WO2017015826A1 - 电池组热管理组件 - Google Patents

电池组热管理组件 Download PDF

Info

Publication number
WO2017015826A1
WO2017015826A1 PCT/CN2015/085177 CN2015085177W WO2017015826A1 WO 2017015826 A1 WO2017015826 A1 WO 2017015826A1 CN 2015085177 W CN2015085177 W CN 2015085177W WO 2017015826 A1 WO2017015826 A1 WO 2017015826A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
channel tube
battery pack
current collector
thermal management
Prior art date
Application number
PCT/CN2015/085177
Other languages
English (en)
French (fr)
Inventor
宋毅
项延火
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2015/085177 priority Critical patent/WO2017015826A1/zh
Priority to EP15899178.6A priority patent/EP3331054A4/en
Publication of WO2017015826A1 publication Critical patent/WO2017015826A1/zh
Priority to US15/880,348 priority patent/US10658715B2/en
Priority to US16/850,476 priority patent/US11196108B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery pack thermal management, and more particularly to a battery pack thermal management assembly.
  • the general operating temperature range of the car is -30 to 80 ° C, which is much larger than the range of use of the power battery.
  • its optimal operating temperature range is 20 ⁇ 40 °C. If the battery is operated for more than 40 ° C for a long period of time, the cycle life will be greatly reduced, and there will be thermal events that cause high temperatures. In environments below 0 ° C, in addition to the safety hazards that may be caused by low temperature charging, lower Output power and functional degradation may also not meet the needs of the car's normal operation.
  • the power battery system generally uses a thermal management component and a module external to the battery to heat and cool the battery to quickly adjust the battery temperature to a suitable operating temperature range.
  • the mainstream solution for electric vehicles at home and abroad is to use the fan system or water cooling system to achieve the thermal management objectives of the battery pack.
  • the efficiency of the heat exchange of the fan system is relatively low.
  • the target of the temperature uniformity of 5 °C required by the general lithium ion battery is also difficult to achieve, especially for large lithium ion battery packs. This is especially true.
  • most of the battery packs using the water cooling system scheme are specially designed with battery cooling plates, they are often limited by small size, large weight and high manufacturing cost, and foam and thermal pad are used to improve the cooling plate and the battery module.
  • the heat transfer scheme between groups also fails to solve the life problem caused by long-term aging.
  • the extra pipe connection between the water-cooled plates in the battery pack not only occupies more design space, but also increases the cost, and also brings the safety hazard caused by leakage.
  • the function of rapid heating at low temperatures is more important.
  • most of the battery pack heating schemes have the disadvantages of low heating efficiency, uneven heating, poor reliability of the heating unit, etc., and most of the schemes choose to integrate the heating unit in the battery module or independently of the cooling plate unit, and also exist for maintenance. Inconvenient, difficult to install and other issues.
  • Another object of the present invention is to provide a battery pack thermal management assembly that can simplify the structure and save space in the battery pack.
  • the present invention provides a battery pack thermal management assembly including a cooling mechanism, a heating diaphragm, and a heat insulating layer.
  • the cooling mechanism comprises: a plurality of multi-channel tube groups arranged side by side, each multi-channel tube group having at least one multi-channel tube, the number of multi-channel tube groups being the same as the number of rows of the battery groups, and each multi-channel tube group corresponding to one row of battery groups
  • Each row of battery packs has at least one battery pack, and each of the multi-channel tube sets contacts the bottom of the corresponding one of the rows of battery packs from below;
  • the first current collector and the second current collector are in communication with the external cooling fluid circuit, respectively disposed in the Two ends of the plurality of multi-channel tube groups, the two ends of each of the plurality of multi-channel tube groups are respectively connected to the first current collector and the second current collector, so that the external cooling fluid circuit and the plurality of multi-channels
  • the tube set, the first current collector, and the second current collector are in fluid communication to cool all of the rows of battery packs.
  • a heated diaphragm is disposed below the respective one of the multi-channel tube sets and is used to heat the multi-channel tube set.
  • the insulating layer is disposed below a corresponding one of the heating films.
  • each multi-channel tube group contacts the bottom of a corresponding battery pack from below, and the external cooling fluid passes through the first current collector, the multi-channel tube group, and The second current collector cools all the rows of battery packs, effectively improving the cooling efficiency of the battery pack and ensuring the consistency of the battery temperature;
  • the heating diaphragm is disposed under the corresponding one of the multi-channel tube sets and used for the multi-channel
  • the tube group is heated to heat the corresponding battery pack, and the heat insulation layer is disposed under the corresponding one of the heating diaphragms to reduce heat loss on the heat conduction path, thereby effectively improving the heating efficiency of the battery pack and the energy of the battery pack system.
  • Utilization rate; heating diaphragm It is small in size and integrated under the corresponding multi-channel tube set, which simplifies the structure of the battery pack and saves space in the battery pack.
  • FIG. 1 is a perspective view of a battery pack thermal management assembly in accordance with the present invention
  • FIG. 2 is an exploded view of a battery pack thermal management assembly in accordance with the present invention
  • FIG. 3 is a perspective view of a cooling mechanism of a battery pack thermal management assembly in accordance with the present invention, wherein the number of multi-channel tube sets is an even number;
  • FIG. 4 is a perspective view of a cooling mechanism of a battery pack thermal management assembly in accordance with the present invention, wherein the number of multi-channel tube sets is an odd number;
  • Figure 5 is a perspective view of a cooling mechanism of a battery pack thermal management assembly in accordance with the present invention, wherein the number of multi-channel tubes is an even number;
  • Figure 6 is a perspective view of a cooling mechanism of a battery pack thermal management assembly in accordance with the present invention, wherein the number of multi-channel tubes is an odd number;
  • Figure 7 is a cross-sectional view taken along line A-A of Figure 3 .
  • a battery pack thermal management assembly includes a cooling mechanism 1, a heating diaphragm 2, and a heat insulating layer 3.
  • the cooling mechanism 1 comprises: a plurality of multi-channel tube sets 10 arranged side by side, each multi-channel tube set 10 having at least one multi-channel tube 100, the number of multi-channel tube sets 10 being the same as the number of rows of the battery pack B, each multi-channel tube Group 10 corresponds to a row of battery packs B, each row of battery packs B has at least one battery pack B, each multi-channel tube set 10 contacts the bottom of a corresponding row of battery packs B from below; first current collector 11 and second current collector 12, communicating with the external cooling fluid circuit, respectively disposed at two ends of the plurality of multi-channel tube groups 10, the two ends of each of the plurality of multi-channel tube groups 10 are respectively connected to the first current collector 11 and the second current collector 12 are configured to communicate the external cooling fluid circuit with the plurality of multi-channel tube sets 10, the first current collector 11 and the second current collector 12 to cool all of the rows of battery packs B.
  • the heating diaphragm 2 is disposed below a corresponding one of the multi-channel tube sets 10 and is used to heat the multi-channel tube set 10.
  • the insulating layer 3 is disposed below the corresponding one of the heating films 2.
  • each multi-channel tube group 10 contacts the bottom of a corresponding battery bank B from below, and the external cooling fluid passes through the first current collector 11, the multi-channel tube group 10, and the second set.
  • the fluid 12 cools all the rows of the battery packs B, effectively improving the cooling efficiency of the battery pack and ensuring the consistency of the battery temperature;
  • the heating diaphragm 2 is disposed under the corresponding one of the multi-channel tube sets 10 and used for the plurality of The channel tube group 10 is heated to heat the corresponding battery pack B, and the heat insulating layer 3 is disposed under the corresponding one of the heating diaphragms 2, thereby reducing heat loss on the heat conduction path, thereby effectively improving the heating efficiency of the battery pack and
  • the heating diaphragm 2 is small in size and integrated under the corresponding one of the multi-channel tube sets 10, simplifying the structure of the battery pack and saving the space of the battery pack.
  • each of the multi-channel tubes 100, the first current collector 11 and the second current collector 12 may be made of an aluminum material and welded together. Welding can be brazed.
  • the cooling mechanism 1 may further include: a flange 13 sealingly disposed on the battery accommodating the row of battery packs B a fluid inlet joint 14 disposed at the flange 13 for supplying a supply of cooling fluid for the external cooling fluid circuit; a fluid outlet joint 15 disposed at the flange 13 for externally cooling the fluid circuit a returning cooling fluid; a fluid input line 16 having one end fixed to the flange 13 and communicating with the fluid inlet joint 14 and the other end communicating with the first current collector 11; the fluid output line 17 having one end fixed to the flange 13 is connected to the fluid outlet joint 15 and the other end is connected to the first current collector 11; and the first partition 18 is inserted into the first current collector 11 to communicate with the first current collector 11 at the fluid input line 16.
  • a partition is formed between the fluid output line 17 and the communication of the first current collector 11. Since the flange 13, the fluid inlet joint 14, the fluid outlet joint 15, the fluid input line 16, and the fluid output line 17 are all connected to the first current collector 11, in other words, they may all be located in the first current collector 11 Sideways, thus saving space in the battery pack.
  • the battery pack B of the battery pack is an even row; along the arrangement direction D of the multi-channel tube set 10, each of the two multi-channel tube sets 10 is a multi-channel tube set pair GP, each multi-channel tube set 10 has at least one multi-channel tube 100, and the flow direction of the fluid in all multi-channel tubes 100 of the same multi-channel tube set 10 is the same.
  • the first partition 18 is inserted into the interior of the first current collector 11 to occur in the flow direction of the port 110 at the first current collector 11 of the plurality of multi-channel tube sets 10 in the direction D of the arrangement of the multi-channel tube sets 10.
  • the cooling mechanism 1 of the battery pack thermal management assembly further includes a plurality of second partitions 19 inserted into the second current collector 12 such that adjacent two multi-channel tube sets GP are in the second current collector 12.
  • the interconnecting partitions and the multi-channel tube sets form a fluid circuit for the two multi-channel tube sets 10 of the GP.
  • the fluid input line 16 includes a fluid input manifold 161 at which one end of the first current collector 11 separated by the first partition 18 for supplying fluid contacts one end of a fluid input manifold 161.
  • the fluid output line 17 includes a fluid output manifold 171, and portions of the first current collector 11 separated by the first partition 18 for the return fluid communicate with one end of the corresponding one of the fluid output manifolds 171.
  • the fluid input conduit 16 further includes : flow
  • the body input manifold 162 has one end fixed to the flange 13 and communicated with the fluid inlet joint 14; and a multi-pass input tube 163 communicating with the other end of the fluid input manifold 162 and the other end of all of the fluid input manifolds 161.
  • the fluid output conduit 17 further includes The fluid output manifold 172 has one end fixed to the flange 13 and communicated with the fluid outlet joint 15; and a multi-pass output tube 173 communicating with the other end of the fluid output manifold 172 and the other end of all of the fluid output manifolds 171.
  • the battery pack B of the battery pack is in an odd row and the number of rows exceeds one row; along the arrangement direction D of the multi-channel tube set 10,
  • the three multi-channel tube groups 10 as the group module GM and the multi-channel tube groups 10 on each side of the group module GM are integer multiples of 2, and each of the two multi-channel tube groups 10 present on each side of the group module GM is one.
  • the multi-channel tube set pair GP, each multi-channel tube set 10 has at least one multi-channel tube 100, and the flow direction of the fluid in all multi-channel tubes 100 of the same multi-channel tube set 10 is the same.
  • the first partition 18 is inserted into the interior of the first current collector 11 to occur in the flow direction of the port 110 at the first current collector 11 of the plurality of multi-channel tube sets 10 in the direction D of the arrangement of the multi-channel tube sets 10.
  • the three multi-channel tube sets 10 in the group module GM are used to feed fluid or return fluid in the middle one multi-channel tube set 10 and the other two multi-channel tube sets 10 in the group module GM are used for reflux fluid or both.
  • the fluid is supplied so that the other two multi-channel tube sets 10 within the group module GM form a two fluid circuit with the common intermediate multi-channel tube set 10.
  • the cooling mechanism 1 of the battery pack thermal management component further includes: a second partition 19 inserted into the second current collector 12 to make the group module GM and phase
  • the adjacent multi-channel tube set 10 is disconnected in the second current collector 12 and the adjacent two multi-channel tube groups existing on the side are separated from the connection of the GP in the second current collector 12 and the multi-channel tube sets are separated.
  • a fluid circuit is formed for the two multi-channel tube sets 10 of the GP.
  • the fluid input line 16 includes a fluid input manifold 161 at which one end of the first current collector 11 separated by the first partition 18 for supplying fluid contacts one end of a fluid input manifold 161.
  • the fluid output line 17 includes a fluid output manifold 171, and portions of the first current collector 11 separated by the first partition 18 for the return fluid communicate with one end of the corresponding one of the fluid output manifolds 171.
  • the fluid input manifolds 161 When the number of fluid input manifolds 161 is one, the other end of the fluid input manifold 161 is fixed to the flange 13 and communicates with the fluid inlet joint 14; when the number of fluid input manifolds 161 exceeds one, the fluid input line 16
  • a fluid input manifold 162 having one end secured to the flange 13 and communicating with the fluid inlet fitting 14 and a multi-pass inlet tube 163 communicating with the other end of the fluid input manifold 162 and the other end of all of the fluid input manifolds 161.
  • the fluid output conduit 17 further includes The fluid output manifold 172 has one end fixed to the flange 13 and communicated with the fluid outlet joint 15; and a multi-pass output tube 173 communicating with the other end of the fluid output manifold 172 and the other end of all of the fluid output manifolds 171.
  • the battery pack B of the battery pack is in a row; the multi-channel tube set 10 is one, and the one multi-channel tube set 10 has an even number.
  • the multi-channel tube 100; along the arrangement direction D of the multi-channel tube 100, each of the two multi-channel tubes 100 is a multi-channel tube pair TP.
  • the first partition plate 18 is inserted into the interior of the first current collector 11 to cause a countercurrent change in the flow direction of the port 110 at the first current collector 11 of the plurality of multi-channel tubes 100 in the direction D of the arrangement of the multi-channel tubes 100.
  • the communication of two adjacent two multi-channel tubes 100 in which a countercurrent change occurs will be blocked.
  • the battery pack thermal management assembly further includes a plurality of second partitions 19 inserted into the second current collector 12 to block the communication between the adjacent two multi-channel tubes TP in the second current collector 12 and
  • the multi-channel tube forms a fluid circuit for the two multi-channel tubes 100 of the TP.
  • the fluid input line 16 includes a fluid input manifold 161 at which one end of the first current collector 11 separated by the first partition 18 for supplying fluid contacts one end of a fluid input manifold 161.
  • the fluid output line 17 includes a fluid output manifold 171, and portions of the first current collector 11 separated by the first partition 18 for the return fluid communicate with one end of the corresponding one of the fluid output manifolds 171.
  • the fluid input conduit 16 further includes The fluid input manifold 162 has one end fixed to the flange 13 and communicated with the fluid inlet joint 14; and a multi-pass input tube 163 communicating with the other end of the fluid input manifold 162 and the other end of all of the fluid input manifolds 161.
  • the fluid output conduit 17 further includes The fluid output manifold 172 has one end fixed to the flange 13 and communicated with the fluid outlet joint 15; and a multi-pass output tube 173 communicating with the other end of the fluid output manifold 172 and the other end of all of the fluid output manifolds 171.
  • the battery The battery pack B of the package is a row; the multi-channel tube set 10 is one, the one multi-channel tube set 10 has an odd number and more than one multi-channel tube 100; along the arrangement direction D of the multi-channel tube 100, the continuous selection
  • the three multi-channel tubes 100 serve as the tube module TM and the multi-channel tubes 100 on each side of the tube module TM are integer multiples of two, and each of the two multi-channel tubes 100 present on each side of the tube module TM is a multi-channel tube pair TP. .
  • the first partition plate 18 is inserted into the interior of the first current collector 11 to cause a countercurrent change in the flow direction of the port 110 at the first current collector 11 of the plurality of multi-channel tubes 100 in the direction D of the arrangement of the multi-channel tubes 100.
  • the three multi-channel tubes 100 in the tube module TM are used to feed fluid or return fluid in the middle one multi-channel tube 100 and the other two multi-channel tubes 100 in the tube module TM are used for reflux fluid or for supply
  • the fluid such that the other two multi-channel tubes 100 within the tube module TM, and the common intermediate multi-channel tube 100 form two fluid circuits.
  • the battery B thermal management assembly further includes: a second partition 19 inserted into the second current collector 12 to make the tube module TM and the adjacent multi-channel
  • the tube intercepts the communication of the TP in the second current collector 12 and blocks the communication between the adjacent two multi-channel tubes TP in the second current collector 12 and the multi-channel of each multi-channel tube group to the GP
  • the tube set 10 forms a fluid circuit.
  • the fluid input line 16 includes a fluid input manifold 161 at which one end of the first current collector 11 separated by the first partition 18 for supplying fluid contacts one end of a fluid input manifold 161.
  • the fluid output line 17 includes a fluid output manifold 171, and portions of the first current collector 11 separated by the first partition 18 for the return fluid communicate with one end of the corresponding one of the fluid output manifolds 171.
  • the fluid input conduit 16 further includes The fluid input manifold 162 has one end fixed to the flange 13 and communicated with the fluid inlet joint 14; and a multi-pass input tube 163 communicating with the other end of the fluid input manifold 162 and the other end of all of the fluid input manifolds 161.
  • the fluid output conduit 17 further includes The fluid output manifold 172 has one end fixed to the flange 13 and communicated with the fluid outlet joint 15; and a multi-pass output tube 173 communicating with the other end of the fluid output manifold 172 and the other end of all of the fluid output manifolds 171.
  • the battery pack thermal management assembly may further include: a sealing ring 4 fixed to the bottom of the flange 13 to make the flange 13 is sealed and disposed in the battery case housing the battery pack B.
  • the seal 4 ensures the level of sealing between the thermal management assembly and the battery compartment.
  • the battery pack thermal management assembly may further include: a temperature sensor 5 fixed to the flange 13 and communicably connected to the battery management system.
  • the temperature sensor 5 can be fixed to the flange 13 by a threaded connection with a sealing ring.
  • the temperature sensor 5 can be connected to the battery management system via low voltage line communication.
  • the temperature sensor 5 can detect the temperature of the coolant at the inlet and outlet locations through the battery management system for thermal management strategy implementation and fault diagnosis.
  • each of the heating diaphragms 2 may have a thickness of 1-3 mm.
  • the area of the heated diaphragm can be based on the sum of the heating power required for each of the plurality of battery packs.
  • each of the heating diaphragms 2 may be provided at an end adjacent to the first current collector 11 for insertion with a high voltage circuit.
  • the connector 21 is connected to connect the plurality of heating diaphragms 2 in parallel to the high voltage circuit.
  • the heating diaphragm 2 adopts an integrated design concept, which ensures the installation convenience and maintainability while minimizing the electrical connection and reducing the safety risk. This is a large battery with a large number of battery packs. The package is especially important.
  • each of the heating diaphragms 2 may include a substrate having a positive temperature coefficient and an insulating film attached to both the front and back surfaces of the substrate.
  • the substrate can be a composite material.
  • the substrate can be made by printing.
  • the insulating film can be made of a high voltage insulating material.
  • a substrate having a positive temperature coefficient is more efficient at a lower temperature than a higher temperature, and the temperature of the battery module can be stabilized at a certain design value after a certain heating time, for example, 10 °C. This not only avoids over-burning, but also effectively improves the efficiency of power system energy use and distribution.
  • each of the heating diaphragms 2 can be fixed between the respective one of the multi-channel tube sets 10 and the corresponding one of the heat insulating layers 3 by double-sided adhesive bonding.
  • each of the heating diaphragms 2 may have the same number and multi-channels as the multi-channel tube 100 corresponding to one multi-channel tube set 10 An axially extending extension 22 of the tube 100.
  • each of the thermal insulation layers may have the same number of sub-insulation layers 31 as the extensions 22 of the respective one of the heating membranes 2.
  • each of the heat insulating layers 3 may be a heat resistant polymer plastic. Or rubber.
  • the battery pack thermal management assembly may further include: a plurality of support structures 6, each support structure 6 being disposed in a corresponding one Below the insulation layer 3.
  • Each support structure 6 is made of an elastic material.
  • the elastic material can be a metallic material.
  • the metal material can be stainless steel.
  • the support structure 6 provides a long-term effective and stable supporting force in a compressed space formed by assembling the battery pack and the battery pack case, thereby improving the heat exchange performance between the power battery pack and the thermal management unit.
  • the support structure 6 solves the problem of aging and service life degradation of foam under long-term alternating load, ensuring that the support force can be stabilized within the design range for a long time. Durable, stable, low cost and lightweight requirements.
  • each support structure 6 can have a bent leg portion 61.
  • each support structure 6 may have a plurality of openings 62.
  • the battery pack B may be the power battery pack B.
  • the cooling fluid may be a liquid or a gas.
  • the liquid can be a mixture of water and glycol.

