WO2022022343A1 - 一种散热机柜及通信设备 - Google Patents

一种散热机柜及通信设备 Download PDF

Info

Publication number
WO2022022343A1
WO2022022343A1 PCT/CN2021/107445 CN2021107445W WO2022022343A1 WO 2022022343 A1 WO2022022343 A1 WO 2022022343A1 CN 2021107445 W CN2021107445 W CN 2021107445W WO 2022022343 A1 WO2022022343 A1 WO 2022022343A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
board
condenser
evaporator
Prior art date
Application number
PCT/CN2021/107445
Other languages
English (en)
French (fr)
Inventor
杨志文
闫涛
陈杰
邹恒龙
刘清颖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21850083.3A priority Critical patent/EP4188045A4/en
Publication of WO2022022343A1 publication Critical patent/WO2022022343A1/zh
Priority to US18/159,709 priority patent/US20230225081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20818Liquid cooling with phase change within cabinets for removing heat from server blades
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20663Liquid coolant with phase change, e.g. heat pipes
    • H05K7/20681Liquid coolant with phase change, e.g. heat pipes within cabinets for removing heat from sub-racks

Definitions

  • Embodiments of the present application relate to the field of heat dissipation technologies, and in particular, to a heat dissipation cabinet and communication equipment.
  • the existing communication equipment includes a cabinet 1 and a board 2 with a chip 2a.
  • the chip 2a serves as a heat source device and is provided with a radiator 3, and the heat generated by the operation of the chip 2a is transferred to the radiator 3.
  • the board 2 with the chip 2a and the radiator 3 are located in the slot space, and the slot space is used as an air duct.
  • the extension direction of the air duct is from the front panel to the rear panel of the cabinet 1, and is generated by the fan 4 in the slot space.
  • the airflow takes the heat of the radiator 3 out of the device, and the arrows indicate the airflow generated by the fan 4 .
  • the panel of cabinet 1 requires shielding, the air duct path is long, the components in the slot space are dense, and the internal space is tight, which leads to large system resistance, low efficiency of fan 4, small system air volume, and poor heat dissipation effect.
  • the airflow indicated by the arrow enters the slot space, and the heat is taken out of the slot space through the chip 2a, and a low wind speed area is easily formed at the corner 1a between the front panel and the side panel of the cabinet.
  • the cooling effect of the area is poor.
  • the chip 2a on the board 2 and its heat sink 3 are arranged in the slot space.
  • the space occupied by the heat sink 3 is constrained by the slot spacing, pitch, chip height and board layout.
  • the heat sink 3 The available heat dissipation area is small, and the utilization rate of slot space is low, resulting in poor heat dissipation effect.
  • the embodiments of the present application provide a heat dissipation cabinet and communication equipment, which solve the problem that when the heat source device in the existing communication equipment adopts a radiator and a fan for heat dissipation, the system wind resistance is large and there is a low wind speed area, and the heat dissipation area of the radiator is restricted by the slot space. , the problem of poor heat dissipation.
  • an embodiment of the present application provides a heat dissipation cabinet, which includes a cabinet body and at least one heat dissipation device; the cabinet body has a first accommodating area and a second accommodating area, and the first accommodating area can be stacked to accommodate A board for heat source devices; each heat dissipation device includes at least one evaporator, at least one condenser, an evaporation line, a liquid return line and a fan; each evaporator is used for thermal contact with the outer surface of one or more heat source devices; Each condenser is arranged in the second accommodating area and is located above the evaporator; the evaporator and the condenser in each heat dissipation device are connected with the liquid return pipeline through the evaporation pipeline to form a heat exchange circuit, and the inside of the heat exchange circuit Filled with refrigerant.
  • the fan is used to cool the condenser and dissipate heat.
  • the first accommodating area of the cabinet body can accommodate the plug-in boards in layers, and the heat source components of the plug-in boards are dissipated by the heat dissipation device.
  • the evaporator, the condenser, the evaporation pipeline and the liquid return pipeline in the cooling device are connected to form a heat exchange circuit, the evaporator is in thermal contact with the outer surface of the heat source device, and the condenser is arranged in the second accommodating area of the cabinet and located in the above the evaporator.
  • the heat generated by the operation of the heat source device is transferred to the refrigerant in the evaporator, and the refrigerant in the evaporator absorbs heat from liquid to gas, and the gaseous refrigerant rises to the condenser along the evaporation pipeline.
  • the refrigerating working medium releases heat and turns into a liquid refrigerating working medium, and then returns to the evaporator through the liquid return pipeline under the action of gravity, realizing the circulating flow of the refrigerating working medium in the heat exchange circuit, and extending the heat of the heat source device to Condenser, the heat of the condenser is quickly taken away by the air volume generated by the fan to achieve centralized heat dissipation.
  • the second accommodating area in this embodiment is used as an independent air duct, and the air duct path is short, and the condenser in the second accommodating area is blown by the fan, which can increase the air volume , reduce the system resistance, improve the convective heat transfer coefficient, thereby improving the convective heat transfer and heat dissipation capacity, and overcome the poor heat dissipation caused by the low wind speed area in the traditional heat dissipation scheme.
  • the volume of the condenser can be increased, the heat dissipation area of convective heat transfer can be increased, the air resistance of the system can be reduced, the heat dissipation capacity of convective heat transfer can be improved, and the heat dissipation area of the radiator in the traditional heat dissipation scheme can be overcome. Constrained by slot space.
  • the condenser as a heat dissipation resource pool, the heat of the heat source devices with different heat dissipation requirements is extended to the heat dissipation resource pool through the heat exchange circuit, so as to realize the rapid heat dissipation of the system with uneven heat, and overcome the problem of poor heat dissipation caused by the uneven air volume of the traditional heat dissipation scheme. condition.
  • the heat dissipation cabinet of the embodiment of the present application the heat dissipation wind resistance can be reduced, the heat dissipation area can be increased, and the comprehensive heat dissipation performance can be improved.
  • the condenser is moved out of the plug board, and under the same size and space of the cabinet, more plug boards can be stacked in the first accommodating area, so as to improve the capacity of the equipment.
  • the heat dissipation device of the embodiment of the present application thermally contacts the evaporator with the outer surface of the heat source device, so that the evaporator can be made smaller. , it suffices to meet the effective heat exchange between the evaporator and the heat source device, so that the refrigeration working medium filled in the heat exchange circuit is relatively small, and the use cost is low.
  • the evaporator and the outer surface of the heat source device are easy to fit and assemble, and can effectively overcome the chemical erosion of the device caused by immersing the heat source device in the working medium, and improve the reliability of the heat source device.
  • the second accommodating area is located at the upper part of the cabinet body, and the cabinet body has an air inlet and an air outlet communicating with the second accommodating area, such as an air inlet It is arranged on the front panel of the cabinet body, and the air outlet is arranged on the rear panel of the cabinet body, so that when the fan is set in the second accommodation area, the airflow generated by the fan will enter the second accommodation through the air inlet on the front side of the cabinet body The air that will get the heat of the condenser is blown out from the air outlet on the rear side of the cabinet.
  • the second accommodating area can be set at a suitable position of the cabinet body according to the space requirements of the system, for example, set at a position near the top of the rear of the cabinet body.
  • the fan is provided in the second accommodating area of the cabinet.
  • Fans can be independently maintained or replaced.
  • the multiple fans can be arranged in parallel, so that the structure is compact, and it is convenient to provide the air volume generated by the fans to the condenser to improve the heat dissipation efficiency.
  • each evaporator has a first inlet end and The first outlet end
  • each condenser has a second inlet end and a second outlet end
  • the two ends of the evaporation pipeline are respectively connected with the first outlet end and the second inlet end
  • the two ends of the liquid return pipeline are respectively connected with the second
  • the outlet port is connected to the first inlet port.
  • the heat exchange circuit is easy to assemble, the evaporator is in thermal contact with the outer surface of the heat source device, and the condenser is located above the evaporator, so that the circulating flow of the refrigerant in the heat exchange circuit can be realized, and the heat of the heat source device can be continuously drawn away.
  • the condenser combined with the fan for air cooling, so as to realize the heat dissipation of the heat source device.
  • a fourth possible implementation manner of the first aspect when a single heat source device is arranged along a vertical plane, the corresponding evaporator is also arranged along the vertical plane, and The first inlet end is located below the first outlet end, so that after the liquid refrigerant in the evaporator absorbs heat and becomes gaseous, it can be discharged from the first outlet at the upper part of the evaporator and transferred to the condenser through the evaporation pipeline.
  • the refrigerant in the condenser releases heat and turns into a liquid state. Under the action of gravity, the liquid refrigerant flows to the first inlet end located at the lower part of the evaporator and enters the evaporator.
  • the heat source device When the heat source device is arranged horizontally, the evaporator is also arranged horizontally. Combined with the condenser and the pipeline, the heat of the heat source device can also be transferred to the condenser for heat dissipation.
  • the second inlet end of the condenser and the evaporation pipeline pass through the third possible implementation manner.
  • a quick-change joint is detachably connected; the second outlet end of the condenser and the liquid return pipeline are detachably connected through a second quick-change joint.
  • the quick-change joint is used to facilitate the assembly and disassembly of the condenser, the evaporation line and the liquid return line, and to realize the separate maintenance or replacement of the condenser or the plug-in plate with the evaporator.
  • the condenser in this embodiment can be detached from the plug-in board with the evaporator, and can be installed outside the plug-in board independently of the plug-in board, and the condenser volume is small. Restricted, the heat dissipation area can be increased.
  • the space of the condenser is independent, the airflow through the condenser will not be hindered by other components in the insert plate, which greatly reduces the resistance and increases the air volume of the system, which is beneficial to the improvement of convective heat transfer and heat dissipation.
  • At least the liquid return line is provided with an on-off valve; or, both the liquid return line and the evaporation line are provided with switch valve.
  • the working fluid in the liquid return line and the evaporation line are basically the same.
  • the on-off valve is an electromagnetic control valve;
  • the cooling cabinet further includes a control unit, and the control unit is used to control the electromagnetic control valve to open. close.
  • the automatic control of the electromagnetic control valve is realized by the control unit.
  • the control unit is a control circuit disposed on the board, and the control circuit is on the board and the backplane of the cooling cabinet.
  • the solenoid control valve When the conduction is connected, the solenoid control valve is controlled to be turned on.
  • the solenoid control valve can be controlled to open.
  • the heat dissipation cabinet further includes a sensor for detecting the temperature of the heat source device on the board; When the set value is exceeded, the solenoid control valve is controlled to open. The opening or closing of the valve is controlled by the temperature control solenoid.
  • the electromagnetic control valve can be a normally closed control valve, so that when the plug-in board is removed, the working fluid carried can be reduced.
  • the part on the pipeline for connecting the quick-change joint is used Set as a flexible pipe, the flexible pipe is convenient to adjust the position of the quick-change joint, and realize the quick butt assembly of the quick-change joint.
  • the part on the evaporation pipeline for connecting the first quick-change joint is a flexible tube; or, the evaporation pipeline is a flexible tube. Both methods can realize the quick assembly and disassembly of the first quick-change joint.
  • the part on the liquid return line for connecting the second quick-change joint is a flexible pipe; or, the liquid return line is a flexible pipe. Both ways can realize the quick assembly and disassembly of the second quick-change joint.
  • each condenser includes a plurality of heat exchange tubes A plurality of heat-dissipating fins and a plurality of heat-exchange tubes are arranged in parallel and spaced apart, the first end of each heat-exchange tube is communicated with the second inlet end, the second end of each heat-exchange tube is communicated with the second outlet end, and the heat-dissipating fins connected to the heat exchange tube.
  • a plurality of heat exchange tubes are arranged in parallel, and heat dissipation fins are arranged on the heat exchange tubes, so that the contact area between the heat exchange tubes and the heat dissipation fins can be increased, and the heat dissipation area can be increased through the heat dissipation fins.
  • the gaseous refrigerant from the evaporator passes through the heat exchange tube, it will release heat and convert from gaseous state to liquid state. , to achieve rapid heat dissipation.
  • the second inlet end is located above the second outlet end, which facilitates the gaseous refrigerant from the evaporator to ascend from the evaporation pipeline and be transported to the second inlet end, and then enter the condenser to release heat from the gaseous state. It is liquid, and is output through the second outlet under the action of gravity, which reduces the internal resistance of the pipeline and is conducive to improving the heat dissipation effect.
  • the first ends of the plurality of heat exchange tubes are connected to a flow divider, and the flow divider is used to The refrigerant of the evaporator is distributed to a plurality of heat exchange tubes, and the second inlet end is arranged on the flow divider, so that the flow divider can be connected to one end of the evaporation pipeline.
  • the second ends of the plurality of heat exchange tubes are connected to the collector, and the collector is used to gather the refrigerants after heat exchange through each heat exchange tube together, and the second outlet end is arranged on the collector, so that the collector can
  • the flow device is connected to one end of the return line.
  • the number of heat sinks is set to multiple, wherein two or Condensers in more heat sinks are arranged adjacently.
  • the heat of the heat source devices with different heat dissipation requirements is extended to the heat dissipation resource pool through the corresponding heat exchange circuit, so that the heat dissipation resource pool can exchange heat with the external environment without considering the resistance of multiple boards and the matching of air volume. It greatly reduces the air volume loss caused by resistance matching, reduces the heat dissipation bottleneck caused by the difference in specifications of heat source devices, and realizes rapid heat dissipation in systems with uneven heat.
  • the number of heat dissipation devices is multiple, wherein two or more Multiple radiators can share one condenser, that is to say, the evaporation pipeline and the liquid return pipeline in two or more radiators are respectively connected to the second inlet end and the second outlet end of the same condenser, so that the The same condenser is used as a heat dissipation resource pool, and the condenser is air-cooled and dissipated in combination with a fan, which can also achieve rapid heat dissipation in a system with uneven heat.
  • the heat dissipation device further includes a radiator fixed on the evaporator.
  • the heat of the heat source device is pulled away to the condenser for heat dissipation, and the radiator dissipates heat from the evaporator to achieve heat dissipation between two places and improve the heat dissipation capacity of the system.
  • the heat sink may be a fin heat sink.
  • a working medium balance device is connected in series on the liquid return pipeline for The refrigerant is supplemented after the maintenance of the heat exchange circuit.
  • a certain amount of refrigerant is stored in the refrigerant balance device, and the liquid refrigerant from the condenser passes through the liquid return pipeline and the refrigerant balance device, and then enters the evaporator.
  • the condenser is replaced and maintained and the heat exchange circuit is connected, the old condenser will take away part of the refrigerant, and the refrigerant will volatilize during the maintenance process. Fewer. Equipped with a working fluid balance device, the heat exchange circuit can be supplemented with refrigeration working fluid, so that the heat exchange circuit can be put into use quickly after maintenance, which improves the convenience of maintenance.
  • the working fluid balance device is located on the side of the on-off valve away from the evaporator. So that the working medium will not flow back into the condenser.
  • an embodiment of the present application provides a communication device, including the cooling cabinet and at least one plugboard as described in the seventeenth possible implementation manner of the first aspect to the first aspect, each plugboard is provided in the In the first accommodating area, each insert has one or more heat source devices; and each evaporator is in thermal contact with the outer surface of the one or more heat source devices.
  • each evaporator is fixed on the outer surface of one or more heat source devices, that is, the evaporator and the The heat source devices are assembled together.
  • the plug board with the evaporator on the heat source device is directly assembled into the cabinet, and then combined with other components to form a heat exchange circuit, which can improve the assembly efficiency and eliminate the need to reassemble the evaporator on site. Mounted on the heat source device.
  • the plug-in board is divided into a first plug-in board and a second plug-in board, and all the first plug-in board
  • the second plug boards are located at the front end of the cabinet body and are stacked in the vertical direction
  • all the second plug boards are located at the rear end of the cabinet body and stacked in the horizontal direction.
  • the above heat dissipation device can be used to pull the heat generated by the heat source device to the condenser located in the second accommodating area.
  • fans are used to centrally cool the heat dissipation resource pool, so that the path of the second accommodation area is shorter, the heat dissipation efficiency is higher, and the heat dissipation capacity is maximized.
  • the communication device further includes a backplane, and the backplane is arranged in the first accommodating area of the cabinet; the backplane The first surface of the backplane has a first slot, and the first plug board is removably installed in the first slot; the second surface of the backplane has a second slot, and the second plug board is removably installed in the second slot position, making this cooling cabinet a pluggable system.
  • the first board, the second board and the backplane may be printed circuit boards. When the first board or the second board is inserted into the corresponding slot of the backplane, the backplane supplies power to the corresponding board.
  • the condenser Since the condenser is removed from the plug board, the number of slots on the backplane can be increased under the same size and space of the cabinet, and the competitive advantage of the number of slots can be obtained, and more first plug boards and second plug boards can be arranged to achieve Equipment capacity increased.
  • the plug-in boards are located at the front end of the cabinet body and are stacked in a vertical direction.
  • the above heat dissipation device can be used to pull the heat generated by the heat source devices to the condenser located in the second accommodation area. Cool the heat dissipation resource pool, so that the path of the second accommodation area is shorter, the heat dissipation efficiency is higher, and the heat dissipation capacity is maximized.
  • the communication device further includes a backplane, and the backplane is arranged in the first accommodating area of the cabinet; the backplane
  • the first surface of the device has a first slot, and the plug-in board is installed in the first slot in a pluggable manner, so that the heat dissipation cabinet becomes a pluggable system.
  • the backplane supplies power to the board. Since the condenser is moved out of the plug board, the number of slots on the backplane can be increased under the same size and space of the cabinet to obtain a competitive advantage in the number of slots, and more plug boards can be arranged to increase the equipment capacity.
  • Fig. 1a is a side view of a communication device in the prior art
  • Figure 1b is a back view of the communication device of Figure 1a;
  • FIG. 2 is a schematic diagram of the airflow of the slot space in the prior art communication equipment
  • FIG. 3 is a schematic structural diagram of a slot space in a prior art communication device
  • FIG. 4 is a three-dimensional structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a heat exchange loop in a communication device provided by an embodiment of the present application.
  • FIG. 6 is a side view of a communication device provided by another embodiment of the present application.
  • FIG. 7 is a perspective assembly view of the communication device of FIG. 6;
  • FIG. 8 is a schematic structural diagram of a condenser in a communication device provided by another embodiment of the present application.
  • 9a is a side view of a communication device provided by another embodiment of the present application.
  • Figure 9b is a back view of the communication device of Figure 9a;
  • 10a is a front view of a communication device provided by another embodiment of the present application.
  • Figure 10b is a side view of the communication device of Figure 10a;
  • FIG. 11 is a three-dimensional structural diagram of a communication device provided by another embodiment of the present application.
  • Figure 12 is a schematic diagram of the actual measured work quality of the plug board under different states of the actual measurement of the heat exchange circuit
  • Figure 13 is a schematic diagram of the effect of working fluid on heat dissipation efficiency in a heat exchange loop
  • FIG. 14 is a side view of a communication device provided by another embodiment of the present application.
  • FIG. 15 is a side view of a communication device provided by another embodiment of the present application.
  • the heat dissipation cabinet provided by the various embodiments of the present application can be applied to communication equipment to dissipate heat from a heat source device in the communication device, and the heat source device may be a high-power consumption chip or other components.
  • the communication equipment may be data communication equipment, data transmission equipment, Internet technology equipment or other multi-slot plug-in board systems, and may also be network communication equipment, server equipment and base station unit equipment with multi-slot plugging and unplugging.
  • Communication equipment can be used in operator computer rooms and data center computer rooms, and can provide Internet Protocol (Internet Protocol, IP) forwarding, data transmission, and computing functions.
  • Internet Protocol Internet Protocol
  • an embodiment of the present application provides a heat dissipation cabinet, which includes a cabinet body 400 and at least one heat dissipation device 100 ; the cabinet body 400 has a first accommodating area 409 and a second accommodating area 410 , and the first accommodating area 409
  • the boards 200 with the heat source devices 201 can be stacked in layers; each heat dissipation device 100 includes at least one evaporator 10, at least one condenser 20, an evaporation line 30, a liquid return line 40 and a fan 50; each evaporator 10 is used for thermal contact with the outer surface of one or more heat source devices 201; each condenser 20 is arranged in the second accommodating area 410 and is located above the evaporator 10; the evaporator 10, The condenser 20 is connected to the liquid return line 40 through the evaporation line 30 to form a heat exchange circuit, and the heat exchange circuit is filled with a refrigerant.
  • the fan 50 is used for air cooling and heat dissipation
  • the first accommodating area 409 of the cabinet body 400 can accommodate the board 200 in layers, and the heat source device 201 of the board 200 is dissipated by the heat dissipation device 100 .
  • the evaporator 10 , the condenser 20 , and the evaporation pipeline 30 in the heat dissipation device 100 are connected with the liquid return pipeline 40 to form a heat exchange circuit.
  • the evaporator 10 is in thermal contact with the outer surface of the heat source device 201 , and the condenser 20 is provided in the cabinet 400
  • the second accommodating area 410 is located above the evaporator 10 .
  • the heat generated by the operation of the heat source device 201 is transferred to the refrigerant in the evaporator 10 , and the refrigerant in the evaporator 10 absorbs heat from liquid to gas, and the gaseous refrigerant rises along the evaporation pipeline 30 to the condenser 20 Inside, the refrigerant in the condenser 20 releases heat and turns into a liquid refrigerant, and then returns to the evaporator 10 through the liquid return line 40 under the action of gravity to realize the circulating flow of the refrigerant in the heat exchange circuit, The heat of the heat source device 201 is pulled away to the condenser 20, and the heat of the condenser 20 is quickly taken away by the air volume generated by the fan 50 to realize centralized heat dissipation.
  • the second accommodating area 410 in this embodiment is used as an independent air duct, and the air duct path is short, and the condenser 20 in the second accommodating area 410 is blown by the fan 50, In this way, the air volume can be increased, the system resistance can be reduced, and the convective heat transfer coefficient can be improved, thereby improving the convective heat transfer and heat dissipation capacity, and overcoming the poor heat dissipation caused by the low wind speed area in the traditional heat dissipation scheme.
  • the volume of the condenser 20 can be increased, the radiating area of the convection heat exchange can be increased, the wind resistance of the system can be reduced, the convective heat exchange and heat dissipation capacity can be improved, and the radiator in the traditional heat dissipation scheme can be overcome.
  • the heat dissipation area of is limited by the slot space.
  • the condenser 20 is used as the heat dissipation resource pool, and the heat of the heat source devices 201 with different heat dissipation requirements is extended to the heat dissipation resource pool through the heat exchange circuit, so as to realize the rapid heat dissipation of the system with uneven heat, and overcome the lack of heat dissipation caused by the uneven air volume of the traditional heat dissipation scheme. good condition.
  • the heat dissipation wind resistance can be reduced, the heat dissipation area can be increased, and the comprehensive heat dissipation performance can be improved.
  • the condenser 20 is moved out of the plug board 200 , and under the same size and space of the cabinet 400 , more plug boards 200 can be stacked in the first accommodating area 409 , so as to increase the capacity of the equipment.
  • the heat dissipation device 100 of the embodiment of the present application thermally contacts the evaporator 10 with the outer surface of the heat source device 201, so that the evaporator 10 It can be made relatively small to meet the effective heat exchange between the evaporator 10 and the heat source device 201 , so that the heat exchange circuit is filled with less refrigerant, and the use cost is low.
  • the evaporator 10 and the outer surface of the heat source device 201 are easy to fit and assemble, and can effectively overcome the chemical corrosion of the device caused by immersing the heat source device in the working medium, and improve the reliability of the heat source device.
  • the refrigerant has the characteristics of gas-liquid two-phase phase transition, which changes from liquid to gas after absorbing heat, and changes from gas to liquid after releasing heat.
  • each evaporator 10 has a first inlet end 10a and a first outlet end 10b, and each condenser
  • the device 20 has a second inlet end 20a and a second outlet end 20b, two ends of the evaporation pipeline 30 are respectively connected to the first outlet end 10b and the second inlet end 20a; both ends of the liquid return pipeline 40 are respectively connected to the second outlet
  • the end 20b is connected to the first inlet end 10a.
  • the heat exchange circuit is easy to assemble, the evaporator 10 is in thermal contact with the outer surface of the heat source device 201, and the condenser 20 is located above the evaporator 10, so that the circulating flow of the refrigerant in the heat exchange circuit can be realized, and the heat source device can be continuously circulated.
  • the heat of the 201 is extended to the condenser 20 and combined with the fan 50 for air cooling, so as to realize the heat dissipation of the heat source device 201 .
  • the connection positions of the evaporator 10 and the condenser 20 with the evaporation pipeline 30 and the liquid return pipeline 40 respectively shall meet the requirements of anti-leakage. It can be understood that, referring to FIG. 6 , the second inlet end 20a and the second outlet end 20b of the condenser 20 may be two pipelines connected to the condenser.
  • the evaporator 10 can be fixed on the plug board 200 or the structure near the heat source device 201 , so that the plug board 200 with the evaporator 10 can be directly assembled to the cabinet 400 Inside, the assembly and disassembly operations are easy.
  • the evaporator 10 can be a flat heat-conducting shell, such as a rectangular parallelepiped, and the evaporator 10 is abutted on the outer surface of the heat source device 201, so that the heat generated by the operation of the heat source device 201 can be transferred to the inside of the heat source device 201 through the heat-conducting shell.
  • the refrigerant is changed from liquid to gaseous state.
  • the evaporator 10 has a compact structure and occupies a small space. In this way, in the same size space, more heat source devices 201 can be arranged, for example, high-power consumption chips can be arranged in a more concentrated manner, so as to meet the heat dissipation requirements of large-capacity chips.
  • the evaporator 10 may have other shapes, and the evaporator 10 has a bonding surface that is attached to the heat source device 201 to transfer the heat from the heat source device 201 to the refrigerant in the evaporator 10 .
  • the corresponding evaporator 10 when a single heat source device 201 is arranged along a vertical plane, the corresponding evaporator 10 is also arranged along a vertical plane, and the first inlet end 10a is located below the first outlet end 10b, so that the liquid in the evaporator 10
  • the refrigerating working medium absorbs heat and becomes gaseous, it can be discharged from the first outlet end 10b located at the upper part of the evaporator 10, and is transmitted to the condenser 20 through the evaporation pipeline 30, and the gaseous refrigerating working medium releases heat in the condenser 20 to become Liquid
  • liquid refrigerant flows to the first inlet end 10 a located at the lower part of the evaporator 10 under the action of gravity, and enters the evaporator 10 .
  • the evaporator 10 is also arranged horizontally. Combined with the condenser 20 and the pipeline, the heat of the heat source device 201 can also be transferred to the condenser 20 for heat dissipation.
  • the second accommodating area 410 may be located at the upper part of the cabinet body 400 , and the cabinet body 400 has an air inlet and an air outlet communicating with the second accommodating area 410 ,
  • the air inlet is arranged on the front panel 401 of the cabinet 400
  • the air outlet is arranged on the rear panel 402 of the cabinet 400.
  • the air inlet on the front side of the cabinet 400 enters the second accommodating area 410 , and the air that obtains the heat of the condenser 20 is blown out from the air outlet on the rear side of the cabinet 400 .
  • the second accommodating area 410 can be set at a suitable position of the cabinet 400 according to the space requirements of the system, for example, set at a position at the top of the rear of the cabinet 400 .
  • the shape of the second accommodating area 410 and the positions of the air inlet and the air outlet can also be set in other ways.
  • the fan 50 can be arranged in the second accommodating area 410 of the cabinet 400 .
  • Fan 50 can be independently maintained or replaced.
  • the number of fans 50 may be one or more, which is not specifically limited.
  • the multiple fans 50 can be arranged in parallel, so that the structure is compact, and it is convenient to provide the air volume generated by the fans 50 to the condenser 20 to improve the heat dissipation efficiency.
  • the fan 50 can be an axial flow fan, and the air outlet side 51 of the fan 50 can be directed towards the air inlet side of the condenser 20, or the air inlet side of the fan 50 can be directed towards the air outlet side of the condenser 20, so that the wind resistance is small, Good cooling effect.
  • the heat dissipation cabinet when the heat dissipation cabinet is applied in the external environment, the heat dissipation cabinet can be set in an area with low temperature and sufficient air volume all the year round, and the condenser 20 can be air-cooled and dissipated by natural wind.
  • the second inlet end 20a of the condenser 20 and the evaporation pipeline 30 pass through the first
  • the quick-change joint 60a is detachably connected; the second outlet end 20b of the condenser 20 and the liquid return line 40 are detachably connected through the second quick-change joint 60b.
  • the quick-change joint is used to facilitate the assembly and disassembly of the condenser 20 , the evaporation line 30 and the liquid return line 40 , so as to realize the separate maintenance or replacement of the condenser 20 or the plug-in plate 200 with the evaporator 10 .
