US20120160454A1 - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- US20120160454A1 US20120160454A1 US12/977,069 US97706910A US2012160454A1 US 20120160454 A1 US20120160454 A1 US 20120160454A1 US 97706910 A US97706910 A US 97706910A US 2012160454 A1 US2012160454 A1 US 2012160454A1
- Authority
- US
- United States
- Prior art keywords
- space
- heat
- heat exchanger
- unit
- enclosure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/043—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a heat exchanger, and more particularly to a heat exchanger that includes a vaporization unit and a cooling unit, with which a working fluid is able to convert between vapor state and liquid state to enable upgraded heat exchange efficiency of the heat exchanger.
- Heat can be transferred in three different ways, namely, conduction, convection, and radiation.
- heat conduction heat is transferred from a position with higher temperature to another position with lower temperature via a medium.
- heat convection a heated fluid, such as air or water, is caused to change in its density and accordingly, result in circulation and movement of the fluid.
- heat radiation heat is directly transferred into air without any medium.
- convection is the most effect way to transfer heat.
- a heat sink is usually used to directly contact with a heat source, so that heat from the heat source can be radiated into ambient environment from the large contact area provided by the heat sink to achieve the purpose of heat dissipation.
- a prior art heat exchanger there are provided one or more independent spaces or flow passages. Cold and hot fluid flows through the independent spaces or flow passages to cause heat convection and heat exchange.
- a cooling fan can be further mounted to the heat sink and the heat exchanger. The fan draws in air to enable forced convection and forced heat exchange. Even if a fan is additionally provided to force airflow through the heat sink and the heat exchanger in order to cause forced convection and increased heat exchange effect, the heat exchange efficiency of the conventional heat exchanger is still insufficient and requires improvement. That is, the conventional heat exchanger has relatively low heat exchange efficiency.
- a primary object of the present invention is to provide a heat exchanger that enables upgraded heat exchange efficiency.
- the heat exchanger includes an enclosure, a first forced convection element, a cooling unit, a second forced convection element, a vaporization unit, and a heat transfer unit.
- the enclosure internally provides at least a first space and at least a second space; and the first space has a first inlet and a first outlet, and the second space has a second inlet and a second outlet.
- the first forced convection element is arranged in the first space, and has a first air-in side and a first air-out side, and the first air-in side is located close to and aligns with the first inlet.
- the cooling unit is arranged in the first space to face toward the first outlet.
- the second forced convection element is arranged in the second space, and has a second air-in side and a second air-out side, and the second air-in side is located close to and aligns with the second inlet.
- the vaporization unit is arranged in the second space to face toward the second outlet.
- the heat transfer unit serially connects the cooling unit and the vaporization unit to form a loop.
- the first and the second forced convection element work to enable forced convection of airflow, and the vaporization unit and the cooling unit together with the heat transfer unit form a convection unit. As a result, the heat exchanger has largely upgraded heat exchange efficiency.
- FIG. 1 is an exploded perspective view of a heat exchanger according to a first embodiment of the present invention
- FIG. 2 is an assembled view of the heat exchanger according to the first embodiment of the present invention.
- FIG. 3 is an assembled sectional view of the heat exchanger according to the first embodiment of the present invention.
- FIG. 4 is an assembled sectional view of a heat exchanger according to a second embodiment of the present invention, which has an enclosure structure different from that of the first embodiment;
- FIG. 5 is a sectional view showing the heat exchanger of the present invention in use.
- FIGS. 1 and 2 are exploded and assembled perspective views, respectively, of a heat exchanger according to a first embodiment of the present invention
- FIG. 3 that is an assembled sectional view of the heat exchanger of FIG. 1
- the heat exchanger according to the present invention includes an enclosure 1 , a first forced convection element 2 , a cooling unit 3 , a second forced convection element 4 , a vaporization unit 5 , and a heat transfer unit 6 .
- the enclosure 1 internally provides at least a first space 11 and at least a second space 12 .
- the first space 11 has a first inlet 111 and a first outlet 112 ; and the second space 12 has a second inlet 121 and a second outlet 122 .
- the first forced convection element 2 is arranged in the first space 11 in the enclosure 1 , and includes a first air-in side 21 and a first air-out side 22 .
- the first air-in side 21 is located close to and aligns with the first inlet 111 .
- the cooling unit 3 is arranged in the first space 11 to face toward the first outlet 112 .
- the cooling unit 3 can be a heat sink or a radiating fin assembly. While the cooling unit 3 in the illustrated first embodiment of the present invention is described as a heat sink, it is understood the cooling unit 3 can be differently configured without being limited thereto.
- the second forced convection element 4 is arranged in the second space 12 in the enclosure 1 , and has a second air-in side 41 and a second air-out side 42 .
- the second air-in side 41 is located close to and aligns with the second inlet 121 .
- the vaporization unit 5 is arranged in the second space 12 to face toward the second outlet 122 .
- the vaporization unit 5 can be a vapor chamber or a flat heat pipe. While the vaporization unit 5 in the illustrated first embodiment of the present invention is described as a vapor chamber, it is understood the vaporization unit 5 can be differently configured without being limited thereto.
- the heat transfer unit 6 serially connects the cooling unit 3 and the vaporization unit 5 to form a loop.
- the heat transfer unit 6 can be a heat pipe or a flat heat pipe. While the heat transfer unit 6 in the illustrated first embodiment of the present invention is described as a heat pipe, it is understood the heat transfer unit 6 can be differently configured without being limited thereto. Further, the heat transfer unit 6 is internally provided with a capillary structure 8 .
- the first and the second forced convection element 2 , 4 are respectively a centrifugal fan.
- the enclosure 1 is formed from a first enclosure 1 a , a second enclosure 1 b , and a partition plate 1 c .
- the first and the second enclosure 1 a , 1 b are closed to each other to define a space therein.
- the partition plate 1 c is located between the first and the second enclosure 1 a , 1 b to divide the space in the enclosure 1 into the first space 11 and the second space 12 .
- FIG. 4 is a sectional view showing a heat exchanger according to a second embodiment of the present invention.
- the heat exchanger in the second embodiment is different from the first embodiment in having a first enclosure 1 a and a second enclosure 1 b that are correspondingly connected to each other to cooperatively define the first space 11 and the second space 12 in the enclosure 1 .
- FIG. 5 shows the heat exchanger of the present invention in use.
- the heat exchanger has an enclosure 1 , a first forced convection element 2 , a cooling unit 3 , a second forced convection element 4 , a vaporization unit 5 , and a heat transfer unit 6 .
- the enclosure 1 internally provides two independent spaces, namely, a first space 11 and a second space 12 .
- the first forced convection element 2 and the cooling unit 3 are arranged in the first space 11
- the second forced convection element 4 and the vaporization unit 5 are arranged in the second space 12 .
- the heat transfer unit 6 is extended between the first and the second space 11 , 12 to serially connect the cooling unit 3 and the vaporization unit 5 to thereby form a loop.
- the second forced convection element 4 operates to draw airflow 7 to flow through the second inlet 121 on the enclosure 1 and the second air-in side 41 of the second forced convection element 4 , and is pressurized in the second forced convection element 4 before exiting the latter via the second air-out side 42 thereof to flow into the second space 12 . Thereafter, the airflow 7 passes the vaporization unit 5 before exiting the second space 12 via the second outlet 122 .
- the process of actuating the forced convection elements 2 , 4 for the airflow 7 to exchange heat with the cooling unit 3 and the vaporization unit 5 has been described above.
- Another heat-exchange mechanism according to the present invention is described below.
- the vaporization unit 5 and the cooling unit 3 are serially connected with each other by the heat transfer unit 6 .
- the vaporization unit 5 and the heat transfer unit 6 are internally provided with a capillary structure 8 and a fluid 9 .
- the vaporization unit 5 which is a vapor chamber in the illustrated embodiments of the present invention, absorbs heat contained in the airflow 7 that is drawn into the second space 12 by the second forced convection element 4 .
- the heat absorbed by the vaporization unit 5 is transferred via the heat transfer unit 6 to the cooling unit 3 in the first space 11 , so that the fluid 9 in the heat transfer unit 6 exchanges heat with the cooling unit 3 and become cooled.