Abstract

一种电池组(B)热管理组件,其包括冷却机构(1)、加热膜片(2)以及隔热层(3)。冷却机构(1)包括:多个多通道管组(10),并排布置,各多通道管组(10)具有至少一个多通道管(100),多通道管组(10)的数量与电池组(B)排数相同,各多通道管组(10)对应一排电池组(B),各排电池组(B)具有至少一个电池组(B),各多通道管组(10)从下方接触对应一排电池组(B)的底部;第一集流体(11)及第二集流体(12),与外部冷却流体回路连通,分别设置于多通道管组(10)的两端,多通道管组(10)的两端分别连通于第一集流体(11)和第二集流体(12),以使外部冷却流体回路与多通道管组(10)、第一集流体(11)及第二集流体(12)连通,以对各排电池组(B)进行冷却。加热膜片(2)设置于相应一个多通道管组(10)的下方并用于对该多通道管组(10)进行加热。隔热层(3)设置于相应一个加热膜片(2)的下方。

Description

电池组热管理组件 技术领域
本发明涉及电池组热管理领域,尤其涉及一种电池组热管理组件。
背景技术
随着电动汽车技术和动力电池技术的逐步完善,市场对动力电池组的能量密度、功率、循环寿命、安全等方面的要求也日益提高。开发一种满足现有动力电池组系统要求的热管理单元及组件,成为了动力电池系统开发过程中必不可少的课题。
对于动力电池系统而言,温度及其一致性是评估其性能、寿命和安全的基本指标,同时也是电池管理系统SOC(电池荷电状态)估算及控制策略的重要参数。但汽车的一般使用温度范围是-30~80℃,远大于动力电池的使用范围。以一款锂离子动力电池为例,它的最佳工作温度范围是20~40℃。如果电池长期工作在超过40℃的环境,循环寿命将大幅减少,同时也存在引发高温下的热事件;而在低于0℃以下的环境,除了低温充电可能引起的安全隐患外,较低的输出功率及功能降级也可能无法满足汽车正常工作的需求。
因此,动力电池系统一般采用电池外部的热管理组件和模块对电池进行加热和冷却,以将电池组温度快速调整至适宜的工作温度范围。
目前,国内外电动汽车的主流方案是采用风机系统或水冷系统达到电池组的热管理目标。风机系统除了难以满足汽车防水防尘等级的要求外,其热交换的效率也比较低,一般锂离子电池所要求的温度一致性5℃的目标也很难实现,尤其是针对大型锂离子电池包更是如此。目前虽然大部分采用水冷系统方案的电池包都特别设计了电池冷却板,但往往受限于小尺寸、大重量和较高的制造成本,且采用泡棉和导热垫以改善冷却板和电池模组之间热传导的方案也无法解决长期老化所引起的寿命问题。另外,在电池包内各水冷板之间额外的管路连接不仅占用了更多的设计空间,提高了成本,同时也带来了泄漏造成的安全隐患。在寒冷的冬季,低温下快速加热的功能更为重要。 目前大部分的电池包加热方案存在加热效率低、加热不均匀、加热单元可靠性差等缺点,而且大部分方案选择将加热单元集成在电池模组里或是和冷却板单元彼此独立,也存在维护不方便、安装困难等问题。
发明内容
鉴于背景技术中存在的问题,本发明的目的在于提供一种电池组热管理组件,其能提高对电池组的冷却和加热效率,提升电池包系统的能量利用率,保证电池温度的一致性。
本发明的另一目的在于提供一种电池组热管理组件,其能实现结构简化,节约电池包的空间。
为了实现上述目的,本发明提供了一种电池组热管理组件,其包括冷却机构、加热膜片以及隔热层。
冷却机构包括:多个多通道管组,并排布置,各多通道管组具有至少一个多通道管,多通道管组的数量与电池组的排数相同,各个多通道管组对应一排电池组,各排电池组具有至少一个电池组,各个多通道管组从下方接触对应一排的电池组的底部;第一集流体及第二集流体,与外部冷却流体回路连通,分别设置于所述多个多通道管组的两端,所述多个多通道管组的各多通道管的两端分别连通于第一集流体和第二集流体,以使外部冷却流体回路与多个多通道管组、第一集流体以及第二集流体连通,从而对所有成排的电池组进行冷却。
加热膜片设置于相应一个多通道管组的下方并用于对该多通道管组进行加热。
隔热层设置于相应一个加热膜片的下方。
本发明的有益效果如下:在根据本发明的电池组热管理组件中,各个多通道管组从下方接触对应一排的电池组的底部,外部冷却流体通过第一集流体、多通道管组以及第二集流体,对所有成排的电池组进行冷却,有效提高对电池组的冷却效率,保证电池温度的一致性;加热膜片设置于相应一个多通道管组的下方并用于对该多通道管组进行加热,进而对相应的电池组进行加热,而隔热层设置于相应一个加热膜片的下方,减少热传导路径上的热量损失,有效提高对电池组的加热效率和电池包系统的能量利用率;加热膜片 体积小,且集成于相应一个多通道管组的下方,简化电池包的结构,节约电池包的空间。
附图说明
图1为根据本发明的电池组热管理组件的立体图;
图2为根据本发明的电池组热管理组件的分解图;
图3为根据本发明的电池组热管理组件的冷却机构的立体图,其中多通道管组的数目为偶数;
图4为根据本发明的电池组热管理组件的冷却机构的立体图,其中多通道管组的数目为奇数;
图5为根据本发明的电池组热管理组件的冷却机构的立体图,其中多通道管的数目为偶数;
图6为根据本发明的电池组热管理组件的冷却机构的立体图,其中多通道管的数目为奇数;
图7为沿图3的线A-A剖开的一剖视图。
其中,附图标记说明如下:
1冷却机构       19第二隔板
10多通道管组    D排列方向
100多通道管     GP多通道管组对
11第一集流体    GM组模块
110端口         TP多通道管对
12第二集流体    TM管模块
13法兰盘        2加热膜片
14流体入口接头  21接插件
15流体出口接头  22延伸部
16流体输入管路  3隔热层
161流体输入分管 31子隔热层
162流体输入总管 4密封圈
163多通输入管   5温度传感器
17流体输出管路  6支撑结构
171流体输出分管 61腿部
172流体输出总管 62开口部
173多通输出管   B电池组
18第一隔板
具体实施方式
下面参照附图来详细说明根据本发明的电池组热管理组件。
参照图1至图7,根据本发明的电池组热管理组件包括:冷却机构1、加热膜片2以及隔热层3。
冷却机构1包括:多个多通道管组10,并排布置,各多通道管组10具有至少一个多通道管100,多通道管组10的数量与电池组B的排数相同,各个多通道管组10对应一排电池组B,各排电池组B具有至少一个电池组B,各个多通道管组10从下方接触对应一排的电池组B的底部;第一集流体11及第二集流体12,与外部冷却流体回路连通,分别设置于所述多个多通道管组10的两端,所述多个多通道管组10的各多通道管100的两端分别连通于第一集流体11和第二集流体12,以使外部冷却流体回路与多个多通道管组10、第一集流体11以及第二集流体12连通,从而对所有成排的电池组B进行冷却。
加热膜片2设置于相应一个多通道管组10的下方并用于对该多通道管组10进行加热。
隔热层3设置于相应一个加热膜片2的下方。
在根据本发明的电池组热管理组件中,各个多通道管组10从下方接触对应一排的电池组B的底部,外部冷却流体通过第一集流体11、多通道管组10以及第二集流体12,对所有成排的电池组B进行冷却,有效提高对电池组的冷却效率,保证电池温度的一致性;加热膜片2设置于相应一个多通道管组10的下方并用于对该多通道管组10进行加热,进而对相应的电池组B进行加热,而隔热层3设置于相应一个加热膜片2的下方,减少热传导路径上的热量损失,有效提高对电池组的加热效率和电池包系统的能量利用率;加热膜片2体积小,且集成于相应一个多通道管组10的下方,简化电池包的结构,节约电池包的空间。
在根据本发明的电池组热管理组件中,各多通道管100、第一集流体11及第二集流体12均可由铝质材料制成并焊接为一体。焊接可为钎焊。
在根据本发明的电池组热管理组件中,参照图1至图6,在一实施例中,冷却机构1还可包括:法兰盘13,密封设置于收容所述成排电池组B的电池包箱体上;流体入口接头14,设置于法兰盘13,用于外部冷却流体回路的供给的冷却流体通入;流体出口接头15,设置于法兰盘13,用于向外部冷却流体回路供给回流的冷却流体;流体输入管路16,一端固定于法兰盘13并连通于流体入口接头14,而另一端连通于第一集流体11;流体输出管路17,一端固定于法兰盘13并连通于流体出口接头15,而另一端连通于第一集流体11;以及第一隔板18,插入第一集流体11内部,以在流体输入管路16与第一集流体11的连通和流体输出管路17与第一集流体11的连通之间形成隔断。由于法兰盘13、流体入口接头14、流体出口接头15、流体输入管路16以及流体输出管路17均连接于第一集流体11,换句话说,它们均可位于第一集流体11的侧方,从而节约电池包的空间。
在根据本发明的电池组热管理组件中,参照图3,在一实施例中,电池包的电池组B为偶数排;沿多通道管组10的排列方向D,每两个多通道管组10为一个多通道管组对GP,各多通道管组10具有至少一个多通道管100,流体在同一多通道管组10的所有多通道管100内的流向相同。第一隔板18插入第一集流体11内部,以当流体在所述多个多通道管组10的第一集流体11处的端口110的流动方向沿多通道管组10的排列方向D发生逆流变化时,将发生逆流变化的两个相邻两个多通道管组10的连通隔断。所述电池组热管理组件的冷却机构1还包括:多个第二隔板19,插入第二集流体12内部,以使相邻两个多通道管组对GP在第二集流体12内的连通隔断并使各多通道管组对GP的两个多通道管组10形成一个流体回路。流体输入管路16包括:流体输入分管161,第一集流体11的被第一隔板18隔开的用于供入流体的各部分连通一个流体输入分管161的一端。流体输出管路17包括:流体输出分管171,第一集流体11的被第一隔板18隔开的用于回流流体的各部分连通于对应一个流体输出分管171的一端。当流体输入分管161的数量为一个时,流体输入分管161的另一端固定于法兰盘13并连通于流体入口接头14;当流体输入分管161的数量超过一个时,流体输入管路16还包括:流 体输入总管162,一端固定于法兰盘13并连通于流体入口接头14;以及多通输入管163,连通于流体输入总管162的另一端和所有流体输入分管161的另一端。当流体输出分管171的数量为一个时,流体输出分管171的另一端固定于法兰盘13并连通于流体出口接头15;当流体输出分管171的数量超过一个时,流体输出管路17还包括:流体输出总管172,一端固定于法兰盘13并连通于流体出口接头15;以及多通输出管173,连通于流体输出总管172的另一端和所有流体输出分管171的另一端。
在根据本发明的电池组热管理组件中,参照图4,在一实施例中,电池包的电池组B为奇数排且排数超过一排;沿多通道管组10的排列方向D,选定连续三个多通道管组10作为组模块GM且组模块GM各侧方的多通道管组10为2的整数倍,组模块GM各侧方存在的每两个多通道管组10为一个多通道管组对GP,各多通道管组10具有至少一个多通道管100,流体在同一多通道管组10的所有多通道管100内的流向相同。第一隔板18插入第一集流体11内部,以当流体在所述多个多通道管组10的第一集流体11处的端口110的流动方向沿多通道管组10的排列方向D发生逆流变化时,将发生逆流变化的两个相邻两个多通道管组10的连通隔断。组模块GM内的三个多通道管组10以中间一个多通道管组10用于供入流体或回流流体而组模块GM内的另外两个多通道管组10均用于回流流体或均用于供入流体,从而组模块GM内的所述另外两个多通道管组10与共用的中间一个多通道管组10形成两个流体回路。当组模块GM侧方存在多通道管组对GP时,所述电池组热管理组件的冷却机构1还包括:第二隔板19,插入第二集流体12内部,以使组模块GM与相邻的多通道管组10在第二集流体12内的连通隔断并使侧方存在的相邻两个多通道管组对GP在第二集流体12内的连通隔断并使各多通道管组对GP的两个多通道管组10形成一个流体回路。流体输入管路16包括:流体输入分管161,第一集流体11的被第一隔板18隔开的用于供入流体的各部分连通一个流体输入分管161的一端。流体输出管路17包括:流体输出分管171,第一集流体11的被第一隔板18隔开的用于回流流体的各部分连通于对应一个流体输出分管171的一端。当流体输入分管161的数量为一个时,流体输入分管161的另一端固定于法兰盘13并连通于流体入口接头14;当流体输入分管161的数量超过一个时,流体输入管路16 还包括:流体输入总管162,一端固定于法兰盘13并连通于流体入口接头14;以及多通输入管163,连通于流体输入总管162的另一端和所有流体输入分管161的另一端。当流体输出分管171的数量为一个时,流体输出分管171的另一端固定于法兰盘13并连通于流体出口接头15;当流体输出分管171的数量超过一个时,流体输出管路17还包括:流体输出总管172,一端固定于法兰盘13并连通于流体出口接头15;以及多通输出管173,连通于流体输出总管172的另一端和所有流体输出分管171的另一端。
在根据本发明的电池组热管理组件中,参照图5,在一实施例中,电池包的电池组B为一排;多通道管组10为一个,该一个多通道管组10具有偶数个多通道管100;沿多通道管100的排列方向D,每两个多通道管100为一个多通道管对TP。第一隔板18插入第一集流体11内部,以当流体在所述多个多通道管100的第一集流体11处的端口110的流动方向沿多通道管100的排列方向D发生逆流变化时,将发生逆流变化的两个相邻两个多通道管100的连通隔断。所述电池组热管理组件还包括:多个第二隔板19,插入第二集流体12内部,以使相邻两个多通道管对TP在第二集流体12内的连通隔断并使各多通道管对TP的两个多通道管100形成一个流体回路。流体输入管路16包括:流体输入分管161,第一集流体11的被第一隔板18隔开的用于供入流体的各部分连通一个流体输入分管161的一端。流体输出管路17包括:流体输出分管171,第一集流体11的被第一隔板18隔开的用于回流流体的各部分连通于对应一个流体输出分管171的一端。当流体输入分管161的数量为一个时,流体输入分管161的另一端固定于法兰盘13并连通于流体入口接头14;当流体输入分管161的数量超过一个时,流体输入管路16还包括:流体输入总管162,一端固定于法兰盘13并连通于流体入口接头14;以及多通输入管163,连通于流体输入总管162的另一端和所有流体输入分管161的另一端。当流体输出分管171的数量为一个时,流体输出分管171的另一端固定于法兰盘13并连通于流体出口接头15;当流体输出分管171的数量超过一个时,流体输出管路17还包括:流体输出总管172,一端固定于法兰盘13并连通于流体出口接头15;以及多通输出管173,连通于流体输出总管172的另一端和所有流体输出分管171的另一端。
在根据本发明的电池组热管理组件中,参照图6,在一实施例中,电池 包的电池组B为一排;多通道管组10为一个,该一个多通道管组10具有奇数个且超过于一个的多通道管100;沿多通道管100的排列方向D,选定连续三个多通道管100作为管模块TM且管模块TM各侧方的多通道管100为2的整数倍,管模块TM各侧方存在的每两个多通道管100为一个多通道管对TP。第一隔板18插入第一集流体11内部,以当流体在所述多个多通道管100的第一集流体11处的端口110的流动方向沿多通道管100的排列方向D发生逆流变化时,将发生逆流变化的两个相邻两个多通道管100的连通隔断。管模块TM内的三个多通道管100以中间一个多通道管100用于供入流体或回流流体而管模块TM内的另外两个多通道管100均用于回流流体或均用于供入流体,从而管模块TM内的所述另外两个多通道管100与共用的中间一个多通道管100形成两个流体回路。当管模块TM侧方存在多通道管对TP时,所述电池组B热管理组件还包括:第二隔板19,插入第二集流体12内部,以使管模块TM与相邻的多通道管对TP在第二集流体12内的连通隔断并使侧方存在的相邻两个多通道管对TP在第二集流体12内的连通隔断并使各多通道管组对GP的多通道管组10形成一个流体回路。流体输入管路16包括:流体输入分管161,第一集流体11的被第一隔板18隔开的用于供入流体的各部分连通一个流体输入分管161的一端。流体输出管路17包括:流体输出分管171,第一集流体11的被第一隔板18隔开的用于回流流体的各部分连通于对应一个流体输出分管171的一端。当流体输入分管161的数量为一个时,流体输入分管161的另一端固定于法兰盘13并连通于流体入口接头14;当流体输入分管161的数量超过一个时,流体输入管路16还包括:流体输入总管162,一端固定于法兰盘13并连通于流体入口接头14;以及多通输入管163,连通于流体输入总管162的另一端和所有流体输入分管161的另一端。当流体输出分管171的数量为一个时,流体输出分管171的另一端固定于法兰盘13并连通于流体出口接头15;当流体输出分管171的数量超过一个时,流体输出管路17还包括:流体输出总管172,一端固定于法兰盘13并连通于流体出口接头15;以及多通输出管173,连通于流体输出总管172的另一端和所有流体输出分管171的另一端。
在根据本发明的电池组热管理组件中,参照图2,在一实施例中,所述电池组热管理组件还可包括:密封圈4,固定在法兰盘13底部,以使法兰盘 13密封设置于收容所述成排电池组B的电池包箱体。密封圈4保证了热管理组件与电池包箱体间的密封等级要求。
在根据本发明的电池组热管理组件中,参照图2,在一实施例中,所述电池组热管理组件还可包括:温度传感器5,固定于法兰盘13上并通信连接于电池管理系统。温度传感器5可通过带密封圈的螺纹连接固定于法兰盘13上。温度传感器5可通过低压线通信连接于电池管理系统。温度传感器5可通过电池管理系统检测入口和出口位置冷却液的温度,以作为热管理策略实施和故障诊断之用。
在根据本发明的电池组热管理组件中,各加热膜片2厚度可为1-3mm。加热膜片的面积大小可基于每列多个电池组所需的加热功率总和而定。
在根据本发明的电池组热管理组件中,参照图1和图2,在一实施例中,各加热膜片2在与第一集流体11相邻的端部可设置有用于与高压回路插接的接插件21,以使所述多个加热膜片2并联连接于高电压回路。加热膜片2采用了整体化的设计概念,在保证安装的方便性和可维护性的同时,尽可能的减少电气连接,也降低了安全性风险,这点对电池组数量较多的大型电池包而言尤为重要。
在根据本发明的电池组热管理组件中,在一实施例中,各加热膜片2可包括正温度系数的基材以及贴覆在基材的正反两个表面上的绝缘薄膜。基材可为复合材料。基材可通过印刷制成。绝缘薄膜可由高电压绝缘材料制成。正温度系数的基材相较于较高的温度而言,在低温下加热效率更高,并且电池模组的温度在一定加热时间之后可稳定在某个设计值,例如10℃。这样不仅避免了过烧的情况,还有效地提升了动力系统能源使用及分配的效率。
在根据本发明的电池组热管理组件中,在一实施例中,各加热膜片2可通过双面背胶粘接固定在相应一个多通道管组10和相应一个隔热层3之间。
在根据本发明的电池组热管理组件中,参照图2,在一实施例中,各加热膜片2可具有与对应一个多通道管组10的多通道管100的数量相同的且沿多通道管100的轴向延伸的延伸部22。
在根据本发明的电池组热管理组件中,参照图2,在一实施例中,各隔热层可具有与相应一个加热膜片2的延伸部22的数量相同的子隔热层31。
在根据本发明的电池组热管理组件中,各隔热层3可为耐热高分子塑料 或橡胶。
在根据本发明的电池组热管理组件中,参照图2和图7,在一实施例中,所述电池组热管理组件还可包括:多个支撑结构6,各支撑结构6设置于相应一个隔热层3的下方。各支撑结构6由弹性材料制成。弹性材料可为金属材料。金属材料可为不锈钢。支撑结构6在电池组和电池包箱体装配后所形成的压缩空间状态下,提供长期有效稳定的支撑力,以此提高动力电池组与热管理单元之间热交换的性能。不同于以往一些采用泡棉做支撑的方案,支撑结构6解决了泡棉在长期交变载荷下可能导致的老化和使用寿命衰减问题,保证了支撑力得以长期稳定在设计范围内,也同时满足耐久、稳定、低成本和轻量化的要求。
在根据本发明的电池组热管理组件中,参照图2和图7,在一实施例中,各支撑结构6可具有弯折的腿部61。
在根据本发明的电池组热管理组件中,参照图2和图7,在一实施例中,各支撑结构6可具有多个开口部62。
在根据本发明的电池组热管理组件中,电池组B可为动力电池组B。
在根据本发明的电池组热管理组件中,冷却流体可为液体或气体。液体可为水和乙二醇混合液。

Claims (31)

  1. 一种电池组热管理组件,其特征在于,包括:
    冷却机构(1),具有:
    多个多通道管组(10),并排布置,各多通道管组(10)具有至少一个多通道管(100),多通道管组(10)的数量与电池组(B)的排数相同,各个多通道管组(10)对应一排电池组(B),各排电池组(B)具有至少一个电池组(B),各个多通道管组(10)从下方接触对应一排的电池组(B)的底部;
    第一集流体(11)及第二集流体(12),与外部冷却流体回路连通,分别设置于所述多个多通道管组(10)的两端,所述多个多通道管组(10)的各多通道管(100)的两端分别连通于第一集流体(11)和第二集流体(12),以使外部冷却流体回路与多个多通道管组(10)、第一集流体(11)以及第二集流体(12)连通,从而对所有成排的电池组(B)进行冷却;
    多个加热膜片(2),各加热膜片(2)设置于相应一个多通道管组(10)的下方并用于对该多通道管组(10)进行加热;以及
    多个隔热层(3),各隔热层(3)设置于相应一个加热膜片(2)的下方。
  2. 根据权利要求1所述的电池组热管理组件,其特征在于,各多通道管(100)、第一集流体(11)及第二集流体(12)均由铝质材料制成并焊接为一体。
  3. 根据权利要求1所述的电池组热管理组件,其特征在于,焊接为钎焊。
  4. 根据权利要求1所述的电池组热管理组件,其特征在于,冷却机构(1)还包括:
    法兰盘(13),密封设置于收容所述成排电池组(B)的电池包箱体上;
    流体入口接头(14),设置于法兰盘(13),用于外部冷却流体回路的 供给的冷却流体通入;
    流体出口接头(15),设置于法兰盘(13),用于向外部冷却流体回路供给回流的冷却流体;
    流体输入管路(16),一端固定于法兰盘(13)并连通于流体入口接头(14),而另一端连通于第一集流体(11);
    流体输出管路(17),一端固定于法兰盘(13)并连通于流体出口接头(15),而另一端连通于第一集流体(11);以及
    第一隔板(18),插入第一集流体(11)内部,以在流体输入管路(16)与第一集流体(11)的连通和流体输出管路(17)与第一集流体(11)的连通之间形成隔断。
  5. 根据权利要求4所述的电池组热管理组件,其特征在于,
    电池包的电池组(B)为偶数排;
    沿多通道管组(10)的排列方向(D),每两个多通道管组(10)为一个多通道管组对(GP),各多通道管组(10)具有至少一个多通道管(100),流体在同一多通道管组(10)的所有多通道管(100)内的流向相同;
    第一隔板(18)插入第一集流体(11)内部,以当流体在所述多个多通道管组(10)的第一集流体(11)处的端口(110)的流动方向沿多通道管组(10)的排列方向(D)发生逆流变化时,将发生逆流变化的两个相邻两个多通道管组(10)的连通隔断;
    所述电池组热管理组件的冷却机构(1)还包括:多个第二隔板(19),插入第二集流体(12)内部,以使相邻两个多通道管组对(GP)在第二集流体(12)内的连通隔断并使各多通道管组对(GP)的两个多通道管组(10)形成一个流体回路。
    流体输入管路(16)包括:流体输入分管(161),第一集流体(11)的被第一隔板(18)隔开的用于供入流体的各部分连通一个流体输入分管(161)的一端;
    流体输出管路(17)包括:流体输出分管(171),第一集流体(11)的被第一隔板(18)隔开的用于回流流体的各部分连通于对应一个流体输出分管(171)的一端;
    当流体输入分管(161)的数量为一个时,流体输入分管(161)的另一端固定于法兰盘(13)并连通于流体入口接头(14);
    当流体输入分管(161)的数量超过一个时,流体输入管路(16)还包括:流体输入总管(162),一端固定于法兰盘(13)并连通于流体入口接头(14);以及多通输入管(163),连通于流体输入总管(162)的另一端和所有流体输入分管(161)的另一端;
    当流体输出分管(171)的数量为一个时,流体输出分管(171)的另一端固定于法兰盘(13)并连通于流体出口接头(15);
    当流体输出分管(171)的数量超过一个时,流体输出管路(17)还包括:流体输出总管(172),一端固定于法兰盘(13)并连通于流体出口接头(15);以及多通输出管(173),连通于流体输出总管(172)的另一端和所有流体输出分管(171)的另一端。
  6. 根据权利要求4所述的电池组热管理组件,其特征在于,
    电池包的电池组(B)为奇数排且排数超过一排;
    沿多通道管组(10)的排列方向(D),选定连续三个多通道管组(10)作为组模块(GM)且组模块(GM)各侧方的多通道管组(10)为2的整数倍,组模块(GM)各侧方存在的每两个多通道管组(10)为一个多通道管组对(GP),各多通道管组(10)具有至少一个多通道管(100),流体在同一多通道管组(10)的所有多通道管(100)内的流向相同;
    第一隔板(18)插入第一集流体(11)内部,以当流体在所述多个多通道管组(10)的第一集流体(11)处的端口(110)的流动方向沿多通道管组(10)的排列方向(D)发生逆流变化时,将发生逆流变化的两个相邻两个多通道管组(10)的连通隔断;
    组模块(GM)内的三个多通道管组(10)以中间一个多通道管组(10)用于供入流体或回流流体而组模块(GM)内的另外两个多通道管组(10)均用于回流流体或均用于供入流体,从而组模块(GM)内的所述另外两个多通道管组(10)与共用的中间一个多通道管组(10)形成两个流体回路;
    当组模块(GM)侧方存在多通道管组对(GP)时,所述电池组热管理组件的冷却机构(1)还包括:第二隔板(19),插入第二集流体(12)内 部,以使组模块(GM)与相邻的多通道管组(10)在第二集流体(12)内的连通隔断并使侧方存在的相邻两个多通道管组对(GP)在第二集流体(12)内的连通隔断并使各多通道管组对(GP)的两个多通道管组(10)形成一个流体回路;
    流体输入管路(16)包括:流体输入分管(161),第一集流体(11)的被第一隔板(18)隔开的用于供入流体的各部分连通一个流体输入分管(161)的一端;
    流体输出管路(17)包括:流体输出分管(171),第一集流体(11)的被第一隔板(18)隔开的用于回流流体的各部分连通于对应一个流体输出分管(171)的一端;
    当流体输入分管(161)的数量为一个时,流体输入分管(161)的另一端固定于法兰盘(13)并连通于流体入口接头(14);
    当流体输入分管(161)的数量超过一个时,流体输入管路(16)还包括:流体输入总管(162),一端固定于法兰盘(13)并连通于流体入口接头(14);以及多通输入管(163),连通于流体输入总管(162)的另一端和所有流体输入分管(161)的另一端;
    当流体输出分管(171)的数量为一个时,流体输出分管(171)的另一端固定于法兰盘(13)并连通于流体出口接头(15);
    当流体输出分管(171)的数量超过一个时,流体输出管路(17)还包括:流体输出总管(172),一端固定于法兰盘(13)并连通于流体出口接头(15);以及多通输出管(173),连通于流体输出总管(172)的另一端和所有流体输出分管(171)的另一端。
  7. 根据权利要求4所述的电池组热管理组件,其特征在于,
    电池包的电池组(B)为一排;
    多通道管组(10)为一个,该一个多通道管组(10)具有偶数个多通道管(100);
    沿多通道管(100)的排列方向(D),每两个多通道管(100)为一个多通道管对(TP);
    第一隔板(18)插入第一集流体(11)内部,以当流体在所述多个多通 道管(100)的第一集流体(11)处的端口(110)的流动方向沿多通道管(100)的排列方向(D)发生逆流变化时,将发生逆流变化的两个相邻两个多通道管(100)的连通隔断;
    所述电池组热管理组件还包括:多个第二隔板(19),插入第二集流体(12)内部,以使相邻两个多通道管对(TP)在第二集流体(12)内的连通隔断并使各多通道管对(TP)的两个多通道管(100)形成一个流体回路;
    流体输入管路(16)包括:流体输入分管(161),第一集流体(11)的被第一隔板(18)隔开的用于供入流体的各部分连通一个流体输入分管(161)的一端;
    流体输出管路(17)包括:流体输出分管(171),第一集流体(11)的被第一隔板(18)隔开的用于回流流体的各部分连通于对应一个流体输出分管(171)的一端;
    当流体输入分管(161)的数量为一个时,流体输入分管(161)的另一端固定于法兰盘(13)并连通于流体入口接头(14);
    当流体输入分管(161)的数量超过一个时,流体输入管路(16)还包括:流体输入总管(162),一端固定于法兰盘(13)并连通于流体入口接头(14);以及多通输入管(163),连通于流体输入总管(162)的另一端和所有流体输入分管(161)的另一端;
    当流体输出分管(171)的数量为一个时,流体输出分管(171)的另一端固定于法兰盘(13)并连通于流体出口接头(15);
    当流体输出分管(171)的数量超过一个时,流体输出管路(17)还包括:流体输出总管(172),一端固定于法兰盘(13)并连通于流体出口接头(15);以及多通输出管(173),连通于流体输出总管(172)的另一端和所有流体输出分管(171)的另一端。
  8. 根据权利要求4所述的电池组热管理组件,其特征在于,
    电池包的电池组(B)为一排;
    多通道管组(10)为一个,该一个多通道管组(10)具有奇数个且超过于一个的多通道管(100);
    沿多通道管(100)的排列方向(D),选定连续三个多通道管(100) 作为管模块(TM)且管模块(TM)各侧方的多通道管(100)为2的整数倍,管模块(TM)各侧方存在的每两个多通道管(100)为一个多通道管对(TP);
    第一隔板(18)插入第一集流体(11)内部,以当流体在所述多个多通道管(100)的第一集流体(11)处的端口(110)的流动方向沿多通道管(100)的排列方向(D)发生逆流变化时,将发生逆流变化的两个相邻两个多通道管(100)的连通隔断;
    管模块(TM)内的三个多通道管(100)以中间一个多通道管(100)用于供入流体或回流流体而管模块(TM)内的另外两个多通道管(100)均用于回流流体或均用于供入流体,从而管模块(TM)内的所述另外两个多通道管(100)与共用的中间一个多通道管(100)形成两个流体回路;
    当管模块(TM)侧方存在多通道管对(TP)时,所述电池组(B)热管理组件还包括:第二隔板(19),插入第二集流体(12)内部,以使管模块(TM)与相邻的多通道管对(TP)在第二集流体(12)内的连通隔断并使侧方存在的相邻两个多通道管对(TP)在第二集流体(12)内的连通隔断并使各多通道管组对(GP)的多通道管组(10)形成一个流体回路;
    流体输入管路(16)包括:流体输入分管(161),第一集流体(11)的被第一隔板(18)隔开的用于供入流体的各部分连通一个流体输入分管(161)的一端;
    流体输出管路(17)包括:流体输出分管(171),第一集流体(11)的被第一隔板(18)隔开的用于回流流体的各部分连通于对应一个流体输出分管(171)的一端;
    当流体输入分管(161)的数量为一个时,流体输入分管(161)的另一端固定于法兰盘(13)并连通于流体入口接头(14);
    当流体输入分管(161)的数量超过一个时,流体输入管路(16)还包括:流体输入总管(162),一端固定于法兰盘(13)并连通于流体入口接头(14);以及多通输入管(163),连通于流体输入总管(162)的另一端和所有流体输入分管(161)的另一端;
    当流体输出分管(171)的数量为一个时,流体输出分管(171)的另一端固定于法兰盘(13)并连通于流体出口接头(15);
    当流体输出分管(171)的数量超过一个时,流体输出管路(17)还包括:流体输出总管(172),一端固定于法兰盘(13)并连通于流体出口接头(15);以及多通输出管(173),连通于流体输出总管(172)的另一端和所有流体输出分管(171)的另一端。
  9. 根据权利要求1所述的电池组热管理组件,其特征在于,所述电池组热管理组件还包括:
    密封圈(4),固定在法兰盘(13)底部,以使法兰盘(13)密封设置于收容所述成排电池组(B)的电池包箱体。
  10. 根据权利要求1所述的电池组热管理组件,其特征在于,所述电池组热管理组件还包括:
    温度传感器(5),固定于法兰盘(13)上并通信连接于电池管理系统。
  11. 根据权利要求10所述的电池组热管理组件,其特征在于,温度传感器(5)通过带密封圈的螺纹连接固定于法兰盘(13)上。
  12. 根据权利要求10所述的电池组热管理组件,其特征在于,温度传感器(5)通过低压线通信连接于电池管理系统。
  13. 根据权利要求1所述的电池组热管理组件,其特征在于,各加热膜片(2)厚度为1-3mm。
  14. 根据权利要求1所述的电池组热管理组件,其特征在于,各加热膜片(2)在与第一集流体(11)相邻的端部设置有用于与高压回路插接的接插件(21),以使所述多个加热膜片(2)并联连接于高电压回路。
  15. 根据权利要求1所述的电池组热管理组件,其特征在于,各加热膜片(2)包括正温度系数的基材以及贴覆在基材的正反两个表面上的绝缘薄膜。
  16. 根据权利要求15所述的电池组热管理组件,其特征在于,基材为复合材料。
  17. 根据权利要求15所述的电池组热管理组件,其特征在于,基材通过印刷制成。
  18. 根据权利要求15所述的电池组热管理组件,其特征在于,绝缘薄膜由高电压绝缘材料制成。
  19. 根据权利要求1所述的电池组热管理组件,其特征在于,各加热膜片(2)通过双面背胶粘接固定在相应一个多通道管组(10)和相应一个隔热层(3)之间。
  20. 根据权利要求1所述的电池组热管理组件,其特征在于,各加热膜片(2)具有与对应一个多通道管组(10)的多通道管(100)的数量相同的且沿多通道管(100)的轴向延伸的延伸部(22)。
  21. 根据权利要求20所述的电池组热管理组件,其特征在于,各隔热层具有与相应一个加热膜片(2)的延伸部(22)的数量相同的子隔热层(31)。
  22. 根据权利要求1所述的电池组热管理组件,其特征在于,各隔热层(3)为耐热高分子塑料或橡胶。
  23. 根据权利要求1所述的电池组热管理组件,其特征在于,所述电池组热管理组件还包括:
    多个支撑结构(6),各支撑结构(6)设置于相应一个隔热层(3)的下方。
  24. 根据权利要求23所述的电池组热管理组件,其特征在于,各支撑结构(6)由弹性材料制成。
  25. 根据权利要求24所述的电池组热管理组件,其特征在于,弹性材料为金属材料。
  26. 根据权利要求25所述的电池组热管理组件,其特征在于,金属材料为不锈钢。
  27. 根据权利要求23所述的电池组热管理组件,其特征在于,各支撑结构(6)具有弯折的腿部(61)。
  28. 根据权利要求23所述的电池组热管理组件,其特征在于,各支撑结构(6)具有多个开口部(62)。
  29. 根据权利要求1所述的电池组热管理组件,其特征在于,电池组(B)为动力电池组(B)。
  30. 根据权利要求1所述的电池组热管理组件,其特征在于,冷却流体为液体或气体。
  31. 根据权利要求30所述的电池组热管理组件,其特征在于,液体为水和乙二醇混合液。
PCT/CN2015/085177 2015-07-27 2015-07-27 电池组热管理组件 WO2017015826A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/085177 WO2017015826A1 (zh) 2015-07-27 2015-07-27 电池组热管理组件
EP15899178.6A EP3331054A4 (en) 2015-07-27 2015-07-27 BATTERY GROUP HEAT MANAGEMENT MODULE
US15/880,348 US10658715B2 (en) 2015-07-27 2018-01-25 Battery module heat management assembly
US16/850,476 US11196108B2 (en) 2015-07-27 2020-04-16 Battery module heat management assembly, battery pack and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/085177 WO2017015826A1 (zh) 2015-07-27 2015-07-27 电池组热管理组件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/880,348 Continuation US10658715B2 (en) 2015-07-27 2018-01-25 Battery module heat management assembly

Publications (1)

Publication Number Publication Date
WO2017015826A1 true WO2017015826A1 (zh) 2017-02-02

Family

ID=57885522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085177 WO2017015826A1 (zh) 2015-07-27 2015-07-27 电池组热管理组件

Country Status (3)

Country Link
US (2) US10658715B2 (zh)
EP (1) EP3331054A4 (zh)
WO (1) WO2017015826A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579307A (zh) * 2017-08-28 2018-01-12 北京普莱德新能源电池科技有限公司 一种动力电池热管理系统
CN107611299A (zh) * 2017-08-24 2018-01-19 吉利汽车研究院(宁波)有限公司 电池包冷却结构及电池包
CN108134160A (zh) * 2018-02-07 2018-06-08 华霆(合肥)动力技术有限公司 温控组件及电池模组
AT520410A1 (de) * 2017-09-14 2019-03-15 Miba Ag Akkumulator
CN110710052A (zh) * 2017-06-07 2020-01-17 三星Sdi株式会社 电池组
JP2020523756A (ja) * 2017-12-27 2020-08-06 エルジー・ケム・リミテッド 改善した冷却構造を有するバッテリーモジュール
US11296368B2 (en) 2017-06-13 2022-04-05 Miba Emobility Gmbh Rechargeable battery comprising a cooling device
US11444342B2 (en) 2017-07-03 2022-09-13 Miba Emobility Gmbh Storage battery comprising a cooling device connected to the bus bar
CN115117540A (zh) * 2022-06-27 2022-09-27 楚能新能源股份有限公司 一种pack箱体结构
US11581597B2 (en) 2017-09-05 2023-02-14 Miba Emobility Gmbh Accumulator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3054729B1 (fr) * 2016-07-27 2019-12-13 Valeo Systemes Thermiques Dispositif de refroidissement de batteries et procede de fabrication correspondant
CN107644963A (zh) * 2017-09-11 2018-01-30 惠州市蓝微新源技术有限公司 一种电池包箱体的热管理组件
CN107959068A (zh) * 2017-12-19 2018-04-24 华霆(合肥)动力技术有限公司 热管理装置、方法及电池模组
CN108550750B (zh) * 2018-06-05 2024-01-19 华霆(合肥)动力技术有限公司 加热温度可控的电池包及电池包系统
GB2588589B (en) * 2019-10-18 2022-04-27 Dyson Technology Ltd Battery pack
CN110890605B (zh) * 2019-10-29 2021-09-28 江苏大学 一种可双面工作的双侧截面渐缩式液冷板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2388852A1 (de) * 2010-05-18 2011-11-23 Behr GmbH & Co. KG Kühlvorrichtung und Verfahren zum Herstellen einer Kühlvorrichtung
CN102511091A (zh) * 2009-06-18 2012-06-20 江森自控帅福得先进能源动力系统有限责任公司 具有带有热管理部件的电池单元托盘的电池模块
CN103314478A (zh) * 2011-01-26 2013-09-18 株式会社Lg化学 具有提高的组装效率的冷却构件和采用该冷却构件的电池模块
KR20140037351A (ko) * 2012-09-17 2014-03-27 한라비스테온공조 주식회사 차량용 배터리 냉각 장치

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255015B1 (en) * 1998-08-23 2001-07-03 Ovonic Battery Company, Inc. Monoblock battery assembly
US20050255379A1 (en) * 2004-05-12 2005-11-17 Michael Marchio Battery assembly with heat sink
KR100905392B1 (ko) * 2006-04-03 2009-06-30 주식회사 엘지화학 이중 온도조절 시스템의 전지팩
JP2007315482A (ja) * 2006-05-25 2007-12-06 Calsonic Kansei Corp 配管継手
US8114535B2 (en) * 2007-06-21 2012-02-14 Delphi Technologies, Inc. Metering schemes for reducing thermal spread in a battery pack
EP2433321B1 (en) 2009-05-18 2014-10-22 Bsst Llc Battery thermal management system
TWI382572B (zh) * 2010-02-12 2013-01-11 Asia Vital Components Co Ltd Used in the heating structure of the battery and the device and cooling auxiliary module
CN101862930B (zh) * 2010-07-26 2012-02-01 天津锐新昌轻合金股份有限公司 电动汽车铝合金电池箱体焊接工装具
US9306224B2 (en) * 2010-09-02 2016-04-05 Akasol Engineering Gmbh Cooling module and method for producing a cooling module
JP5631163B2 (ja) * 2010-11-16 2014-11-26 本田技研工業株式会社 車両用バッテリユニット
KR101219226B1 (ko) * 2010-11-23 2013-01-07 로베르트 보쉬 게엠베하 배터리 팩
JP5695988B2 (ja) * 2011-07-04 2015-04-08 日立オートモティブシステムズ株式会社 電池モジュールおよび電源装置
US9291405B2 (en) * 2011-08-02 2016-03-22 Ford Global Technologies, Llc Battery pack liquid channel and coldplate cooling system
US9577296B2 (en) * 2011-12-07 2017-02-21 Ford Global Technologies, Llc Electric vehicle battery with series and parallel fluid flow
KR101987778B1 (ko) * 2012-05-11 2019-06-11 에스케이이노베이션 주식회사 냉각 유로 관통형 이차전지모듈
WO2013171885A1 (ja) * 2012-05-17 2013-11-21 日立ビークルエナジー株式会社 電池モジュール
JP5927702B2 (ja) * 2012-09-12 2016-06-01 株式会社日立製作所 電池パック及びそれを備えたコンテナ
US10062934B2 (en) * 2013-07-25 2018-08-28 Johnson Controls Technology Company Cooling system and method for lithium-ion battery module
WO2015017769A1 (en) * 2013-08-02 2015-02-05 Robert Bosch Gmbh Battery having thermal plate with curved channel divider
EP2854211A1 (de) * 2013-09-30 2015-04-01 MAHLE Behr GmbH & Co. KG Heiz- und Kühlvorrichtung für eine Batterie
TWI489674B (zh) * 2014-01-13 2015-06-21 新普科技股份有限公司 散熱件及其組成之電池模組
US9515357B2 (en) * 2014-01-15 2016-12-06 Ford Global Technologies, Llc Battery thermal management system for electrified vehicle
KR101649154B1 (ko) * 2014-02-24 2016-08-18 엘지전자 주식회사 공기유로를 가지는 배터리팩
DE102014210570A1 (de) * 2014-06-04 2015-12-17 Mahle International Gmbh Temperiervorrichtung zum Temperieren einer Batterie
US20160064783A1 (en) * 2014-09-03 2016-03-03 Ford Global Technologies, Llc Traction battery thermal management apparatus and method
US9620830B2 (en) * 2014-12-16 2017-04-11 Xinen Technology Hong Kong Company, Ltd. Vehicle battery module with cooling and safety features
KR102044426B1 (ko) * 2015-12-04 2019-11-13 주식회사 엘지화학 전지모듈들을 균일하게 냉각시킬 수 있는 간접 냉각 시스템 및 이를 포함하는 전지팩

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102511091A (zh) * 2009-06-18 2012-06-20 江森自控帅福得先进能源动力系统有限责任公司 具有带有热管理部件的电池单元托盘的电池模块
EP2388852A1 (de) * 2010-05-18 2011-11-23 Behr GmbH & Co. KG Kühlvorrichtung und Verfahren zum Herstellen einer Kühlvorrichtung
CN103314478A (zh) * 2011-01-26 2013-09-18 株式会社Lg化学 具有提高的组装效率的冷却构件和采用该冷却构件的电池模块
KR20140037351A (ko) * 2012-09-17 2014-03-27 한라비스테온공조 주식회사 차량용 배터리 냉각 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3331054A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710052A (zh) * 2017-06-07 2020-01-17 三星Sdi株式会社 电池组
US11476518B2 (en) 2017-06-07 2022-10-18 Samsung Sdi Co., Ltd. Battery pack
EP3637539A4 (en) * 2017-06-07 2021-03-10 Samsung SDI Co., Ltd. BATTERY PACK
US11296368B2 (en) 2017-06-13 2022-04-05 Miba Emobility Gmbh Rechargeable battery comprising a cooling device
US11444342B2 (en) 2017-07-03 2022-09-13 Miba Emobility Gmbh Storage battery comprising a cooling device connected to the bus bar
CN107611299A (zh) * 2017-08-24 2018-01-19 吉利汽车研究院(宁波)有限公司 电池包冷却结构及电池包
CN107579307A (zh) * 2017-08-28 2018-01-12 北京普莱德新能源电池科技有限公司 一种动力电池热管理系统
US11581597B2 (en) 2017-09-05 2023-02-14 Miba Emobility Gmbh Accumulator
AT520410A1 (de) * 2017-09-14 2019-03-15 Miba Ag Akkumulator
AT520410B1 (de) * 2017-09-14 2019-09-15 Miba Ag Akkumulator
US11637337B2 (en) 2017-09-14 2023-04-25 Miba Emobility Gmbh Accumulator
US11264668B2 (en) 2017-12-27 2022-03-01 Lg Energy Solution, Ltd. Battery module having improved cooling structure
JP7045605B2 (ja) 2017-12-27 2022-04-01 エルジー エナジー ソリューション リミテッド 改善した冷却構造を有するバッテリーモジュール
EP3671946A4 (en) * 2017-12-27 2020-11-18 Lg Chem, Ltd. BATTERY MODULE WITH IMPROVED COOLING STRUCTURE
JP2020523756A (ja) * 2017-12-27 2020-08-06 エルジー・ケム・リミテッド 改善した冷却構造を有するバッテリーモジュール
CN108134160A (zh) * 2018-02-07 2018-06-08 华霆(合肥)动力技术有限公司 温控组件及电池模组
CN115117540A (zh) * 2022-06-27 2022-09-27 楚能新能源股份有限公司 一种pack箱体结构
CN115117540B (zh) * 2022-06-27 2023-04-14 楚能新能源股份有限公司 一种pack箱体结构

Also Published As

Publication number Publication date
US11196108B2 (en) 2021-12-07
EP3331054A4 (en) 2019-02-27
US10658715B2 (en) 2020-05-19
US20180151929A1 (en) 2018-05-31
US20200243932A1 (en) 2020-07-30
EP3331054A1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
WO2017015826A1 (zh) 电池组热管理组件
CN204809357U (zh) 电池组热管理组件
CN108346839B (zh) 电池换热系统
US20130280564A1 (en) Battery module, battery temperature managing system and vehicle comprising the same
WO2021008541A1 (zh) 一种电池包冷却系统及汽车
CN111403847B (zh) 一种基于相变材料与u型扁平热管耦合的动力电池极耳散热系统
EP3904817A1 (en) Temperature control assembly and battery pack using the same
WO2021218928A1 (zh) 温控组件及电池包
CN211182450U (zh) 一种动力电池冷却系统及电动车
CN110277606B (zh) 动力电池包和具有其的车辆
CN217426876U (zh) 换热片及电池包
CN219801019U (zh) 冷却和加热结构及电池模组
CN218896728U (zh) 电池包以及具有其的用电装置
CN220021258U (zh) 电池包以及用电装置
CN219917300U (zh) 电池包及具有其的车辆
CN220021254U (zh) 用于电池包的冷却组件、电池包及车辆
CN220474721U (zh) 换热板及具有该换热板的电池包
CN217158331U (zh) 一种逆流式圆柱电池堆及其电池热管理系统
CN219163480U (zh) 一种新型电池液冷模组
CN210136901U (zh) 车辆的电池包
CN219226404U (zh) 一种电池包
CN209249645U (zh) 一种模组冷却机构
CN218731384U (zh) 一种集成热管理结构的单体电芯及电池模组
CN213124662U (zh) 换热电池箱
CN213546401U (zh) 方形电池模组液冷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015899178

Country of ref document: EP