  • the corresponding quick-change joint is separated, the new condenser 20 is installed in a predetermined position, and the new condenser 20 is connected to the evaporation pipeline through the quick-change joint. 30.
  • the assembly can be completed.
  • a certain board 200 with the evaporator 10 needs to be replaced, in the same way, separate the corresponding quick-change connector, replace the new board 200 with the evaporator 10, and then connect the quick-change connector. The connection of the heat exchange circuit and the replacement of the board 200.
  • the first quick-change joint 60a and the second quick-change joint 60b both include a male joint 61 and a female joint 62, one of the two positions of the port of the condenser 20 and the end of the pipeline is connected to the male joint 61, and the other One position is connected to the female connector 62, and when the male connector 61 and the female connector 62 are butted together, a sealed connection can be achieved, so that the condenser 20 can be quickly connected and separated from the pipeline.
  • the condenser 20 in this embodiment can be detached from the board 200 with the evaporator 10 and can be installed outside the board 200 independently of the board 200 , the volume of the condenser 20 is not limited, and the heat dissipation area can be increased.
  • the space of the condenser 20 is independent, the air flow through the condenser 20 will not be hindered by other components in the insert plate 200, which greatly reduces the resistance and increases the air volume of the system, which is beneficial to the improvement of the convective heat exchange and heat dissipation capacity.
  • the male joint 61 and the female joint 62 have a sealing function.
  • the end of the liquid pipeline 40 or the port of the condenser 20 can be sealed, so as to reduce the leakage of the working medium in the liquid return pipeline 40 , the evaporation pipeline 30 or the condenser 20 .
  • the part of the pipeline for connecting the quick-change connector in order to improve the assembly efficiency of the first quick-change connector and the second quick-change connector, can be set as a flexible tube, and the flexible tube is convenient to adjust the position of the quick-change connector, Realize quick butt assembly of quick-change joints.
  • the part of the evaporation pipeline for connecting the first quick-change joint is a flexible tube, and the rest of the evaporation pipeline is a rigid tube; or, the evaporation pipeline is a flexible tube. Both methods can realize the quick assembly and disassembly of the first quick-change joint.
  • the part of the return line for connecting the second quick-change joint is a flexible pipe, and the rest of the return line is a rigid pipe; or, the return line is a flexible pipe. Both ways can realize the quick assembly and disassembly of the second quick-change joint.
  • the flexible pipe may be a hose, a corrugated pipe or other flexible pipes.
  • the evaporation line 30 , the liquid return line 40 and the condenser 20 can also be maintained in an integral manner, and the evaporation line 30 and the liquid return line 40 can be rigid pipes or flexible pipes.
  • the number of heat dissipation devices 100 is set to multiple, wherein the condensers 20 in two or more heat dissipation devices 100 are adjacent to each other. set up.
  • the system with uneven heat can be multiple boards with different layouts of heat source devices. When using traditional air cooling, the wind resistance of different boards will be different, and the corresponding air volume will vary greatly.
  • a system resistance baseline will be calibrated when traditional air cooling is used to prevent the inserts with lower wind resistance from absorbing most of the cooling air volume, and the resistance baseline is usually calibrated based on the highest wind resistance, which leads to system failure If the working point is too high, the air volume output by the fan becomes smaller, sacrificing the heat dissipation capacity.
  • low-resistance boards have low power consumption and require less air volume. If the low-resistance plug-in board and the high-resistance plug-in board are installed in the same system to dissipate heat, the low-power plug-in board has lower resistance, and the air volume is more likely to flow through the low-resistance plug-in board, but the system flow is constant.
  • the condensers 20 in the plurality of heat dissipation devices 100 are centrally arranged adjacent to each other, and are shared as a heat dissipation resource pool.
  • the resource pool exchanges heat with the external environment without considering the resistance and air volume matching of multiple boards, greatly reducing the air volume loss caused by resistance matching, reducing the heat dissipation bottleneck caused by the difference in the specifications of the heat source devices 201, and realizing heat Rapid cooling for uneven systems.
  • the condensers 20 may be arranged in an array, so that the structure is compact, and it is convenient for the airflow to pass through the adjacent condensers 20 to take away the heat.
  • the air flow generated by the fan 50 diffuses the heat of the refrigerant in the plurality of condensers 20 to the outside.
  • the condensers 20 in the plurality of heat dissipation devices 100 are arranged in an array, so that the structure is compact, and it is convenient to use the fan 50 to blow air to the plurality of condensers 20 to improve the heat dissipation efficiency.
  • the condenser 20 can be expanded in different horizontal directions according to the space of the system, which can increase the convective heat exchange area, overcome the limitation of the heat dissipation area of the radiator by the slot space in the traditional heat dissipation scheme, and make the heat dissipation capacity stronger.
  • the number of condensers 20 may be one or more, which is not specifically limited.
  • the number of heat sinks 100 is multiple, wherein two or more heat sinks 100 may share one condenser 20 , that is, the evaporation pipelines 30 in two or more heat sinks 100
  • the second inlet end 20a and the second outlet end 20b of the same condenser 20 are respectively connected to the liquid return pipeline 40, the same condenser 20 is used as a heat dissipation resource pool, and the condenser 20 is cooled and radiated by air in combination with the fan 50, This also enables rapid heat dissipation for systems with uneven heat.
  • the number of the second inlet ends 20a and the second outlet ends 20b on the condenser 20 may be multiple, which facilitates the connection of the evaporation line 30 and the liquid return line 40 in different heat sinks 100 to the condenser 20 .
  • the number of cooling devices 100 corresponding to one condenser 20 can be set according to requirements.
  • the evaporator 10 is connected between the evaporation line 30 and the liquid return line 40 , and the evaporator 10 is used for connecting with one or more heat source devices.
  • 201 Thermal Contact That is to say, the evaporator 10 and the heat source device 201 may be in a one-to-one manner, or may be a manner in which one evaporator 10 corresponds to a plurality of heat source devices 201 .
  • the heat generated by the operation of the heat source device 201 is transferred to the refrigerating medium in the evaporator 10 , and circulates in the heat exchange circuit through the refrigerating medium.
  • the plurality of heat source devices 201 are arranged adjacent to each other, and the evaporator 10 absorbs heat to the heat source devices 201.
  • the heat source devices 201 can be heated Heat dissipation of device 201 .
  • the heat dissipation resources of the heat source device 201 are shared, so as to achieve the purpose of mutual assistance in heat dissipation and improve the heat dissipation effect.
  • the different heat source devices 201 may be different heat source devices 201 on the same board 200 , or may be heat source devices 201 on different boards 200 .
  • each condenser 20 includes a plurality of heat exchange tubes 21 and a plurality of heat dissipation fins 22 , and the plurality of heat exchange tubes 21 are arranged in parallel at intervals.
  • the first end of each heat exchange tube 21 In communication with the second inlet end 20a, the second end of each heat exchange tube 21 is in communication with the second outlet end 20b, and the heat dissipation fins 22 are connected with the heat exchange tube 21.
  • a plurality of heat exchange tubes 21 are arranged in parallel, and heat dissipation fins 22 are arranged on the heat exchange tubes 21, so that the contact area between the heat exchange tubes 21 and the heat dissipation fins 22 can be increased, and the heat dissipation area can be increased through the heat dissipation fins 22 .
  • the gaseous refrigerant from the evaporator 10 passes through the heat exchange tube 21 , it will release heat and be converted from a gaseous state to a liquid state. , and then diffuse into the external environment to achieve rapid heat dissipation.
  • the air flow generated by the fan exchanges heat with the heat dissipation fins 22 , and the air flow takes away the heat of the heat dissipation fins 22 .
  • the second inlet end 20a is located above the second outlet end 20b, so that the gaseous refrigerant from the evaporator 10 is ascended and transported from the evaporation pipeline 30 to the second inlet end 20a, and then enters the condensation
  • the heat released inside the device 20 changes from a gaseous state to a liquid state, and is output through the second outlet end 20b under the action of gravity, thus reducing the internal resistance of the pipeline and improving the heat dissipation effect.
  • the first ends of the plurality of heat exchange tubes 21 are connected to the flow divider 23 , and the flow divider 23 is used for cooling from the evaporator 10 .
  • the working medium is distributed to the plurality of heat exchange tubes 21 , and the second inlet end 20 a is provided on the flow divider 23 , so that the flow divider 23 can be connected to one end of the evaporation pipeline 30 .
  • the second ends of the plurality of heat exchange tubes 21 are connected to the collector 24, and the collector 24 is used to gather the refrigerants after heat exchange through the heat exchange tubes 21 together, and the second outlet end 20b is arranged at the collector 24.
  • the diverter 23 and the current collector 24 may be flat casings, the casing has a plurality of connection ports for inserting the ends of the heat exchange tubes 21, so that the structure is compact, easy to assemble, and can realize refrigeration.
  • the diverter 23 and the current collector 24 may also be in other shapes and structures.
  • a first optional implementation manner is: referring to FIG. 5 , a plurality of heat exchange tubes 21 are arranged in parallel, a plurality of heat dissipation fins 22 are arranged at intervals, and each heat dissipation fin 22 is connected to a plurality of heat exchange tubes 21 .
  • a second optional implementation manner is: referring to FIG. 8 , a plurality of heat exchange tubes 21 are arranged in parallel, and corrugated heat dissipation fins 22 are connected between two adjacent heat exchange tubes 21 .
  • the radiating fins 22 can be connected to the heat exchange tubes 21 by welding or other means, which is easy to manufacture and realizes reliable thermal contact between the radiating fins 22 and the heat exchange tubes 21 .
  • the condenser when the condenser is specifically arranged, the condenser can also be a plate heat exchanger, and the condenser needs to be arranged above the evaporator to realize the circulating flow of the refrigerant in the heat exchange circuit.
  • the mass heat is transferred to the condenser, and combined with the fan to blow air to the condenser, the heat of the heat source device can also be extended to the condenser for centralized heat dissipation.
  • the heat dissipation device 100 further includes a heat sink (not shown in the figure) fixed on the evaporator 10 .
  • the heat of the heat source device 201 is pulled away to the condenser 20 for heat dissipation, and the radiator dissipates heat from the evaporator 10 to achieve heat dissipation between two places and improve the heat dissipation capability of the system.
  • the heat sink may be a fin heat sink.
  • the liquid working medium at the evaporating end becomes gaseous due to heating, and the working medium at the condensing end (condenser side) becomes liquid after cooling. Therefore, under different working temperature environments, the remaining amount of working fluid in the evaporation end pipeline (evaporation pipeline, liquid return pipeline) and condensation end pipeline (the pipeline corresponding to the inlet and outlet ends of the condenser) will be reduced. Not exactly. When the evaporating end pipeline in the insert plate and the condensing end pipeline outside the plate are plugged and unplugged, it will lead to plugging and unplugging under different temperature conditions, and the total amount of working fluid in the whole heat exchange circuit will be inconsistent, resulting in the whole heat exchange circuit. The heat dissipation capacity is inconsistent.
  • the actual measured quality of the plug board in different states of the heat exchange circuit is quite different.
  • the liquid mass at the evaporation end is 211.6g.
  • the liquid working mass at the evaporation end is 161.8g, and the working mass is reduced by 49.8g.
  • the work quality of the evaporation end will gradually decrease, especially when the power consumption of the plug board is less than 100W, the rate of work quality decline is faster.
  • Too little or too much working fluid will reduce the heat exchange efficiency of the heat exchange circuit. As shown in Figure 13, too much working fluid will increase both the evaporation thermal resistance and the condensation thermal resistance, and the heat dissipation capacity of the chip on the plug-in board will be affected. The operating temperature of the chip will be too high. Too little working fluid will lead to the phenomenon of "dry burning" at the evaporating end of the insert board, and the temperature of the chip will rise sharply, which will increase the possibility of over-temperature damage. At 40%, the chip temperature risen sharply.
  • an on-off valve 70 is provided on the liquid return pipeline 40 to control the liquid return pipeline 40 to be closed.
  • an on-off valve 70 for controlling the conduction of the liquid return line 40 is provided on the liquid return line 40 .
  • the switching valve 70 can be a normally open solenoid valve (closed when power is on, and disconnected when power is off), or a temperature valve (certainly open).
  • the on-off valve 70 may be a solenoid valve, a memory alloy temperature-controlled valve, and other valves that can realize the control of the distribution and control of the work mass.
  • the on-off valve 70 When the on-off valve 70 is provided, it can be provided on different pipelines.
  • the on-off valve 70 is disposed on the liquid return line 40, and is located at one end of the liquid return line 40 close to the second quick-change joint 60b, so that the on-off valve 70 can cooperate with the second quick-change joint 60b to seal the working fluid.
  • the on-off valve 70 may also be disposed at other positions of the liquid return pipeline 40, which is not specifically limited in the embodiment of the present application.
  • on-off valves 70 are provided on both the liquid return line 40 and the evaporation line 30 .
  • the liquid working medium in the condenser 20 may return to the liquid return line 40 , and a small part of the liquid working medium may also return to the evaporation line 30 .
  • the on-off valve 70 In order to prevent the backflow of the liquid working medium from increasing the quality of the working medium in the plug board, when the on-off valve 70 is set, the on-off valve 70 is set on both the liquid return line 40 and the evaporation line 30, so that after the plug board is powered off, through the two An on-off valve 70 closes the liquid return line 40 and the evaporation line 30 respectively, so as to prevent the liquid working medium in the condenser 20 from flowing into the insert plate 200 .
  • the quality of the liquid working fluid in the inserting plate is basically kept consistent when the inserting plate is powered on or off, so that the quality of the working fluid of the entire heat exchange circuit can be avoided when the inserting plate is inserted and removed.
  • the on-off valve 70 can be controlled by an electrical signal or a temperature signal, which will be described below.
  • the on-off valve 70 can be an electromagnetic control valve, and the on-off valve 70 can be controlled by a control unit provided on the board 200 .
  • the switch valve 70 is an electromagnetic control valve
  • the control unit can be used to control the opening and closing of the electromagnetic control valve.
  • the board 200 is inserted into the backplane, the board 200 is powered on, and the control unit is based on the detected signal that the board 200 is powered on.
  • the electromagnetic control valve is controlled to open; when the plug-in board 200 is unplugged from the backplane, the plug-in board 200 is powered off, and the control unit controls the electromagnetic control valve to close according to the detected signal of the power-off of the plug-in board 200 .
  • the electromagnetic control valve adopts a normally closed control valve, so that the normally closed state can be maintained after the plug-in board 200 is powered off, so as to cooperate with the quick-change joint 60 at the port of the liquid return pipeline 40 to seal the inner surface of the pipeline.
  • the control unit may be a control circuit disposed on the board 200 , and the control circuit controls the electromagnetic control valve to conduct conduction when the board 200 is in conductive communication with the backplane of the cooling cabinet.
  • the control unit may also use a common control unit that can control an electromagnetic control valve, such as a PLC and a relay.
  • the on-off valve 70 is kept normally closed under the condition that the power of the plug-in board 200 is turned off. After the plug-in board 200 is powered on (correctly inserted into the chassis), it is opened. It can be opened in real time, or it can be opened after a delay, such as After 10ms, 15ms, 20ms.
  • the on-off valve 70 can be a temperature valve, such as a memory alloy temperature-controlled valve.
  • the control part (memory alloy) in the memory alloy temperature control valve will shrink, driving the memory alloy temperature control valve to act, thereby opening the valve.
  • the plug board 200 is powered off, the control part (memory alloy) in the memory alloy temperature control valve will shrink, driving the memory alloy temperature control valve to act, thereby opening the valve.
  • the on-off valve 70 can also be an electromagnetic control valve
  • the board 200 further includes a sensor and a control unit.
  • the sensor is used to detect the temperature of the heat source (chip), and the control unit is used to control the electromagnetic control valve to open when the temperature detected by the sensor exceeds the set value.
  • T1 threshold when the temperature of the chip is greater than 80 degrees (T1 threshold), the switch valve 70 is opened, and when the temperature of the chip is lower than 60 degrees (T2 threshold), the switch valve 70 is closed.
  • the on-off valve 70 can be controlled by independent temperature control and electrical control, or can be controlled by a combination of temperature control and electrical control, which is not specifically limited in the embodiments of the present application.
  • the heat exchange circuit When the insert plate is inserted into the back plate, the heat exchange circuit is filled with working medium.
  • a liquid filling hole can be set on the insert plate, and the return line can be passed through the liquid filling hole. 40.
  • the evaporation pipeline 30 and the evaporator 10 are filled with working medium.
  • the liquid filling hole may be provided on the liquid return line 40 , the evaporation line 30 or the evaporator 10 .
  • the liquid filling hole is arranged in the evaporation pipeline 30, but it should be understood that in the embodiment of the present application, the liquid filling hole may be arranged at different positions according to actual needs, which is not specifically limited in the embodiment of the present application.
  • the liquid filling hole is also a vacuuming hole, which is used for vacuuming the pipes on the plug-in board 200 .
  • a vacuum pump is used to connect to the liquid filling hole, and vacuuming is performed, and then the liquid filling pump fills the working medium into the pipeline through the liquid filling hole.
  • the liquid filling amount of the working medium in the plug board 200 is based on the content of the working medium in the liquid return line 40 and the evaporation line 30 when the plug board 200 is in a working state.
  • the plug board 200 is normally powered on and works, if the work mass in the plug board 200 is 100g-180g, the work mass of the pipelines in the plug board 200 is 100g-180g.
  • the on-off valve 70 is closed, and the liquid working medium of the condenser 20 cannot flow into the pipeline of the plug board 200, so that the working quality in the plug board 200 remains basically unchanged, so that the plug board 200 is basically kept unchanged.
  • the plate 200 is inserted into other back plates, the amount of working fluid change in the heat exchange circuit formed by the evaporator 10 and the condenser 20 will not be too large.
  • the working state of the plug-in board 200 will be described in detail.
  • the solenoid valve is opened, and the evaporator 10 and the condenser 20 communicate with each other to form a heat exchange circuit.
  • the chip is electrified to generate heat, and the liquid working medium turns into a gas state after evaporating and absorbing heat in the evaporator 10, and enters the condenser 20 through the evaporation pipeline 30.
  • the working medium condenses and releases heat in the condenser 20 and turns into a liquid state, and the liquid working medium returns to the liquid state.
  • the pipeline 40 returns to the evaporator 10 to form a circulation loop to transfer heat.
  • the solenoid valve is quickly closed and disconnected, the heat exchange circuit is disconnected, and the amount of the working medium in the entire circuit remains unchanged.
  • a refrigerant balance device (not shown in the figure) is connected in series on the liquid return line 40 .
  • a certain amount of refrigerant is stored in the refrigerant balance device, and the liquid refrigerant from the condenser 20 passes through the liquid return line 40 and the refrigerant balance device, and then enters the evaporator 10 .
  • the condenser 20 is replaced and maintained and the heat exchange circuit is connected, the old condenser 20 will take away a part of the refrigerant. total decreased.
  • the heat exchange circuit can be supplemented with refrigeration working fluid, so that the heat exchange circuit can be put into use quickly after maintenance, which improves the convenience of maintenance.
  • the working medium balance device acts as a buffer and stabilizes the distribution of the working medium, which can avoid that part of the liquid working medium in the liquid return line 40 is poured back into the condenser due to the sudden increase of the pressure in the evaporator 10 when the plug board 200 is just powered on and started. 20, resulting in the problem of low heat exchange efficiency of the condenser 20.
  • the working medium balance device can be a liquid storage tank, the liquid storage tank has a liquid inlet end and a liquid outlet end, and the liquid inlet end and the liquid outlet end are connected to the liquid return pipeline, so as to realize the connection between the liquid storage tank and the liquid return pipeline. concatenate.
  • the working fluid balance device may also be a liquid accumulation chamber provided on the first pipeline.
  • the working fluid balance device 80 is located on the side of the on-off valve 70 away from the evaporator 10 , that is, the working fluid balance device 80 is located in the return liquid pipeline 40 . between the second quick-change joint 60b and the on-off valve 70.
  • the working medium in the liquid return line 40 will flow into the working medium balance device 80 to prevent the backflow from entering the condenser 20 .
  • the working fluid balance device 80 can also store excess working fluid, so as to reduce the effect of excessive working fluid on the heat dissipation effect of the entire heat exchange circuit.
  • the actual measurement is carried out on the plugboard with and without the working medium balance device.
  • the subcooling degree of the insert plate with the working fluid balance device is optimized by 2 to 3°C than that of the insert plate without the working fluid balance device.
  • the superheat degree of the plug board with the working fluid balance device is 2.8 °C better than that of the plug board without the working fluid balance device.
  • an embodiment of the present application provides a communication device, including the above-mentioned cooling cabinet and at least one board 200 , each board 200 is disposed in the first accommodating area 409 , and each board 200 has One or more heat source devices 201 ; each evaporator 10 is in thermal contact with the outer surface of the one or more heat source devices 201 .
  • each evaporator 10 is fixed on the outer surface of one or more heat source devices 201 , that is, , the evaporator 10 and the heat source device 201 have been assembled together when the plug board 200 is manufactured.
  • the plug board 200 with the evaporator 10 on the heat source device 201 is directly assembled into the cabinet 400, and then combined Other devices are connected to form a heat exchange loop, which can improve assembly efficiency, and it is not necessary to install the evaporator 10 on the heat source device 201 on site.
  • the evaporation line 30 and the return line 40 can also be connected to the evaporator 10.
  • the plug board 200 with the heat source device 201 is connected with the evaporation line 30 and the return line 40.
  • the evaporator 10 of the liquid pipeline 40 can be installed into the cabinet 400 more quickly, thereby improving the assembly efficiency.
  • the board 200 is divided into a first board 210 and a second board 220, and all the first board 210 and the second board 220.
  • the plug boards 210 are located at the front end of the cabinet body 400 and are stacked in a vertical direction
  • all the second plug boards 220 are located at the rear end of the cabinet body 400 and stacked in a horizontal direction.
  • the above heat dissipation device 100 can be used to extend the heat generated by the heat source devices 201 to the second accommodating area 410
  • the condenser 20 inside the condenser 20 is used as a heat dissipation resource pool, and the fan 50 is used to centrally cool the heat dissipation resource pool, so that the path of the second accommodating area 410 is shorter, the heat dissipation efficiency is high, and the heat dissipation capacity is maximized.
  • the arrow in FIG. 9a is the direction of the airflow generated by the fan 50 .
  • the communication device further includes a backplane 300 , and the backplane 300 is arranged in the first accommodating area 409 of the cabinet 400 ;
  • One surface has a first slot 301 , and the first plug board 210 is removably installed in the first slot 301 ;
  • the second surface of the backplane 300 has a second slot 302 , and the second plug board 220 is removably installed In the second slot 302, the cooling cabinet becomes a pluggable system.
  • the first board 210 , the second board 220 and the backplane 300 may be printed circuit boards.
  • the backplane 300 supplies power to the corresponding board. Since the condenser 20 is moved out of the plug board 200, under the same size and space of the cabinet 400, the number of slots on the backplane 300 can be increased, the competitive advantage of the number of slots can be obtained, and more first plug boards 210 and 3rd boards can be arranged.
  • the second board 220 realizes the improvement of equipment capacity.
  • the heat source device 201 on the board 200 has a strong heat dissipation capability, so that the board 200 can be hot and cold swapped without affecting the operation of the board 200, thereby improving system reliability and rapid maintenance.
  • the first inserting board 210 on the front side of the backplane 300 is arranged in the up-down direction
  • the second inserting board on the rear side of the backplane 300 is arranged in the up-down direction
  • 220 are arranged in the left-right direction.
  • the second accommodating area 410 is located at the upper part of the cabinet body 400 and extends along the front and rear directions of the cabinet body 400 .
  • the fan 50 is disposed in the front area of the second accommodating area 410 , the condenser 20 is located in the second accommodating area 410 , and the air outlet side 51 of the fan 50 is disposed opposite to the air inlet side of the condenser 20 .
  • the air flow generated by the fan 50 flows from the front side to the rear side of the cabinet body 400 , blowing the heat released by the condenser 20 out of the cabinet body 400 to realize air cooling and heat dissipation.
  • the fans 50 can be arranged in a straight line and arranged at the air inlet 411 of the second accommodating area 410 , so that the structure is compact and can provide sufficient air volume to the condenser 20 .
  • the panel 200 is located at the front end of the cabinet 400 and is stacked vertically.
  • the above-mentioned heat dissipation device 100 can be used to extend the heat generated by the heat source device 201 to the condenser 20 located in the second accommodating area 410.
  • 20 is used as a heat dissipation resource pool
  • the fan 50 is used to centrally cool the heat dissipation resource pool, so that the path of the second accommodating area 410 is shorter, the heat dissipation efficiency is high, and the heat dissipation capacity is maximized.
  • the arrows in FIG. 10b are the directions of the airflow generated by the fan 50 .
  • the communication device further includes a backboard 300 .
  • the backboard 300 is arranged in the first accommodating area 409 of the cabinet 400 ; the first surface of the backboard 300 has a first slot. 301, the plug-in board 200 is installed in the first slot 301 in a pluggable manner, so that the heat dissipation cabinet becomes a pluggable system.
  • the backplane 300 supplies power to the board 200 .
  • the condenser 20 is moved out of the plug board 200, under the same size and space of the cabinet 400, the number of slots on the backplane 300 can be increased to obtain a competitive advantage in the number of slots, and more plug boards 200 can be arranged to realize the equipment Capacity increase.
  • the first accommodating area 409 is located at the front of the cabinet 400
  • the front side of the backplane 300 is stacked with a plurality of plug boards 200
  • the rear side of the back board 300 is not provided with plug boards.
  • the second accommodating area 410 is located at the top of the rear of the cabinet 400 , that is, the condenser 20 is arranged on the rear side of the back plate 300 , and the position of the condenser 20 needs to be higher than the position of the evaporator 10 .
  • the air inlet 411 is on the front side of the cabinet body 400 or the front panel of the plug board 200
  • the air outlet 412 is on the rear side of the cabinet body 400 .
  • the fan 50 is disposed at the rear air outlet 412 of the cabinet 400 , and the air inlet side 52 of the fan 50 faces the air outlet side of the condenser 20 .
  • the air flow generated by the fan 50 flows from the front side to the rear side of the cabinet body 400 , blowing the heat released by the condenser 20 out of the cabinet body 400 to realize air cooling and heat dissipation.
  • the fans 50 can be arranged in an array and arranged at the air outlet 412, so that the structure is compact and can provide sufficient air volume to the condenser 20.
  • the plug-in board 200 that undertakes business functions in the whole system needs to be plugged, installed and maintained.
  • the separation between the evaporation end of the plug-in board 200 and the condenser 20 can be realized.
  • Body plugging and unplugging overcomes the defect that the outer condenser 20 of the plug-in board cannot be plugged and unplugged integrally with the plug-in board due to the limitation of space and reliability.
  • an on-off valve 70 is arranged on the pipeline at the evaporation end, and the on-off control of the on-off valve 70 can overcome the defect that the plug-in board is inserted and removed in different scenarios, resulting in a large change in the work quality distribution in the heat exchange circuit.
  • the heat exchange circuit is divided into the evaporation end and the condensation end.
  • the whole heat exchange circuit is connected into an integrated heat exchange circuit and can work normally. state; when the quick-change connector is disconnected, the entire heat exchange circuit is divided into two parts, the evaporation end and the condensation end.
  • the entire heat exchange circuit is provided with an on-off valve 70 (Fig. 14 and Fig. 15 illustrate the on-off valve provided on the board), and the on-off valve 70 is controlled by whether the power is turned on, or whether the temperature reaches a certain threshold, etc. other ways to control on-off.
  • the plug board 200 when the cabinet is in the power-on state, the plug board 200 is inserted into the cabinet, and the quick-change connector is connected and conducted to form an integrated heat exchange circuit. At the same time, the connector of the plug board 200 is inserted into the connector of the backplane 22 to realize electrical connection, and the plug board is powered on. .
  • the switch valve 70 on the heat exchange circuit is energized and conducted, and the heat exchange circuit works normally. In this state, the plug-in board 200 is pulled out, the quick-change connector is disconnected, the heat exchange circuit is separated, the connector of the plug-in board 200 is separated from the connector of the backplane 22 synchronously, and the switch valve 70 on the heat exchange circuit is powered off.
  • the distribution state of the working fluid in the heat exchange circuit is consistent with the working state of normal connection and power-on.
  • the cabinet is in a power-off state
  • the plugboard 200 is inserted into the cabinet, the quick-change joints are connected and conducted to form an integrated heat exchange circuit.
  • the connector of the plugboard 200 is inserted into the connector of the backplane 22 to achieve electrical connection.
  • the board is not powered up.
  • the on-off valve 70 on the heat exchange circuit is still in the disconnected state, and the distribution of the working fluid in the heat exchange circuit remains the same as the disconnected state before the insertion of the plug-in board 200, that is, the same as the normal connection and power-on working state.
  • the condenser 20 can be arranged in an area other than the plug board 200, which can avoid the problem that the heat dissipation capacity of the condenser 20 is limited by the space and layout of the plug board 200, and at the same time, the space occupied by the plug board 200 is reduced, and the device layout of the plug board is improved. space.
  • the condenser 20 can effectively adjust the size and heat dissipation area of the condenser 20 according to the chip power consumption and heat dissipation requirements, so as to achieve a more flexible heat dissipation effect.
  • the total amount of working fluid in the entire heat exchange circuit should be kept as consistent as possible after the insertion and replacement under different temperature conditions, so as to ensure the entire heat exchange circuit.
  • the cooling capacity is the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请涉及一种散热机柜及通信设备。柜体(400)的第一容置区(409)能够层叠地容置插板(200),插板(200)的热源器件(201)通过散热装置(100)来散热。散热装置(100)的蒸发器(10)、冷凝器(20)、蒸发管路(30)与回液管路(40)连接形成换热回路,蒸发器(10)与热源器件(201)的外表面热接触,冷凝器(20)设于第二容置区内且位于蒸发器(10)上方。实现制冷工质在换热回路内的循环流动,将热源器件(201)热量拉远至冷凝器(20),通过风机(50)吹风将冷凝器(20)热量带走,实现集中散热。第二容置区(410)作为独立风道,风道路径较短,可提升风量,降低系统阻力。使冷凝器(20)的体积提升,增大对流换热的散热面积,提升散热能力。将冷凝器(20)移出插板(200)并作为散热资源池,克服散热器的散热面积受到槽位空间约束以及槽位风量不均匀引起散热欠佳的情况。

Description

一种散热机柜及通信设备
本申请要求于2020年07月28日提交国家知识产权局、申请号为202010749348.6、申请名称为“一种散热机柜及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及散热技术领域,尤其涉及一种散热机柜及通信设备。
背景技术
随着通信设备大容量和高密度的发展,芯片容量越来越大,采用芯片中多内核堆叠的方式,这导致系统功耗越来越大。通信设备的散热需求越来越高,散热能力的提升空间决定了通信设备的容量和长期演进的竞争力。如图1a与图1b所示,现有的通信设备包括柜体1及具有芯片2a的插板2,芯片2a作为热源器件并且设置有散热器3,芯片2a工作产生的热量传递至散热器3,具有芯片2a的插板2与散热器3位于槽位空间内,槽位空间作为风道,风道的延伸方向由柜体1的前面板至后面板,通过槽位空间内的风机4产生气流将散热器3的热量带出设备外,箭头表示风机4产生的气流。
柜体1面板要求屏蔽,风道路径较长,槽位空间内的器件密集,内部空间紧张,这导致系统阻力大,风机4效率较低,系统风量较小,散热效果较差。如图2所示,箭头所示的气流进入槽位空间,经过芯片2a将热量带出槽位空间以外,在柜体前面板与侧板之间的角部1a容易形成低风速区,低风速区的散热效果较差。如图3所示,插板2上的芯片2a及其散热器3设置在槽位空间内,散热器3所占空间受到槽间距、节距、芯片高度和插板布局的约束,散热器3可用散热面积较小,对槽位空间利用率较低,导致散热效果较差。
发明内容
本申请实施例提供一种散热机柜及通信设备,解决了现有通信设备中的热源器件采用散热器与风机散热时系统风阻较大且存在低风速区,散热器散热面积受到槽位空间的约束,使散热效果较差的问题。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种散热机柜,其包括柜体和至少一个散热装置;柜体具有第一容置区与第二容置区,第一容置区能够层叠地容置具有热源器件的插板;每个散热装置包括至少一个蒸发器、至少一个冷凝器、蒸发管路、回液管路与风机;每个蒸发器用于与一个或多个热源器件的外表面热接触;每个冷凝器设于第二容置区内且位于蒸发器的上方;每个散热装置中的蒸发器、冷凝器通过蒸发管路与回液管路连接并形成换热回路,换热回路内填充有制冷工质。风机用于对冷凝器风冷散热。
本申请实施例提供的散热机柜中,柜体的第一容置区能够层叠地容置插板,插板的热源器件通过散热装置来散热。散热装置中的蒸发器、冷凝器、蒸发管路与回液管 路连接形成换热回路,蒸发器与热源器件的外表面热接触,冷凝器设于柜体的第二容置区内且位于蒸发器的上方。热源器件工作产生的热量传递至蒸发器内的制冷工质,蒸发器内的制冷工质吸热由液态变为气态,气态的制冷工质沿着蒸发管路上升至冷凝器内,冷凝器内的制冷工质放热变成液态的制冷工质,然后在重力作用下经过回液管路回到蒸发器,实现制冷工质在换热回路内的循环流动,将热源器件的热量拉远至冷凝器,通过风机产生风量将冷凝器的热量迅速带走,实现集中散热。
相比于传统风冷散热方案,本实施例中的第二容置区作为一个独立的风道,风道路径较短,通过风机对第二容置区内的冷凝器吹风,这样可提升风量,降低系统阻力,提升对流换热系数,从而提升对流换热散热能力,克服传统散热方案存在低风速区导致散热差的情况。还有,将冷凝器移出插板,可通过使冷凝器的体积提升,增大对流换热的散热面积和降低系统风阻,提升对流换热散热能力,克服传统散热方案中的散热器的散热面积受到槽位空间约束的情况。将冷凝器作为散热资源池,不同散热需求的热源器件的热量通过换热回路拉远至散热资源池,实现热量不均匀系统的快速散热,克服传统散热方案槽位风量不均匀引起散热欠佳的情况。相比于传统散热方案,采用本申请实施例的散热机柜,可以降低散热风阻,提高散热面积,提升综合散热性能。将冷凝器移出插板,在柜体同样的尺寸空间下,第一容置区内可层叠地容置更多的插板,实现设备容量提升。
相比于将热源器件浸没在密封壳内并灌入工质的现有散热方案,本申请实施例的散热装置,将蒸发器与热源器件的外表面热接触,可以使蒸发器制作得比较小,满足蒸发器与热源器件有效热交换即可,这样换热回路内填充的制冷工质比较少,使用成本较低。蒸发器与热源器件的外表面之间容易贴合装配,还能有效克服将热源器件浸没在工质内引起器件化学侵蚀的情况,提高热源器件工作的可靠性。
结合第一方面,在第一方面的第一种可能的实现方式中,第二容置区位于柜体的上部,柜体具有与第二容置区连通的进风口与出风口,比如进风口设置在柜体的前面板上,出风口设置在柜体的后面板上,这样风机设在第二容置区时,风机产生的气流将会由柜体前侧的进风口进入第二容置区,将获得冷凝器热量的空气由柜体后侧的出风口吹出。此外,第二容置区可以根据系统的空间要求设置在柜体合适的位置,比如设置在柜体后部靠顶部的位置。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,风机设于柜体的第二容置区内。风机可进行独立维护或更换。在风机设置多个时,多个风机可以并列设置,这样结构紧凑,便于将风机产生的风量都提供给冷凝器以提升散热效率。
结合第一方面至第一方面的第二种可能的实现方式中任一项,在第一方面的第三种可能的实现方式中,同一散热装置中,每个蒸发器具有第一入口端与第一出口端,每个冷凝器具有第二入口端与第二出口端,蒸发管路的两端分别与第一出口端、第二入口端连接;回液管路的两端分别与第二出口端与第一入口端连接。该换热回路容易装配,蒸发器与热源器件的外表面热接触,冷凝器位于蒸发器的上方,这样可实现制冷工质在换热回路内的循环流动,不断地将热源器件的热量拉远至冷凝器,结合风机进行风冷,从而实现热源器件的散热。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,在单个热源器件沿竖直面布置时,相应的蒸发器也沿竖直面布置,而且第一入口端位于第一出口端的下方,这样蒸发器内的液态制冷工质吸热变为气态后,即可由位于蒸发器上部的第一出口端排出,经过蒸发管路传输至冷凝器,气态的制冷工质在冷凝器内放热变为液态,液态的制冷工质在重力作用下,流到位于蒸发器下部的第一入口端,并进入蒸发器内。在热源器件水平布置时,蒸发器也水平布置,结合冷凝器与管路,也可实现热源器件的热量转移至冷凝器以散热。
结合第一方面的第三种可能的实现方式或第四种可能的实现方式,在第一方面的第五种可能的实现方式中,冷凝器的第二入口端与蒸发管路之间通过第一快换接头可拆卸地连接;冷凝器的第二出口端与回液管路之间通过第二快换接头可拆卸地连接。采用快换接头便于冷凝器与蒸发管路、回液管路的装配与拆卸,实现冷凝器或带有蒸发器的插板的单独维护或更换。相比于将换热回路设置在插板上的散热方案,本实施例中的冷凝器可以从带有蒸发器的插板拆离,可独立于插板安装在插板外部,冷凝器体积不受限制,可以加大散热面积。还有,由于冷凝器的空间是独立的,通过冷凝器的气流不会受到插板内其他部件的阻碍,大幅度降低阻力,提升系统的风量,有利于对流换热散热能力的提升。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,至少回液管路设置有开关阀;或,回液管路和蒸发管路均设置有开关阀。插板在上电或者断电状态下拔下时,回液管路和蒸发管路内的工质基本保持一致。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,开关阀为电磁控制阀;散热机柜还包括控制单元,控制单元用于控制电磁控制阀开闭。通过控制单元实现对电磁控制阀的自动控制。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,控制单元为设置在插板上的控制电路,控制电路在插板与散热机柜的背板导电连通时,控制电磁控制阀导通。在插板与背板连接时,即可控制电磁控制阀打开。
结合第一方面的第七种可能的实现方式,在第一方面的第九种可能的实现方式中,散热机柜还包括用于检测插板上热源器件温度的传感器;控制单元在传感器检测的温度超过设定值时,控制电磁控制阀打开。通过温度控制电磁控制阀的打开或关闭。电磁控制阀可为常闭控制阀,使得插板在取下时,可以减少携带的工质。
结合第一方面的第五种可能的实现方式至第九种可能的实现方式中任一项,在第一方面的第十种可能的实现方式中,将管路上用于连接快换接头的部分设置为柔性管,柔性管便于调节快换接头的位置,实现快换接头的快速对接装配。比如,蒸发管路上用于连接第一快换接头的部分为柔性管;或,蒸发管路为柔性管。两种方式均能实现第一快换接头的快速装拆。类似的,回液管路上用于连接第二快换接头的部分为柔性管;或,回液管路为柔性管。两种方式均能实现第二快换接头的快速装拆。
结合第一方面的第三种可能的实现方式至第十种可能的实现方式中任一项,在第一方面的第十一种可能的实现方式中,每个冷凝器包括多个换热管与多个散热翅片,若干换热管并联间隔设置,每个换热管的第一端与第二入口端连通,每个换热管的第二端与第二出口端连通,散热翅片与换热管连接。将多个换热管并联设置,并且在换 热管上设置散热翅片,这样可增大换热管与散热翅片的接触面积,通过散热翅片可增大散热面积。来自蒸发器的气态制冷工质在经过换热管时,会放热并由气态转换为液态,换热管内制冷工质的热量经过换热管侧壁传递至散热翅片,再扩散至外部环境中,实现快速散热。其中,同一冷凝器中,第二入口端位于第二出口端的上方,这样便于来自蒸发器的气态制冷工质由蒸发管路上升传输至第二入口端,再进入冷凝器内部放热由气态变为液态,并在重力作用下经过第二出口端输出,这样降低管路内部阻力,利于提升散热效果。
结合第一方面的第十一种可能的实现方式,在第一方面的第十二种可能的实现方式中,将多个换热管的第一端连接至分流器,分流器用于将来自蒸发器的制冷工质分配给多个换热管,第二入口端设置在分流器上,以使分流器可以与蒸发管路的一端连接。多个换热管的第二端连接至集流器,集流器用于将经过各个换热管换热后的制冷工质汇聚在一起,第二出口端设置在集流器上,以使集流器与回液管路的一端连接。
结合第一方面至第一方面的第十二种可能的实现方式中任一项,在第一方面的第十三种可能的实现方式中,散热装置的数量设置为多个,其中两个或更多个的散热装置中的冷凝器相邻设置。作为散热资源池共享,不同散热需求的热源器件的热量通过相应的换热回路拉远至散热资源池,使散热资源池与外部环境换热,无需考虑多个插板的阻力和风量的匹配,大幅度降低因为阻力匹配带来的风量损失,降低因热源器件不同规格差异而带来的散热瓶颈,实现热量不均匀系统的快速散热。
结合第一方面至第一方面的第十二种可能的实现方式中任一项,在第一方面的第十四种可能的实现方式中,散热装置的数量为多个,其中两个或更多个的散热装置可以共用一个冷凝器,也就是说,两个以上的散热装置中的蒸发管路与回液管路分别接入同一个冷凝器的第二入口端与第二出口端,将同一个冷凝器作为散热资源池,结合风机对该冷凝器风冷散热,这样也可以实现热量不均匀系统的快速散热。
结合第一方面至第一方面的第十四种可能的实现方式中任一项,在第一方面的第十五种可能的实现方式中,散热装置还包括固定于蒸发器上的散热器。将热源器件的热量拉远至冷凝器进行散热,散热器对蒸发器进行散热,实现两地的散热,提升系统的散热能力。其中,散热器可以是鳍片散热器。
结合第一方面至第一方面的第十五种可能的实现方式中任一项,在第一方面的第十六种可能的实现方式中,回液管路上串联有工质平衡装置,用于在对换热回路维护后补充制冷工质。在正常使用时,工质平衡装置内会存储一定的制冷工质,由冷凝器出来的液态制冷工质经过回液管路与工质平衡装置,再进入到蒸发器内。对冷凝器更换维护并将换热回路连接好后,旧的冷凝器将会带走一部分制冷工质,在维护过程中还存在制冷工质挥发的情况,使得换热回路的制冷工质总量变少。配置工质平衡装置,可以给换热回路补充制冷工质,使换热回路在维护后能快速投入使用,提高维护的便利性。
结合第一方面的第十六种可能的实现方式,在第一方面的第十七种可能的实现方式中,当回液管路设置有开关阀时,在回液管路的延伸方向上,工质平衡装置位于开关阀远离蒸发器的一侧。使得工质不会倒流到冷凝器中。
第二方面,本申请实施例提供一种通信设备,包括如第一方面至第一方面的第十七种可能的实现方式中所描述的散热机柜及至少一个插板,每个插板设于第一容置区内,每个插板具有一个或多个热源器件;每个蒸发器与一个或多个热源器件的外表面热接触。
结合第二方面,在第二方面的第一种可能的实现方式中,每个蒸发器固定于一个或多个热源器件的外表面上,也就是说,在制造插板时已经将蒸发器跟热源器件一起装配好,在组装插板时直接将热源器件上带有蒸发器的插板组装到柜体内,再结合其他器件连接形成换热回路,这样可提高装配效率,无需现场再将蒸发器安装到热源器件上。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,插板分为第一插板与第二插板,所有第一插板位于柜体的前端且沿竖直方向层叠设置,所有第二插板位于柜体的后端且沿水平方向层叠设置。对于安装在柜体内的第一插板与第二插板上的热源器件,均可以采用上述散热装置,将热源器件产生的热量拉远至位于第二容置区内的冷凝器,冷凝器作为散热资源池,采用风机集中对散热资源池冷却,这样第二容置区路径较短,散热效率较高,实现散热能力最大化。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,通信设备还包括背板,背板设于柜体的第一容置区内;背板的第一表面具有第一槽位,第一插板可插拨地安装于第一槽位;背板的第二表面具有第二槽位,第二插板可插拨地安装于第二槽位,使得该散热机柜成为可插拔系统。其中,第一插板、第二插板与背板可以是印刷电路板。在第一插板或第二插板插设于背板的相应槽位时,背板给相应的插板供电。由于将冷凝器移出插板,在柜体同样的尺寸空间下,可以增加背板上的槽位数量,获得槽位数量的竞争优势,布置更多的第一插板与第二插板,实现设备容量提升。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,插板位于柜体的前端且沿竖直方向层叠设置。对于安装在柜体内的插板上的热源器件,均可以采用上述散热装置,将热源器件产生的热量拉远至位于第二容置区内的冷凝器,冷凝器作为散热资源池,采用风机集中对散热资源池冷却,这样第二容置区路径较短,散热效率较高,实现散热能力最大化。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,通信设备还包括背板,背板设于柜体的第一容置区内;背板的第一表面具有第一槽位,插板可插拨地安装于第一槽位,使得该散热机柜成为可插拔系统。在插板插设于背板的第一槽位时,背板给插板供电。由于将冷凝器移出插板,在柜体同样的尺寸空间下,可以增加背板上的槽位数量,获得槽位数量的竞争优势,可以布置更多的插板,实现设备容量提升。
附图说明
图1a为现有技术的一种通信设备的侧视图;
图1b为图1a的通信设备的背视图;
图2为现有技术的通信设备中的槽位空间的气流示意图;
图3为现有技术的通信设备中的槽位空间的结构示意图;
图4为本申请实施例提供的通信设备的立体结构图;
图5为本申请实施例提供的通信设备中的换热回路的结构示意图;
图6为本申请另一实施例提供的通信设备的侧视图;
图7为图6的通信设备的立体装配图;
图8为本申请另一实施例提供的通信设备中的冷凝器的结构示意图;
图9a为本申请另一实施例提供的通信设备的侧视图;
图9b为图9a的通信设备的背视图;
图10a为本申请另一实施例提供的通信设备的正视图;
图10b为图10a的通信设备的侧视图;
图11为本申请另一实施例提供的通信设备的立体结构图;
图12为换热回路实测不同状态下的插板实测工质量示意图;
图13为换热回路中工质对散热效率影响的示意图;
图14为本申请另一实施例提供的通信设备的侧视图;
图15为本申请另一实施例提供的通信设备的侧视图。
具体实施方式
本申请各个实施例提供的散热机柜可应用于通信设备,对通信设备中的热源器件散热,热源器件可以是高功耗芯片或其它元器件。具体的,通信设备可以是数据通信设备、数据传送设备、互联网技术设备或其他多槽位插板系统,还可以是具有多槽位插拔的网络通信设备、服务器设备和基站单元设备。通信设备可应用于运营商机房和数据中心机房中,可提供网际互连协议(Internet Protocol,IP)转发、数据传送以及计算功能。
参阅图4,本申请实施例提供一种散热机柜,其包括柜体400和至少一个散热装置100;柜体400具有第一容置区409与第二容置区410,第一容置区409能够层叠地容置具有热源器件201的插板200;每个散热装置100包括至少一个蒸发器10、至少一个冷凝器20、蒸发管路30、回液管路40与风机50;每个蒸发器10用于与一个或多个热源器件201的外表面热接触;每个冷凝器20设于第二容置区410内且位于蒸发器10的上方;每个散热装置100中的蒸发器10、冷凝器20通过蒸发管路30与回液管路40连接并形成换热回路,换热回路内填充有制冷工质。风机50用于对冷凝器20风冷散热。
本申请实施例提供的散热机柜中,柜体400的第一容置区409能够层叠地容置插板200,插板200的热源器件201通过散热装置100来散热。散热装置100中的蒸发器10、冷凝器20、蒸发管路30与回液管路40连接形成换热回路,蒸发器10与热源器件201的外表面热接触,冷凝器20设于柜体400的第二容置区410内且位于蒸发器10的上方。热源器件201工作产生的热量传递至蒸发器10内的制冷工质,蒸发器10内的制冷工质吸热由液态变为气态,气态的制冷工质沿着蒸发管路30上升至冷凝器20内,冷凝器20内的制冷工质放热变成液态的制冷工质,然后在重力作用下经过回液管路40回到蒸发器10,实现制冷工质在换热回路内的循环流动,将热源器件201的热量拉远至冷凝器20,通过风机50产生风量将冷凝器20的热量迅速带走,实现集中散热。
相比于传统风冷散热方案,本实施例中的第二容置区410作为一个独立的风道,风道路径较短,通过风机50对第二容置区410内的冷凝器20吹风,这样可提升风量,降低系统阻力,提升对流换热系数,从而提升对流换热散热能力,克服传统散热方案存在低风速区导致散热差的情况。还有,将冷凝器20移出插板200,可通过使冷凝器20的体积提升,增大对流换热的散热面积和降低系统风阻,提升对流换热散热能力,克服传统散热方案中的散热器的散热面积受到槽位空间约束的情况。将冷凝器20作为散热资源池,不同散热需求的热源器件201的热量通过换热回路拉远至散热资源池,实现热量不均匀系统的快速散热,克服传统散热方案槽位风量不均匀引起散热欠佳的情况。相比于传统散热方案,采用本申请实施例的散热机柜,可以降低散热风阻,提高散热面积,提升综合散热性能。将冷凝器20移出插板200,在柜体400同样的尺寸空间下,第一容置区409内可层叠地容置更多的插板200,实现设备容量提升。
相比于将热源器件浸没在密封壳内并灌入工质的现有散热方案,本申请实施例的散热装置100,将蒸发器10与热源器件201的外表面热接触,可以使蒸发器10制作得比较小,满足蒸发器10与热源器件201有效热交换即可,这样换热回路内填充的制冷工质比较少,使用成本较低。蒸发器10与热源器件201的外表面之间容易贴合装配,还能有效克服将热源器件浸没在工质内引起器件化学侵蚀的情况,提高热源器件工作的可靠性。
其中,制冷工质为具有气液两相相变特性,在吸收热量后会由液态变为气态,而在放出热量后会由气态变为液态。
在具体连接蒸发器、冷凝器、蒸发管路与回液管路时,参阅图5,同一散热装置100中,每个蒸发器10具有第一入口端10a与第一出口端10b,每个冷凝器20具有第二入口端20a与第二出口端20b,蒸发管路30的两端分别与第一出口端10b、第二入口端20a连接;回液管路40的两端分别与第二出口端20b与第一入口端10a连接。该换热回路容易装配,蒸发器10与热源器件201的外表面热接触,冷凝器20位于蒸发器10的上方,这样可实现制冷工质在换热回路内的循环流动,不断地将热源器件201的热量拉远至冷凝器20,结合风机50进行风冷,从而实现热源器件201的散热。蒸发器10、冷凝器20分别与蒸发管路30、回液管路40的连接位置要满足防泄漏的要求。可以理解的,参阅图6,冷凝器20中的第二入口端20a和第二出口端20b可以是与冷凝器连接的两根管路。
在具体设置蒸发器与插板时,参阅图5,蒸发器10可固定在插板200或热源器件201附近的结构上,这样便于将带有蒸发器10的插板200直接装配到柜体400内,装拆操作都方便。其中,蒸发器10可以为一个扁平状的导热壳体,比如呈长方体,蒸发器10抵设在热源器件201的外表面上,这样热源器件201工作产生的热量可通过导热壳体传递至其内部的制冷工质,使得制冷工质由液态变为气态。该蒸发器10结构紧凑,占用空间较小。这样在同样尺寸空间下,可布置更多的热源器件201,比如高功耗芯片可以更集中的布置,满足芯片大容量的散热需求。此外,蒸发器10可以呈其他形状,蒸发器10具有与热源器件201贴合的贴合面,以将来自热源器件201的热量转移至蒸发器10内的制冷工质。
参阅图5,在单个热源器件201沿竖直面布置时,相应的蒸发器10也沿竖直面布 置,而且第一入口端10a位于第一出口端10b的下方,这样蒸发器10内的液态制冷工质吸热变为气态后,即可由位于蒸发器10上部的第一出口端10b排出,经过蒸发管路30传输至冷凝器20,气态的制冷工质在冷凝器20内放热变为液态,液态的制冷工质在重力作用下,流到位于蒸发器10下部的第一入口端10a,并进入蒸发器10内。在热源器件201水平布置时,蒸发器10也水平布置,结合冷凝器20与管路,也可实现热源器件201的热量转移至冷凝器20以散热。
在具体设置柜体的第二容置区时,参阅图4,第二容置区410可以位于柜体400的上部,柜体400具有与第二容置区410连通的进风口与出风口,比如进风口设置在柜体400的前面板401上,出风口设置在柜体400的后面板402上,这样风机50设在第二容置区410时,风机50产生的气流将会由柜体400前侧的进风口进入第二容置区410,将获得冷凝器20热量的空气由柜体400后侧的出风口吹出。此外,第二容置区410可以根据系统的空间要求设置在柜体400合适的位置,比如设置在柜体400后部靠顶部的位置。第二容置区410的形状,进风口与出风口的位置还可以按其他方式设置。
在具体设置风机时,参阅图4,风机50可设于柜体400的第二容置区410内。风机50可进行独立维护或更换。风机50的数量可以为一个或多个,具体不限定。在风机50设置多个时,多个风机50可以并列设置,这样结构紧凑,便于将风机50产生的风量都提供给冷凝器20以提升散热效率。其中,风机50可采用轴流风机,可以将风机50的出风侧51朝向冷凝器20的入风侧,或者将风机50的进风侧朝向冷凝器20的出风侧,这样风阻较小,散热效果好。
可以理解的是,散热机柜应用在外部环境时,可将散热机柜设置在常年温度较低且风量充分的地区,可通过自然风对冷凝器20进行风冷散热。
作为本申请的另一个实施例,为了使冷凝器或带有蒸发器的插板可以单独维护或更换,参阅图6,冷凝器20的第二入口端20a与蒸发管路30之间通过第一快换接头60a可拆卸地连接;冷凝器20的第二出口端20b与回液管路40之间通过第二快换接头60b可拆卸地连接。采用快换接头便于冷凝器20与蒸发管路30、回液管路40的装配与拆卸,实现冷凝器20或带有蒸发器10的插板200的单独维护或更换。例如,某一个换热回路中需要更换新的冷凝器20,将相应的快换接头分离,将新的冷凝器20安装至预定位置,再通过快换接头将新的冷凝器20与蒸发管路30、回液管路40连通,即可完成装配。又例如,某一个带有蒸发器10的插板200需要更换,同样的,将相应的快换接头分离,更换新的带有蒸发器10的插板200后,再连接快换接头即可实现换热回路的连接与插板200的更换。
其中,第一快换接头60a与第二快换接头60b均包括公接头61与母接头62,冷凝器20的端口与管路的端部这两个位置中的一个位置连接公接头61,另外一个位置连接母接头62,在公接头61与母接头62对接时可实现密封连接,这样即可实现冷凝器20与管路的快速连接与分离。
相比于将换热回路设置在插板上的散热方案,本实施例中的冷凝器20可以从带有蒸发器10的插板200拆离,可独立于插板200安装在插板200外部,冷凝器20体积不受限制,可以加大散热面积。还有,由于冷凝器20的空间是独立的,通过冷凝器 20的气流不会受到插板200内其他部件的阻碍,大幅度降低阻力,提升系统的风量,有利于对流换热散热能力的提升。
此外,在第一快换接头60a或第二快换接头60b中,公接头61与母接头62具备密封功能,在公接头61与母接头62分开时,相应的蒸发管路30端部、回液管路40端部或者冷凝器20的端口可密封,从而降低回液管路40、蒸发管路30或冷凝器20内的工质泄露。
在一些实施例中,为了提升第一快换接头与第二快换接头的装配效率,可以将管路上用于连接快换接头的部分设置为柔性管,柔性管便于调节快换接头的位置,实现快换接头的快速对接装配。比如,蒸发管路上用于连接第一快换接头的部分为柔性管,而蒸发管路的其余部分为刚性管;或,蒸发管路为柔性管。两种方式均能实现第一快换接头的快速装拆。类似的,回液管路上用于连接第二快换接头的部分为柔性管,而回液管路的其余部分为刚性管;或,回液管路为柔性管。两种方式均能实现第二快换接头的快速装拆。其中,柔性管可以为软管、波纹管或其它柔性管。
此外,蒸发管路30、回液管路40与冷凝器20还可以做成整体维护的方式,蒸发管路30、回液管路40可以为刚性管或柔性管。
在一些实施例中,参阅图6、图7,为了实现热量不均匀系统的散热,散热装置100的数量设置为多个,其中两个或更多个的散热装置100中的冷凝器20相邻设置。热量不均匀系统可以是多个具有不同热源器件布局的插板,采用传统风冷散热时不同插板的风阻会不一样,相应的风量差异较大。对于热量不均匀系统,采用传统风冷散热时会标定一个系统阻力基线,来防止风阻较低的插板吸收了绝大部分散热风量,而阻力基线通常基于最高风阻力来标定,这样导致系统的工作点偏高,风机输出的风量变小,牺牲了散热能力。通常低阻力的插板功耗低,要求的风量较小。若将低阻力的插板和高阻力的插板设在同一套系统中散热时,低功耗的插板阻力低,风量更容易从低阻力的插板流过,但是系统流量是一定的,那么高阻力的插板获得的流量反而降低,散热更差。本实施例中将多个散热装置100中的冷凝器20集中相邻设置,作为散热资源池共享,不同散热需求的热源器件201的热量通过相应的换热回路拉远至散热资源池,使散热资源池与外部环境换热,无需考虑多个插板的阻力和风量的匹配,大幅度降低因为阻力匹配带来的风量损失,降低因热源器件201不同规格差异而带来的散热瓶颈,实现热量不均匀系统的快速散热。其中,冷凝器20可以呈阵列布置,这样结构紧凑,便于气流经过相邻的冷凝器20将热量带走。
在设置风机50时,通过风机50产生的气流将多个冷凝器20内制冷工质的热量扩散至外部。示例性的,多个散热装置100中的冷凝器20呈阵列布置,这样结构紧凑,便于利用风机50对多个冷凝器20吹风,提升散热效率。冷凝器20可根据系统的空间,沿水平不同方向扩展,这样可提升对流换热面积,克服传统散热方案中的散热器散热面积受到槽位空间的约束,使得散热能力更强。其中,冷凝器20的数量可以为一个或多个,具体不限定。
此外,参阅图7,散热装置100的数量为多个,其中两个或更多个的散热装置100可以共用一个冷凝器20,也就是说,两个以上的散热装置100中的蒸发管路30与回液管路40分别接入同一个冷凝器20的第二入口端20a与第二出口端20b,将同一个 冷凝器20作为散热资源池,结合风机50对该冷凝器20风冷散热,这样也可以实现热量不均匀系统的快速散热。其中,冷凝器20上的第二入口端20a与第二出口端20b的数量可以为多个,这样便于不同散热装置100中的蒸发管路30与回液管路40连接至冷凝器20上。一个冷凝器20对应散热装置100的数量可依据需要来设置。
在具体配置蒸发器与热源器件时,参阅图5,同一散热装置100中,蒸发管路30与回液管路40之间连接有蒸发器10,蒸发器10用于与一个或多个热源器件201热接触。也就是说,蒸发器10与热源器件201可以是一对一的方式,也可以是一个蒸发器10对应多个热源器件201的方式。热源器件201工作产生的热量传递至蒸发器10内的制冷工质,通过制冷工质在换热回路内循环流动,由冷凝器20内的制冷工质放热,实现对热源器件201的散热。在同一个蒸发器10与多个热源器件201热接触时,多个热源器件201相邻设置,通过该蒸发器10对热源器件201吸热,结合散热装置100的其他器件可实现对多个热源器件201的散热。
在一些实施例中,为了实现对多个热源器件散热,或者对不同温度规格的热源器件散热,参阅图6、图7,同一散热装置100中,蒸发管路30与回液管路40之间连接有多个蒸发器10,即蒸发器10并联在蒸发管路30与回液管路40之间,各个蒸发器10与相应的热源器件201热接触,不同热源器件201工作产生的热量传递至相应的蒸发器10内的制冷工质,通过制冷工质在换热回路内循环流动,将冷凝器20作为散热资源池,由冷凝器20内的制冷工质放热来实现散热,实现不同规格热源器件201的散热资源共享,达成散热互助的目的,提升散热效果。其中,不同热源器件201可以是同一个插板200上的不同热源器件201,也可以是不同插板200上的热源器件201。
在具体设置冷凝器时,参阅图5,每个冷凝器20包括多个换热管21与多个散热翅片22,若干换热管21并联间隔设置,每个换热管21的第一端与第二入口端20a连通,每个换热管21的第二端与第二出口端20b连通,散热翅片22与换热管21连接。将多个换热管21并联设置,并且在换热管21上设置散热翅片22,这样可增大换热管21与散热翅片22的接触面积,通过散热翅片22可增大散热面积。来自蒸发器10的气态制冷工质在经过换热管21时,会放热并由气态转换为液态,换热管21内制冷工质的热量经过换热管21侧壁传递至散热翅片22,再扩散至外部环境中,实现快速散热。在配置风机时,风机产生的气流与散热翅片22进行热量交换,气流将散热翅片22的热量带走。其中,同一冷凝器20中,第二入口端20a位于第二出口端20b的上方,这样便于来自蒸发器10的气态制冷工质由蒸发管路30上升传输至第二入口端20a,再进入冷凝器20内部放热由气态变为液态,并在重力作用下经过第二出口端20b输出,这样降低管路内部阻力,利于提升散热效果。
在具体连接换热管、蒸发管路与回液管路时,参阅图5,将多个换热管21的第一端连接至分流器23,分流器23用于将来自蒸发器10的制冷工质分配给多个换热管21,第二入口端20a设置在分流器23上,以使分流器23可以与蒸发管路30的一端连接。多个换热管21的第二端连接至集流器24,集流器24用于将经过各个换热管21换热后的制冷工质汇聚在一起,第二出口端20b设置在集流器24上,以使集流器24与回液管路40的一端连接。示例性的,分流器23与集流器24可以是呈扁平状的壳体,该壳体具有多个供换热管21端部插设的连接口,这样结构紧凑,容易装配,能实现制冷 工质的分配或汇聚。此外,分流器23与集流器24还可以为其它形状结构。
在实现换热管与散热翅片的连接时,有多种可选的实现方式。第一种可选的实现方式是:参阅图5,多个换热管21并联设置,多个散热翅片22间隔排列设置,每个散热翅片22均与多个换热管21连接。第二种可选实现方式是:参阅图8,多个换热管21并联设置,在相邻两个换热管21之间连接有呈波纹状的散热翅片22。这两种方式可依据不同的结构空间来适配,装配工艺简单,使得换热管21与散热翅片22的整体结构紧凑,便于多个换热管21的热量较均匀地传递至多个散热翅片22上,实现多个换热管21匀温,进而较快地实现冷凝器20的散热。其中,散热翅片22可通过焊接方式或其它方式与换热管21连接,容易制作,实现散热翅片22与换热管21之间可靠热接触。
此外,在具体设置冷凝器时,冷凝器还可以为板式换热器,冷凝器需设置在蒸发器的上方,实现制冷工质在换热回路内的循环流动,其中,冷凝器内的制冷工质放热传递至冷凝器上,结合风机对冷凝器吹风,也可以实现热源器件的热量拉远至冷凝器以进行集中散热。
在一些实施例中,为了提升对热源器件201的散热效率,散热装置100还包括固定于蒸发器10上的散热器(图中未显示)。将热源器件201的热量拉远至冷凝器20进行散热,散热器对蒸发器10进行散热,实现两地的散热,提升系统的散热能力。其中,散热器可以是鳍片散热器。
在换热回路中,由于蒸发端(蒸发器侧)的液体工质受热变成气态,冷凝端(冷凝器侧)的工质冷却后变为液态。因此在不同的工作温度环境下,蒸发端管路(蒸发管路、回液管路)和冷凝端管路(冷凝器的入口端和出口端对应的管路)中的工质的留存量会不完全一致。当插板内蒸发端管路与板外的冷凝端管路插拔的时候,会导致不同温度状态下插拔替换时,整个换热回路中工质的总量会不一致,导致整个换热回路散热能力不一致。
举例而言,如图12所示,换热回路实测不同状态下的插板实测工质量,不上电冷态与上电满功耗运行时蒸发端工质量相差较大。如插板在低功耗时,蒸发端的液体工质量为211.6g。而插板在功耗100W时,蒸发端的液体工质量为161.8g,工质减少了49.8g。随着插板的功耗逐渐增加,蒸发端的工质量会逐渐下降,尤其插板在功耗100W以内的工质量下降速率较快。此时如果用一块处于冷却状态的插板替换一块工作的发热的插板,会导致插板交换插拔会后留在蒸发端的工质的量过大,导致最后换热回路散热能力受内部工质的量的影响比较大。同时,若将处于工作状态下的插板拔下后,插板内的工质较少,因此在该插板与另外的背板配合时,蒸发器与冷凝器组成的新的换热回路中的工质会减少。
而工质过少或者过多都会造成换热回路的换热效率降低,如图13所示,工质太多将导致蒸发热阻和冷凝热阻都增大,插板上的芯片散热能力受限,会出现芯片工作温度偏高的情况。而工质太少将导致插板内蒸发端产生“干烧”现象,芯片温度会急剧升高导致超温损坏的可能性增加,如图13中所示的当充液量(液态工质)低于40%时,芯片温度急剧飙升。
为降低出现更换插板影响到散热效果,如图14所示,至少在回液管路40上设置 有开关阀70,以控制回液管路40关闭。示例性的,回液管路40与蒸发器10的第一入口端连接时,回液管路40上设置有控制回液管路40导通的开关阀70。以通过在换热回路上设置控制工质的开关阀70实现工质量的有效控制,开关阀70可以采用常开电磁阀(上电闭合,断电即断开),也可以采用温度阀门(一定温度下闭合,一定温度下断开),也可以是其他可实现同样目的控制阀门。以通过开关阀70控制蒸发端的工质量保持稳定,确保在不同的温度插板插拔互换以后,保持整个换热回路的冷却能力保持恒定。示例性的,开关阀70可以是电磁阀门、记忆合金温控阀门及其他可实现工质量分配控制的阀门。
在设置开关阀70时,可设置在不同的管路上。示例性的,开关阀70设置在回液管路40上,并位于回液管路40靠近第二快换接头60b的一端,使得开关阀70可与第二快换接头60b一起配合密封工质。当然,开关阀70也可设置在回液管路40的其他位置,在本申请实施例中不做具体限定。
或者,在回液管路40和蒸发管路30上均设置开关阀70。在插板200断电未工作时,冷凝器20中的液态工质可能会回流到回液管路40内,也会有少部分液态工质回流到蒸发管路30内。为了避免液态工质回流导致插板内的工质质量增加,在设置开关阀70时,回液管路40和蒸发管路30上均设置开关阀70,以在插板断电后,通过两个开关阀70将回液管路40和蒸发管路30分别关闭,避免冷凝器20中的液态工质流入到插板200内。使得插板在上电或者下电时,插板内的液态工质的质量基本保持一致,从而在插拔插板时,避免影响到整个换热回路的工质质量。
开关阀70可通过电信号或者温度信号进行控制,下面分别对其进行说明。
在开关阀70采用电信号控制时,开关阀70可为电磁控制阀,开关阀70可通过插板200上设置的控制单元进行控制。如开关阀70为电磁控制阀,控制单元可用于控制电磁控制阀开闭,当插板200插入到背板上时,插板200上电,控制单元根据检测到的插板200上电的信号控制电磁控制阀打开;当插板200从背板拔下时,插板200断电,控制单元根据检测到的插板200断电的信号控制电磁控制阀关闭。在上述状态中,电磁控制阀采用常闭控制阀,从而在插板200断电后,可保持常闭状态,从而与回液管路40的端口处的快换接头60一起配合密封管道内的工质。
控制单元可为设置在插板200上的控制电路,控制电路在插板200与散热机柜的背板导电连通时,控制电磁控制阀导通。当然,控制单元还可采用PLC、继电器等常见的可控制电磁控制阀的控制单元。
在采用上述电控制时,插板200断电的情况下保持开关阀70常闭,在插板200上电后(正确插入机框)打开,可以实时打开,也可以延迟一段时间后打开,比如10ms、15ms、20ms之后。
在开关阀70采用温度控制时,开关阀70可为温度阀门,如记忆合金温控阀门。记忆合金温度控制阀门在插板200上电后,记忆合金温度控制阀门中的控制部分(记忆合金)会收缩,带动记忆合金温度控制阀门动作,从而打开阀门。当插板200断电后,记忆合金温度控制阀门中的控制部分(记忆合金)会收缩,带动记忆合金温度控制阀门动作,从而打开阀门。
另外,开关阀70还可采用电磁控制阀,对应的,插板200还包括传感器和控制单 元。其中,传感器用于检测热源(芯片)温度,控制单元用于在传感器检测的温度超过设定值时,控制电磁控制阀打开。示例性的,当芯片的温度大于80度(T1阈值)时打开开关阀70,在芯片的温度低于60度(T2阈值)关闭开关阀70。
在具体控制上述开关阀70时,既可以采用单独的温度控制和电控制,也可采用温度控制和电控制相结合一起控制开关阀70,在本申请实施例中不做具体限定。
在插板插入背板时,换热回路内填充有工质,为方便工质充入到换热回路内,插板上可设置一个充液孔,可通过该充液孔向回液管路40、蒸发管路30及蒸发器10内填充工质。
充液孔可设置在回液管路40、蒸发管路30或蒸发器10上。示例性的,充液孔设置在蒸发管路30,但应理解,在本申请实施例中,充液孔可根据实际需要设置在不同位置,在本申请实施例中不做具体限定。该充液孔也为抽真空孔,以用于对插板200上的管道抽真空。示例性的,通过真空泵于充液孔连接,并进行抽真空,之后充液泵通过充液孔向管道内充入工质。
在对插板200进行充液时,插板200内工质的充液量基于插板200在工作状态时回液管路40和蒸发管路30内的工质含量。示例性的,在插板200正常上电工作时,若插板200内的工质量为100g~180g,则在插板200内的管路充入的工质量在
100g~180g之间,如100g、130g、150g等不同的量。在采用插板200内工质量为插板200正常工作时其包含的工质量时,避免工质充入过多导致在插板200与背板连接后,蒸发器10和冷凝器20组成的换热回路中的工质量过多影响整个换热回路的散热效果。同时,插板200在断电时,开关阀70关闭,冷凝器20的液态工质无法流入到插板200的管路内,使得插板200内的工质量基本保持不变,从而使得该插板200在插入其他背板内时,蒸发器10和冷凝器20组成的换热回路中的工质变化量不会过大。
为方便理解上述插板200内工质的变化情况,详细说明一下插板200的工作状态。插板200上电后,电磁阀打开,蒸发器10与冷凝器20连通组成换热回路。芯片上电发热,液态工质在蒸发器10蒸发吸热后变成气态,由蒸发管路30进入冷凝器20,工质在冷凝器20中冷凝放热变成液态,液态工质由回液管路40回到蒸发器10中,从而形成一个循环回路实现热量的转移。插板200断电时,电磁阀快速关闭断开,换热回路断开,工质在整个回路中的量维持不变。由上述描述可看出,无论是在上电(工作状态)插拔插板200,还是在断电(非工作状态)插拔插板200,对应插板200上的工质量基本一致,从而在维护更换新插板200或者不同槽位插板200互换不会导致环路的工质量产生较大变化,从而维持散热能力的稳定性。
在一些实施例中,为了在对换热回路维护后可快速补充制冷工质,回液管路40上串联有工质平衡装置(图中未显示)。在正常使用时,工质平衡装置内会存储一定的制冷工质,由冷凝器20出来的液态制冷工质经过回液管路40与工质平衡装置,再进入到蒸发器10内。对冷凝器20更换维护并将换热回路连接好后,旧的冷凝器20将会带走一部分制冷工质,在维护过程中还存在制冷工质挥发的情况,使得换热回路的制冷工质总量变少。配置工质平衡装置,可以给换热回路补充制冷工质,使换热回路在维护后能快速投入使用,提高维护的便利性。工质平衡装置作为缓冲和稳定工质分布作用,可规避插板200刚开始上电启动时,由于蒸发器10内压力突然增大导致回 液管路40内部分液态工质倒灌进入到冷凝器20内,导致冷凝器20换热效率低的问题。示例性的,工质平衡装置可以为储液罐,储液罐具有入液端与出液端,入液端与出液端连接在回液管路上,实现储液罐与回液管路的串联。或者,工质平衡装置还可以为设置于第一管道上的积液腔。
示例性的,如图15所示,在回液管路40的延伸方向上,工质平衡装置80位于开关阀70远离蒸发器10的一侧,即工质平衡装置80位于回液管路40的第二快换接头60b与开关阀70之间。回液管路40内的工质在出现倒流时,会流入到工质平衡装置80中,避免其倒流进入到冷凝器20中。另外,工质平衡装置80还可存储过多的工质,降低工质过多影响到整个换热回路的散热效果。
为方便体现工质平衡装置的效果,对带有工质平衡装置和没有工质平衡装置的插板进行实测。其中,有工质平衡装置的插板比无工质平衡装置的插板的过冷度优化2~3℃。且实测300W负载下,有工质平衡装置的插板比无工质平衡装置的插板的过热度要好2.8℃。
参阅图4、图5,本申请实施例提供一种通信设备,包括上述的散热机柜及至少一个插板200,每个插板200设于第一容置区409内,每个插板200具有一个或多个热源器件201;每个蒸发器10与一个或多个热源器件201的外表面热接触。
需要说明的是,上述散热机柜实施例的实现方式同样适用于该通信设备的实施例中,并能达到相同的技术效果,在此不再赘述。
作为本申请的另一个实施例,为了便于将蒸发器与插板快速地装配到柜体内,参阅图4,每个蒸发器10固定于一个或多个热源器件201的外表面上,也就是说,在制造插板200时已经将蒸发器10跟热源器件201一起装配好,在组装插板200时直接将热源器件201上带有蒸发器10的插板200组装到柜体400内,再结合其他器件连接形成换热回路,这样可提高装配效率,无需现场再将蒸发器10安装到热源器件201上。此外,在制造插板200时,还可以将蒸发管路30与回液管路40连接至蒸发器10上,此时,带有热源器件201的插板200、连接有蒸发管路30与回液管路40的蒸发器10作为一个独立部件,可更快地安装至柜体400内,提高装配效率。
作为本申请的另一个实施例,在通信设备为双面插板的正交系统时,参阅图9a、图9b,插板200分为第一插板210与第二插板220,所有第一插板210位于柜体400的前端且沿竖直方向层叠设置,所有第二插板220位于柜体400的后端且沿水平方向层叠设置。对于安装在柜体400内的第一插板210与第二插板220上的热源器件201,均可以采用上述散热装置100,将热源器件201产生的热量拉远至位于第二容置区410内的冷凝器20,冷凝器20作为散热资源池,采用风机50集中对散热资源池冷却,这样第二容置区410路径较短,散热效率较高,实现散热能力最大化。图9a中的箭头为风机50产生的气流方向。
在第一插板与第二插板装配到柜体内时,参阅图4,通信设备还包括背板300,背板300设于柜体400的第一容置区409内;背板300的第一表面具有第一槽位301,第一插板210可插拨地安装于第一槽位301;背板300的第二表面具有第二槽位302,第二插板220可插拨地安装于第二槽位302,使得该散热机柜成为可插拔系统。其中,第一插板210、第二插板220与背板300可以是印刷电路板。在第一插板210或第二 插板220插设于背板300的相应槽位时,背板300给相应的插板供电。由于将冷凝器20移出插板200,在柜体400同样的尺寸空间下,可以增加背板300上的槽位数量,获得槽位数量的竞争优势,布置更多的第一插板210与第二插板220,实现设备容量提升。对插板200上的热源器件201散热能力强,使得插板200可以进行冷热插拔而不影响插板200工作,提高系统可靠性与快速维修性。
示例性的,结合图9a、图9b,在柜体400的第一容置区409内,背板300前侧的第一插板210沿上下方向布置,背板300后侧的第二插板220沿左右方向布置。第二容置区410位于柜体400的上部,并沿柜体400的前后方向延伸,进风口411在柜体400前侧,出风口412在柜体400后侧。风机50设置在第二容置区410的前部区域,冷凝器20位于第二容置区410内,且风机50的出风侧51与冷凝器20的入风侧相对设置。在工作时,风机50产生的气流由柜体400前侧至后侧的方向流动,将冷凝器20放出的热量吹出柜体400外,实现风冷散热。其中,风机50可以呈直线排列,设置在第二容置区410的进风口411处,这样结构紧凑,能对冷凝器20提供充足的风量。
作为本申请的另一个实施例,在通信设备为单面前插板的系统时,参阅图10a、图10b,插板200位于柜体400的前端且沿竖直方向层叠设置。对于安装在柜体400内的插板200上的热源器件201,均可以采用上述散热装置100,将热源器件201产生的热量拉远至位于第二容置区410内的冷凝器20,冷凝器20作为散热资源池,采用风机50集中对散热资源池冷却,这样第二容置区410路径较短,散热效率较高,实现散热能力最大化。图10b中的箭头为风机50产生的气流方向。
在插板装配到柜体内时,参阅图11,通信设备还包括背板300,背板300设于柜体400的第一容置区409内;背板300的第一表面具有第一槽位301,插板200可插拨地安装于第一槽位301,使得该散热机柜成为可插拔系统。在插板200插设于背板300的第一槽位301时,背板300给插板200供电。由于将冷凝器20移出插板200,在柜体400同样的尺寸空间下,可以增加背板300上的槽位数量,获得槽位数量的竞争优势,可以布置更多的插板200,实现设备容量提升。
示例性的,结合图10a、图10b,第一容置区409位于柜体400的前部,背板300前侧层叠设置有多个插板200,背板300后侧没有设置插板。第二容置区410位于柜体400后部靠顶部位置,即冷凝器20设置在背板300的后侧,冷凝器20的位置需高于蒸发器10的位置。进风口411在柜体400前侧或插板200的前面板上,出风口412在柜体400后侧。风机50设置在柜体400的后侧出风口412处,且风机50的入风侧52朝向冷凝器20的出风侧。在工作时,风机50产生的气流由柜体400前侧至后侧的方向流动,将冷凝器20放出的热量吹出柜体400外,实现风冷散热。其中,风机50可以呈阵列布置,并设置在出风口412处,这样结构紧凑,能对冷凝器20提供充足的风量。
一般而言,在整机系统内的承担业务功能的插板200是需要插拔安装维护的,通过在换热回路上设置快换接头,可实现插板200的蒸发端与冷凝器20的分体插拔,克服插板板外冷凝器20受空间及可靠性限制无法与插板一体插拔的缺陷。同时在蒸发端的管路上设置有开关阀70,可以通过开关阀70的通断控制克服插板在不同场景下插拔导致换热回路中工质量分布大幅变化的缺陷。
换热回路分为蒸发端和冷凝端,蒸发端和冷凝端的管路上有快换接头,当快换接头中的公接头和母接头相连接,整个换热回路连接成一体换热回路可正常工作状态;当快换接头断开,整个换热回路成分体状态,分为蒸发端和冷凝端两部分。整个换热回路上设置有开关阀70(图14、图15中示例出了在插板上设置开关阀),开关阀70通过是否上电来控制通断,也可以通过温度是否达到一定阈值等其他方式来控制通断。如当机柜处于上电状态,插板200插入机柜,快换接头连接导通形成一体换热回路,同时插板200的连接器插入背板22的连接器,实现电连接,且插板上电。换热回路上的开关阀70通电导通,换热回路正常工作。在此状态下将插板200拔出,快换接头断开,换热回路成分体状态,插板200的连接器与背板22的连接器同步分开,换热回路上的开关阀70断电,换热回路中的工质分布状态与正常连通上电工作状态保持一致。当机柜处于断电状态,此时插板200插入机柜内时,快换接头连接导通形成一体换热回路,同时插板200的连接器插入背板22的连接器,实现电连接,但插板未上电。换热回路上的开关阀70仍处于断电断开状态,换热回路中的工质分布仍保持插板200插入前断开状态一致,即与正常连通上电工作状态也一致。
通过上述描述,可看出,本申请实施例中,通过将冷凝器20拉远到插板200外的区域,可以不受插板200空间和布局限有效扩大散热面积,从而增大散热能力。并且通过在换热回路的管路上设置快拔装置,解决管路的快速连接和断开的问题。从而实现冷凝器20可设置在插板200以外的区域,可以规避冷凝器20受插板200空间及布局限制导致散热能力受限问题,同时减少占用插板200的空间,提高插板的器件布局空间。冷凝器20可以根据芯片功耗和散热需求有效调整冷凝器20的尺寸和散热面积,以达到更灵活的散热效果。另外,当插板200内蒸发端与板外的冷凝端分体插拔的时候,不同温度状态下插拔替换后,整个换热回路中工质的总量尽量保持一致,确保整个换热回路的冷却散热能力一致。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种散热机柜,其特征在于,包括柜体和至少一个散热装置;
    所述柜体具有第一容置区与第二容置区,所述第一容置区能够层叠地容置具有热源器件的插板;
    每个所述散热装置包括至少一个蒸发器、至少一个冷凝器、蒸发管路、回液管路与风机;每个所述蒸发器用于与一个或多个所述热源器件的外表面热接触;每个所述冷凝器设于所述第二容置区内且位于所述蒸发器的上方;每个所述散热装置中的所述蒸发器、所述冷凝器通过所述蒸发管路与所述回液管路连接并形成换热回路,所述换热回路内填充有制冷工质;所述风机用于对所述冷凝器风冷散热。
  2. 根据权利要求1所述的散热机柜,其特征在于,同一所述散热装置中,每个所述蒸发器具有第一入口端与第一出口端;每个所述冷凝器具有第二入口端与第二出口端;所述蒸发管路的两端分别与所述第一出口端、所述第二入口端连接;所述回液管路的两端分别与所述第二出口端与所述第一入口端连接。
  3. 根据权利要求2所述的散热机柜,其特征在于,所述第二入口端与所述蒸发管路之间通过第一快换接头可拆卸地连接;
    所述第二出口端与所述回液管路之间通过第二快换接头可拆卸地连接。
  4. 根据权利要求3所述的散热机柜,其特征在于,至少所述回液管路设置有开关阀;
    或,所述回液管路和所述蒸发管路均设置有开关阀。
  5. 如权利要求4所述的散热机柜,其特征在于,所述开关阀为电磁控制阀;
    所述散热机柜还包括控制单元,所述控制单元用于控制所述电磁控制阀开闭。
  6. 如权利要求5所述的散热机柜,其特征在于,所述控制单元为设置在插板上的控制电路,所述控制电路在插板与散热机柜的背板导电连通时,控制所述电磁控制阀导通。
  7. 如权利要求5所述的散热机柜,其特征在于,所述散热机柜还包括用于检测插板上热源器件温度的传感器;所述控制单元在所述传感器检测的温度超过设定值时,控制所述电磁控制阀打开。
  8. 根据权利要求3至7任一项所述的散热机柜,其特征在于,所述蒸发管路上用于连接所述第一快换接头的部分为柔性管;或,所述蒸发管路为柔性管;
    所述回液管路上用于连接所述第二快换接头的部分为柔性管;或,所述回液管路为柔性管。
  9. 根据权利要求2至8任一项所述的散热机柜,其特征在于,每个所述冷凝器包括多个换热管与多个散热翅片,若干所述换热管并联间隔设置,每个所述换热管的第一端与所述第二入口端连通,每个所述换热管的第二端与所述第二出口端连通,所述散热翅片与所述换热管连接。
  10. 根据权利要求1至9任一项所述的散热机柜,其特征在于,所述散热装置的数量为多个,其中至少两个所述散热装置中的所述冷凝器相邻设置;
    或,所述散热装置的数量为多个,其中至少两个所述散热装置共用一个所述冷凝器。
  11. 根据权利要求1至10任一项所述的散热机柜,其特征在于,所述散热装置还包括固定于所述蒸发器上的散热器。
  12. 根据权利要求1至11任一项所述的散热机柜,其特征在于,所述回液管路上串联有工质平衡装置,用于在对所述换热回路维护后补充制冷工质。
  13. 根据权利要求12所述的散热机柜,其特征在于,当所述回液管路设置有开关阀时,在所述回液管路的延伸方向上,所述工质平衡装置位于所述开关阀远离所述蒸发器的一侧。
  14. 一种通信设备,其特征在于,包括如权利要求1至12任一项所述的散热机柜及至少一个插板,每个所述插板设于所述第一容置区内,每个所述插板具有一个或多个热源器件;每个所述蒸发器与一个或多个所述热源器件的外表面热接触。
  15. 根据权利要求14所述的通信设备,其特征在于,每个所述蒸发器固定于一个或多个所述热源器件的外表面上。
  16. 根据权利要求14或15所述的通信设备,其特征在于,所述插板分为第一插板与第二插板,所有所述第一插板位于所述柜体的前端且沿竖直方向层叠设置,所有所述第二插板位于所述柜体的后端且沿水平方向层叠设置;
    或,所有所述插板位于所述柜体的前端且沿竖直方向层叠设置。
  17. 根据权利要求16所述的通信设备,其特征在于,当所述插板分为第一插板与第二插板时,所述通信设备还包括背板,所述背板设于所述第一容置区内;所述背板的第一表面具有第一槽位,所述第一插板可插拨地安装于所述第一槽位;所述背板的第二表面具有第二槽位,所述第二插板可插拨地安装于所述第二槽位;
    当所有所述插板位于所述柜体的前端且沿竖直方向层叠设置时,所述通信设备还包括背板,所述背板设于所述第一容置区内;所述背板的第一表面具有第一槽位,所述插板可插拨地安装于所述第一槽位。
PCT/CN2021/107445 2020-07-28 2021-07-20 一种散热机柜及通信设备 WO2022022343A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21850083.3A EP4188045A4 (en) 2020-07-28 2021-07-20 HEAT DISSIPATION CABINET AND COMMUNICATION DEVICE
US18/159,709 US20230225081A1 (en) 2020-07-28 2023-01-26 Heat dissipation cabinet and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010749348.6A CN114007372A (zh) 2020-07-28 2020-07-28 一种散热机柜及通信设备
CN202010749348.6 2020-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/159,709 Continuation US20230225081A1 (en) 2020-07-28 2023-01-26 Heat dissipation cabinet and communications device

Publications (1)

Publication Number Publication Date
WO2022022343A1 true WO2022022343A1 (zh) 2022-02-03

Family

ID=79920767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107445 WO2022022343A1 (zh) 2020-07-28 2021-07-20 一种散热机柜及通信设备

Country Status (4)

Country Link
US (1) US20230225081A1 (zh)
EP (1) EP4188045A4 (zh)
CN (1) CN114007372A (zh)
WO (1) WO2022022343A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721483A (zh) * 2022-04-26 2022-07-08 湖南汽车工程职业学院 一种计算机机箱用的自冷却散热装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112839490B (zh) * 2021-01-25 2022-07-01 东南大学 一种两相流主被动式多层级数据中心机柜散热装置及方法
CN117135869A (zh) * 2022-05-20 2023-11-28 华为技术有限公司 一种散热装置、连接结构及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103687384A (zh) * 2013-12-03 2014-03-26 华为技术有限公司 一种带制冷空调的通信机柜
CN103687446A (zh) * 2013-12-05 2014-03-26 浙江大学 机架式服务器机柜的高效散热空调系统
US20160265830A1 (en) * 2015-03-11 2016-09-15 Wick G. Weckwerth Method and Apparatus for Monitoring and Controlling Absorption Cooling Units
CN110139535A (zh) * 2019-03-26 2019-08-16 江苏南通申通机械有限公司 一种具有相变冷却装置的机柜
CN213126882U (zh) * 2020-07-28 2021-05-04 华为技术有限公司 一种散热机柜及通信设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE64808T1 (de) * 1985-12-13 1991-07-15 Hasler Ag Ascom Verfahren und vorrichtung zum abfuehren der verlustwaerme wenigstens einer baugruppe elektrischer elemente.
US6223810B1 (en) * 1998-03-31 2001-05-01 International Business Machines Extended air cooling with heat loop for dense or compact configurations of electronic components
US9282682B2 (en) * 2009-12-23 2016-03-08 Telefonaktiebolaget L M Ericsson (Publ) Heat conducting mounting structure, method and radio base station housing arrangement for mounting electronic modules
WO2015114742A1 (ja) * 2014-01-29 2015-08-06 株式会社日立製作所 電子機器冷却装置
US10448543B2 (en) * 2015-05-04 2019-10-15 Google Llc Cooling electronic devices in a data center

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103687384A (zh) * 2013-12-03 2014-03-26 华为技术有限公司 一种带制冷空调的通信机柜
CN103687446A (zh) * 2013-12-05 2014-03-26 浙江大学 机架式服务器机柜的高效散热空调系统
US20160265830A1 (en) * 2015-03-11 2016-09-15 Wick G. Weckwerth Method and Apparatus for Monitoring and Controlling Absorption Cooling Units
CN110139535A (zh) * 2019-03-26 2019-08-16 江苏南通申通机械有限公司 一种具有相变冷却装置的机柜
CN213126882U (zh) * 2020-07-28 2021-05-04 华为技术有限公司 一种散热机柜及通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4188045A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721483A (zh) * 2022-04-26 2022-07-08 湖南汽车工程职业学院 一种计算机机箱用的自冷却散热装置
CN114721483B (zh) * 2022-04-26 2023-07-28 湖南汽车工程职业学院 一种计算机机箱用的自冷却散热装置

Also Published As

Publication number Publication date
EP4188045A1 (en) 2023-05-31
EP4188045A4 (en) 2023-12-27
US20230225081A1 (en) 2023-07-13
CN114007372A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2022022343A1 (zh) 一种散热机柜及通信设备
US8953317B2 (en) Wicking vapor-condenser facilitating immersion-cooling of electronic component(s)
US9930807B2 (en) Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader
US8619425B2 (en) Multi-fluid, two-phase immersion-cooling of electronic component(s)
JP4199018B2 (ja) ラックマウントサーバシステム
US9282678B2 (en) Field-replaceable bank of immersion-cooled electronic components and separable heat sinks
US9101078B2 (en) Data center cooling with an air-side economizer and liquid-cooled electronics rack(s)
CN105555106A (zh) 用于机柜的冷却装置和机柜
CN213126882U (zh) 一种散热机柜及通信设备
WO2017124689A1 (zh) 用于数据中心机柜的冷却装置、机柜和冷却系统
CN110243217A (zh) 一种带有包围式储液室的平板型环路热管蒸发器
EP3349556B1 (en) Air inlet channel with thermoelectric cooling element
CN114217678A (zh) 一种服务器
CA3161561A1 (en) Cooling system of electronic systems, in particular for data centre
CN213811888U (zh) 一种热管换热装置及换热系统
WO2023221638A1 (zh) 一种散热装置、连接结构及电子设备
CN207219276U (zh) 发热件散热器及包括其的空调器
WO2024011920A1 (zh) 计算设备及基于相变浸没液冷系统的液冷工质分配单元
CN216218406U (zh) 制冷装置和通信系统
CN217685493U (zh) 空调室外机及空调器
CN219419202U (zh) 一种液冷散热回路及储能设备
CN212618821U (zh) 一种空调外机控制器冷却装置、室外机及空调器
CN217283853U (zh) 数据中心
WO2023274224A1 (zh) 一种单板、机柜及数据中心
CN116772514A (zh) 一种用于半导体封装的冷却设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850083

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021850083

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021850083

Country of ref document: EP

Effective date: 20230224

NENP Non-entry into the national phase

Ref country code: DE