- the cooled fluid 9 flows through the heat exchange unit 6 back to the vaporization unit 5 to complete one cycle of heat exchange process.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
A heat exchanger includes an enclosure internally providing at least a first space and at least a second space; a first forced convection element and a cooling unit arranged in the first space; a second forced convection element and a vaporization unit arranged in the second space; and a heat transfer unit serially connecting the cooling unit and the vaporization unit to form a loop. The first and the second forced convection element work to enable forced convection of airflow, and the vaporization unit and the cooling unit together with the heat transfer unit form a convection unit. As a result, the heat exchanger has largely upgraded heat exchange efficiency.
Description
- The present invention relates to a heat exchanger, and more particularly to a heat exchanger that includes a vaporization unit and a cooling unit, with which a working fluid is able to convert between vapor state and liquid state to enable upgraded heat exchange efficiency of the heat exchanger.
- Heat can be transferred in three different ways, namely, conduction, convection, and radiation. In heat conduction, heat is transferred from a position with higher temperature to another position with lower temperature via a medium. In heat convection, a heated fluid, such as air or water, is caused to change in its density and accordingly, result in circulation and movement of the fluid. In heat radiation, heat is directly transferred into air without any medium.
- In the case of a fluid, convection is the most effect way to transfer heat. Conventionally, when utilizing convection to dissipate heat, a heat sink is usually used to directly contact with a heat source, so that heat from the heat source can be radiated into ambient environment from the large contact area provided by the heat sink to achieve the purpose of heat dissipation.
- In a prior art heat exchanger, there are provided one or more independent spaces or flow passages. Cold and hot fluid flows through the independent spaces or flow passages to cause heat convection and heat exchange. A cooling fan can be further mounted to the heat sink and the heat exchanger. The fan draws in air to enable forced convection and forced heat exchange. Even if a fan is additionally provided to force airflow through the heat sink and the heat exchanger in order to cause forced convection and increased heat exchange effect, the heat exchange efficiency of the conventional heat exchanger is still insufficient and requires improvement. That is, the conventional heat exchanger has relatively low heat exchange efficiency.
- A primary object of the present invention is to provide a heat exchanger that enables upgraded heat exchange efficiency.
- To achieve the above and other objects, the heat exchanger according to the present invention includes an enclosure, a first forced convection element, a cooling unit, a second forced convection element, a vaporization unit, and a heat transfer unit. The enclosure internally provides at least a first space and at least a second space; and the first space has a first inlet and a first outlet, and the second space has a second inlet and a second outlet. The first forced convection element is arranged in the first space, and has a first air-in side and a first air-out side, and the first air-in side is located close to and aligns with the first inlet. The cooling unit is arranged in the first space to face toward the first outlet. The second forced convection element is arranged in the second space, and has a second air-in side and a second air-out side, and the second air-in side is located close to and aligns with the second inlet. The vaporization unit is arranged in the second space to face toward the second outlet. The heat transfer unit serially connects the cooling unit and the vaporization unit to form a loop. The first and the second forced convection element work to enable forced convection of airflow, and the vaporization unit and the cooling unit together with the heat transfer unit form a convection unit. As a result, the heat exchanger has largely upgraded heat exchange efficiency.
- The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
-
FIG. 1 is an exploded perspective view of a heat exchanger according to a first embodiment of the present invention; -
FIG. 2 is an assembled view of the heat exchanger according to the first embodiment of the present invention; -
FIG. 3 is an assembled sectional view of the heat exchanger according to the first embodiment of the present invention; -
FIG. 4 is an assembled sectional view of a heat exchanger according to a second embodiment of the present invention, which has an enclosure structure different from that of the first embodiment; and -
FIG. 5 is a sectional view showing the heat exchanger of the present invention in use. - The present invention will now be described with some preferred embodiments thereof. For the purpose of easy to understand, elements that are the same in the preferred embodiments are denoted by the same reference numerals.
- Please refer to
FIGS. 1 and 2 that are exploded and assembled perspective views, respectively, of a heat exchanger according to a first embodiment of the present invention; and toFIG. 3 that is an assembled sectional view of the heat exchanger ofFIG. 1 . As shown, the heat exchanger according to the present invention includes an enclosure 1, a first forcedconvection element 2, acooling unit 3, a second forcedconvection element 4, avaporization unit 5, and aheat transfer unit 6. - The enclosure 1 internally provides at least a
first space 11 and at least asecond space 12. Thefirst space 11 has afirst inlet 111 and afirst outlet 112; and thesecond space 12 has asecond inlet 121 and asecond outlet 122. - The first forced
convection element 2 is arranged in thefirst space 11 in the enclosure 1, and includes a first air-inside 21 and a first air-outside 22. The first air-inside 21 is located close to and aligns with thefirst inlet 111. - The
cooling unit 3 is arranged in thefirst space 11 to face toward thefirst outlet 112. Thecooling unit 3 can be a heat sink or a radiating fin assembly. While thecooling unit 3 in the illustrated first embodiment of the present invention is described as a heat sink, it is understood thecooling unit 3 can be differently configured without being limited thereto. - The second forced
convection element 4 is arranged in thesecond space 12 in the enclosure 1, and has a second air-inside 41 and a second air-outside 42. The second air-inside 41 is located close to and aligns with thesecond inlet 121. - The
vaporization unit 5 is arranged in thesecond space 12 to face toward thesecond outlet 122. Thevaporization unit 5 can be a vapor chamber or a flat heat pipe. While thevaporization unit 5 in the illustrated first embodiment of the present invention is described as a vapor chamber, it is understood thevaporization unit 5 can be differently configured without being limited thereto. - The
heat transfer unit 6 serially connects thecooling unit 3 and thevaporization unit 5 to form a loop. Theheat transfer unit 6 can be a heat pipe or a flat heat pipe. While theheat transfer unit 6 in the illustrated first embodiment of the present invention is described as a heat pipe, it is understood theheat transfer unit 6 can be differently configured without being limited thereto. Further, theheat transfer unit 6 is internally provided with acapillary structure 8. - In a preferred embodiment of the present invention, the first and the second forced
convection element - The enclosure 1 is formed from a first enclosure 1 a, a
second enclosure 1 b, and apartition plate 1 c. The first and thesecond enclosure 1 a, 1 b are closed to each other to define a space therein. Thepartition plate 1 c is located between the first and thesecond enclosure 1 a, 1 b to divide the space in the enclosure 1 into thefirst space 11 and thesecond space 12. - Please refer to
FIG. 4 that is a sectional view showing a heat exchanger according to a second embodiment of the present invention. The heat exchanger in the second embodiment is different from the first embodiment in having a first enclosure 1 a and asecond enclosure 1 b that are correspondingly connected to each other to cooperatively define thefirst space 11 and thesecond space 12 in the enclosure 1. - Please refer to
FIG. 5 that shows the heat exchanger of the present invention in use. As shown, the heat exchanger has an enclosure 1, a first forcedconvection element 2, acooling unit 3, a second forcedconvection element 4, avaporization unit 5, and aheat transfer unit 6. - The enclosure 1 internally provides two independent spaces, namely, a
first space 11 and asecond space 12. The first forcedconvection element 2 and thecooling unit 3 are arranged in thefirst space 11, while the second forcedconvection element 4 and thevaporization unit 5 are arranged in thesecond space 12. Theheat transfer unit 6 is extended between the first and thesecond space cooling unit 3 and thevaporization unit 5 to thereby form a loop. - When the first forced
convection element 2 operates, external airflow 7 is drawn to flow through thefirst inlet 111 on the enclosure 1 and the first air-inside 21 of the first forcedconvection element 2, and is pressurized in the first forcedconvection element 2 before exiting the latter via the first air-outside 22 thereof to flow into thefirst space 11. Thereafter, the airflow 7 flows through thecooling unit 3 before exiting thefirst space 11 via thefirst outlet 112. - The second forced
convection element 4 operates to draw airflow 7 to flow through thesecond inlet 121 on the enclosure 1 and the second air-inside 41 of the second forcedconvection element 4, and is pressurized in the second forcedconvection element 4 before exiting the latter via the second air-outside 42 thereof to flow into thesecond space 12. Thereafter, the airflow 7 passes thevaporization unit 5 before exiting thesecond space 12 via thesecond outlet 122. - The process of actuating the forced
convection elements cooling unit 3 and thevaporization unit 5 has been described above. Another heat-exchange mechanism according to the present invention is described below. As having been mentioned above, thevaporization unit 5 and thecooling unit 3 are serially connected with each other by theheat transfer unit 6. Further, thevaporization unit 5 and theheat transfer unit 6 are internally provided with acapillary structure 8 and a fluid 9. - The
vaporization unit 5, which is a vapor chamber in the illustrated embodiments of the present invention, absorbs heat contained in the airflow 7 that is drawn into thesecond space 12 by the second forcedconvection element 4. The heat absorbed by thevaporization unit 5 is transferred via theheat transfer unit 6 to thecooling unit 3 in thefirst space 11, so that the fluid 9 in theheat transfer unit 6 exchanges heat with thecooling unit 3 and become cooled. Finally, the cooled fluid 9 flows through theheat exchange unit 6 back to thevaporization unit 5 to complete one cycle of heat exchange process.
Claims (8)
1. A heat exchanger, comprising:
an enclosure internally providing at least a first space and at least a second space;
the first space having a first inlet and a first outlet, and the second space having a second inlet and a second outlet;
a first forced convection element being arranged in the first space, and having a first air-in side and a first air-out side; and the first air-in side being located close to and aligned with the first inlet;
a cooling unit being arranged in the first space to face toward the first outlet;
a second forced convection element being arranged in the second space, and having a second air-in side and a second air-out side; and the second air-in side being located close to and aligned with the second inlet;
a vaporization unit being arranged in the second space to face toward the second outlet; and
a heat transfer unit serially connecting the cooling unit and the vaporization unit.
2. The heat exchanger as claimed in claim 1 , wherein the first and the second forced convection element are respectively a centrifugal fan.
3. The heat exchanger as claimed in claim 1 , wherein the cooling unit is selected from the group consisting of a heat sink and a radiating fin assembly.
4. The heat exchanger as claimed in claim 1 , wherein the heat transfer unit is selected from the group consisting of a heat pipe and a flat heat pipe.
5. The heat exchanger as claimed in claim 1 , wherein the vaporization unit is selected from the group consisting of a vapor chamber and a flat heat pipe.
6. The heat exchanger as claimed in claim 1 , wherein the heat transfer unit is internally provided with a capillary structure.
7. The heat exchanger as claimed in claim 1 , wherein the enclosure includes a first enclosure and a second enclosure, and the first and the second enclosure being correspondingly closed to each other to define the first and the second space, respectively.
8. The heat exchanger as claimed in claim 1 , wherein the enclosure is internally provided with a partition plate to define the first and the second space in the enclosure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/977,069 US20120160454A1 (en) | 2010-12-23 | 2010-12-23 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/977,069 US20120160454A1 (en) | 2010-12-23 | 2010-12-23 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120160454A1 true US20120160454A1 (en) | 2012-06-28 |
Family
ID=46315271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/977,069 Abandoned US20120160454A1 (en) | 2010-12-23 | 2010-12-23 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
US (1) | US20120160454A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160183398A1 (en) * | 2014-12-18 | 2016-06-23 | Smart Energy, Inc. | Heater exchanger |
US20180132380A1 (en) * | 2016-11-07 | 2018-05-10 | Rockwell Automation Technologies, Inc. | Controller with enhanced thermal properties |
CN109152273A (en) * | 2017-06-15 | 2019-01-04 | 广达电脑股份有限公司 | Electronic device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2401560A (en) * | 1944-01-31 | 1946-06-04 | Gen Motors Corp | Refrigerating apparatus |
US5189884A (en) * | 1991-05-02 | 1993-03-02 | Sami Samuel M | Passive heat pump with non-azeotropic refrigerant |
US20050061485A1 (en) * | 2002-07-09 | 2005-03-24 | Kazuo Hirafuji | Heat exchanger |
US20050263266A1 (en) * | 2004-05-27 | 2005-12-01 | Lg Electronics Inc. | Ventilator |
US7209356B2 (en) * | 2003-11-11 | 2007-04-24 | Fu Zhun Precision Ind? (Shenzhen) Co., Ltd. | Heat dissipation device |
US20090009969A1 (en) * | 2007-07-02 | 2009-01-08 | Cooler Master Co., Ltd. | Heat-dissipating casing structure |
US20090084525A1 (en) * | 2007-09-28 | 2009-04-02 | Matsushita Electric Industrial Co., Ltd. | Heatsink apparatus and electronic device having the same |
-
2010
- 2010-12-23 US US12/977,069 patent/US20120160454A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2401560A (en) * | 1944-01-31 | 1946-06-04 | Gen Motors Corp | Refrigerating apparatus |
US5189884A (en) * | 1991-05-02 | 1993-03-02 | Sami Samuel M | Passive heat pump with non-azeotropic refrigerant |
US20050061485A1 (en) * | 2002-07-09 | 2005-03-24 | Kazuo Hirafuji | Heat exchanger |
US7209356B2 (en) * | 2003-11-11 | 2007-04-24 | Fu Zhun Precision Ind? (Shenzhen) Co., Ltd. | Heat dissipation device |
US20050263266A1 (en) * | 2004-05-27 | 2005-12-01 | Lg Electronics Inc. | Ventilator |
US20090009969A1 (en) * | 2007-07-02 | 2009-01-08 | Cooler Master Co., Ltd. | Heat-dissipating casing structure |
US20090084525A1 (en) * | 2007-09-28 | 2009-04-02 | Matsushita Electric Industrial Co., Ltd. | Heatsink apparatus and electronic device having the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160183398A1 (en) * | 2014-12-18 | 2016-06-23 | Smart Energy, Inc. | Heater exchanger |
US9730362B2 (en) * | 2014-12-18 | 2017-08-08 | Ezconn Corporation | Heater exchanger |
US20180132380A1 (en) * | 2016-11-07 | 2018-05-10 | Rockwell Automation Technologies, Inc. | Controller with enhanced thermal properties |
US10238004B2 (en) * | 2016-11-07 | 2019-03-19 | Rockwell Automation Technologies, Inc. | Controller with enhanced thermal properties |
US10912233B2 (en) | 2016-11-07 | 2021-02-02 | Rockwell Automation Technologies, Inc. | Controller with heat sink clamping plate for enhanced thermal properties |
CN109152273A (en) * | 2017-06-15 | 2019-01-04 | 广达电脑股份有限公司 | Electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017148050A1 (en) | Cooling device for data centre machine cabinet, machine cabinet, and cooling system | |
CN105682423B (en) | Heat dissipation equipment | |
US20090272144A1 (en) | Computer cooling apparatus | |
US20190041105A1 (en) | Heat-exchange structure for water cooling device | |
JP6138093B2 (en) | Server cooling system and cooling method thereof | |
CN106304805A (en) | A kind of plate-fin microcirculation radiator and microcirculation heat-exchange system | |
US11755079B2 (en) | Computer device, casing, and water cooling heat dissipation device | |
CN107548263B (en) | High heat flux density cabinet heat dissipation cooling method and composite heat exchanger thereof | |
US7669642B1 (en) | Thermal module | |
US20110192572A1 (en) | Heat exchanger | |
CN110043972A (en) | A kind of radiator, air-conditioner outdoor unit and air conditioner | |
US20120160454A1 (en) | Heat exchanger | |
US20190226769A1 (en) | Vapor-liquid phase fluid heat transfer module | |
TWM554979U (en) | Phase-change evaporator and phase-change heat dissipation device | |
US20120255708A1 (en) | Heat exchange apparatus | |
CN106051955A (en) | Heat radiation assembly of air conditioner outdoor unit and air conditioner outdoor unit | |
CN201166825Y (en) | Water-cooled notebook computer radiator | |
CN211607189U (en) | Liquid cooling device with pumping structure | |
CN111366018B (en) | Semiconductor refrigeration heat dissipation assembly and semiconductor refrigeration equipment | |
CN220356125U (en) | Cooling tower system | |
CN206258805U (en) | A kind of heat abstractor for full ruggedized computer | |
TWI708034B (en) | Refrigeration module with air flow channel and air conditioner with refrigeration module | |
JP3166255U (en) | Heat exchanger structure | |
CN222022492U (en) | Thermal management system, cold and warm box device and vehicle | |
CN219328973U (en) | Heat radiation structure and projector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ASIA VITAL COMPONENTS CO., LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHANG, LI-DONG, MR.;REEL/FRAME:025563/0042 Effective date: 20101223 |
|
AS | Assignment |
Owner name: GENENTECH, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, HUIFEN;GAZZARD, LEWIS J.;LYSSIKATOS, JOSEPH;SIGNING DATES FROM 20110104 TO 20110106;REEL/FRAME:025724/0421 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |