一种电池液冷板系统
技术领域
本发明涉及一种电池技术领域,特别是涉及一种电池液冷板系统。
背景技术
由于电池技术的发展,电池的功率和能量密度越来越高,电池的发热量也随之增加,相应的对电池散热系统提出了更高的要求。现有技术的热管理方案电池液冷板都布置于电池底部,通过大量导热胶将电芯固定于底部液冷板上,再将液冷板和电池通过结构件固定于电池箱体中,或者将多块液冷板布置于电池电芯组成的模组底部,通过管路组成电池冷却系统,再通过结构件将冷却系统与模组固定于电池箱体中。因此,现有技术中存在以下5个问题:
1、液冷板位于电芯底部,接触面积小,散热效果差;
2、液冷板位于电芯底部,电芯温差大;
3、液冷板位于电芯底部,换热速率慢;
4、液冷板占用空间大;
5、结构复杂,需用大量结构件将液冷系统固定到电池箱体中。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种电池液冷板系统,用于解决现有技术中以上5个问题。为实现上述目的及其他相关目的,本发明提供一种电池液冷板系统,使箱体底部的液冷板和侧面液冷板形成一体的电池包结构,以达到增加电池的能量密度的增益效果。
于本发明的一实施例中,一种电池液冷板系统,其包括:
底部液冷板组件,电芯设置在所述底部液冷板组件上,所述底部液冷板组件包括第一冷却介质通道;
侧部液冷板组件,所述侧部液冷板组件连接至所述电芯,所述侧部液冷板组件包括第二冷却介质通道;和
管路组件,所述管路组件包括进水管路和出水管路,所述进水管路和所述出水管路分别与底部液冷板组件的所述第一冷却介质通道、及所述侧部液冷板组件的所述第二冷却介质通道连通。
于本发明的一实施例中,所述电芯与所述底部液冷板组件和所述侧部液冷板组件之间用导热结构胶固定连接。
于本发明的一实施例中,所述电芯产生的热量经所述底部液冷板组件和所述侧部液冷板组件上的所述管路组件中的冷却介质传递出去。
于本发明的一实施例中,所述管路组件包括固定连接的快接插头和胶管。
于本发明的一实施例中,所述冷却介质为冷却液或冷媒。
于本发明的一实施例中,所述底部液冷板组件与电池箱体底部通过所述导热结构胶集成在一起。
于本发明的一实施例中,所述底部液冷板组件包括底部液冷板、覆于所述底部液冷板表面的第一导热结构胶,进水接头和出水接头,所述进水接头和所述出水接头分别与所述管路组件的所述进水管路和所述出水管路连接。
于本发明的一实施例中,所述进水接头和所述出水接头是三通接头。
于本发明的一实施例中,所述侧部液冷板组件包括至少一个侧部液冷板、覆于所述侧部液冷板表面的第二导热结构胶、进水口和出水口,所述进水口和所述出水口分别与所述管路组件的所述进水管路和所述出水管路连接。
于本发明的一实施例中,所述侧部液冷板通过所述管路组件形成并联结构,所述冷却介质由一根总管路流入各所述侧部液冷板后,再由一根总管路流出。
如上所述,本发明提供一种电池液冷板系统,具有以下有益效果:增加了电芯侧面液冷板以增大换热面积,达到提高散热效率效果,使电池的温度一致性高,能够满足电池的热管理需求。通过将底部液冷板与电池箱体底部集成,能减少底部液冷板占用的空间。使电芯通过导热结构胶与电池箱底部连接,以减少接触热阻,并能降低电池系统重量。电芯与侧面液冷板中间通过导热结构胶粘连,能降低电芯与侧面液冷板的接触热阻,同时提高电池整体结构强度。液冷板之间的连接使用快插接头,可以降低装配难度,使结构简单,便于维护。
附图说明
图1所示为本发明电池液冷板系统的立体示意图。
图2所示为本发明电池液冷板系统中的冷却介质通道示意图。
图3所示为底部液冷板中的第一冷却介质通道的示意图。
图4所示为本发明的底部液冷板组件的立体示意图。
图5所示为显示图4的底部液冷板组件上的三通接头的示意图。
图6所示为本发明的侧部液冷板组件的立体示意图。
图7所示为本发明的管路组件的立体示意图。
图8所示为本发明的一种电池液冷板系统与电芯装配的爆炸示意图。
元件标号说明
底部液冷板组件1;底部液冷板11;第一冷却介质通道110;第一导热结构胶111;进水接头112;第一进水接口1121;第二进水接口1122;第三进水接口1123;出水接头113;第一出水接口1131;第二出水接口1132;第三出水接口1133;
侧部液冷板组件2;侧部液冷板12;第二冷却介质通道120;第二导热结构胶121;进水口122;出水口123;
管路组件3;进水管路31;出水管路32;快插接头33;胶管34;
电芯4;电池系统5/电池包系统5。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其它优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
请参阅图1至图8。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
请参阅图1至图3,在一个优选实施例中,本发明提供一种电池液冷板系统,包括底部液冷板组件1、侧部液冷板组件2和管路组件3。底部液冷板组件1上设置有底部液冷板11,侧部液冷板组件2由多块侧部液冷板12组成。底部液冷板11通过分设于同一条边的两头的三通接头进水接头112和出水接头113分别连接管路组件3的进水管路31和出水管路32,且每块侧部液冷板12的两端都分别与管路组件3的进水管路31和出水管路32连接。通过冷却介质在液冷板和液流通道中循环流动来传递带走热量从而实现冷却电池的功能。由图2同时参考图3可见冷却介质在本发明的电池液冷板系统中侧部液冷板12内部的第二冷却介质通道120和在底部液冷板11内部的第一冷却介质通道110中流动的情况,以及在管路组件3中流动的位置和方向。冷却介质由三通进水接头112流入后,一路流入底部液冷板11内部的第一冷却介质通道110并依照通道内部路径由进水管路31向出水管路32方向流动。另一路流入进水管路31,再由进水管路31经各分支管路分别流入均匀分布于各侧部液冷板12内部的第二冷却介质通道110,并分别在第二冷却介质通道110内自进水管路31方向向出水管路32方向流动,最后经由出水管路32汇总后流出三通出水接头113,不断循环。
第一冷却介质通道110为两条均匀分布在底部液冷板11内部的蛇形通道,其通道形状可使冷却介质流至底部液冷板11内部各处以利于最大程度的散热。第二冷却介质通道120为直线通路结构,可以使冷却介质直接由侧部液冷板12的一端流至另一端。以上所述的第一冷却介质通道110和第二冷却介质通道120的结构仅为一个实施例,侧部液冷板11和底部液冷板12根据不同形状可具有不同内部冷却介质通道结构。
接下来请看图4和图5,图4中显示了底部液冷板组件1主要由底部液冷板11和覆于底部液冷板11表面的第一导热结构胶111以及进水接头112和出水接头113组成。进水接头112和出水接头113是通过钎焊分别安装在底部液冷板11上任意一边的两端。
将底部液冷板11与电池箱体底部集成,能减少底部液冷板占用的空间。使电芯4通过第一导热结构胶111与电池箱底部连接,以减少接触热阻,并能降低电池系统重量。具体为在箱体底部上设置一层液冷板集成为底部液冷板11,再利用箱底和底部液冷板11中间的空腔形成第一冷却介质通道110。这样减少了液冷板和箱体底部的装配空间,同时又和底部液冷板11共用了箱体底部。因为导热结构胶的重量和体积都很小,使用导热结构胶把电芯4固定在箱底,代替现有技术中需要使用到的支撑件螺栓等固定物,既节省了电池包内部空间,又减轻了电池包重量。由公式:电池容量/电池体积=体积能量密度可知,电池体积减小可使体积能量密度增加。而电池的能量密度越大,单位体积或重量内存储的电量越多,因此减小同样电池容量的电池包的体积,可以其增加体积能量密度。
如图5所示,底部液冷板11上的进水接头112为一个三通接头,其中横置的第一进水接口1121与电池包外部的液冷机组(图中未示出)相连接,朝上的第二进水接口1122与底部液冷板相11进水口相连接,朝下的第三进水接口1123与管路组件3的进水管路31相连接。
出水接头113与进水接头112结构一致,其中第一出水接口1131也与上述外部液冷机组相连接,第二出水接口1132与管路组件3的出水管路32相连接,第三出水接口1133与底部液冷板11的出水口相连接。外部液冷机组具有降温和使冷却介质流动的功能,与本发明的液冷板系统的管路3、底部液冷板11和侧部液冷板12内部的冷却介质通道形成一个回路,可以起到降温冷却电池和使冷却介质循环流动的作用。因此,液冷板系统内部的热量被冷却介质带至系统外部,冷却后的冷却介质再由进水口流入液冷板系统如此往复循环对电芯4进行散热冷却。
管路组件3分为进水管路31和出水管路32,并分别设置在本系统的对立的两边,并通过快接插头33和侧部液冷板12的两端的进水口122和出水口123分别连接。位于本系统一边的进水管路31通过快插接头33与进水接头112相连接后,通过三通接头112和快插接头33与侧部液冷板12的进水口122相连接,位于侧部液冷板12另一端的出水口123通过快插接头33与出水管路32相连接。管路组件3为在与进水接头112连接的一段总管路后面分为若干支管路分别通过快捷插头33连接侧部液冷板12,然后又在出水接头113前一段总管路汇合而成一个管路并联结构。
图6所示的侧部液冷板组件2主要由侧部液冷板12、覆盖于侧部液冷板12表面的第二导热结构胶121以及分设于侧部液冷板12两端的进水口122和出水口123组成。电芯4与侧面液冷板12中间通过导热结构胶粘连,减少了用于固定连接电芯4和侧面液冷板12所使用的结构件,也减少了装配使用的螺栓等零件。如果用于固定连接作用部分的体积减小,也由此可以在相同体积的电池包内放入了更多的电芯4。侧面液冷板12的数量是根据电芯2的数量对应增加的。第二导热结构胶121中的结构胶成分,还能起到增加结构强度的作用,在使用第二导热结构胶121连接的侧部冷液板与电芯4相对的面之间变成固体,且结构强度较大使得壁和壁的连接牢固不易被分开,其他地方使用导热结构胶同理。
接下来请看图7,管路组件3主要由进水管路31和出水管路32组成,进水管路31和出水管路32主要由多个快插接头33和胶管34组成。快插接头33和胶管34之间通过激光焊接进行组装。进水管路31和出水管路32通过快接插头33连接在侧部液冷板12上。
图8所示为本发明液冷板系统与电芯4所组成的电池系统5装配的爆炸图。多块侧部液冷板12、底部液冷板11与设置在其上的进水接头112和出水接头113、以及出水管路32和进水管路31共同组成本发明的液冷板系统。电池系统5通过覆于底部液冷板11表面的第一导热结构胶111与底部液冷板组件1相连接,以及与多个侧部液冷板通过第二导热胶121连接后和管路组件3组成并联结构以共同形成电池散热系统。电芯4在充放电过程中产生的热量经电芯4的底部和侧面通过第一导热结构胶111和第二导热结构胶121传递到侧部液冷板12和底部液冷板11中,再通过冷却介质将热量传递到电池包外,以实现电池散热的目的。
冷却介质首先由外部液冷机组流入进水接头112的第一进水接口1121后分为两路,一路由第二进水接口1122流入底部液冷板组件1的底部液冷板11内的第一冷却介质通道110的冷却介质经过进水接头112的第二进水接口1122流入到底部液冷板组件1的底部液冷板11中,最后经底部液冷板11通过出水接头113的第一出水接口1131流出本发明电池液冷板系统至外部液冷机组,同时将电池热量带至液冷板系统外部。另一路由第三进水接口1123流入管路组件3的进水管路31中,并通过快插接头33流入侧部液冷板12内的第二冷却介质通道120中并向出水管路32处流动,通过快插接头33流入出水管路32中后继续流动至出水接头113,然后分别由出水口113的第二出水接口1132和第三出水接口1133汇总至第一出水接口1131流出电池液冷板系统至外部液冷机组并将热量带出液冷板系统。以上两路冷却介质流出至外部液冷机组,经冷却后再次流入第一进水接口1121,不断循环达到对电池的散热效果。
电芯4作为一个单元,利用导热结构胶使多个电芯4构成一个电池包系统5,省去了中间的电芯4形成模组环节,导热结构胶的重量和体积都很小,在相同的电池包内可以放入更多电芯以增加电池包的重量能量密度和体积能量密度。本系统使底部液冷板组件1、侧部液冷板组件2和多个电芯4直接组成电池包CTP(Cell to Pack)结构,达到续航里程更长,降低成本,零件数下降等增益效果。
在一个优选实施例中,冷却介质可以是冷却液或冷媒这类能够传递热能,产生冷冻效果的工作流体,例如去离子水、水-乙二醇混合溶液、硅油、制冷剂等。
在一个优选实施例中,通过以上本发明的系统结构可以减小电池包体积。
在一个优选实施例中,三通接头112/113可以是一个具有开关的阀门,通过控制阀门开关达到控制液冷板内的冷却液流量以实现调节整包电池系统5温度一致性的目的。
综上所述,本发明的底部液冷板与侧面液冷板一体形成CTP电池包结构。增加了电芯侧面液冷板以增大电池散热面积,提高电芯散热速率,减少电池系统温差。将底部液冷板与电池箱体进行集成,减少了液冷板空间占用,因此提高电池系统体积能量密度。使用导热结构胶将电芯固定设置在底部液冷板和侧部液冷板上,减少固定所用的结构件,同时降低了电池系统重量,提高了电池系统重量能量密度。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。