,所述第一散热器、所述管道和所述第二散热器连通形成循环回路,所述管道包括第一子管道;
    所述第一散热器具有第一进液口和第一出液口,所述第二散热器具有第二进液口和第二出液口,其中所述第一出液口和所述第二进液口通过所述第一子管道连通。
  4. 根据权利要求3所述的散热装置,其特征在于,所述第一子管道包括连接于所述第二进液口的第一进液管、连接于所述第一出液口的第一出液管,以及连接所述第一进液管和所述第一出液管的第一连接管,所述第一出液管和所述第一连接管之间通过可插拔接头连接。
  5. 根据权利要求4所述的散热装置,其特征在于,所述可插拔接头和所述第一连接管均设置在设备的前面板或背面板。
  6. 根据权利要求4或5所述的散热装置,其特征在于,还包括第二连接管,所述第一连接管与所述第二连接管交叉设置。
  7. 根据权利要求2至6任一项所述的散热装置,其特征在于,所述第一散热器、所述管道和所述第二散热器连通形成循环回路,所述管道上设置有控制阀和/或单向阀。
  8. 根据权利要求1至7任一项所述的散热装置,其特征在于,所述第一散热器背对所述第一发热器件一侧且具有多个间隔分布的散热片。
  9. 根据权利要求1至8任一项所述的散热装置,其特征在于,所述第一组件为第一单板,和/或,所述第二组件为第二单板。
  10. 一种连接结构,其特征在于,包括如权利要求1至9任一项所述的散热装置以及第一发热器件和第二发热器件,所述第一发热器件和所述第一散热器热接触,所述第二发热器件和所述第二散热器热接触。
  11. 根据权利要求10所述的连接结构,其特征在于,所述第一组件为第一单板,所述第二组件为第二单板,所述第一单板与所述第二单板层叠设置。
  12. 根据权利要求10所述的连接结构,其特征在于,所述第一组件位于第一电子设备上,所述第二组件位于第二电子设备上。
  13. 一种电子设备,其特征在于,包括如权利要求1至9任一项所述的散热装置,或如权利要求10至12任一项所述的连接结构。
PCT/CN2023/082503 2022-05-20 2023-03-20 一种散热装置、连接结构及电子设备 WO2023221638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210559723.XA CN117135869A (zh) 2022-05-20 2022-05-20 一种散热装置、连接结构及电子设备
CN202210559723.X 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023221638A1 true WO2023221638A1 (zh) 2023-11-23

Family

ID=88834545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082503 WO2023221638A1 (zh) 2022-05-20 2023-03-20 一种散热装置、连接结构及电子设备

Country Status (2)

Country Link
CN (1) CN117135869A (zh)
WO (1) WO2023221638A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470537A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 单板液冷散热系统及机柜
US20190264986A1 (en) * 2018-02-27 2019-08-29 Auras Technology Co., Ltd. Heat dissipation device
CN111384011A (zh) * 2018-12-29 2020-07-07 中兴通讯股份有限公司 散热装置及方法
CN113939138A (zh) * 2020-06-29 2022-01-14 中兴通讯股份有限公司 散热装置和通信设备
CN114007372A (zh) * 2020-07-28 2022-02-01 华为技术有限公司 一种散热机柜及通信设备
CN216087384U (zh) * 2021-09-28 2022-03-18 深圳海翼智新科技有限公司 散热装置及电子设备
WO2022100106A1 (zh) * 2020-11-13 2022-05-19 华为技术有限公司 可插拔设备、信息通信设备、散热系统和制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470537A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 单板液冷散热系统及机柜
US20190264986A1 (en) * 2018-02-27 2019-08-29 Auras Technology Co., Ltd. Heat dissipation device
CN111384011A (zh) * 2018-12-29 2020-07-07 中兴通讯股份有限公司 散热装置及方法
CN113939138A (zh) * 2020-06-29 2022-01-14 中兴通讯股份有限公司 散热装置和通信设备
CN114007372A (zh) * 2020-07-28 2022-02-01 华为技术有限公司 一种散热机柜及通信设备
WO2022100106A1 (zh) * 2020-11-13 2022-05-19 华为技术有限公司 可插拔设备、信息通信设备、散热系统和制造方法
CN216087384U (zh) * 2021-09-28 2022-03-18 深圳海翼智新科技有限公司 散热装置及电子设备

Also Published As

Publication number Publication date
CN117135869A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
US9930807B2 (en) Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader
WO2017148050A1 (zh) 用于数据中心机柜的冷却装置、机柜和冷却系统
WO2022022343A1 (zh) 一种散热机柜及通信设备
WO2022205917A1 (zh) 液冷散热设备、机柜及系统
CN213126882U (zh) 一种散热机柜及通信设备
WO2017124689A1 (zh) 用于数据中心机柜的冷却装置、机柜和冷却系统
WO2022247521A1 (zh) 服务器及机柜
JP2016510947A (ja) 冗長性を備える冷却システム
CN110351991A (zh) 传热基板及散热器结构
CN107548263B (zh) 高热流密度机柜散热冷却方法及其复合换热器
CN115149155A (zh) 一种电池液冷板系统
US20220418154A1 (en) Cooling method for a cold plate module
WO2023221638A1 (zh) 一种散热装置、连接结构及电子设备
KR20070115312A (ko) 냉각장치용 히트파이프 모듈
CN218163392U (zh) 散热装置
US20120160454A1 (en) Heat exchanger
US20120255708A1 (en) Heat exchange apparatus
CN111637775A (zh) 相变换热装置
CN217685503U (zh) 空调室外机及空调器
CN217685994U (zh) 空调室外机及空调器
TW201930809A (zh) 汽液相流熱傳模組
TWI812286B (zh) 冷卻系統及伺服器
CN219018120U (zh) 复合式热交换器、制冷散热系统以及大功率光纤激光设备
CN221858877U (zh) 一种应用于药液存储设备的液冷装置
CN117628940A (zh) 三流体换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806598

Country of ref document: EP

Kind code of ref document: A1