US20190264986A1 - Heat dissipation device - Google Patents

Heat dissipation device Download PDF

Info

Publication number
US20190264986A1
US20190264986A1 US15/936,544 US201815936544A US2019264986A1 US 20190264986 A1 US20190264986 A1 US 20190264986A1 US 201815936544 A US201815936544 A US 201815936544A US 2019264986 A1 US2019264986 A1 US 2019264986A1
Authority
US
United States
Prior art keywords
heat dissipation
dissipation device
working medium
chamber
storage structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/936,544
Inventor
Chien-An Chen
Mu-Shu Fan
Chien-Yu Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Auras Technology Co Ltd
Original Assignee
Auras Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auras Technology Co Ltd filed Critical Auras Technology Co Ltd
Assigned to AURAS TECHNOLOGY CO., LTD. reassignment AURAS TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, CHIEN-AN, CHEN, CHIEN-YU, FAN, MU-SHU
Publication of US20190264986A1 publication Critical patent/US20190264986A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0226Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with an intermediate heat-transfer medium, e.g. thermosiphon radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0292Other particular headers or end plates with fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media

Definitions

  • the present invention relates to a heat dissipation device, and more particularly to a heat dissipation device for dissipating heat through two phase changes.
  • thermosiphon is heat dissipation method for allowing a working medium (e.g., water) to flow along a circular loop without the need of using a pump to push the working medium.
  • a working medium e.g., water
  • thermosiphon is heat dissipation method for allowing a working medium (e.g., water) to flow along a circular loop without the need of using a pump to push the working medium.
  • a working medium e.g., water
  • US Patent Publication No. 20100315781 discloses a thermosyphon heat exchanger.
  • a water cooling radiator is one of the widely-used heat exchanger in the associated application fields.
  • the water cooling radiator cooperates with a fan to cool down the high temperature liquid or condense the vaporized stem into liquid. Consequently, the liquid flows along a circular loop without any pump. In other words, the processes of vaporizing and condensing the liquid are sufficient for circulating the liquid.
  • the principles of the thermosiphon and the operations of the water cooling radiator are well known to those skilled in the art, and are not redundantly described herein.
  • thermosyphon heat exchanger is unable to effectively remove the heat from the computer or the electronic device because the circulating efficacy of the working liquid within the thermosyphon heat exchanger is unsatisfied.
  • the present invention provides a heat dissipation device with a vaporization-enhancing structure for increasing the thermal contact area and enhancing the efficiency of vaporizing the working medium. Consequently, the circulation of the working medium in the heat dissipation device is enhanced, and the overall heat dissipation performance is effectively enhanced.
  • a heat dissipation device in accordance with an aspect of the present invention, there is provided a heat dissipation device.
  • the heat dissipation device includes a first storage structure, at least one first pipe, at least one heat sink fin group and a vaporization-enhancing structure.
  • the first storage structure includes a first chamber.
  • the first storage structure is in thermal contact with a heat source.
  • An inner portion of each first pipe has a first channel.
  • a first end of the first channel is in fluid communication with the first chamber.
  • a working medium is filled in the first chamber and the first channel.
  • the at least one heat sink fin group is disposed on an outer surface of the at least one first pipe.
  • the vaporization-enhancing structure is disposed within the first chamber and in thermal contact with the first storage structure and at least a portion of the working medium.
  • the vaporization-enhancing structure After the vaporization-enhancing structure receives heat energy from the heat source, the heat energy is transferred to the working medium.
  • the vaporization-enhancing structure facilitates liquid-gas transformation of the working medium, so that the working medium moves in a direction toward a second end of the first channel.
  • the at least one first pipe includes plural first pipes
  • the at least one heat sink fin group includes plural heat sink fin groups.
  • Each of the plural first pipes is arranged between two adjacent ones of the plural heat sink fin groups.
  • the vaporization-enhancing structure includes plural skived fins.
  • the first storage structure further includes a first plate, a second plate and plural lateral plates.
  • the plural lateral plates are connected between the first plate and the second plate.
  • the first chamber is defined by the first plate, the second plate and the plural lateral plates collaboratively.
  • the second plate includes at least one opening, and the opening is in communication with the first end of the first channel.
  • the heat dissipation device further includes a second storage structure, and the second storage structure includes a second chamber.
  • the second chamber is in fluid communication with the second end of the first channel.
  • a sealed space is defined by the first chamber, the second chamber and the at least one first channel.
  • the heat dissipation device further includes a heat dissipation element.
  • the heat dissipation element is disposed on an outer surface of the second storage structure.
  • the heat dissipation device further includes a liquefaction-enhancing structure.
  • the liquefaction-enhancing structure is disposed within the second chamber and in thermal contact with the second storage structure and at least a portion of the working medium.
  • the liquefaction-enhancing structure facilitates gas-liquid transformation of the working medium, so that the working medium moves in a direction toward the first end of the first channel.
  • the liquefaction-enhancing structure includes plural skived fins.
  • the second end of the first channel is closed.
  • first end and the second end of the at least one first pipe are connected with the first storage structure.
  • an inner portion of the at least one first pipe is equipped with a liquefaction-enhancing structure.
  • the liquefaction-enhancing structure facilitates gas-liquid transformation of the working medium, so that the working medium moves in a direction toward the first end of the first channel.
  • the liquefaction-enhancing structure includes plural capillary structures or recesses, which are formed on an inner surface of the at least one first pipe and disposed within the first channel.
  • the heat dissipation device further includes a third storage structure, at least one second pipe, at least one additional heat sink fin group and an additional vaporization-enhancing structure.
  • the third storage structure includes a third chamber.
  • the third storage structure is in thermal contact with the heat source or an additional heat source.
  • An inner portion of each second pipe has a second channel. A first end of the second channel is in fluid communication with the third chamber.
  • An additional working medium is filled in the third chamber and the second channel.
  • the at least one additional heat sink fin group is disposed on an outer surface of the at least one second pipe.
  • the additional vaporization-enhancing structure is disposed within the third chamber and in thermal contact with the third storage structure and at least a portion of the additional working medium.
  • the vaporization-enhancing structure After the vaporization-enhancing structure receives heat energy from the heat source or the additional heat source, the heat energy is transferred to the additional working medium.
  • the additional vaporization-enhancing structure facilitates liquid-gas transformation of the additional working medium, so that the additional working medium moves in a direction toward a second end of the second channel.
  • At least one of the first storage structure and the at least one first pipe and at least one of the third storage structure and the at least one second pipe are directly connected with each other and linked with each other, or at least one of the first storage structure and the at least one first pipe and at least one of the third storage structure and the at least one second pipe are linked with each other through an intermediate coupling mechanism.
  • the first pipe is a vertical pipe
  • the second pipe is a horizontal pipe
  • the additional vaporization-enhancing structure includes plural skived fins.
  • the heat dissipation device of the present invention is equipped with the vaporization-enhancing structure to increase the thermal contact area and enhance the vaporizing efficiency of the working medium. Consequently, the circulating efficacy of the working medium within the heat dissipation device is enhanced, and the overall heat dissipation performance of the heat dissipation device is increased.
  • the vaporization-enhancing structure comprises plural skived fins. Since the skived fins have the advantages of high density fins, the thermal contact area between the vaporization-enhancing structure and the liquid working medium is increased.
  • the vaporizing speed of the liquid working medium is increased, the circulating efficacy of the liquid working medium within the heat dissipation device is further enhanced and the overall heat dissipation performance of the heat dissipation device is increased. Moreover, since the vaporization-enhancing structure is composed of the plural skived fins, the fabricating cost is reduced.
  • FIG. 1 is a schematic perspective view illustrating the outer appearance of a heat dissipation device according to a first embodiment of the present invention
  • FIG. 2 is a schematic exploded view illustrating a portion of the heat dissipation device as shown in FIG. 1 ;
  • FIG. 3 is a schematic cross-sectional view illustrating a portion of the heat dissipation device as shown in FIG. 1 ;
  • FIG. 4 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a second embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a third embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a fifth embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a sixth embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a seventh embodiment of the present invention.
  • thermal contact is the contact via thermal conduction.
  • the thermal contact has two types, including a direct contact mechanism and an indirect contact mechanism.
  • the thermal contact also includes the contact between two components that are close to each other but not contacted with each other. If two components are directly attached on each other, these two components are in direct contact. If a thermally conductive medium (e.g., thermal paste) is arranged between two components, these two components are in indirect contact.
  • a thermally conductive medium e.g., thermal paste
  • FIG. 1 is a schematic perspective view illustrating the outer appearance of a heat dissipation device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic exploded view illustrating a portion of the heat dissipation device as shown in FIG. 1 .
  • FIG. 3 is a schematic cross-sectional view illustrating a portion of the heat dissipation device as shown in FIG. 1 .
  • the heat dissipation device 1 A comprises a first storage structure 11 , a second storage structure 12 , plural first pipes 13 , plural heat sink fin groups 14 and a vaporization-enhancing structure 15 .
  • the second storage structure 12 is located over the first storage structure 11 .
  • the first storage structure 11 comprises a first chamber 111 .
  • the second storage structure 12 comprises a second chamber 121 .
  • An inner portion of each first pipe 13 has a first channel 131 .
  • a first end 1311 of the first channel 131 is in fluid communication with the first chamber 111 .
  • a second end 1312 of the first channel 131 is in fluid communication with the second chamber 121 .
  • a sealed space is defined by the first chamber 111 of the first storage structure 11 , the second chamber 121 of the second storage structure 12 and the first channels 131 of the plural first pipes 13 .
  • a working medium 2 is filled in the sealed space.
  • the heat sink fin groups 14 are disposed on outer surfaces of the first pipes 13 .
  • the vaporization-enhancing structure 15 is disposed within the first chamber 111 . Moreover, the vaporization-enhancing structure 15 is in thermal contact with the first storage structure 11 and at least a portion of the working medium 2 . For example, the vaporization-enhancing structure 15 is immersed in at least a portion of the working medium 2 . The vaporization-enhancing structure 15 is used for increasing the efficiency of vaporizing the working medium 2 . The operations of the vaporization-enhancing structure 15 will be described herein.
  • each first pipe 13 is arranged between two adjacent heat sink fin groups 14 .
  • Each heat sink fin group 14 comprises heat sink fins 141 .
  • These heat sink fins 141 are substantially parallel with each other and spaced apart from each other in the vertical direction, and arranged on the outer surfaces of the first pipes 13 .
  • the first storage structure 11 further comprises a first plate 112 , a second plate 113 and plural lateral plates 114 .
  • the plural lateral plates 114 are connected between the first plate 112 and the second plate 113 .
  • the first chamber 111 is defined by the first plate 112 , the second plate 113 and the plural lateral plates 114 collaboratively.
  • the vaporization-enhancing structure 15 comprises plural skived fins.
  • the vaporization-enhancing structure 15 is disposed on the first plate 112 .
  • the second plate 113 comprises plural openings 1131 .
  • the plural openings 1131 are in communication with the first ends 1311 of the first channels 131 of the first pipes 13 .
  • the structure of the second storage structure 12 is similar to that of the first storage structure 11 , and is not redundantly described herein.
  • the above examples are presented herein for purpose of illustration and description only.
  • the constituents of the heat sink fin groups 14 , the arrangements of the heat sink fins 141 , the constituents of the first storage structure 11 , the constituents of the second storage structure 12 and the relationships between the first storage structure 11 , the second storage structure 12 and the first pipes 13 , the example of the vaporization-enhancing structure 15 and the relative positions between the vaporization-enhancing structure 15 and the first chamber 111 of the first storage structure 11 are not restricted. That is, numerous modifications and alterations may be made according to the practical requirements.
  • the principles of removing heat energy by the heat dissipation device 1 A will be described as follows.
  • the heat energy of the heat source 31 is transferred to the liquid working medium 2 a through the first plate 112 and the overlying vaporization-enhancing structure 15 .
  • the liquid working medium 2 a is disposed within the first chamber 111 and in thermal contact with the first plate 112 and the vaporization-enhancing structure 15 .
  • the liquid working medium 2 a absorbs sufficient heat energy, the liquid working medium 2 a is vaporized. Consequently, the liquid working medium 2 a is transformed into the gaseous working medium 2 b . That is, the liquid-gas transformation occurs.
  • the gaseous working medium 2 b enters the first channels 131 through the first ends 1311 of the first channels 131 of the first pipes 13 and moves in the direction toward the second ends 1312 of the first channels 131 .
  • the heat energy of the gaseous working medium 2 b in the first channels 131 is externally transferred to the heat sink fin groups 14 , which are disposed on the outer surfaces of the first pipes 13 . Since the gaseous working medium 2 b releases heat energy, the gaseous working medium 2 b is condensed and liquefied.
  • the gaseous working medium 2 b is transformed into the liquid working medium 2 a again.
  • the liquid working medium 2 a flows back into the first chamber 111 of the first storage structure 11 through the first ends 1311 of the first channels 131 of the first pipes 13 and accumulates in the first chamber 111 .
  • the vaporization-enhancing structure 15 comprises the plural skived fins. Since the skived fins have the advantages of high density fins, the thermal contact area between the vaporization-enhancing structure 15 and the liquid working medium 2 a is increased. That is, the heat transfer area is increased. Moreover, since the vaporizing speed of the liquid working medium 2 a is increased, the circulating efficacy of the working medium 2 within the heat dissipation device 1 A is enhanced and the overall heat dissipation performance of the heat dissipation device 1 A is increased. Moreover, since the vaporization-enhancing structure 15 is composed of the plural skived fins, the fabricating cost is reduced.
  • FIG. 4 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a second embodiment of the present invention.
  • the structures of the components of the heat dissipation device 1 B which are similar to those of the heat dissipation device of the first embodiment are not redundantly described herein.
  • the heat dissipation device 1 B of this embodiment further comprises a liquefaction-enhancing structure 16 .
  • the liquefaction-enhancing structure 16 is disposed within the second chamber 121 and in thermal contact with the second storage structure 12 and at least a portion of the gaseous working medium 2 b .
  • the liquefaction-enhancing structure 16 is used for enhancing the efficiency of liquefying the gaseous working medium 2 b during the gas-liquid transformation process.
  • the liquefaction-enhancing structure 16 comprises plural skived fins.
  • the gaseous working medium 2 b in the first channels 131 of the first pipes 13 releases heat energy, the gaseous working medium 2 b is liquefied into the liquid working medium 2 a .
  • the liquid working medium 2 a flows back into the first chamber 111 .
  • a portion of the gaseous working medium 2 b in the first channels 131 of the first pipes 13 is possibly not liquefied and enters the second chamber 121 through the second ends 1312 of the first channels 131 .
  • the liquefaction-enhancing structure 16 is disposed within the second chamber 121 , and the liquefaction-enhancing structure 16 is composed of plural skived fins.
  • the skived fins have the advantages of high density fins, and thus the thermal contact area between the liquefaction-enhancing structure 16 and the gaseous working medium 2 b is increased. Since the heat transfer area is increased, the speed of liquefying the gaseous working medium 2 b is increased.
  • the liquid working medium 2 a flows back into the first chamber 111 of the first storage structure 11 through the first ends 1311 of the first channels 131 of the first pipes 13 and accumulates in the first chamber 111 .
  • the use of the liquefaction-enhancing structure 16 also enhances the circulating efficacy of the working medium 2 within the heat dissipation device 1 B and increases the overall heat dissipation performance of the heat dissipation device 1 B.
  • the example of the liquefaction-enhancing structure 16 is not restricted. That is, any other structure capable of increasing the thermal contact area to increase the speed of liquefying the gaseous working medium 2 b can be used as the liquefaction-enhancing structure 16 .
  • FIG. 5 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a third embodiment of the present invention.
  • the structures of the components of the heat dissipation device 1 C which are similar to those of the first embodiment and the second embodiment are not redundantly described herein.
  • the heat dissipation device 1 C of this embodiment further comprises a heat dissipation element 17 .
  • the heat dissipation element 17 is disposed on the outer surface of the second storage structure 12 .
  • the heat dissipation element 17 can facilitate removing the heat energy from the second storage structure 12 to the surroundings.
  • the gaseous working medium 2 b in the second storage structure 12 can be liquefied into the liquid working medium 2 a more quickly.
  • the liquid working medium 2 a flows back into the first chamber 111 of the first storage structure 11 through the first ends 1311 of the first channels 131 of the first pipes 13 and accumulates in the first chamber 111 .
  • the heat dissipation element 17 comprises plural fins for receiving the heat energy from the second storage structure 12 . It is noted that the example of the heat dissipation element 17 is not restricted.
  • FIG. 6 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a fourth embodiment of the present invention.
  • the structures of the components of the heat dissipation device 1 D which are similar to those of the first embodiment, the second embodiment and the third embodiment are not redundantly described herein.
  • each first pipe 13 of the heat dissipation device 1 D of this embodiment further comprises a liquefaction-enhancing structure 18 .
  • the liquefaction-enhancing structure 18 is formed on an inner surface of the first pipe 13 and disposed within the first channel 131 .
  • the liquefaction-enhancing structure 18 is used for increasing the thermal contact area between the first channel 131 and the gaseous working medium 2 b . Consequently, the efficiency of liquefying the gaseous working medium 2 b in the first channel 131 is enhanced.
  • the liquefaction-enhancing structure 18 comprises plural capillary structures or recesses.
  • FIG. 7 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a fifth embodiment of the present invention.
  • the structures of the components of the heat dissipation device lE which are similar to those of the heat dissipation device of the first embodiment are not redundantly described herein.
  • the heat dissipation device lE of this embodiment is not equipped with the second storage structure 12 and the second end 1312 of the first channel 131 of each first pipe 13 is closed.
  • the principles of using the heat dissipation device lE to remove heat energy are similar to those of the first embodiment, and are not redundantly described herein.
  • FIG. 8 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a sixth embodiment of the present invention.
  • the structures of the components of the heat dissipation device 1 F which are similar to those of the heat dissipation device of the fifth embodiment are not redundantly described herein.
  • the first pipes 13 F are distinguished.
  • two ends of each first pipe 13 F are connected with the first storage structure 11 .
  • the first end 1311 and the second end 1312 of the first channel 131 of each first pipe 13 F are in communication with the first chamber 111 of the first storage structure 11 .
  • the principles of using the heat dissipation device 1 F to remove heat energy are similar to those of the first embodiment, and are not redundantly described herein.
  • FIG. 9 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a seventh embodiment of the present invention. For succinctness, only some components are shown in FIG. 9 . That is, the first storage structure 11 , the second storage structure 12 , the first pipes 13 and the heat sink fin groups 14 are not shown.
  • the structures of the components of the heat dissipation device 1 G which are similar to those of the heat dissipation device of the above embodiments are not redundantly described herein.
  • the heat dissipation device 1 G further comprises a third storage structure 191 , plural second pipes 192 , plural heat sink fin groups 193 and an additional vaporization-enhancing structure 194 .
  • the third storage structure 191 is located beside a lateral side (e.g., a left side) of the second storage structure 12 .
  • the third storage structure 191 is arranged between the first storage structure 11 and the second storage structure 12 and located near a lateral edge (e.g., located at the lateral edge).
  • the third storage structure 191 comprises a third chamber 1911 .
  • An inner portion of each second pipe 192 has a second channel 1921 .
  • a first end 1921 of the second channel 1921 is in fluid communication with the third chamber 1911 .
  • a sealed space is defined by the third chamber 1911 of the third storage structure 191 and the second channels 1921 of the second pipes 192 collaboratively. Another working medium 4 is filled in the sealed space.
  • the plural heat sink fin groups 193 are disposed on outer surfaces of the second pipes 192 . After the heat sink fin groups 193 receive heat from the second pipes 192 , the heat energy is removed by the ambient airflow.
  • the vaporization-enhancing structure 194 comprises plural skived fins.
  • the vaporization-enhancing structure 194 is disposed within the third chamber 1911 .
  • the vaporization-enhancing structure 16 is in thermal contact with the third storage structure 191 and at least a portion of the working medium 4 .
  • the vaporization-enhancing structure 16 is used for increasing the efficiency of vaporizing the working medium 4 .
  • the constituents of the heat sink fin groups 193 and the arrangements of their heat sink fins are similar to the constituents of the heat sink fin groups 14 and the arrangements of their heat sink fins 141 .
  • the constituents of the third storage structure 191 and the relative positions between the third storage structure 191 and the plural second pipes 192 are similar to the constituents of the first storage structure 11 and the relative positions between the first storage structure 11 and the plural first pipes.
  • the example of the vaporization-enhancing structure 194 and the relative positions between the vaporization-enhancing structure 194 and the third chamber 1911 of the third storage structure 191 are similar to the example of the vaporization-enhancing structure 15 and the relative positions between the vaporization-enhancing structure 15 and the first chamber 111 of the first storage structure 11 .
  • the two phase changes of the working loop of the working medium 4 in the third chamber 1911 of the third storage structure 191 and the second pipes 192 are similar to the two phase changes of the working loop of the working medium 4 in the first chamber 111 of the first storage structure 11 , the first pipes 13 and the second chamber 121 of the second storage structure 12 .
  • At least one of the first storage structure 11 , the second storage structure 12 , the first pipes 13 and the heat sink fin groups 14 and at least one of the third storage structure 191 , the second pipes 192 and the heat sink fin groups 193 are directly connected with each other and thus linked with each other.
  • at least one of the first storage structure 11 , the second storage structure 12 , the first pipes 13 and the heat sink fin groups 14 and at least one of the third storage structure 191 , the second pipes 192 and the heat sink fin groups 193 are linked with each other through an intermediate coupling mechanism (not shown).
  • the intermediate coupling mechanism is an outer casing for fixing the first storage structure 11 , the second storage structure 12 and the third storage structure 191 .
  • the first pipes 13 are vertical pipes and the second pipes 192 are horizontal pipes.
  • the heat dissipation device 1 G comprises plural storage structures (e.g., the first storage structure 11 and the third storage structure 191 ) to be in thermal contact with plural heat sources 31 and 32 in order to remove the heat energy. Consequently, the heat dissipation device 1 G can be flexibly placed according to the application space. For example, according to the application space, the heat dissipation device 1 G is rotated 90 degrees. That is, the second pipes 192 are switched from the horizontal pipes to the vertical pipes. Moreover, the third storage structure 191 is located over the heat source 32 and in thermal contact with the heat source 32 . Consequently, the heat energy generated by the heat source 32 can be quickly dissipated away by the heat dissipation device 1 G.

Abstract

A heat dissipation device includes a storage structure, plural pipes, plural heat sink fin groups and a vaporization-enhancing structure. The heat sink fin groups are disposed on outer surfaces of the pipes. The storage structure includes a chamber. The storage structure is in thermal contact with a heat source. Each pipe has a channel. A first end of the channel is in fluid communication with the chamber. A working medium is filled in the chamber and the channels of the pipes. The vaporization-enhancing structure is disposed within the chamber and in thermal contact with at least a portion of the working medium. After the vaporization-enhancing structure receives heat energy from the heat source, the heat energy is transferred to the working medium. The vaporization-enhancing structure facilitates liquid-gas transformation of the working medium. Consequently, the working medium moves toward a second end of the first channel.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a heat dissipation device, and more particularly to a heat dissipation device for dissipating heat through two phase changes.
  • BACKGROUND OF THE INVENTION
  • With increasing development of computers and various electronic devices, people in the modern societies are used to using the computers and the electronic devices for a long time. During operations of the computers and the electronic devices, a great deal of heat is generated. If the heat cannot be effectively dissipated away, some drawbacks occur.
  • For solving the above drawbacks, various heat dissipation mechanisms such as airflow convection mechanisms (e.g., through fans), water cooling mechanisms or thermosyphon mechanisms are widely used. For example, thermosiphon is heat dissipation method for allowing a working medium (e.g., water) to flow along a circular loop without the need of using a pump to push the working medium. Nowadays, many literatures about the researches and technologies of the thermosiphon mechanisms have been disclosed. For example, US Patent Publication No. 20100315781 discloses a thermosyphon heat exchanger. Moreover, a water cooling radiator is one of the widely-used heat exchanger in the associated application fields. The water cooling radiator cooperates with a fan to cool down the high temperature liquid or condense the vaporized stem into liquid. Consequently, the liquid flows along a circular loop without any pump. In other words, the processes of vaporizing and condensing the liquid are sufficient for circulating the liquid. The principles of the thermosiphon and the operations of the water cooling radiator are well known to those skilled in the art, and are not redundantly described herein.
  • However, in some usage situations, the thermosyphon heat exchanger is unable to effectively remove the heat from the computer or the electronic device because the circulating efficacy of the working liquid within the thermosyphon heat exchanger is unsatisfied. The applicant found that the vaporizing efficiency and the liquefying efficiency of the working liquid in the heat dissipation device are important factors influencing the circulation of the working medium. Therefore, it is important to enhance the circulation of the working medium in the heat dissipation device.
  • SUMMARY OF THE INVENTION
  • For solving the drawbacks of the conventional technologies, the present invention provides a heat dissipation device with a vaporization-enhancing structure for increasing the thermal contact area and enhancing the efficiency of vaporizing the working medium. Consequently, the circulation of the working medium in the heat dissipation device is enhanced, and the overall heat dissipation performance is effectively enhanced.
  • In accordance with an aspect of the present invention, there is provided a heat dissipation device. The heat dissipation device includes a first storage structure, at least one first pipe, at least one heat sink fin group and a vaporization-enhancing structure. The first storage structure includes a first chamber. The first storage structure is in thermal contact with a heat source. An inner portion of each first pipe has a first channel. A first end of the first channel is in fluid communication with the first chamber. A working medium is filled in the first chamber and the first channel. The at least one heat sink fin group is disposed on an outer surface of the at least one first pipe. The vaporization-enhancing structure is disposed within the first chamber and in thermal contact with the first storage structure and at least a portion of the working medium. After the vaporization-enhancing structure receives heat energy from the heat source, the heat energy is transferred to the working medium. The vaporization-enhancing structure facilitates liquid-gas transformation of the working medium, so that the working medium moves in a direction toward a second end of the first channel.
  • In an embodiment, the at least one first pipe includes plural first pipes, and the at least one heat sink fin group includes plural heat sink fin groups. Each of the plural first pipes is arranged between two adjacent ones of the plural heat sink fin groups.
  • In an embodiment, the vaporization-enhancing structure includes plural skived fins.
  • In an embodiment, the first storage structure further includes a first plate, a second plate and plural lateral plates. The plural lateral plates are connected between the first plate and the second plate. The first chamber is defined by the first plate, the second plate and the plural lateral plates collaboratively.
  • In an embodiment, the second plate includes at least one opening, and the opening is in communication with the first end of the first channel.
  • In an embodiment, the heat dissipation device further includes a second storage structure, and the second storage structure includes a second chamber. The second chamber is in fluid communication with the second end of the first channel. Moreover, a sealed space is defined by the first chamber, the second chamber and the at least one first channel.
  • In an embodiment, the heat dissipation device further includes a heat dissipation element. The heat dissipation element is disposed on an outer surface of the second storage structure.
  • In an embodiment, the heat dissipation device further includes a liquefaction-enhancing structure. The liquefaction-enhancing structure is disposed within the second chamber and in thermal contact with the second storage structure and at least a portion of the working medium. The liquefaction-enhancing structure facilitates gas-liquid transformation of the working medium, so that the working medium moves in a direction toward the first end of the first channel.
  • In an embodiment, the liquefaction-enhancing structure includes plural skived fins.
  • In an embodiment, the second end of the first channel is closed.
  • In an embodiment, the first end and the second end of the at least one first pipe are connected with the first storage structure.
  • In an embodiment, an inner portion of the at least one first pipe is equipped with a liquefaction-enhancing structure. The liquefaction-enhancing structure facilitates gas-liquid transformation of the working medium, so that the working medium moves in a direction toward the first end of the first channel.
  • In an embodiment, the liquefaction-enhancing structure includes plural capillary structures or recesses, which are formed on an inner surface of the at least one first pipe and disposed within the first channel.
  • In an embodiment, the heat dissipation device further includes a third storage structure, at least one second pipe, at least one additional heat sink fin group and an additional vaporization-enhancing structure. The third storage structure includes a third chamber. The third storage structure is in thermal contact with the heat source or an additional heat source. An inner portion of each second pipe has a second channel. A first end of the second channel is in fluid communication with the third chamber. An additional working medium is filled in the third chamber and the second channel. The at least one additional heat sink fin group is disposed on an outer surface of the at least one second pipe. The additional vaporization-enhancing structure is disposed within the third chamber and in thermal contact with the third storage structure and at least a portion of the additional working medium. After the vaporization-enhancing structure receives heat energy from the heat source or the additional heat source, the heat energy is transferred to the additional working medium. The additional vaporization-enhancing structure facilitates liquid-gas transformation of the additional working medium, so that the additional working medium moves in a direction toward a second end of the second channel.
  • In an embodiment, at least one of the first storage structure and the at least one first pipe and at least one of the third storage structure and the at least one second pipe are directly connected with each other and linked with each other, or at least one of the first storage structure and the at least one first pipe and at least one of the third storage structure and the at least one second pipe are linked with each other through an intermediate coupling mechanism.
  • In an embodiment, the first pipe is a vertical pipe, and the second pipe is a horizontal pipe.
  • In an embodiment, the additional vaporization-enhancing structure includes plural skived fins.
  • From the above descriptions, the heat dissipation device of the present invention is equipped with the vaporization-enhancing structure to increase the thermal contact area and enhance the vaporizing efficiency of the working medium. Consequently, the circulating efficacy of the working medium within the heat dissipation device is enhanced, and the overall heat dissipation performance of the heat dissipation device is increased. In an embodiment, the vaporization-enhancing structure comprises plural skived fins. Since the skived fins have the advantages of high density fins, the thermal contact area between the vaporization-enhancing structure and the liquid working medium is increased. Since the vaporizing speed of the liquid working medium is increased, the circulating efficacy of the liquid working medium within the heat dissipation device is further enhanced and the overall heat dissipation performance of the heat dissipation device is increased. Moreover, since the vaporization-enhancing structure is composed of the plural skived fins, the fabricating cost is reduced.
  • The above objects and advantages of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic perspective view illustrating the outer appearance of a heat dissipation device according to a first embodiment of the present invention;
  • FIG. 2 is a schematic exploded view illustrating a portion of the heat dissipation device as shown in FIG. 1;
  • FIG. 3 is a schematic cross-sectional view illustrating a portion of the heat dissipation device as shown in FIG. 1;
  • FIG. 4 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a second embodiment of the present invention;
  • FIG. 5 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a third embodiment of the present invention;
  • FIG. 6 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a fourth embodiment of the present invention;
  • FIG. 7 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a fifth embodiment of the present invention;
  • FIG. 8 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a sixth embodiment of the present invention; and
  • FIG. 9 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a seventh embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • In this context, the term “thermal contact” is the contact via thermal conduction. In accordance with the present invention, the thermal contact has two types, including a direct contact mechanism and an indirect contact mechanism. In some embodiments, the thermal contact also includes the contact between two components that are close to each other but not contacted with each other. If two components are directly attached on each other, these two components are in direct contact. If a thermally conductive medium (e.g., thermal paste) is arranged between two components, these two components are in indirect contact. The examples are presented herein for purpose of illustration and description only.
  • Please refer to FIGS. 1, 2 and 3. FIG. 1 is a schematic perspective view illustrating the outer appearance of a heat dissipation device according to a first embodiment of the present invention. FIG. 2 is a schematic exploded view illustrating a portion of the heat dissipation device as shown in FIG. 1. FIG. 3 is a schematic cross-sectional view illustrating a portion of the heat dissipation device as shown in FIG. 1. The heat dissipation device 1A comprises a first storage structure 11, a second storage structure 12, plural first pipes 13, plural heat sink fin groups 14 and a vaporization-enhancing structure 15. The second storage structure 12 is located over the first storage structure 11. The first storage structure 11 comprises a first chamber 111. The second storage structure 12 comprises a second chamber 121. An inner portion of each first pipe 13 has a first channel 131. A first end 1311 of the first channel 131 is in fluid communication with the first chamber 111. A second end 1312 of the first channel 131 is in fluid communication with the second chamber 121. Moreover, a sealed space is defined by the first chamber 111 of the first storage structure 11, the second chamber 121 of the second storage structure 12 and the first channels 131 of the plural first pipes 13. A working medium 2 is filled in the sealed space. The heat sink fin groups 14 are disposed on outer surfaces of the first pipes 13. After the heat sink fin groups 14 receive heat energy from the first pipes 13, the heat energy is removed by the ambient airflow. The vaporization-enhancing structure 15 is disposed within the first chamber 111. Moreover, the vaporization-enhancing structure 15 is in thermal contact with the first storage structure 11 and at least a portion of the working medium 2. For example, the vaporization-enhancing structure 15 is immersed in at least a portion of the working medium 2. The vaporization-enhancing structure 15 is used for increasing the efficiency of vaporizing the working medium 2. The operations of the vaporization-enhancing structure 15 will be described herein.
  • In an embodiment, each first pipe 13 is arranged between two adjacent heat sink fin groups 14. Each heat sink fin group 14 comprises heat sink fins 141. These heat sink fins 141 are substantially parallel with each other and spaced apart from each other in the vertical direction, and arranged on the outer surfaces of the first pipes 13. In an embodiment, the first storage structure 11 further comprises a first plate 112, a second plate 113 and plural lateral plates 114. The plural lateral plates 114 are connected between the first plate 112 and the second plate 113. The first chamber 111 is defined by the first plate 112, the second plate 113 and the plural lateral plates 114 collaboratively. The vaporization-enhancing structure 15 comprises plural skived fins. The vaporization-enhancing structure 15 is disposed on the first plate 112. The second plate 113 comprises plural openings 1131. The plural openings 1131 are in communication with the first ends 1311 of the first channels 131 of the first pipes 13. The structure of the second storage structure 12 is similar to that of the first storage structure 11, and is not redundantly described herein.
  • The above examples are presented herein for purpose of illustration and description only. The constituents of the heat sink fin groups 14, the arrangements of the heat sink fins 141, the constituents of the first storage structure 11, the constituents of the second storage structure 12 and the relationships between the first storage structure 11, the second storage structure 12 and the first pipes 13, the example of the vaporization-enhancing structure 15 and the relative positions between the vaporization-enhancing structure 15 and the first chamber 111 of the first storage structure 11 are not restricted. That is, numerous modifications and alterations may be made according to the practical requirements.
  • The principles of removing heat energy by the heat dissipation device 1A will be described as follows. When the first plate 112 of the first storage structure 11 is in thermal contact with an underlying heat source 31, the heat energy of the heat source 31 is transferred to the liquid working medium 2 a through the first plate 112 and the overlying vaporization-enhancing structure 15. The liquid working medium 2 a is disposed within the first chamber 111 and in thermal contact with the first plate 112 and the vaporization-enhancing structure 15. After the liquid working medium 2 a absorbs sufficient heat energy, the liquid working medium 2 a is vaporized. Consequently, the liquid working medium 2 a is transformed into the gaseous working medium 2 b. That is, the liquid-gas transformation occurs. Then, the gaseous working medium 2 b enters the first channels 131 through the first ends 1311 of the first channels 131 of the first pipes 13 and moves in the direction toward the second ends 1312 of the first channels 131. The heat energy of the gaseous working medium 2 b in the first channels 131 is externally transferred to the heat sink fin groups 14, which are disposed on the outer surfaces of the first pipes 13. Since the gaseous working medium 2 b releases heat energy, the gaseous working medium 2 b is condensed and liquefied. The gaseous working medium 2 b is transformed into the liquid working medium 2 a again. The liquid working medium 2 a flows back into the first chamber 111 of the first storage structure 11 through the first ends 1311 of the first channels 131 of the first pipes 13 and accumulates in the first chamber 111.
  • Through the working loop of the two phase changes, the heat energy generated by the heat source 31 can be quickly dissipated away by the heat dissipation device 1A. As mentioned above, the vaporization-enhancing structure 15 comprises the plural skived fins. Since the skived fins have the advantages of high density fins, the thermal contact area between the vaporization-enhancing structure 15 and the liquid working medium 2 a is increased. That is, the heat transfer area is increased. Moreover, since the vaporizing speed of the liquid working medium 2 a is increased, the circulating efficacy of the working medium 2 within the heat dissipation device 1A is enhanced and the overall heat dissipation performance of the heat dissipation device 1A is increased. Moreover, since the vaporization-enhancing structure 15 is composed of the plural skived fins, the fabricating cost is reduced.
  • FIG. 4 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a second embodiment of the present invention. The structures of the components of the heat dissipation device 1B which are similar to those of the heat dissipation device of the first embodiment are not redundantly described herein. In comparison with the first embodiment, the heat dissipation device 1B of this embodiment further comprises a liquefaction-enhancing structure 16. The liquefaction-enhancing structure 16 is disposed within the second chamber 121 and in thermal contact with the second storage structure 12 and at least a portion of the gaseous working medium 2 b. The liquefaction-enhancing structure 16 is used for enhancing the efficiency of liquefying the gaseous working medium 2 b during the gas-liquid transformation process. In an embodiment, the liquefaction-enhancing structure 16 comprises plural skived fins.
  • Similarly, after the gaseous working medium 2 b in the first channels 131 of the first pipes 13 releases heat energy, the gaseous working medium 2 b is liquefied into the liquid working medium 2 a. The liquid working medium 2 a flows back into the first chamber 111. However, a portion of the gaseous working medium 2 b in the first channels 131 of the first pipes 13 is possibly not liquefied and enters the second chamber 121 through the second ends 1312 of the first channels 131.
  • In this embodiment, the liquefaction-enhancing structure 16 is disposed within the second chamber 121, and the liquefaction-enhancing structure 16 is composed of plural skived fins. As mentioned above, the skived fins have the advantages of high density fins, and thus the thermal contact area between the liquefaction-enhancing structure 16 and the gaseous working medium 2 b is increased. Since the heat transfer area is increased, the speed of liquefying the gaseous working medium 2 b is increased. The liquid working medium 2 a flows back into the first chamber 111 of the first storage structure 11 through the first ends 1311 of the first channels 131 of the first pipes 13 and accumulates in the first chamber 111. In other words, the use of the liquefaction-enhancing structure 16 also enhances the circulating efficacy of the working medium 2 within the heat dissipation device 1B and increases the overall heat dissipation performance of the heat dissipation device 1B. It is noted that the example of the liquefaction-enhancing structure 16 is not restricted. That is, any other structure capable of increasing the thermal contact area to increase the speed of liquefying the gaseous working medium 2 b can be used as the liquefaction-enhancing structure 16.
  • FIG. 5 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a third embodiment of the present invention. The structures of the components of the heat dissipation device 1C which are similar to those of the first embodiment and the second embodiment are not redundantly described herein. In comparison with the first embodiment and the second embodiment, the heat dissipation device 1C of this embodiment further comprises a heat dissipation element 17. The heat dissipation element 17 is disposed on the outer surface of the second storage structure 12. The heat dissipation element 17 can facilitate removing the heat energy from the second storage structure 12 to the surroundings. Consequently, the gaseous working medium 2 b in the second storage structure 12 can be liquefied into the liquid working medium 2 a more quickly. The liquid working medium 2 a flows back into the first chamber 111 of the first storage structure 11 through the first ends 1311 of the first channels 131 of the first pipes 13 and accumulates in the first chamber 111. In an embodiment, the heat dissipation element 17 comprises plural fins for receiving the heat energy from the second storage structure 12. It is noted that the example of the heat dissipation element 17 is not restricted.
  • FIG. 6 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a fourth embodiment of the present invention. The structures of the components of the heat dissipation device 1D which are similar to those of the first embodiment, the second embodiment and the third embodiment are not redundantly described herein. In comparison with the first embodiment, the second embodiment and the third embodiment, each first pipe 13 of the heat dissipation device 1D of this embodiment further comprises a liquefaction-enhancing structure 18. The liquefaction-enhancing structure 18 is formed on an inner surface of the first pipe 13 and disposed within the first channel 131. The liquefaction-enhancing structure 18 is used for increasing the thermal contact area between the first channel 131 and the gaseous working medium 2 b. Consequently, the efficiency of liquefying the gaseous working medium 2 b in the first channel 131 is enhanced. Preferably but not exclusively, the liquefaction-enhancing structure 18 comprises plural capillary structures or recesses.
  • FIG. 7 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a fifth embodiment of the present invention. The structures of the components of the heat dissipation device lE which are similar to those of the heat dissipation device of the first embodiment are not redundantly described herein. In comparison with the first embodiment, the heat dissipation device lE of this embodiment is not equipped with the second storage structure 12 and the second end 1312 of the first channel 131 of each first pipe 13 is closed. The principles of using the heat dissipation device lE to remove heat energy are similar to those of the first embodiment, and are not redundantly described herein.
  • FIG. 8 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a sixth embodiment of the present invention. The structures of the components of the heat dissipation device 1F which are similar to those of the heat dissipation device of the fifth embodiment are not redundantly described herein. In comparison with the fifth embodiment, the first pipes 13F are distinguished. In this embodiment, two ends of each first pipe 13F are connected with the first storage structure 11. In other words, the first end 1311 and the second end 1312 of the first channel 131 of each first pipe 13F are in communication with the first chamber 111 of the first storage structure 11. The principles of using the heat dissipation device 1F to remove heat energy are similar to those of the first embodiment, and are not redundantly described herein.
  • FIG. 9 is a schematic cross-sectional view illustrating a portion of a heat dissipation device according to a seventh embodiment of the present invention. For succinctness, only some components are shown in FIG. 9. That is, the first storage structure 11, the second storage structure 12, the first pipes 13 and the heat sink fin groups 14 are not shown. The structures of the components of the heat dissipation device 1G which are similar to those of the heat dissipation device of the above embodiments are not redundantly described herein. In comparison with the above embodiments, the heat dissipation device 1G further comprises a third storage structure 191, plural second pipes 192, plural heat sink fin groups 193 and an additional vaporization-enhancing structure 194. The third storage structure 191 is located beside a lateral side (e.g., a left side) of the second storage structure 12. Alternatively, the third storage structure 191 is arranged between the first storage structure 11 and the second storage structure 12 and located near a lateral edge (e.g., located at the lateral edge). The third storage structure 191 comprises a third chamber 1911. An inner portion of each second pipe 192 has a second channel 1921. A first end 1921 of the second channel 1921 is in fluid communication with the third chamber 1911. A sealed space is defined by the third chamber 1911 of the third storage structure 191 and the second channels 1921 of the second pipes 192 collaboratively. Another working medium 4 is filled in the sealed space. The plural heat sink fin groups 193 are disposed on outer surfaces of the second pipes 192. After the heat sink fin groups 193 receive heat from the second pipes 192, the heat energy is removed by the ambient airflow. Preferably, the vaporization-enhancing structure 194 comprises plural skived fins. The vaporization-enhancing structure 194 is disposed within the third chamber 1911. Moreover, the vaporization-enhancing structure 16 is in thermal contact with the third storage structure 191 and at least a portion of the working medium 4. The vaporization-enhancing structure 16 is used for increasing the efficiency of vaporizing the working medium 4.
  • The constituents of the heat sink fin groups 193 and the arrangements of their heat sink fins are similar to the constituents of the heat sink fin groups 14 and the arrangements of their heat sink fins 141. The constituents of the third storage structure 191 and the relative positions between the third storage structure 191 and the plural second pipes 192 are similar to the constituents of the first storage structure 11 and the relative positions between the first storage structure 11 and the plural first pipes. The example of the vaporization-enhancing structure 194 and the relative positions between the vaporization-enhancing structure 194 and the third chamber 1911 of the third storage structure 191 are similar to the example of the vaporization-enhancing structure 15 and the relative positions between the vaporization-enhancing structure 15 and the first chamber 111 of the first storage structure 11. The two phase changes of the working loop of the working medium 4 in the third chamber 1911 of the third storage structure 191 and the second pipes 192 are similar to the two phase changes of the working loop of the working medium 4 in the first chamber 111 of the first storage structure 11, the first pipes 13 and the second chamber 121 of the second storage structure 12.
  • In an embodiment, at least one of the first storage structure 11, the second storage structure 12, the first pipes 13 and the heat sink fin groups 14 and at least one of the third storage structure 191, the second pipes 192 and the heat sink fin groups 193 are directly connected with each other and thus linked with each other. Alternatively, at least one of the first storage structure 11, the second storage structure 12, the first pipes 13 and the heat sink fin groups 14 and at least one of the third storage structure 191, the second pipes 192 and the heat sink fin groups 193 are linked with each other through an intermediate coupling mechanism (not shown). For example, the intermediate coupling mechanism is an outer casing for fixing the first storage structure 11, the second storage structure 12 and the third storage structure 191. Preferably but not exclusively, the first pipes 13 are vertical pipes and the second pipes 192 are horizontal pipes. In this embodiment, the heat dissipation device 1G comprises plural storage structures (e.g., the first storage structure 11 and the third storage structure 191) to be in thermal contact with plural heat sources 31 and 32 in order to remove the heat energy. Consequently, the heat dissipation device 1G can be flexibly placed according to the application space. For example, according to the application space, the heat dissipation device 1G is rotated 90 degrees. That is, the second pipes 192 are switched from the horizontal pipes to the vertical pipes. Moreover, the third storage structure 191 is located over the heat source 32 and in thermal contact with the heat source 32. Consequently, the heat energy generated by the heat source 32 can be quickly dissipated away by the heat dissipation device 1G.
  • While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all modifications and similar structures.

Claims (17)

What is claimed is:
1. A heat dissipation device, comprising:
a first storage structure comprising a first chamber, wherein the first storage structure is in thermal contact with a heat source;
at least one first pipe, wherein an inner portion of each first pipe has a first channel, a first end of the first channel is in fluid communication with the first chamber, and a working medium is filled in the first chamber and the first channel;
at least one heat sink fin group disposed on an outer surface of the at least one first pipe; and
a vaporization-enhancing structure disposed within the first chamber and in thermal contact with the first storage structure and at least a portion of the working medium, wherein after the vaporization-enhancing structure receives heat energy from the heat source, the heat energy is transferred to the working medium, wherein the vaporization-enhancing structure facilitates liquid-gas transformation of the working medium, so that the working medium moves in a direction toward a second end of the first channel.
2. The heat dissipation device according to claim 1, wherein the at least one first pipe comprises plural first pipes, and the at least one heat sink fin group comprises plural heat sink fin groups, wherein each of the plural first pipes is arranged between two adjacent ones of the plural heat sink fin groups.
3. The heat dissipation device according to claim 1, wherein the vaporization-enhancing structure comprises plural skived fins.
4. The heat dissipation device according to claim 1, wherein the first storage structure further comprises a first plate, a second plate and plural lateral plates, wherein the plural lateral plates are connected between the first plate and the second plate, and the first chamber is defined by the first plate, the second plate and the plural lateral plates collaboratively.
5. The heat dissipation device according to claim 4, wherein the second plate comprises at least one opening, and the opening is in communication with the first end of the first channel.
6. The heat dissipation device according to claim 1, wherein the heat dissipation device further comprises a second storage structure, and the second storage structure comprises a second chamber, wherein the second chamber is in fluid communication with the second end of the first channel, and a sealed space is defined by the first chamber, the second chamber and the at least one first channel.
7. The heat dissipation device according to claim 6, wherein the heat dissipation device further comprises a heat dissipation element, wherein the heat dissipation element is disposed on an outer surface of the second storage structure.
8. The heat dissipation device according to claim 6, wherein the heat dissipation device further comprises a liquefaction-enhancing structure, wherein the liquefaction-enhancing structure is disposed within the second chamber and in thermal contact with the second storage structure and at least a portion of the working medium, wherein the liquefaction-enhancing structure facilitates gas-liquid transformation of the working medium, so that the working medium moves in a direction toward the first end of the first channel.
9. The heat dissipation device according to claim 8, wherein the liquefaction-enhancing structure comprises plural skived fins.
10. The heat dissipation device according to claim 1, wherein the second end of the first channel is closed.
11. The heat dissipation device according to claim 1, wherein the first end and the second end of the at least one first pipe are connected with the first storage structure.
12. The heat dissipation device according to claim 1, wherein an inner portion of the at least one first pipe is equipped with a liquefaction-enhancing structure, wherein the liquefaction-enhancing structure facilitates gas-liquid transformation of the working medium, so that the working medium moves in a direction toward the first end of the first channel.
13. The heat dissipation device according to claim 12, wherein the liquefaction-enhancing structure comprises plural capillary structures or recesses, which are formed on an inner surface of the at least one first pipe and disposed within the first channel.
14. The heat dissipation device according to claim 1, wherein the heat dissipation device further comprises:
a third storage structure comprising a third chamber, wherein the third storage structure is in thermal contact with the heat source or an additional heat source;
at least one second pipe, wherein an inner portion of each second pipe has a second channel, a first end of the second channel is in fluid communication with the third chamber, and an additional working medium is filled in the third chamber and the second channel;
at least one additional heat sink fin group disposed on an outer surface of the at least one second pipe; and
an additional vaporization-enhancing structure disposed within the third chamber and in thermal contact with the third storage structure and at least a portion of the additional working medium, wherein after the vaporization-enhancing structure receives heat energy from the heat source or the additional heat source, the heat energy is transferred to the additional working medium, wherein the additional vaporization-enhancing structure facilitates liquid-gas transformation of the additional working medium, so that the additional working medium moves in a direction toward a second end of the second channel.
15. The heat dissipation device according to claim 14, wherein at least one of the first storage structure and the at least one first pipe and at least one of the third storage structure and the at least one second pipe are directly connected with each other and linked with each other, or at least one of the first storage structure and the at least one first pipe and at least one of the third storage structure and the at least one second pipe are linked with each other through an intermediate coupling mechanism.
16. The heat dissipation device according to claim 14, wherein the first pipe is a vertical pipe, and the second pipe is a horizontal pipe.
17. The heat dissipation device according to claim 14, wherein the additional vaporization-enhancing structure comprises plural skived fins.
US15/936,544 2018-02-27 2018-03-27 Heat dissipation device Abandoned US20190264986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107106603 2018-02-27
TW107106603A TWI645155B (en) 2018-02-27 2018-02-27 Heat sink device

Publications (1)

Publication Number Publication Date
US20190264986A1 true US20190264986A1 (en) 2019-08-29

Family

ID=65431737

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/936,544 Abandoned US20190264986A1 (en) 2018-02-27 2018-03-27 Heat dissipation device

Country Status (2)

Country Link
US (1) US20190264986A1 (en)
TW (1) TWI645155B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501931A (en) * 2021-12-31 2022-05-13 联想(北京)有限公司 Heat dissipation device and electronic equipment
US20220299274A1 (en) * 2021-03-18 2022-09-22 Guangdong Envicool Technology Co., Ltd. Heat Dissipation Device
CN116456704A (en) * 2023-06-14 2023-07-18 中山市精研科技有限公司 Liquid crystal display television with high heat dissipation efficiency
TWI816524B (en) * 2022-08-24 2023-09-21 艾姆勒科技股份有限公司 Two-phase immersion-cooling heat-dissipation structure having skived fin with high porosity
TWI823696B (en) * 2022-12-01 2023-11-21 艾姆勒科技股份有限公司 Two-phase immersion-cooling heat-dissipation structure having skived fins
WO2023221638A1 (en) * 2022-05-20 2023-11-23 华为技术有限公司 Heat dissipation apparatus, connecting structure, and electronic device
TWI833500B (en) 2022-12-15 2024-02-21 艾姆勒科技股份有限公司 Two-phase immersion-cooling type heat-dissipation structure having skived fins with high surface roughness

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005772A (en) * 1997-05-20 1999-12-21 Denso Corporation Cooling apparatus for high-temperature medium by boiling and condensing refrigerant
US20020166655A1 (en) * 2001-05-11 2002-11-14 Hajime Sugito Cooling device boiling and condensing refrigerant
US6588498B1 (en) * 2002-07-18 2003-07-08 Delphi Technologies, Inc. Thermosiphon for electronics cooling with high performance boiling and condensing surfaces
US6742575B2 (en) * 2002-02-26 2004-06-01 Denso Corporation Boiling and condensing apparatus
US6863119B2 (en) * 2000-09-14 2005-03-08 Denso Corporation Cooling device boiling and condensing refrigerant
US6901994B1 (en) * 2004-01-05 2005-06-07 Industrial Technology Research Institute Flat heat pipe provided with means to enhance heat transfer thereof
US7143818B2 (en) * 2003-09-02 2006-12-05 Thermal Corp. Heat pipe evaporator with porous valve
US7159647B2 (en) * 2005-01-27 2007-01-09 Hul-Chun Hsu Heat pipe assembly
US7540319B2 (en) * 2004-12-17 2009-06-02 Fujikura Ltd. Heat transfer device
US7604040B2 (en) * 2005-06-15 2009-10-20 Coolit Systems Inc. Integrated liquid cooled heat sink for electronic components
US20100266864A1 (en) * 2009-04-16 2010-10-21 Yeh-Chiang Technology Corp. Ultra-thin heat pipe
US20100319882A1 (en) * 2009-06-17 2010-12-23 Yeh-Chiang Technology Corp. Ultra-thin heat pipe and manufacturing method thereof
US20120048516A1 (en) * 2010-08-27 2012-03-01 Forcecon Technology Co., Ltd. Flat heat pipe with composite capillary structure
US20120211202A1 (en) * 2011-02-18 2012-08-23 Asia Vital Components Co., Ltd. Low-profile heat transfer device
US8482921B2 (en) * 2006-10-23 2013-07-09 Teledyne Scientific & Imaging, Llc. Heat spreader with high heat flux and high thermal conductivity
US20130233517A1 (en) * 2012-03-09 2013-09-12 Uchicago Argonne, Llc Hybrid radiator cooling system
US8800643B2 (en) * 2010-12-27 2014-08-12 Hs Marston Aerospace Ltd. Surface cooler having channeled fins
US20150101783A1 (en) * 2013-10-15 2015-04-16 Hao Pai Thermal conductor with ultra-thin flat wick structure
US9188396B2 (en) * 2009-07-21 2015-11-17 Furukawa Electric Co., Ltd. Flattened heat pipe and manufacturing method thereof
US9291398B2 (en) * 2011-01-26 2016-03-22 Asia Vital Components Co., Ltd. Micro vapor chamber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM399307U (en) * 2010-07-02 2011-03-01 Uni Calsonic Corp Looped heat dissipation module
TW201317532A (en) * 2011-10-21 2013-05-01 Sunonwealth Electr Mach Ind Co Heat-dissipating device
TWM456523U (en) * 2012-12-18 2013-07-01 chao-quan Chen Multifunctional type heat absorber and sink
TWI577271B (en) * 2016-04-21 2017-04-01 奇鋐科技股份有限公司 Heat dissipating module
TWM525477U (en) * 2016-04-21 2016-07-11 Asia Vital Components Co Ltd Heat dissipation apparatus

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005772A (en) * 1997-05-20 1999-12-21 Denso Corporation Cooling apparatus for high-temperature medium by boiling and condensing refrigerant
US6863119B2 (en) * 2000-09-14 2005-03-08 Denso Corporation Cooling device boiling and condensing refrigerant
US20020166655A1 (en) * 2001-05-11 2002-11-14 Hajime Sugito Cooling device boiling and condensing refrigerant
US7017657B2 (en) * 2001-05-11 2006-03-28 Denso Corporation Cooling device boiling and condensing refrigerant
US6742575B2 (en) * 2002-02-26 2004-06-01 Denso Corporation Boiling and condensing apparatus
US6588498B1 (en) * 2002-07-18 2003-07-08 Delphi Technologies, Inc. Thermosiphon for electronics cooling with high performance boiling and condensing surfaces
US7143818B2 (en) * 2003-09-02 2006-12-05 Thermal Corp. Heat pipe evaporator with porous valve
US6901994B1 (en) * 2004-01-05 2005-06-07 Industrial Technology Research Institute Flat heat pipe provided with means to enhance heat transfer thereof
US7540319B2 (en) * 2004-12-17 2009-06-02 Fujikura Ltd. Heat transfer device
US7159647B2 (en) * 2005-01-27 2007-01-09 Hul-Chun Hsu Heat pipe assembly
US7604040B2 (en) * 2005-06-15 2009-10-20 Coolit Systems Inc. Integrated liquid cooled heat sink for electronic components
US8482921B2 (en) * 2006-10-23 2013-07-09 Teledyne Scientific & Imaging, Llc. Heat spreader with high heat flux and high thermal conductivity
US20100266864A1 (en) * 2009-04-16 2010-10-21 Yeh-Chiang Technology Corp. Ultra-thin heat pipe
US20100319882A1 (en) * 2009-06-17 2010-12-23 Yeh-Chiang Technology Corp. Ultra-thin heat pipe and manufacturing method thereof
US9188396B2 (en) * 2009-07-21 2015-11-17 Furukawa Electric Co., Ltd. Flattened heat pipe and manufacturing method thereof
US20120048516A1 (en) * 2010-08-27 2012-03-01 Forcecon Technology Co., Ltd. Flat heat pipe with composite capillary structure
US8800643B2 (en) * 2010-12-27 2014-08-12 Hs Marston Aerospace Ltd. Surface cooler having channeled fins
US9291398B2 (en) * 2011-01-26 2016-03-22 Asia Vital Components Co., Ltd. Micro vapor chamber
US20120211202A1 (en) * 2011-02-18 2012-08-23 Asia Vital Components Co., Ltd. Low-profile heat transfer device
US20130233517A1 (en) * 2012-03-09 2013-09-12 Uchicago Argonne, Llc Hybrid radiator cooling system
US20150101783A1 (en) * 2013-10-15 2015-04-16 Hao Pai Thermal conductor with ultra-thin flat wick structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220299274A1 (en) * 2021-03-18 2022-09-22 Guangdong Envicool Technology Co., Ltd. Heat Dissipation Device
US11940231B2 (en) * 2021-03-18 2024-03-26 Guangdong Envicool Technology Co., Ltd. Heat dissipation device
CN114501931A (en) * 2021-12-31 2022-05-13 联想(北京)有限公司 Heat dissipation device and electronic equipment
WO2023221638A1 (en) * 2022-05-20 2023-11-23 华为技术有限公司 Heat dissipation apparatus, connecting structure, and electronic device
TWI816524B (en) * 2022-08-24 2023-09-21 艾姆勒科技股份有限公司 Two-phase immersion-cooling heat-dissipation structure having skived fin with high porosity
TWI823696B (en) * 2022-12-01 2023-11-21 艾姆勒科技股份有限公司 Two-phase immersion-cooling heat-dissipation structure having skived fins
TWI833500B (en) 2022-12-15 2024-02-21 艾姆勒科技股份有限公司 Two-phase immersion-cooling type heat-dissipation structure having skived fins with high surface roughness
CN116456704A (en) * 2023-06-14 2023-07-18 中山市精研科技有限公司 Liquid crystal display television with high heat dissipation efficiency

Also Published As

Publication number Publication date
TW201937126A (en) 2019-09-16
TWI645155B (en) 2018-12-21

Similar Documents

Publication Publication Date Title
US20190264986A1 (en) Heat dissipation device
US7493939B2 (en) Heat sink with heat pipes
US9441888B2 (en) Loop type pressure-gradient-driven low-pressure thermosiphon device
US7110259B2 (en) Heat dissipating device incorporating heat pipe
US7552759B2 (en) Loop-type heat exchange device
US7025125B2 (en) Heat dissipating device with heat pipe
US7565925B2 (en) Heat dissipation device
US9721869B2 (en) Heat sink structure with heat exchange mechanism
US20070000646A1 (en) Heat dissipation device with heat pipe
US20060162903A1 (en) Liquid cooled thermosiphon with flexible partition
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
US20030019610A1 (en) Rapidly self - heat-conductive heat - dissipating module
US7537046B2 (en) Heat dissipation device with heat pipe
US7525801B2 (en) Computer module
US7447025B2 (en) Heat dissipation device
US8355253B2 (en) Electronic apparatus with heat dissipation device
US10607918B2 (en) Phase-change cooler and phase-change cooling method
US20080314554A1 (en) Heat dissipation device with a heat pipe
US20200271362A1 (en) Heat exchanger
JP5874935B2 (en) Flat plate cooling device and method of using the same
US20080142192A1 (en) Heat dissipation device with a heat pipe
US10578368B2 (en) Two-phase fluid heat transfer structure
US20160095254A1 (en) Managing heat transfer for electronic devices
US20070177354A1 (en) Heat pipe with guided internal grooves and heat dissipation module incorporating the same
US20070095509A1 (en) Heat dissipation having a heat pipe

Legal Events

Date Code Title Description
AS Assignment

Owner name: AURAS TECHNOLOGY CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, CHIEN-AN;FAN, MU-SHU;CHEN, CHIEN-YU;REEL/FRAME:045365/0093

Effective date: 20180305

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION