WO2022247521A1 - 服务器及机柜 - Google Patents

服务器及机柜 Download PDF

Info

Publication number
WO2022247521A1
WO2022247521A1 PCT/CN2022/087290 CN2022087290W WO2022247521A1 WO 2022247521 A1 WO2022247521 A1 WO 2022247521A1 CN 2022087290 W CN2022087290 W CN 2022087290W WO 2022247521 A1 WO2022247521 A1 WO 2022247521A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
heat exchange
insulating
interface
component
Prior art date
Application number
PCT/CN2022/087290
Other languages
English (en)
French (fr)
Inventor
贾晖
姚希栋
陈杨
Original Assignee
华为云计算技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为云计算技术有限公司 filed Critical 华为云计算技术有限公司
Publication of WO2022247521A1 publication Critical patent/WO2022247521A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the technical field of cooling of electronic components, in particular to a server and a cabinet.
  • a server node (also referred to as a single board) is arranged in a sealed container, and the container is filled with cooling fluid, and the server node is immersed in the cooling fluid to exchange heat with the cooling fluid.
  • the container is connected with an input pipeline and an output pipeline.
  • the input pipeline is used to send the cooled cooling fluid into the container, and the output pipeline is used to discharge the heated cooling fluid out of the container.
  • This cycle realizes the cooling of the server node. heat dissipation; a heat exchanger can also be added in the sealed container to cool down the cooling medium in the local area of the container, and these local areas can be the area where the electronic components with high power consumption on the server node are located.
  • Embodiments of the present application provide a server and a cabinet, which can solve the problem of heat dissipation of electronic components such as chips with high power consumption on server nodes.
  • An embodiment of the present application provides a server on the one hand, including a casing, the casing is installed with server nodes, heat exchange components and flow path components; the casing is equipped with a cooling medium for heat exchange with the server nodes;
  • the circuit part has a total inlet, a first interface communicated with the total inlet, a total outlet, and a second interface communicated with the total outlet, wherein the total inlet is used for the inflow of cooling liquid, and the total outlet is used for the outflow of cooling liquid;
  • the heat exchange component Used to contact with the electronic components of the server node for heat exchange, the heat exchange component is connected with a liquid inlet pipe and a liquid outlet pipe, the liquid inlet pipe is connected with a first interface, and the liquid outlet pipe is connected with a second interface; thus , after the coolant flows into the flow path components from the main inlet, it flows into the heat exchange components through the first interface and the liquid inlet pipe, and then flows out of the flow path components through the liquid outlet pipe, the second interface and the
  • heat exchange is performed with the server node through the cooling working fluid installed in the casing to dissipate heat from the server node to meet the heat dissipation requirements of the electronic components with low power consumption of the server node.
  • the hot electronic components can be electronic components with high power consumption of the server node, which solves the heat dissipation problem of electronic components such as chips with high power consumption of the server node, and improves the overall heat dissipation effect of the server node.
  • the embodiment of the present application also provides the first implementation mode of one aspect: there are multiple heat exchange components installed in the casing, and correspondingly, there are also multiple electronic components in surface contact with the heat exchange components; each Each heat exchange part is connected with a liquid inlet pipe and a liquid outlet pipe, and the flow path part has a first interface with the same number as the liquid inlet pipe, and has a second interface with the same number as the liquid outlet pipe.
  • each heat exchange component is connected to the flow path component through an independent pipeline, so that the cooling liquid flowing into the flow path component can flow to each heat exchange component at the same time, and the heat dissipation effect of the electronic components in contact with the heat exchange component can be ensured.
  • the embodiment of the present application also provides a second implementation mode of one aspect: the flow path component includes a first part and a second part, and both the main inlet and the first interface are formed in the first part.
  • the first part is also formed with a flow channel connecting the main inlet and the first interface
  • the main outlet and the second interface are both formed in the second part
  • the second part is also formed with a flow channel connecting the main outlet and the second interface.
  • the embodiment of the present application also provides a third implementation in one aspect: the first part and the second part are integrally formed; or the first part and the second part are two relatively independent part. Setting the flow path components into an integrated structure facilitates the reduction of parts and simplifies the assembly process; setting the flow path components into a split structure facilitates layout and high flexibility.
  • the embodiment of the present application also provides a fourth implementation of one aspect: there are multiple server nodes installed in the cabinet, Each server node is inserted vertically in the casing. In this way, it is beneficial to arrange multiple server nodes in the casing, and it is also convenient to dissipate heat for each server node.
  • the server further includes a first external cooling device, which is located in The flow path components in the casing are connected with the first external refrigeration equipment to form a circulation loop, and the first external refrigeration equipment is used to cool the cooling liquid in the circulation loop and provide circulation force for the cooling liquid.
  • the setting of the first external cooling device can ensure that the coolant flowing through the flow path component to the heat exchange component is in a low temperature state, so as to ensure the heat dissipation effect of the electronic components in contact with the heat exchange component.
  • the embodiment of the present application also provides a sixth implementation of one aspect: the server further includes a second external cooling device, and the casing
  • the cooling medium inside is a single-phase insulating liquid
  • the server nodes are immersed in the single-phase insulating liquid.
  • the casing has a liquid inlet and a liquid outlet, and the liquid inlet, liquid outlet and the second external refrigeration device are connected to form a circulation loop , the second external refrigeration equipment is used to cool the single-phase insulating liquid and provide circulation power for the single-phase insulating liquid.
  • the setting of the second external cooling device can ensure that the single-phase insulating liquid in the casing is in a low temperature state, so as to perform heat exchange with the server node well and ensure the heat dissipation effect of the server node.
  • the embodiment of the present application also provides a seventh implementation manner in one aspect: the server node is submerged in the single-phase insulating liquid in the casing, that is, all the server nodes are located in the single-phase insulating liquid.
  • the single-phase insulating liquid can also exchange heat with the electronic components in contact with the heat exchange components, and combine with the heat exchange components to improve the heat dissipation effect on the electronic components.
  • the embodiment of the present application also provides an eighth implementation of one aspect: the cooling medium contained in the casing is a phase change Insulating working fluid, the phase-change insulating working fluid can change between liquid and gas; the server node is soaked in the liquid insulating working fluid, and the liquid insulating working fluid can be transformed into a gaseous insulating working fluid after exchanging heat with the server node; inside the casing A condenser for heat exchange with the gaseous insulating working fluid is also installed, and the gaseous insulating working medium can be transformed into a liquid insulating working medium after exchanging heat with the condenser.
  • the server node is dissipated by using the liquid insulating working fluid.
  • the liquid insulating working fluid is heat-exchanged and vaporized, it exchanges heat with the condenser and then liquefies. This cycle can ensure the heat dissipation effect of the server node.
  • the embodiment of the present application also provides a ninth implementation of the aspect: the server further includes a second external cooling device, and the casing
  • the cooling medium inside is a single-phase insulating liquid
  • the casing has a cavity for containing the single-phase insulating liquid
  • a spraying part with a spraying chamber is installed in the casing
  • a spray head is installed on the spraying part
  • the accommodating cavity, the spraying part are connected with the second external refrigeration equipment to form a circulation loop
  • the second external refrigeration equipment is used to cool the single-phase insulating liquid and provide it with power to flow into the spray chamber
  • the spray head is used to
  • the single-phase insulating liquid in the spray chamber is sprayed to the server node
  • the accommodating chamber of the casing is also used to receive the sprayed single-phase insulating liquid.
  • the setting of the second external refrigeration equipment can ensure that the single-phase insulating liquid in the spraying part is in a low temperature state, so as to exchange heat with the server node well, and the heat exchange between the single-phase insulating liquid and the server node through spraying can ensure that Each electronic component of the server node can exchange heat in contact with the single-phase insulating liquid, which can improve the heat dissipation effect of the server node.
  • the embodiment of the present application also provides a tenth implementation of one aspect: the cooling medium contained in the casing is a phase change Insulating working fluid, the phase-change insulating working fluid can change between liquid and gaseous states; the casing has a housing cavity for containing liquid insulating working fluid, and a spraying part is installed in the casing, and the spraying part has a spraying chamber, The accommodating cavity and the spraying part are connected by a pipeline, and a power part is provided on the connecting pipeline, which is used to provide power for the liquid insulating working fluid to flow to the spraying chamber of the spraying part, and the spraying part A spray head is installed on the top, and the spray head is used to spray the liquid insulating working medium in the spray chamber to the server node, and the liquid insulating working medium can be converted into a gaseous insulating working medium after exchanging heat with the server node; A condenser is installed for heat exchange with the gas
  • the gaseous insulating working medium can be transformed into a liquid insulating working medium after exchanging heat with the condenser.
  • the accommodating chamber is also used to receive the exchanged liquid insulating working medium, including spray The non-vaporized liquid insulating working fluid after showering and the liquid insulating working medium formed after heat exchange with the condenser.
  • the embodiment of the present application further provides an eleventh implementation manner in one aspect: the shower component installed in the cabinet is located above the server node. In this way, the cooling working fluid sprayed by the spray head on the spray component can flow through the entire server node, which can improve the heat dissipation effect on the server node.
  • the implementation manner of the present application further provides a twelfth implementation manner in one aspect: the server node is also immersed in a liquid cooling working fluid.
  • the liquid cooling working fluid not only exchanges heat with the server node by spraying, but also exchanges heat with the server node by soaking and contacting, which can improve the heat dissipation effect on the server node.
  • the implementation manner of the present application also provides a thirteenth implementation manner in one aspect: how many electronic components are included in the server node? One, the power consumption of the electronic component that is in contact with the heat exchange component for heat exchange is at least greater than that of one of the other electronic components. In this way, the heat dissipation effect of the electronic components in contact with the heat exchange component is good.
  • the embodiment of the present application also provides the fourteenth implementation of the aspect: the liquid inlet pipe connected to the heat exchange component The plug-in connection with the first interface of the flow path component is through the push-in joint, and the liquid outlet pipe connected with the heat exchange component is plug-connected with the second interface of the flow path component through the push-in joint.
  • the disassembly and assembly of the heat exchange component and the flow path component can be realized quickly, which is convenient for maintenance.
  • the implementation of the present application also provides a fifteenth implementation of one aspect: both the liquid inlet pipe and the liquid outlet pipe pass through The push-in connector is plugged and connected with the heat exchange component. In this way, the disassembly and assembly of the heat exchange component and the flow path component can be realized quickly, which is convenient for maintenance.
  • a cabinet including a casing, a heat exchange component, and a flow path component. Both the heat exchange component and the flow path component are installed in the casing; the flow path component has a main inlet and communicates with the The first interface, the main outlet and the second interface connected with the main outlet, the main inlet is used for the inflow of cooling liquid, and the main outlet is used for the outflow of cooling liquid; the heat exchange component is connected with the first interface through the liquid inlet pipe, and the heat exchange The component communicates with the second interface through the liquid outlet pipe; in this way, after the coolant flows into the flow path component from the main inlet, it flows into the heat exchange component through the first interface and the liquid inlet pipe, and then flows out through the liquid outlet pipe, the second interface and the main outlet
  • the flow path component enables the heat exchange component to exchange heat with components in contact with the heat exchange component.
  • the cabinet can be used for heat dissipation of server nodes.
  • the server nodes can be installed in the casing, the heat exchange components are in contact with the electronic components of the server nodes, and the cooling liquid flowing through the heat exchange components is used to exchange the electronic components heat to dissipate heat for electronic components; at the same time, cooling fluid can also be installed in the casing to exchange heat with server nodes, and combined with heat exchange components to improve the cooling effect on server nodes.
  • the cabinet can also be used for heat dissipation of other components that require heat dissipation.
  • the embodiment of the present application also provides the first embodiment of the other aspect: a spraying component is installed in the casing, the spraying component has a spraying cavity for containing liquid cooling fluid, and the spraying component is Sprinklers are installed.
  • the components such as server nodes
  • the spraying component is Sprinklers are installed.
  • FIG. 1 is a schematic structural diagram of a server provided in the first embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a server provided in a second embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a server provided in a third embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a server provided in a fourth embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a specific embodiment of a flow path component of a server provided by the present application.
  • FIG. 1 is a schematic structural diagram of a server provided in a first embodiment of the present application.
  • the server includes a casing 10 , and a server node 20 , a heat exchange component 30 and a flow path component 40 are installed in the casing 10 .
  • the casing 10 has an airtight accommodating chamber, and the airtight accommodating chamber is equipped with a cooling medium.
  • the cooling medium is specifically a single-phase insulating liquid 61, and the single-phase insulating liquid 61 is used to soak the server node 20 to communicate with the server node.
  • Node 20 performs heat exchange. It can be understood that the heat generated by the server node 20 can be directly transferred to the single-phase insulating liquid 61.
  • the immersion refers to that the server node 20 is at least partially immersed in the single-phase insulating liquid 61 , and the same expressions below are understood to be the same.
  • the single-phase insulating liquid 61 is basically immersed in the server node 20, that is, the server node 20 is completely placed in the single-phase insulating liquid 61, so that it can be ensured that all electronic components on the server node 20 can be connected to the single-phase insulating liquid 61 Heat exchange, good cooling effect.
  • the server node 20 may also be only partially immersed in the single-phase insulating liquid 61 .
  • the server node 20 includes a circuit board 21 and a plurality of electronic components mounted on the circuit board 21, these electronic components include a first type of electronic components 22 and a second type of electronic components 23, wherein the first type of electronic components
  • the power consumption of the components 22 is greater than that of the second-type electronic components 23 , and correspondingly, the heat dissipation requirement of the first-type electronic components 22 is higher than that of the second-type electronic components 23 .
  • the first type of electronic component 22 generally has a larger surface area.
  • first category and second category are only to distinguish electronic components with different heat dissipation methods, and does not mean that these electronic components have a sequence or primary and secondary relationship.
  • first category “Electronic components” does not mean that the corresponding electronic components are of the same type or shape, that is, the electronic components classified into the first type of electronic components may be of the same type or of different types. The appearance of components can be the same or different.
  • the first type of electronic components can include CPU (central processing unit, central processing unit), or chips with higher power, such as GPU (graphics processing unit, display chip) or programming logic chips, etc.; similarly, "the second type of electronic components" does not mean that the corresponding electronic components are all of the same type or shape, that is, the electronic components that are classified into the second type of electronic components can be The same type may also be of different types.
  • the second type of electronic components may include a control chip or an interface card.
  • the flow path component 40 has a main inlet 411, a first interface 412 communicating with the main inlet 411, a main outlet 421, and a second interface 422 communicating with the main outlet 421.
  • the main inlet 411 is used for the inflow of the coolant 44
  • the main outlet 421 is used Outflow of coolant 44.
  • the flow path component 40 has a flow channel connecting the main inlet 411 and the first interface 412 and a flow channel connecting the main outlet 421 and the second interface 422 .
  • the heat exchange component 30 is connected with a liquid inlet pipe and a liquid outlet pipe.
  • the liquid inlet pipe is connected to the first interface 412 through the first quick-plug joint 431, and the liquid outlet pipe is connected to the second interface 422 through the second quick-plug joint 432.
  • Plug-in connection like this, the coolant 44 that flows into the flow path component 40 through the main inlet 411 can flow into the corresponding heat exchange component 30 through the first interface 412 and the liquid inlet pipe connected to the first interface 412, and then pass through the liquid outlet pipe and
  • the corresponding second interface 422 flows into the flow path component 40 and flows out of the flow path component 40 through the total outlet 421 .
  • the flow channel connecting the main inlet 411 and the first interface 412 is separated from the flow channel connecting the main outlet 421 and the second interface 422 without interfering with each other, so as to ensure that the cooling liquid 44 can flow through the exchange.
  • the heat component 30 then flows out from the flow path component 40 .
  • the heat exchanging component 30 is used for surface contact with the first type electronic components 22 of the server node 20 to realize heat exchange, that is, the heat generated by the first type electronic components 22 can be directly transferred to the heat exchanging component 30, and then passed through The cooling liquid 44 flowing through the heat exchanging component 30 is taken out of the housing 10 , so as to achieve heat dissipation for the first type of electronic components 22 .
  • the heat exchange component 30 can adopt a plate-like structure with a circulation channel inside, and it has a face that is in contact with the surface of the first type of electronic component 22, that is, the heat exchange component 30 can adopt a cold plate structure.
  • the heat exchange component 30 can also be without It is a plate-shaped structure, but it has at least one face for contacting the first type of electronic components 22 , so that the heat generated by the first type of electronic components 22 can be directly transferred to the heat exchange component 30 .
  • the heat exchange component 30 is connected with the first type electronic components 22 to ensure that the two are always in contact and provide heat exchange efficiency between the two; the heat exchange component 30 can specifically be connected with the first type electronic components
  • the components 22 are connected together through detachable connection methods, such as bolts or clamps, so as to facilitate maintenance of the heat exchange component 30 or the first-type electronic components 22 .
  • heat exchange is performed with the server node 20 through the single-phase insulating liquid 61 contained in the casing 10.
  • the first type of electronic components 22 with large power consumption on the server node The heat exchanging of the heat exchanging component 30 can improve the heat dissipation effect on the first type of electronic components 22 , and solve the problem of heat dissipation of the first type of electronic components 22 with high power consumption in the server node 20 .
  • the liquid inlet pipe and the liquid outlet pipe of the heat exchange part 30 are connected to the corresponding interface of the flow path part 40 through a quick-plug joint, which is not only convenient for assembly, but also facilitates the maintenance of related parts; in other embodiments, the heat exchange part 30 can also be connected with the liquid inlet pipe and the liquid outlet pipe by using quick-plug connectors, which can be quickly disassembled and assembled, and are convenient for maintenance.
  • each server node 20 is inserted vertically in the casing 10, that is, the board surface of the circuit board 21 of the server node 20 is parallel to the vertical direction, thus , which facilitates the assembly of the server nodes 20 and the casing 10 , and also facilitates the maintenance of each server node 20 .
  • the server node 20 may also be installed in the housing 10 in a horizontal direction, that is, the board surface of the circuit board 21 of the server node 20 is arranged parallel to the horizontal plane.
  • each server node 20 installed in one casing 10 has the same structure, each server node 20 has a first-type electronic component 22, correspondingly, each first-type electronic component 22
  • a heat exchange component 30 is cooperatingly arranged, that is, a heat exchange component 30 is installed in a housing 10, and each heat exchange component 30 is connected with a liquid inlet pipe and a liquid outlet pipe.
  • the flow path part 40 has three A first interface 412 is respectively connected to the liquid inlet pipes of the three heat exchange components 30, and the flow path component 40 has three second interfaces 422 which are respectively connected to the liquid outlet pipes of the three heat exchange components 30, that is to say,
  • the coolant 44 flowing into the flow path component 40 can flow to the three heat exchange components 30 through the first interfaces 412 to exchange heat with the three first-type electronic components 22, and the coolant 44 after heat exchange passes through each
  • the second interface 422 flows into the flow path component 40 , and flows out of the casing 10 through the general outlet 421 of the flow path component 40 .
  • the connection between the flow path component 40 and the heat exchange component 30 is realized through the arrangement of the flow path component 40 and the quick connector, which facilitates assembly and maintenance.
  • only one server node 20 may be installed in one casing 10, or other numbers (such as two, four or more) of server nodes 20 may be installed.
  • the structure of each server node 20 can be different, that is, the electronic components installed on the circuit board 21 of each server node 20 can be different, and each server node 20 can be installed with a first-type electronic component 22 , or more than two first-type electronic components 22 can be installed.
  • each first-type electronic component 22 corresponds to a heat exchange component 30 installed, that is, the number of heat exchange components 30 is the same as the number of the first type of electronic components 22, correspondingly, the number of the first interface 412 of the flow path component 40 is the same as that of each heat exchange component 30
  • the number of connected liquid inlet pipes is set to be the same, and the number of second interfaces 422 of the flow path component 40 is set to be the same as the number of liquid outlet pipes connected to each heat exchange component 30 .
  • the server further includes a first external cooling device 50, and the flow path component 40 is connected to the first external cooling device 50 to form a circulation loop.
  • the first external cooling device 50 is used to cool the cooling liquid 44 and provide the cooling liquid 44 with circulation power.
  • the temperature of the coolant 44 after heat exchange between the heat exchange component 30 and the first type of electronic components 22 rises, and after flowing out of the casing 10, it cools down under the action of the first external refrigeration device 50 and then becomes a low-temperature state. , and then flow through the flow path component 40 and the heat exchange component 30 , such a cycle can ensure the cooling effect on the first type of electronic components 22 .
  • the first external refrigeration device 50 may include a first heat exchanger 51, and a circulation loop is formed between the first heat exchanger 51 and the flow path component 40, and the first heat exchanger 51
  • Another circulation loop can be formed between structures such as cooling towers (not shown in the figure), and liquid cooling working medium 1 53 flows in this circulation loop, and the cooling liquid 44 flowing out of the flow path member 40 is in the first heat exchanger 51 carries out heat exchange with the liquid cooling working medium 1 53, and the cooled cooling liquid 44 flows into the flow path part 40 again, and the heated liquid cooling working medium 1 53 can be cooled in a structure such as a cooling tower and then flow back to the first cooling tower.
  • Heater 51 is a structure such as a cooling tower and then flow back to the first cooling tower.
  • the first heat exchanger 51 may be any heat exchanger such as a plate heat exchanger or a tube-fin heat exchanger.
  • a first power component 52 may be provided on the circulation loop formed between the first heat exchanger 51 and the flow path component 40 to provide circulation power for the cooling liquid 44 to increase the circulation rate of the cooling liquid 44 and improve heat exchange efficiency.
  • the first power component 52 can be a circulation pump or a booster pump.
  • the server also includes a second external cooling device 70
  • the casing 10 has a liquid inlet for the single-phase insulating liquid 61 to flow out and a liquid outlet for the single-phase insulating liquid 61 to flow out
  • the liquid inlet of the casing 10 , the liquid outlet and the second external refrigeration device 70 are connected to form a circulation loop
  • the second external refrigeration device 70 is used to cool the single-phase insulating liquid 61 and provide circulation power for the single-phase insulating liquid 61 .
  • the single-phase insulating liquid 61 that exchanges heat with the server node 20 and heats up can flow out of the casing 10 and become a low-temperature state under the cooling of the second external cooling device 70, and then flow into the casing 10 to exchange heat with the server node 20, thereby Ensure the cooling effect on the server node 20.
  • the second external refrigeration device 70 may include a second heat exchanger 71, and a circulation loop is formed between the second heat exchanger 71 and the casing 10, and the second heat exchanger 71 may Another circulation loop is formed between structures such as cooling towers, in which a liquid cooling working medium 73 flows, and the single-phase insulating liquid 61 flowing out of the casing 10 is in the second heat exchanger 71 and the liquid cooling working medium
  • the second substance 73 performs heat exchange, and the cooled single-phase insulating liquid 61 flows out of the casing 10, and the heated liquid-cooled working substance two 73 can be cooled in a structure such as a cooling tower and then flow back to the second heat exchanger 71.
  • the second heat exchanger 71 can also be any form of heat exchanger such as a plate heat exchanger or a tube-fin heat exchanger.
  • a second power component 72 may be provided on the circulation loop formed between the second heat exchanger 71 and the casing 10 to provide circulation power for the single-phase insulating liquid 61 to increase the circulation rate of the single-phase insulating liquid 61 and improve the The heat exchange efficiency of the server node 20.
  • the second power component 72 can be a circulation pump or a booster pump.
  • the single-phase insulating liquid 61 is directly filled in the airtight cavity formed by the main body of the casing 10. It can be understood that in other embodiments, an additional airtight chamber may also be provided in the main body of the casing 10.
  • the main body of the casing 10 is a box-shaped structure, of course, the main body of the casing 10 can also be in other structural forms.
  • the flow path component 40 installed in the casing 10 is located above the liquid level of the single-phase insulating liquid 61, that is, the flow path component 40 is not in contact with the single-phase insulating liquid 61, and the cooling of the flow path component 40 is avoided.
  • the liquid 44 is under the influence of a single-phase insulating liquid 61 .
  • the flow path component 40 may also be soaked in the single-phase insulating liquid 61 .
  • FIG. 2 is a schematic structural diagram of a server provided in a second embodiment of the present application.
  • the heat dissipation of the first-type electronic components 22 with relatively large power consumption of the server node 20 is still realized through the heat exchange component 30 in surface contact with it, wherein the cooling liquid 44 flowing into the heat exchange component 30 is also
  • the circulating circuit is formed with the first external refrigeration equipment 50 through the flow path component 40, and the connection mode of the relevant pipelines and the structure of the first external refrigeration equipment 50 are the same as those of the aforementioned first embodiment, and reference may be made to the aforementioned first embodiment. Understood, I won't repeat it here.
  • the server of this embodiment differs mainly in that the cooling medium installed in the casing 10 is different from the heat exchange method of the server node 20 , and the differences between the two will be mainly explained below.
  • the cooling medium contained in the casing 10 is also a single-phase insulating liquid 61.
  • the casing 10 includes a liquid storage container 11 arranged in the main body of the casing, and the liquid storage container 11 has a storage unit.
  • the accommodating cavity of the phase insulating liquid 61, and the liquid storage container 11 is an open structure.
  • a spray part 80 with a spray chamber is installed in the casing 10, a spray head 81 is installed on the spray part 80, the liquid storage container 11, the spray part 80 and the second external refrigeration device 70 are connected to form a circulation loop.
  • the two external refrigeration equipment 70 are used to cool the single-phase insulating liquid 61, and provide the power for the single-phase insulating liquid 61 to flow to the spray chamber of the spray part 80, and the spray head 81 is used to insulate the single-phase in the spray chamber.
  • the liquid 61 is sprayed to the server node 20, and the liquid storage container 11 is also used to receive the sprayed single-phase insulating liquid 61.
  • the liquid storage container 11 is located below the server node 20, so that the single-phase insulating liquid sprayed to the server node 20
  • the phase insulating liquid 61 can fall into the open liquid storage container 11 under the action of gravity.
  • the single-phase insulating liquid 61 in this embodiment exchanges heat with the server node 20 in a spraying manner.
  • the single-phase insulating liquid 61 The amount of 61 can be set less.
  • each server node 20 may have one or two or more shower heads 81 , depending on the heat dissipation requirements of the server nodes 20 .
  • the shower head 81 sprays the single-phase insulating liquid 61 in the spray chamber of the spraying part 80 to the server node 20, and exchanges heat with the server node 20, and the single-phase insulating liquid 61 after heat exchange falls into the In the liquid storage container 11 , the single-phase insulating liquid 61 in the liquid storage container 11 flows out of the casing 10 and is cooled by the second external cooling device 70 , and then flows into the spraying part 80 , so as to circulate in this way to realize the heat dissipation of the server node 20 .
  • the structural composition of the second external refrigeration device 70 is similar to that of the aforementioned first embodiment, the difference is that the pipeline connection is different, specifically, the second heat exchanger 71 of the second external refrigeration device 70 is connected to the liquid storage container 11 and the spray member 80 A circulation loop of the single-phase insulating liquid 61 is formed therebetween, and a second power component 72 is provided on the circulation loop to provide power for the single-phase insulating liquid 61 to flow to the spraying component 80 .
  • Other structures of the second external cooling device 70 can be understood with reference to the aforementioned first embodiment, and will not be repeated here.
  • the spraying part 80 is specifically located above each server node 20. This arrangement is convenient for spraying the single-phase insulating liquid 61 to the server nodes 20, and is also conducive to the overall integration of the single-phase insulating liquid 61 and the server nodes 20. heat exchange.
  • the spraying component 80 can also be arranged on the side of the server node 20 , and the single-phase insulating liquid 61 is sprayed to the server node 20 through the number of the spraying heads 81 and the setting of the spraying angle.
  • the number of spraying components 80 may not be limited to one in the illustration, but may be more than two, and the arrangement thereof may be determined according to the layout and requirements.
  • the flow path component 40 is located below the shower component 80.
  • the flow path component 40 can be positioned above the spray component 80, or on the side of the spray component 80. In this way, the spray component 80 can be avoided.
  • each server node 20 is located above the liquid storage container 11.
  • each server node 20 can be inserted into the liquid storage container 11, that is, each server node 20 is soaked in the single-phase insulating liquid 61. After heat exchange by spraying, heat exchange is also realized by immersion, so as to improve the heat dissipation effect on the server node 20 .
  • the casing 10 includes a liquid storage container 11 that is relatively independent of the casing body. It can be understood that in other embodiments, the liquid storage container 11 in the figure may not be provided, and the single-phase insulating liquid 61 may be directly installed in the casing.
  • the cavity of the case body of the case 10 is similar to that of the aforementioned first embodiment.
  • FIG. 3 is a schematic structural diagram of a server provided in a third embodiment of the present application.
  • the heat dissipation of the first-type electronic components 22 with relatively large power consumption of the server node 20 is still realized through the heat exchange component 30 in surface contact with it, wherein the cooling liquid 44 flowing into the heat exchange component 30 is also
  • the circulating circuit is formed with the first external refrigeration equipment 50 through the flow path component 40, and the connection mode of the relevant pipelines and the structure of the first external refrigeration equipment 50 are the same as those of the aforementioned first embodiment, and reference may be made to the aforementioned first embodiment. Understood, I won't repeat it here.
  • the server of this embodiment differs mainly in the cooling medium contained in the casing 10 and the heat exchange method with the server node 20 , and the following will focus on the difference between the two.
  • the cooling working medium contained in the casing 10 is a phase-change insulating working medium 62, and the phase-changing insulating working medium 62 can change between a liquid state and a gaseous state, that is, the phase-change insulating working medium 62 can be a liquid insulating working medium.
  • the substance 621 can also be a gaseous insulating working substance.
  • the server node 20 in the casing 10 is immersed in the liquid insulating working fluid 621, the heat generated by the server node 20 can be directly transferred to the liquid insulating working medium 621, and the liquid insulating working medium 621 can be converted into a gaseous insulating working medium if it reaches the vaporization point after heating up. quality; a condenser 90 is also installed in the casing 10 for heat exchange with the gaseous insulating working fluid, so that the gaseous insulating working fluid can be transformed into a liquid insulating working fluid 621 after cooling down and fall into the bottom of the casing 10 to reconnect with the server The nodes 20 perform heat exchange, and such a cycle realizes cooling of the server nodes 20 .
  • a liquid-cooled working medium 3 91 circulates in the condenser 90, and the liquid-cooled working medium 3 91 performs heat exchange with the gaseous insulating working medium.
  • the condenser 90 can be connected with external refrigeration equipment to form a circulation loop , to cool the liquid cooling working medium 3 91 to ensure the heat exchange effect between it and the gaseous insulating working medium.
  • the structure of the condenser 90 can be varied, and a simple form is a tube-fin structure.
  • the liquid insulating working medium 621 is directly installed in the airtight chamber formed by the casing 10.
  • a relatively independent containing part can also be provided in the main body of the casing 10 to accommodate the liquid insulating working medium.
  • the substance 621, of course, the containing part should be an open structure, so that the liquid insulating working substance 621 transformed from the gaseous insulating working substance can fall into the containing part.
  • the server node 20 can be immersed in the liquid insulating working medium 621, that is, the server node 20 is completely located in the liquid insulating working medium 621, so as to ensure the overall protection of the server node 20.
  • Heat dissipation effect of course, according to the heat dissipation requirements of the server node 20, when the phase-change insulating working medium 62 is all in a liquid state, the server node 20 can also be only partially immersed in the liquid insulating working medium 621, as shown in FIG.
  • the electronic components with relatively small power consumption on the server node 20 can be positioned above the liquid level of the liquid insulating working medium 621, so that heat can be transferred to the liquid insulating working medium through the circuit board 21. Quality 621.
  • FIG. 4 is a schematic structural diagram of a server provided in a fourth embodiment of the present application.
  • the heat dissipation of the first-type electronic components 22 with relatively large power consumption of the server node 20 is still realized through the heat exchange component 30 in surface contact with it, wherein the cooling liquid 44 flowing into the heat exchange component 30 is also
  • the circulating circuit is formed with the first external refrigeration equipment 50 through the flow path component 40, and the connection mode of the relevant pipelines and the structure of the first external refrigeration equipment 50 are the same as those of the aforementioned first embodiment, and reference may be made to the aforementioned first embodiment. Understood, I won't repeat it here.
  • the server of this embodiment differs mainly in the cooling medium contained in the casing 10 and the heat exchange method with the server node 20 , and the following will focus on the difference between the two.
  • the cooling working medium contained in the casing 10 is a phase-change insulating working medium 62, and the phase-changing insulating working medium 62 can change between a liquid state and a gaseous state, that is, the phase-change insulating working medium 62 can be a liquid insulating working medium.
  • the substance 621 can also be a gaseous insulating working substance.
  • the casing 10 includes a liquid storage container 11 disposed in the casing main body, the liquid storage container 11 has an accommodating cavity for containing a liquid insulating working medium 621 , and the liquid storage container 11 is an open structure.
  • a spray component 80 and a condenser 90 with a spray chamber are also installed in the casing 10; the spray component 80 and the liquid storage container 11 are connected by a pipeline, and a third power component 110 is provided on the connecting pipeline.
  • the third power unit 110 is used to provide the power for the liquid insulating working medium 621 to flow to the spraying part 80
  • the spraying part 80 is equipped with a shower head 81, and the shower head 81 is used for dispelling the liquid insulating working medium in the spray chamber.
  • the substance 621 is sprayed to the server node 20 to exchange heat with the server node 20.
  • the liquid insulating working substance 621 heats up after exchanging heat with the server node 20.
  • the gaseous insulating working substance Exchanging heat with the condenser 90, it can be transformed into a liquid insulating working fluid 621 after cooling, and the untransformed liquid insulating working medium after spraying and the liquid insulating working medium transformed from a gaseous insulating working medium can both fall into the liquid storage container 11 , to cycle through jobs.
  • the third power component 110 can be in the form of a circulation pump or a booster pump.
  • a liquid-cooled working medium 3 91 circulates in the condenser 90, and the liquid-cooled working medium 3 91 exchanges heat with the gaseous insulating working medium.
  • the condenser 90 can be connected with external refrigeration equipment to form a cycle The circuit is used to cool the liquid-cooled working medium 3 91 to ensure the heat exchange effect between it and the gaseous insulating working medium.
  • the structure of the condenser 90 can be varied, and a simple form is a tube-fin structure.
  • the casing 10 includes a relatively independent liquid storage container 11.
  • the connecting pipeline between the liquid storage container 11 and the spray member 80 can be arranged in the casing 10.
  • the liquid storage container 11 may not be provided, and the part of the airtight chamber formed by the casing 10 itself may be used as the accommodating cavity for the liquid insulating working medium 621.
  • the casing 10 may be placed through an external pipeline.
  • the accommodating chamber part of the housing is connected with the spraying part 80, and correspondingly, the third power part 110 provided on the pipeline can also be placed outside the casing 10, which is convenient for maintenance.
  • the spraying part 80 is specifically located above each server node 20. This arrangement facilitates the spraying of the liquid insulating working medium 621 to the server nodes 20, and is also conducive to the overall integration of the liquid insulating working medium 621 and the server nodes 20. heat exchange. In other embodiments, the spraying component 80 may also be arranged at other positions, as long as the spraying of the server node 20 can be realized.
  • each server node 20 is located above the liquid storage container 11.
  • each server node 20 can be inserted into the liquid storage container 11, that is, each server node 20 is immersed in the liquid insulating material in the liquid storage container 11.
  • heat exchange is also realized by immersion, so as to improve the heat dissipation effect on the server node 20.
  • the flow path component 40 includes a relatively independent first part 410 and a second part 420, wherein, the first part 410 is formed with a general inlet 411 and each first interface 412, obviously, each first interface is connected 412 and the flow channel of the total inlet 411 are also formed on the first part 410, and the second part 420 is formed with a total outlet 421 and each second interface 422. Obviously, the flow channel connecting each second interface 422 and the total outlet 421 is also formed on the second part 420 .
  • Such arrangement is relatively flexible for the installation of the flow path component 40 in the housing 10 and facilitates spatial layout.
  • FIG. 5 is a schematic structural diagram of a specific embodiment of a flow path component of a server provided in the present application.
  • the server can also be provided with a flow path component 40' as shown in FIG.
  • An interface 412, the main outlet, and the second interface 422 communicating with the main outlet are all formed on the integrated flow path component 40'.
  • the main inlet of the flow path component 40' is connected with an inlet pipeline for inflowing cooling liquid 45
  • the total outlet is connected with an outlet pipeline 46 for flowing out of the cooling liquid.
  • the integrated flow path member 40' can reduce the number of parts and facilitate the simplification of the assembly process.
  • Fig. 5 exemplarily shows the structural form of the flow path component 40' having three first interfaces 412 and three second interfaces 422.
  • the number of the first interface and the number of the second interface are related to the number of heat exchange components 30 in the housing 10 .
  • the cooling liquid 44 and each liquid-cooled working medium can be selected from the same medium or different mediums , in order to reduce costs, water or a combination of water and additives can be used.
  • the embodiment of the present application also relates to a cabinet.
  • the structure of the cabinet can be understood with reference to the above-mentioned FIGS.
  • the flow path component 40 has a total inlet 411, a first interface 412 communicated with the total inlet 411, a total outlet 421 and a second interface 422 communicated with the total outlet 421, the total inlet 411 is used for the inflow of the cooling liquid 44, The total outlet 421 is used for the outflow of the cooling 44 liquid;
  • the heat exchange component 30 communicates with the first interface 412 through the liquid inlet pipe, and the heat exchange component 30 communicates with the second interface 422 through the liquid outlet pipe; After flowing into the flow path component 40, it flows into the heat exchange component 30 through the first interface 412 and the liquid inlet pipe, and then flows out of the flow path component 40 through the liquid outlet pipe, the second interface 422 and the total outlet 421, so that the heat exchange component 30 can be compatible with the The parts in contact with the heat exchange part 30 perform heat exchange.
  • the cabinet can be used to install server nodes 20 or other components that require heat dissipation, and specifically, an installation structure that matches these components can be provided in the cabinet.
  • spray part 80 can also be set in this cabinet, and spray part 80 has the spray cavity that accommodates liquid cooling working medium, and spray head 81 is installed on spray part 80.
  • spray part 80 has the spray cavity that accommodates liquid cooling working medium, and spray head 81 is installed on spray part 80.
  • the components such as the server node 20
  • spray head 81 is installed on spray part 80.

Abstract

本申请实施例公开了服务器及机柜,该服务器的机壳内安装有服务器节点、换热部件和流路部件,机壳内装有用于与服务器节点进行换热的冷却工质,换热部件用于与服务器节点的电子元器件接触换热,流路部件具有用于冷却液流入的总进口、与总进口连通的第一接口、用于冷却液流出的总出口以及与总出口连通的第二接口,换热部件连接有进液管和出液管,进液管通过快接头与一个第一接口连接,出液管通过快接头与一个第二接口连接。该服务器能够解决服务器节点上功耗较高的芯片等电子元器件的散热问题。

Description

服务器及机柜
本申请要求于2021年05月28日提交中国专利局、申请号为202110592828.0、发明名称为“服务器及机柜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子元器件冷却技术领域,尤其涉及一种服务器及机柜。
背景技术
随着电子设备中电子元器件功耗的提升,传统的风冷散热已无法满足电子设备的散热需求,液冷散热方式作为一种相对高效的冷却方式,成为电子设备散热的主要趋势。
现有一种服务器将服务器节点(也可称为单板)设置在一密封的容器内,该容器填充有冷却工质,服务器节点浸泡在冷却工质中,与冷却工质进行热交换。该容器连接有输入管路和输出管路,输入管路用于将冷却降温后的冷却工质送入容器,输出管路用于将受热升温的冷却工质排出容器,如此循环实现对服务器节点的散热;密封容器内还可增设换热器,以对容器内局部区域的冷却工质进行降温,这些局部区域可以是服务器节点上功耗较高的电子元器件所在的区域。
上述服务器相对风冷虽然提高了对服务器节点的散热效果,但是仍然无法满足服务器节点上功耗较高的芯片等电子元器件的散热需求。
发明内容
本申请实施例提供了一种服务器及机柜,能够解决服务器节点上功耗较高的芯片等电子元器件的散热问题。
本申请实施例一方面提供了一种服务器,包括机壳,该机壳内安装有服务器节点、换热部件和流路部件;机壳内装有用于与服务器节点进行热交换的冷却工质;流路部件具有总进口、与总进口连通的第一接口、总出口以及与总出口连通的第二接口,其中,总进口用于冷却液的流入,总出口用于冷却液的流出;换热部件用于与服务器节点的电子元器件面接触以进行热交换,换热部件连接有进液管和出液管,进液管与一个第一接口连接,出液管与一个第二接口连接;这样,冷却液自总进口流入流路部件后,经第一接口和进液管流入换热部件,再经出液管、第二接口和总出口流出流路部件,冷却液在换热部件内可与与其接触的电子元器件进行热交换。
该服务器中,通过机壳内装有的冷却工质与服务器节点进行热交换,以对服务器节点进行散热,以满足服务器节点的功耗较小的电子元器件的散热需求,与换热部件接触换热的电子元器件可以为服务器节点的功耗较大的电子元器件,解决了服务器节点的功耗较高的芯片等电子元器件的散热问题,提高服务器节点整体的散热效果。
基于一方面,本申请实施例还提供了一方面的第一种实施方式:机壳内安装的换热部件有多个,相应地,与换热部件面接触的电子元器件也有多个;每个换热部件连 接有一个进液管和一个出液管,流路部件具有与进液管数目一致的第一接口,且具有与出液管数目一致的第二接口。
这样,各换热部件均通过独立的管路与流路部件连接,使得流入流路部件的冷却液能够同时流向各换热部件,能够确保与换热部件接触的电子元器件的散热效果。
基于一方面,或一方面的一种实施方式,本申请实施例还提供了一方面的第二种实施方式:流路部件包括第一部分和第二部分,总进口和第一接口均形成于第一部分,第一部分还形成有连通总进口和第一接口的流道,总出口和第二接口均形成于第二部分,第二部分还形成有连通总出口和第二接口的流道。这样,方便识别流路部件的各接口,便于与相关管路的连接。
基于一方面的第二种实施方式,本申请实施例还提供了一方面的第三种实施方式:第一部分和第二部分为一体成型结构;或者第一部分和第二部分为两个相对独立的部件。将流路部件设为一体结构,便于减少零部件,简化组装工序;将流路部件设为分体结构,方便布局,灵活性高。
基于一方面,或一方面的第一种至第三种实施方式中的任一者,本申请实施例还提供了一方面的第四种实施方式:机壳内安装的服务器节点有多个,各服务器节点均竖向插装在机壳内。这样,有利于多个服务器节点在机壳内的布置,也便于对各服务器节点进行散热。
基于一方面,或一方面的第一种至第四种实施方式中的任一者,本申请实施例还提供了一方面的第五种实施方式:服务器还包括第一外部制冷设备,设于机壳内的流路部件与第一外部制冷设备连接形成循环回路,第一外部制冷设备用于冷却循环回路中的冷却液,并为冷却液提供循环流动力。第一外部制冷设备的设置可以确保经流路部件流向换热部件的冷却液处于低温状态,以确保与换热部件接触换热的电子元器件的散热效果。
基于一方面,或一方面的第一种至第五种实施方式中的任一者,本申请实施例还提供了一方面的第六种实施方式:服务器还包括第二外部制冷设备,机壳内装有的冷却工质为单相绝缘液体,服务器节点浸泡在单相绝缘液体中,机壳具有进液口和出液口,进液口、出液口和第二外部制冷设备连接形成循环回路,第二外部制冷设备用于冷却单相绝缘液体,并为单相绝缘液体提供循环流动力。第二外部制冷设备的设置可以确保机壳内单相绝缘液体处于低温状态,以很好地与服务器节点进行换热,确保服务器节点的散热效果。
基于一方面的第六种实施方式,本申请实施例还提供了一方面的第七种实施方式:机壳内的单相绝缘液体浸没服务器节点,即服务器节点全部位于单相绝缘液体内。这样,单相绝缘液体还能够与和换热部件接触的电子元器件进行换热,与换热部件相结合,可提高对电子元器件的散热效果。
基于一方面,或一方面的第一种至第五种实施方式中的任一者,本申请实施例还提供了一方面的第八种实施方式:机壳内装有的冷却工质为相变绝缘工质,该相变绝缘工质能够在液态和气态之间转变;服务器节点浸泡在液态绝缘工质中,液态绝缘工质与服务器节点换热后可转变为气态绝缘工质;机壳内还装有用于与气态绝缘工质进 行热交换的冷凝器,气态绝缘工质与冷凝器换热后可转变为液态绝缘工质。这样,利用液态绝缘工质对服务器节点进行散热,液态绝缘工质换热汽化后,与冷凝器换热再液化,如此循环,可保障服务器节点的散热效果。
基于一方面,或一方面的第一种至第五种实施方式中的任一者,本申请实施例还提供了一方面的第九种实施方式:服务器还包括第二外部制冷设备,机壳内装有的冷却工质为单相绝缘液体,机壳具有容纳单相绝缘液体的容纳腔部,机壳内还安装有具有喷淋腔的喷淋部件,该喷淋部件上安装有喷淋头,容纳腔部、喷淋部件与第二外部制冷设备连接形成循环回路,第二外部制冷设备用于冷却单相绝缘液体,并为其提供流动至喷淋腔的动力,喷淋头用于将喷淋腔内的单相绝缘液体喷淋至服务器节点,机壳的容纳腔部还用于接收喷淋后的单相绝缘液体。第二外部制冷设备的设置可以确保喷淋部件内的单相绝缘液体处于低温状态,以很好地与服务器节点进行换热,单相绝缘液体通过喷淋的方式与服务器节点进行热交换可确保服务器节点的各电子元器件都能够与单相绝缘液体接触换热,可提高服务器节点的散热效果。
基于一方面,或一方面的第一种至第五种实施方式中的任一者,本申请实施例还提供了一方面的第十种实施方式:机壳内装有的冷却工质为相变绝缘工质,该相变绝缘工质能够在液态和气态之间转变;机壳具有容纳液态绝缘工质的容纳腔部,机壳内还安装有喷淋部件,喷淋部件具有喷淋腔,容纳腔部与喷淋部件之间通过管路连接,并在连接管路上设有动力部件,该动力部件用于为液态绝缘工质提供流动至喷淋部件的喷淋腔的动力,喷淋部件上安装有喷淋头,喷淋头用于将喷淋腔内的液态绝缘工质喷淋至服务器节点,液态绝缘工质与服务器节点换热后可转变为气态绝缘工质;机壳内还安装有用于与气态绝缘工质进行热交换的冷凝器,气态绝缘工质与冷凝器换热后可转变为液态绝缘工质,容纳腔部还用于接收交换后的液态绝缘工质,包括喷淋后未汽化的液态绝缘工质和与冷凝器换热后转变形成的液态绝缘工质。这样,利用绝缘工质的相变,通过喷淋液态绝缘工质的方式与服务器节点换热,可确保服务器节点的各电子元器件均能与液态绝缘工质接触换热,再利用冷凝器将汽化后的气态绝缘工质液化,如此循环,可保障服务器节点的散热效果。
基于一方面的第九种或第十种实施方式,本申请实施例还提供了一方面的第十一种实施方式:机壳内安装的喷淋部件位于服务器节点的上方。这样,经喷淋部件上喷淋头喷洒的冷却工质可流经整个服务器节点,能够提高对服务器节点的散热效果。
基于一方面的第九种至第十一种实施方式中的任一者,本申请实施方式还提供了一方面的第十二种实施方式:服务器节点还浸泡在液态的冷却工质中。这样,液态的冷却工质既通过喷淋的方式与服务器节点换热,也通过浸泡接触的方式与服务器节点换热,能够提高对服务器节点的散热效果。
基于一方面,或一方面的第一种至第十二种实施方式中的任一者,本申请实施方式还提供了一方面的第十三种实施方式:服务器节点包括的电子元器件有多个,与换热部件接触换热的电子元器件的功耗至少大于其余电子元器件中的一个。这样,与换热部件接触的电子元器件的散热效果好。
基于一方面,或一方面的第一种至第十三种实施方式中的任一者,本申请实施方 式还提供了一方面的第十四种实施方式:与换热部件连接的进液管通过快插接头与流路部件的第一接口插拔连接,与换热部件连接的出液管通过快插接头与流路部件的第二接口插拔连接。这样,可快速实现换热部件与流路部件的拆装,便于维护。
基于一方面,或一方面的第一种至第十四种实施方式中的任一者,本申请实施方式还提供了一方面的第十五种实施方式:进液管和出液管均通过快插接头与换热部件插拔连接。这样,可快速实现换热部件与流路部件的拆装,便于维护。
本申请实施例另一方面提供了一种机柜,包括机壳、换热部件和流路部件,换热部件和流路部件均安装在机壳内;流路部件具有总进口、与总进口连通的第一接口、总出口及与总出口连通的第二接口,总进口用于冷却液的流入,总出口用于冷却液的流出;换热部件通过进液管与第一接口连通,换热部件通过出液管与第二接口连通;这样,冷却液自总进口流入流路部件后,经第一接口和进液管流入换热部件,再经出液管、第二接口和总出口流出流路部件,使得换热部件可以和与换热部件接触的部件进行热交换。
该机柜可以用于服务器节点的散热,应用时,可将服务器节点安装在机壳内,换热部件与服务器节点的电子元器件接触,利用流经换热部件的冷却液与电子元器件进行换热,以对电子元器件进行散热;同时,也可在机壳内装冷却工质,与服务器节点进行换热,与换热部件相结合,提高对服务器节点的散热效果。当然,该机柜也可以用于其他有散热需求的部件的散热。
基于另一方面,本申请实施方式还提供了另一方面的第一种实施方式:机壳内还安装有喷淋部件,喷淋部件具有容纳液态冷却工质的喷淋腔,喷淋部件上安装有喷淋头。这样,安装于机壳内的需要散热的部件(比如服务器节点)还可以通过喷淋液态冷却工质的方式进行冷却,能够提高散热效果。
附图说明
图1为本申请第一实施例提供的服务器的结构简示图;
图2为本申请第二实施例提供的服务器的结构简示图;
图3为本申请第三实施例提供的服务器的结构简示图;
图4为本申请第四实施例提供的服务器的结构简示图;
图5为本申请提供的服务器的流路部件的一种具体实施例的结构示意图。
具体实施方式
本申请实施例涉及服务器,下面结合附图对服务器进行详细描述。
第一实施例:
请参考图1,图1为本申请第一实施例提供的服务器的结构简示图。
如图1所示,该实施例中,服务器包括机壳10,机壳10内安装有服务器节点20、换热部件30和流路部件40。
该实施例中,机壳10具有密闭容纳腔,该密闭容纳腔内装有冷却工质,该冷却工质具体为单相绝缘液体61,单相绝缘液体61用于浸泡服务器节点20,以与服务器节点20进行热交换。可以理解,服务器节点20产生的热量可直接传递至单相绝缘液体 61。这里的浸泡指的是服务器节点20至少有部分浸入单相绝缘液体61,下文有同样表述与此理解相同。
图示中,单相绝缘液体61基本浸没服务器节点20,即服务器节点20完全置于单相绝缘液体61中,这样,可确保服务器节点20上的所有电子元器件都能够与单相绝缘液体61进行热交换,散热效果好。当然,在其他实施例中,服务器节点20也可以只部分浸入单相绝缘液体61。
其中,服务器节点20包括电路板21和安装在电路板21上的多个电子元器件,这些电子元器件包括第一类电子元器件22和第二类电子元器件23,其中,第一类电子元器件22的功耗大于第二类电子元器件23,相应地,第一类电子元器件22的散热需求较第二类电子元器件23高。第一类电子元器件22通常具有较大面积的面部。
这里需要指出的是,“第一类”和“第二类”的使用只是为了区分不同散热方式的电子元器件,不表示这些电子元器件存在先后或主次等关系,同时,“第一类电子元器件”不表示其对应的电子元器件都是相同类型或者相同外形的,即归纳到第一类电子元器件中的电子元器件可以是相同种类的,也可以是不同种类的,这些电子元器件的外形可以相同,也可以不同,比如第一类电子元器件可以包括CPU(central processing unit,中央处理器)、或者功率较大的芯片,比如GPU(graphics processing unit,显示芯片)或者可编程逻辑芯片等;同样地,“第二类电子元器件”也不表示其对应的电子元器件都是相同类型或者相同外形的,即归纳到第二类电子元器件中的电子元器件可以是相同种类的,也可以是不同种类的,比如第二类电子元器件可以包括控制芯片或者接口卡等。
流路部件40具有总进口411、与总进口411连通的第一接口412、总出口421以及与总出口421连通的第二接口422,总进口411用于冷却液44的流入,总出口421用于冷却液44的流出。具体的,流路部件40内具有连通总进口411和第一接口412的流道和连通总出口421和第二接口422的流道。
换热部件30连接有进液管和出液管,其进液管通过第一快插接头431与第一接口412插拔连接,其出液管通过第二快插接头432与第二接口422插拔连接,这样,经总进口411流入流路部件40的冷却液44可经第一接口412和与第一接口412连接的进液管流入相应的换热部件30,再通过出液管和对应的第二接口422流入流路部件40,并经总出口421流出流路部件40。显然,流路部件40中,连通总进口411和第一接口412的流道与连通总出口421和第二接口422的流道分隔开,互不干扰,以确保冷却液44能够流经换热部件30后再自流路部件40流出。
其中,换热部件30用于与服务器节点20的第一类电子元器件22面接触,以实现热交换,即第一类电子元器件22产生的热量可直接传递至换热部件30,再通过流经换热部件30的冷却液44带出机壳10,如此,实现对第一类电子元器件22的散热。
换热部件30可以采用内部具有流通通道的板状结构,其具有与第一类电子元器件22的表面接触的面部,即换热部件30可以采用冷板结构,当然,换热部件30也可不呈板状结构,但其具有至少一个用于与第一类电子元器件22接触的面部,这样,第一类电子元器件22产生的热量可以直接传递至换热部件30。
实际设置时,换热部件30与第一类电子元器件22连接在一起,以保证两者始终处于接触状态,提供两者之间的换热效率;换热部件30具体可以与第一类电子元器件22通过可拆卸的连接方式连接在一起,比如螺栓或者卡箍等连接方式,以方便对换热部件30或第一类电子元器件22进行维护。
该服务器中,通过机壳10内装有的单相绝缘液体61与服务器节点20进行热交换,在此基础上,服务器节点20上功耗较大的第一类电子元器件22通过与其面接触的换热部件30进行换热,可提高对第一类电子元器件22的散热效果,解决服务器节点20中功耗较高的第一类电子元器件22的散热问题。其中,换热部件30的进液管和出液管均通过快插接头与流路部件40的对应接口连接,不仅组装方便,也便于相关部件的维护;在其他的实施例中,换热部件30与进液管、出液管的连接也可均采用快插接头,同样可以快速拆装,便于维护。
该实施例中,机壳10内安装有三个服务器节点20,且各服务器节点20均竖向插装于机壳10内,即服务器节点20的电路板21的板面与竖直方向平行,这样,便于服务器节点20与机壳10的组装,也利于对各服务器节点20进行维护。当然,在其他实施例中,服务器节点20也可以以水平方向安装在机壳10内,即服务器节点20的电路板21的板面与水平面平行设置。
图示示例中,一个机壳10内安装的三个服务器节点20的结构相同,每个服务器节点20上都有一个第一类电子元器件22,相应地,每个第一类电子元器件22配合设置有一个换热部件30,即一个机壳10内安装有一个换热部件30,每个换热部件30连接有一个进液管和一个出液管,相应地,流路部件40具有三个第一接口412,分别与三个换热部件30的进液管连接,流路部件40具有三个第二接口422,分别与三个换热部件30的出液管连接,也就是说,流入流路部件40的冷却液44经过各第一接口412能够分别流向三个换热部件30,以与三个第一类电子元器件22进行换热,换热后的冷却液44再经过各第二接口422流入流路部件40,并通过流路部件40的总出口421流出机壳10外。这样,通过流路部件40的设置以及快接头实现流路部件40和换热部件30的连接,方便组装和维护。
在其他实施例中,根据应用需要,一个机壳10内也可以只安装一个服务器节点20,或者安装其他数目(比如两个、四个或更多个)的服务器节点20,当安装两个以上的服务器节点20时,各服务器节点20的结构可以不同,即每个服务器节点20的电路板21上安装的电子元器件可以不同,每个服务器节点20上可以安装一个第一类电子元器件22,也可以安装两个以上的第一类电子元器件22,可以理解,为了满足各功耗较高的第一类电子元器件22的散热需求,实际设置时,每个第一类电子元器件22对应安装有一个换热部件30,即换热部件30的数目与第一类电子元器件22的数目相同,相应地,流路部件40的第一接口412的数目与和各换热部件30连接的进液管的数目相同设置,流路部件40的第二接口422的数目与和各换热部件30连接的出液管的数目相同设置。
该实施例中,服务器还包括第一外部制冷设备50,流路部件40与第一外部制冷设备50连接形成循环回路,第一外部制冷设备50用于冷却冷却液44,并为冷却液44提 供循环流动力。这样,经换热部件30与第一类电子元器件22进行换热后的冷却液44温度升高,流出机壳10外后,在第一外部制冷设备50的作用下冷却后变为低温状态,再流经流路部件40和换热部件30,如此循环,可以确保对第一类电子元器件22的散热效果。
如图1所示,该实施例中,第一外部制冷设备50可以包括第一换热器51,第一换热器51和流路部件40之间形成一个循环回路,第一换热器51可以与冷塔等结构(图中未示出)之间形成另一循环回路,该循环回路中流动有液冷工质一53,流出流路部件40外的冷却液44在第一换热器51内与液冷工质一53进行热交换,冷却后的冷却液44再流入流路部件40,升温的液冷工质一53可在冷塔等结构中冷却降温后再流回第一换热器51。
第一换热器51可以为板式换热器或者管翅式换热器等任何形式的换热器。
在第一换热器51和流路部件40之间形成的循环回路上可以设置有第一动力部件52,以为冷却液44提供循环动力,以增加冷却液44的循环速率,提高换热效率。第一动力部件52可以选用循环泵或者增压泵等。
该实施例中,服务器还包括第二外部制冷设备70,机壳10具有供单相绝缘液体61流出的进液口和供单相绝缘液体61流出的出液口,机壳10的进液口、出液口和第二外部制冷设备70连接形成循环回路,第二外部制冷设备70用于冷却单相绝缘液体61,并为单相绝缘液体61提供循环流动力。这样,与服务器节点20换热升温的单相绝缘液体61流出机壳10后可在第二外部制冷设备70的冷却下变为低温状态再流入机壳10内与服务器节点20进行换热,以确保对服务器节点20的散热效果。
如图1所示,该实施例中,第二外部制冷设备70可以包括第二换热器71,第二换热器71和机壳10之间形成一个循环回路,第二换热器71可以与冷塔等结构之间形成另一循环回路,在该循环回路中流动有液冷工质二73,流出机壳10外的单相绝缘液体61在第二换热器71内与液冷工质二73进行热交换,冷却后的单相绝缘液体61再流出机壳10内,升温的液冷工质二73可在冷塔等结构中冷却降温后再流回第二换热器71。
第二换热器71也可以选用板式换热器或者管翅式换热器等任何形式的换热器。
在第二换热器71和机壳10之间形成的循环回路上可以设置有第二动力部件72,以为单相绝缘液体61提供循环动力,以增加单相绝缘液体61的循环速率,提高与服务器节点20的换热效率。第二动力部件72可以选用循环泵或者增压泵等。
图示示例中,单相绝缘液体61直接填充在机壳10的壳主体形成的密闭腔体内,可以理解,在其他实施例中,也可以在机壳10的壳主体内额外设置具有密闭腔室的结构,通常,机壳10的壳主体呈箱型结构,当然,机壳10的壳主体也可以呈其他结构形式。
该实施例中,安装于机壳10内的流路部件40位于单相绝缘液体61的液面上方,即流路部件40不与单相绝缘液体61接触,避免流经流路部件40的冷却液44受单相绝缘液体61的影响。当然,在其他实施例中,流路部件40也可以浸泡在单相绝缘液体61中。
第二实施例:
请参考图2,图2为本申请第二实施例提供的服务器的结构简示图。
该实施例提供的服务器中,服务器节点20的较大功耗的第一类电子元器件22的散热仍通过与其面接触的换热部件30实现,其中,流入换热部件30的冷却液44也是通过流路部件40与外界的第一外部制冷设备50形成循环回路,相关管路的连接方式以及第一外部制冷设备50的结构等均与前述第一实施例相同,可参考前述第一实施例理解,此处不再重复。
该实施例的服务器与前述第一实施例相比,区别主要在于机壳10内装有的冷却工质与服务器节点20的换热方式不同,下面就两者的区别部分做重点说明。
该实施例中,机壳10内装有的冷却工质也为单相绝缘液体61,该实施例中,机壳10包括设置在壳主体内的储液容器11,该储液容器11具有容纳单相绝缘液体61的容纳腔,且该储液容器11为敞口结构。
机壳10内安装有具有喷淋腔的喷淋部件80,喷淋部件80上安装有喷淋头81,储液容器11、喷淋部件80与第二外部制冷设备70连接形成循环回路,第二外部制冷设备70用于冷却单相绝缘液体61,并为单相绝缘液体61提供流动至喷淋部件80的喷淋腔的动力,喷淋头81用于将喷淋腔内的单相绝缘液体61喷淋至服务器节点20,储液容器11还用于接收喷淋后的单相绝缘液体61,显然,储液容器11位于服务器节点20的下方,以使喷淋至服务器节点20的单相绝缘液体61在重力作用下能够落入敞口的储液容器11内。
与前述第一实施例相比,该实施例中的单相绝缘液体61以喷淋的方式与服务器节点20进行热交换,相较于第一实施例中的浸泡形式来说,单相绝缘液体61的用量可以较少设置。
如图2所示,机壳10内示例性地示出了三个服务器节点20的结构,相应地,喷淋部件80上至少安装三个喷淋头81,以便将单相绝缘液体61分别喷淋至三个服务器节点20。根据服务器节点20的实际结构及散热需求等,每个服务器节点20对应的喷淋头81可以为一个,也可以为两个或者更多个,以满足服务器节点20的散热需求为准。喷淋头81将喷淋部件80的喷淋腔内的单相绝缘液体61喷淋至服务器节点20,与服务器节点20进行换热,换热后的单相绝缘液体61在重力的作用下落入储液容器11内,储液容器11内的单相绝缘液体61流出机壳10外被第二外部制冷设备70冷却后,再流入喷淋部件80中,如此循环,实现对服务器节点20的散热。
第二外部制冷设备70的结构组成与前述第一实施例类似,区别在于管路连接不同,具体地,第二外部制冷设备70的第二换热器71与储液容器11和喷淋部件80之间形成单相绝缘液体61的循环回路,在该循环回路上设有第二动力部件72,以为单相绝缘液体61提供流动至喷淋部件80的动力。第二外部制冷设备70的其他结构可参考前述第一实施例理解,此处不再赘述。
该实施例中,喷淋部件80具体位于各服务器节点20的上方,该种设置方式便于将单相绝缘液体61喷淋至服务器节点20,也有利于单相绝缘液体61与服务器节点20整体进行换热。在其他实施例中,喷淋部件80也可以设置在服务器节点20的侧面,通过喷淋头81的数目和喷淋角度设置等来将单相绝缘液体61喷淋至服务器节点20。
可以理解,根据空间布局和散热需求等,喷淋部件80的数目可以不限于图示中的一个,可以为两个以上,其排布等可以根据布局和需求来定。
图示示例中,流路部件40位于喷淋部件80的下方,实际设置时,流路部件40可以位于喷淋部件80的上方,或者位于喷淋部件80的侧面,这样,避免喷淋部件80内的单相绝缘液体61在喷淋后与流路部件40接触,而影响换热。
图示示例中,各服务器节点20位于储液容器11的上方,在实际设置时,各服务器节点20可以插入储液容器11内,即各服务器节点20浸泡在单相绝缘液体61中,在经过喷淋换热后,还通过浸泡方式实现换热,以提高对服务器节点20的散热效果。
图示示例中,机壳10包括相对独立于壳主体的储液容器11,可以理解,在其他实施例中,也可不设置图中的储液容器11,直接将单相绝缘液体61装在机壳10的壳主体的腔体内,类似于前述第一实施例。
第三实施例:
请参考图3,图3为本申请第三实施例提供的服务器的结构简示图。
该实施例提供的服务器中,服务器节点20的较大功耗的第一类电子元器件22的散热仍通过与其面接触的换热部件30实现,其中,流入换热部件30的冷却液44也是通过流路部件40与外界的第一外部制冷设备50形成循环回路,相关管路的连接方式以及第一外部制冷设备50的结构等均与前述第一实施例相同,可参考前述第一实施例理解,此处不再重复。
该实施例的服务器与前述第一实施例相比,区别主要在于机壳10内装有的冷却工质及其与服务器节点20的换热方式不同,下面就两者的区别部分做重点说明。
该实施例中,机壳10内装有的冷却工质为相变绝缘工质62,该相变绝缘工质62可以在液态和气态之间转变,即相变绝缘工质62可以为液态绝缘工质621,也可以为气态绝缘工质。
机壳10内的服务器节点20浸泡在液态绝缘工质621中,服务器节点20产生的热量可以直接传递至液态绝缘工质621,液态绝缘工质621升温后若达到汽化点可转换为气态绝缘工质;机壳10内还安装有冷凝器90,用于与气态绝缘工质进行热交换,使得气态绝缘工质冷却后能够再转变为液态绝缘工质621落入机壳10下方,重新与服务器节点20进行换热,如此循环,实现对服务器节点20的散热。
该实施例中,冷凝器90内流通有液冷工质三91,该液冷工质三91与气态绝缘工质进行热交换,具体地,冷凝器90可与外界的制冷设备连接形成循环回路,以对液冷工质三91进行冷却,确保其与气态绝缘工质的换热效果。
冷凝器90的结构形式可以多样,一种简单的方式为管翅式结构。
图示示例中,液态绝缘工质621直接装在机壳10形成的密闭腔室内,在其他实施例中,也可以在机壳10的壳主体内设置相对独立的容纳部件,以容纳液体绝缘工质621,当然,该容纳部件应当为敞口结构,以便于由气态绝缘工质转变的液态绝缘工质621能够落入该容纳部件内。
实际设置时,当相变绝缘工质62全部处于液态时,服务器节点20可以浸没在液态绝缘工质621内,即服务器节点20完全位于液态绝缘工质621内,以确保对服务器 节点20整体的散热效果,当然,根据服务器节点20的散热需求,在相变绝缘工质62全部处于液态时,服务器节点20也可以只部分浸泡在液态绝缘工质621中,如图3所示,此时,在机壳10内安装服务器节点20时,可以使服务器节点20上功耗相对较小的电子元器件位于液态绝缘工质621的液面上方,使其通过电路板21将热量传递至液态绝缘工质621。
第四实施例:
请参考图4,图4为本申请第四实施例提供的服务器的结构简示图。
该实施例提供的服务器中,服务器节点20的较大功耗的第一类电子元器件22的散热仍通过与其面接触的换热部件30实现,其中,流入换热部件30的冷却液44也是通过流路部件40与外界的第一外部制冷设备50形成循环回路,相关管路的连接方式以及第一外部制冷设备50的结构等均与前述第一实施例相同,可参考前述第一实施例理解,此处不再重复。
该实施例的服务器与前述第一实施例相比,区别主要在于机壳10内装有的冷却工质及其与服务器节点20的换热方式不同,下面就两者的区别部分做重点说明。
该实施例中,机壳10内装有的冷却工质为相变绝缘工质62,该相变绝缘工质62可以在液态和气态之间转变,即相变绝缘工质62可以为液态绝缘工质621,也可以为气态绝缘工质。
该实施例中,机壳10包括设置在壳主体内的储液容器11,该储液容器11具有容纳液态绝缘工质621的容纳腔,且该储液容器11为敞口结构。
机壳10内还安装有具有喷淋腔的喷淋部件80和冷凝器90;喷淋部件80和储液容器11之间通过管路连接,并在该连接管路上设有第三动力部件110,第三动力部件110用于为液态绝缘工质621提供流向喷淋部件80的动力,喷淋部件80上安装有喷淋头81,喷淋头81用于将喷淋腔内的液态绝缘工质621喷淋至服务器节点20,以与服务器节点20进行热交换,液态绝缘工质621与服务器节点20换热后升温,若达到其汽化温度则可转换为气态绝缘工质,气态绝缘工质与冷凝器90进行热交换,冷却后能够转变为液态绝缘工质621,喷淋后未转变的液态绝缘工质以及经气态绝缘工质转变的液态绝缘工质均能够落入储液容器11内,以循环作业。
第三动力部件110可以选用循环泵或者增压泵等形式。
该实施例中,冷凝器90内流通有液冷工质三91,该液冷工质三91与与气态绝缘工质进行热交换,具体地,冷凝器90可与外界的制冷设备连接形成循环回路,以对液冷工质三91进行冷却,确保其与气态绝缘工质的换热效果。
冷凝器90的结构形式可以多样,一种简单的方式为管翅式结构。
图示示例中,机壳10包括相对独立的储液容器11,这样,可以将储液容器11与喷淋部件80之间的连接管路设置在机壳10内,当然,在其他实施例中,也可以不设置储液容器11,利用机壳10自身形成的密闭腔室的部分作为容纳液态绝缘工质621的容纳腔部,此时为方便设置,可通过外置管路将机壳10的容纳腔部与喷淋部件80连接,相应地,设于管路上的第三动力部件110也可外置于机壳10,方便维护。
该实施例中,喷淋部件80具体位于各服务器节点20的上方,该种设置方式便于 将液态绝缘工质621喷淋至服务器节点20,也有利于液态绝缘工质621与服务器节点20整体进行换热。在其他实施例是,喷淋部件80也可以设置在其他位置,只要能够实现对服务器节点20的喷淋即可。
图示示例中,各服务器节点20位于储液容器11的上方,在实际设置时,各服务器节点20可以插入储液容器11内,即各服务器节点20浸泡在储液容器11内的液态绝缘工质621中,在经过喷淋换热后,还通过浸泡方式实现换热,以提高对服务器节点20的散热效果。
上述四个实施例中,流路部件40均包括相对独立的第一部分410和第二部分420,其中,第一部分410上形成有总进口411和各第一接口412,显然,连通各第一接口412和总进口411的流道也形成于第一部分410上,第二部分420上形成有总出口421和各第二接口422,显然,连通各第二接口422和总出口421的流道也形成于第二部分420上。
这样设置,对于流路部件40在机壳10内的安装来说相对灵活,便于空间布局。
请参考图5,图5为本申请提供的服务器的流路部件的一种具体实施例的结构示意图。
在其他的实施例中,服务器也可以设置图5所示的流路部件40',该流路部件40'的第一部分和第二部分为一体成型结构,即总进口、与总进口连通的第一接口412、总出口以及与总出口连通的第二接口422均形成在一体的流路部件40'上,图示中,流路部件40'的总进口连接有用于流入冷却液的进口管路45,总出口连接有用于流出冷却液的出口管路46。一体结构的流路部件40'能够减少零部件数目,便于简化组装工序。
图5中示例性地示出了流路部件40'具有三个第一接口412和三个第二接口422的结构形式,如前所述,可以理解,实际设置时,流路部件40'上的第一接口数目和第二接口数目与机壳10内的换热部件30数目相关。
上述各实施例中,冷却液44和各液冷工质(包括液冷工质一53、液冷工质二73和液冷工质三91)可以选用相同的介质,也可以选用不同的介质,为降低成本,可以选用水或者水和添加剂组成的组合物等。
本申请实施例还涉及机柜,该机柜的结构可参考前述图1至图4理解,包括机壳10、换热部件30和流路部件40,换热部件30和流路部件40均安装在机壳10内;流路部件40具有总进口411、与总进口411连通的第一接口412、总出口421及与总出口421连通的第二接口422,总进口411用于冷却液44的流入,总出口421用于冷却44液的流出;换热部件30通过进液管与第一接口412连通,换热部件30通过出液管与第二接口422连通;这样,冷却液44自总进口411流入流路部件40后,经第一接口412和进液管流入换热部件30,再经出液管、第二接口422和总出口421流出流路部件40,使得换热部件30可以和与换热部件30接触的部件进行热交换。
该机柜可以用于安装服务器节点20或其他有散热需求的部件,具体可以在机柜内设置与这些部件相配合的安装结构。
参考图2和图4,该机柜内还可以设置喷淋部件80,喷淋部件80具有容纳液态冷 却工质的喷淋腔,喷淋部件80上安装有喷淋头81。这样,安装于机壳10内的需要散热的部件(比如服务器节点20)还可以通过喷淋液态冷却工质的方式进行冷却,能够提高散热效果。
实际应用中,机柜的上述各部件及相关部件之间的连接关系均可参考前述第一实施例至第四实施例的描述理解,此处不再重复论述。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (18)

  1. 一种服务器,其特征在于,包括:机壳,所述机壳内安装有服务器节点、换热部件和流路部件;
    所述机壳内装有冷却工质,所述冷却工质用于与所述服务器节点进行热交换;
    所述流路部件具有总进口、总出口、第一接口和第二接口,所述总进口与所述第一接口连通,所述总出口与所述第二接口连通,所述总进口用于冷却液的流入,所述总出口用于所述冷却液的流出;
    所述服务器节点包括电子元器件,所述换热部件用于与所述电子元器件接触换热;所述换热部件通过进液管与所述第一接口连接,所述换热部件通过所述出液管与所述第二接口连接。
  2. 根据权利要求1所述的服务器,其特征在于,所述机壳内安装的所述换热部件有多个,每个所述换热部件连接有一个所述进液管和一个所述出液管,所述流路部件的所述第一接口的数目与所述进液管的数目相同,所述流路部件的所述第二接口的数目与所述出液管的数目相同。
  3. 根据权利要求1或2所述的服务器,其特征在于,所述流路部件包括第一部分和第二部分,所述总进口和所述第一接口均形成于所述第一部分,所述第一部分具有连通所述总进口和所述第一接口的流道,所述总出口和所述第二接口均形成于所述第二部分,所述第二部分具有连通所述总出口和所述第二接口的流道。
  4. 根据权利要求3所述的服务器,其特征在于,所述第一部分和所述第二部分为一体成型结构;或者,所述第一部分和所述第二部分为两个相对独立的部件。
  5. 根据权利要求1-4任一项所述的服务器,其特征在于,所述机壳内安装的所述服务器节点有多个,各所述服务器节点均竖向插装在所述机壳内。
  6. 根据权利要求1-5任一项所述的服务器,其特征在于,还包括第一外部制冷设备,所述流路部件与所述第一外部制冷设备连接形成循环回路,所述第一外部制冷设备用于冷却所述冷却液,并为所述冷却液提供循环流动力。
  7. 根据权利要求1-6任一项所述的服务器,其特征在于,还包括第二外部制冷设备,所述冷却工质为单相绝缘液体,所述服务器节点浸泡在所述单相绝缘液体中,所述机壳具有进液口和出液口,所述进液口、所述出液口与所述第二外部制冷设备连接形成循环回路,所述第二外部制冷设备用于冷却所述单相绝缘液体,并为所述单相绝缘液体提供循环流动力。
  8. 根据权利要求7所述的服务器,其特征在于,所述单相绝缘液体浸没所述服务器节点。
  9. 根据权利要求1-6任一项所述的服务器,其特征在于,所述冷却工质为相变绝缘工质,所述相变绝缘工质能够在液态与气态之间转变;所述服务器节点浸泡在液态绝缘工质中,所述液态绝缘工质与所述服务器节点热交换后能够转变为气态绝缘工质;所述机壳内还安装有冷凝器,所述冷凝器用于与所述气态绝缘工质进行热交换,以使所述气态绝缘工质转变为液态绝缘工质。
  10. 根据权利要求1-6任一项所述的服务器,其特征在于,还包括第二外部制冷设 备,所述冷却工质为单相绝缘液体,所述机壳具有容纳所述单相绝缘液体的容纳腔部,所述机壳内还安装有具有喷淋腔的喷淋部件,所述喷淋部件上安装有喷淋头,所述容纳腔部、所述喷淋部件与所述第二外部制冷设备连接形成循环回路,所述第二外部制冷设备用于冷却所述单相绝缘液体,并为所述单相绝缘液体提供流动至所述喷淋腔的动力,所述喷淋头用于将所述喷淋腔内的单相绝缘液体喷淋至所述服务器节点,所述容纳腔部用于接收喷淋后的所述单相绝缘液体。
  11. 根据权利要求1-6任一项所述的服务器,其特征在于,所述冷却工质为相变绝缘工质,所述相变绝缘工质能够在液态与气态之间转变;
    所述机壳具有容纳液态绝缘工质的容纳腔部,所述机壳内还安装有具有喷淋腔的喷淋部件,所述容纳腔部与所述喷淋部件之间通过管路连接,且在连接管路上设有动力部件,所述动力部件用于为所述液态绝缘工质提供流向所述喷淋部件的动力,所述喷淋部件上安装有喷淋头,所述喷淋头用于将所述喷淋腔内的所述液态绝缘工质喷淋至所述服务器节点,所述液态绝缘工质与所述服务器节点热交换后能够转变为气态绝缘工质;
    所述机壳内还安装有冷凝器,所述冷凝器用于与所述气态绝缘工质进行热交换,以使所述气态绝缘工质转变为所述液态绝缘工质;所述容纳腔部用于接收热交换后的所述液态绝缘工质。
  12. 根据权利要求10或11所述的服务器,其特征在于,所述喷淋部件位于所述服务器节点的上方。
  13. 根据权利要求10-12任一项所述的服务器,其特征在于,所述服务器节点还浸泡在液态的冷却工质中。
  14. 根据权利要求1-13任一项所述的服务器,其特征在于,所述服务器节点包括的所述电子元器件有多个,与所述换热部件接触换热的电子元器件的功耗至少大于其余电子元器件中的一个。
  15. 根据权利要求1-14任一项所述的服务器,其特征在于,所述进液管与所述第一接口通过快插接头插拔连接,所述出液管与所述第二接口通过快插接头插拔连接。
  16. 根据权利要求1-15任一项所述的服务器,其特征在于,所述进液管和所述出液管均通过快插接头与所述换热部件插拔连接。
  17. 一种机柜,其特征在于,包括机壳、换热部件和流路部件,所述换热部件和所述流路部件均安装在所述机壳内;
    所述流路部件具有总进口、总出口、第一接口和第二接口,所述总进口与所述第一接口连通,所述总出口与所述第二接口连通,所述总进口用于冷却液的流入,所述总出口用于所述冷却液的流出;
    所述换热部件通过进液管与所述第一接口连通,所述换热部件通过出液管与所述第二接口连通。
  18. 根据权利要求17所述的机柜,其特征在于,还包括安装在所述机壳内的喷淋部件,所述喷淋部件具有用于容纳液态冷却工质的喷淋腔,所述喷淋部件上安装有喷淋头。
PCT/CN2022/087290 2021-05-28 2022-04-18 服务器及机柜 WO2022247521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110592828.0A CN115413183A (zh) 2021-05-28 2021-05-28 服务器及机柜
CN202110592828.0 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022247521A1 true WO2022247521A1 (zh) 2022-12-01

Family

ID=84156530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087290 WO2022247521A1 (zh) 2021-05-28 2022-04-18 服务器及机柜

Country Status (2)

Country Link
CN (1) CN115413183A (zh)
WO (1) WO2022247521A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625639A (zh) * 2012-03-21 2012-08-01 华为技术有限公司 电子设备及其散热系统和散热方法
US20140216686A1 (en) * 2013-02-01 2014-08-07 Dell Products L.P. Partitioned, Rotating Condenser Units to Enable Servicing of Submerged IT Equipment Positioned Beneath a Vapor Condenser Without Interrupting a Vaporization-Condensation Cycling of the Remaining Immersion Cooling System
CN105704989A (zh) * 2016-04-26 2016-06-22 广东申菱环境系统股份有限公司 带有液冷系统的服务器机柜
CN106533459A (zh) * 2017-01-10 2017-03-22 广东合新材料研究院有限公司 一种发射机功放单元冷却系统及方法
CN110958819A (zh) * 2019-12-11 2020-04-03 深圳绿色云图科技有限公司 冷却装置及单相浸没式液冷机柜
CN111642109A (zh) * 2020-06-02 2020-09-08 南京艾科美热能科技有限公司 一种喷淋式机柜散热系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625639A (zh) * 2012-03-21 2012-08-01 华为技术有限公司 电子设备及其散热系统和散热方法
US20140216686A1 (en) * 2013-02-01 2014-08-07 Dell Products L.P. Partitioned, Rotating Condenser Units to Enable Servicing of Submerged IT Equipment Positioned Beneath a Vapor Condenser Without Interrupting a Vaporization-Condensation Cycling of the Remaining Immersion Cooling System
CN105704989A (zh) * 2016-04-26 2016-06-22 广东申菱环境系统股份有限公司 带有液冷系统的服务器机柜
CN106533459A (zh) * 2017-01-10 2017-03-22 广东合新材料研究院有限公司 一种发射机功放单元冷却系统及方法
CN110958819A (zh) * 2019-12-11 2020-04-03 深圳绿色云图科技有限公司 冷却装置及单相浸没式液冷机柜
CN111642109A (zh) * 2020-06-02 2020-09-08 南京艾科美热能科技有限公司 一种喷淋式机柜散热系统

Also Published As

Publication number Publication date
CN115413183A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN105828574B (zh) 用于计算机服务器机架的冷却系统
TWI392432B (zh) 一種伺服器機櫃
CN107743354B (zh) 数据中心机房的制冷系统和数据中心
US8947873B2 (en) Immersion-cooled and conduction-cooled electronic system
CN106413338B (zh) 一种用于计算机及数据中心散热的工质接触式冷却系统
CN103327799B (zh) 用于机架式服务器的冷却组件、及机架式服务器机组
CN108738279A (zh) 用于机柜服务器的液冷系统
EP3457829B1 (en) Cooling system of working medium contact type for heat dissipation of computer and data centre
WO2022022343A1 (zh) 一种散热机柜及通信设备
CN111031770A (zh) 一种服务器机柜及服务器用换热设备柜
CN205912402U (zh) 一种用于计算机及数据中心散热的工质接触式冷却系统
CN114190063B (zh) 一种一体定向浸没冷却式服务器模块及数据中心
WO2022247521A1 (zh) 服务器及机柜
CN211090400U (zh) 一种液浸式服务器机柜及其冷却系统
WO2023025093A1 (zh) 基于双冷却通路的液冷散热结构
WO2022228164A1 (zh) 冷却装置和包括冷却装置的服务器
WO2020135768A1 (zh) 相变储能装置及供暖系统
CN211090399U (zh) 一种液浸式服务器机柜及其冷却系统
CN211090397U (zh) 一种液浸式服务器机柜及其冷却系统
CN211090398U (zh) 一种液浸式服务器机柜及其冷却系统
CN219612438U (zh) 散热装置及集成化系统
CN110730604A (zh) 一种液浸式服务器机柜及其冷却系统
CN110730603A (zh) 一种液浸式服务器机柜及其冷却系统
CN217037793U (zh) 一种冷板式液冷多节点服务器
WO2023221638A1 (zh) 一种散热装置、连接结构及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE