WO2023219029A1 - ジオポリマー組成物、ジオポリマー硬化体及びジオポリマー硬化体の製造方法 - Google Patents

ジオポリマー組成物、ジオポリマー硬化体及びジオポリマー硬化体の製造方法 Download PDF

Info

Publication number
WO2023219029A1
WO2023219029A1 PCT/JP2023/017037 JP2023017037W WO2023219029A1 WO 2023219029 A1 WO2023219029 A1 WO 2023219029A1 JP 2023017037 W JP2023017037 W JP 2023017037W WO 2023219029 A1 WO2023219029 A1 WO 2023219029A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
sodium
weight
geopolymer
active filler
Prior art date
Application number
PCT/JP2023/017037
Other languages
English (en)
French (fr)
Inventor
宏 山田
正勝 國川
三紀夫 若杉
利之 神田
拓也 福井
誠 山本
友則 関
Original Assignee
学校法人大阪産業大学
株式会社ケミカル工事
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人大阪産業大学, 株式会社ケミカル工事, 住友大阪セメント株式会社 filed Critical 学校法人大阪産業大学
Publication of WO2023219029A1 publication Critical patent/WO2023219029A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to a geopolymer composition, a cured product obtained from this composition, and a method for producing this cured product.
  • Geopolymers are attracting attention around the world as a new binding material that can replace Portland cement. In Japan, a mixture of fly ash and blast furnace slag powder is often used as the main raw material for geopolymers.
  • Geopolymer has excellent acid resistance and heat resistance (fire resistance) compared to hardened Portland cement. In addition, geopolymers are less prone to alkali-silica reactions, and their solidification mechanism has been found to have the ability to fix harmful substances such as radioactive substances, and their use is expected.
  • Patent Document 1 can be cited as a prior art related to the present application.
  • Patent Document 1 discloses a technique for obtaining a cured body from a geopolymer composition containing an active filler such as fly ash, blast furnace slag, and sewage incineration sludge, and water glass as an alkali activator.
  • an active filler such as fly ash, blast furnace slag, and sewage incineration sludge
  • water glass as an alkali activator
  • Patent Document 2 discloses a geopolymer composition containing calcium aluminates as a curing accelerator.
  • Patent Document 3 discloses a geopolymer composition in which the volume ratio of pulverized blast furnace slag powder to a mixed powder of pulverized blast furnace slag powder and fly ash is adjusted to 35 to 80%.
  • Patent Documents 1 to 3 a highly alkaline solution such as a potassium hydroxide solution or a sodium hydroxide solution is used to obtain a cured product. Therefore, in order to protect workers from dangers such as alkali burns and blindness, it is necessary to pay sufficient attention to handling during work. Another problem is that if a worker makes a mistake in measuring the highly alkaline solution during adjustment at the work site, quality defects are likely to occur in the cured product. In this regard, if all the raw materials other than water are powdered, premixed, and packaged in bags, adjustments at the work site can be simplified, making it possible to suppress the occurrence of measurement errors. However, since alkali is highly deliquescent, it is practically impossible to store a premix containing powdered alkali.
  • One object of the present invention is to provide a geopolymer composition that has fewer restrictions in handling and can simplify the preparation of a cured product at a work site, and techniques related thereto.
  • Sodium silicate is also called water glass, and most of the compounds collectively called water glass are in liquid form, but only sodium metasilicate and sodium orthosilicate are in powder form.
  • the present inventors conducted a study focusing on sodium orthosilicate and anhydrous sodium metasilicate among powdered sodium silicate. It was then discovered by chance that when these sodium silicates were used, the condensation reaction of geopolymers proceeded even in the absence of highly alkaline solutions.
  • Sodium orthosilicate reacts with water to produce sodium metasilicate and sodium hydroxide. Therefore, if sodium orthosilicate is used as an activator, there is no need to separately add a highly alkaline solution to obtain a cured product.
  • Anhydrous sodium metasilicate also reacts with water to produce water glass and sodium hydroxide. Therefore, like sodium orthosilicate, if anhydrous sodium metasilicate is used as an activator, the addition of a highly alkaline solution can be made unnecessary.
  • the present inventors conducted further studies and found that by adjusting the blending ratio of these sodium silicate within an appropriate range, the cured product obtained by adding water can be extremely excellent in practice.
  • the present invention has been completed.
  • the first invention is a geopolymer composition, which has the following characteristics.
  • the geopolymer composition includes an active filler including at least ground blast furnace slag powder and sodium silicate as an activator.
  • the sodium silicate is sodium orthosilicate or anhydrous sodium metasilicate.
  • the content of sodium orthosilicate is 2 to 50 parts by weight based on 100 parts by weight of the active filler.
  • the sodium silicate is anhydrous sodium metasilicate
  • the content of anhydrous sodium metasilicate is 10 to 30 parts by weight based on 100 parts by weight of the active filler.
  • the second invention further has the following features in the first invention.
  • the lower limit of the content of sodium orthosilicate is 5 parts by weight.
  • the third invention further has the following features in the first or second invention.
  • the upper limit of the content of sodium orthosilicate is 45 parts by weight.
  • the fourth invention further has the following features in any one of the first to third inventions.
  • the lower limit of the content of the anhydrous sodium metasilicate is 15 parts by weight.
  • the fifth invention further has the following features in any one of the first to third inventions.
  • the upper limit of the content of the anhydrous sodium metasilicate is 25 parts by weight.
  • the sixth invention further has the following features in any one of the first to fifth inventions.
  • the pulverized blast furnace slag powder includes at least one of a standard surface area powder with a Blaine specific surface area in the range of 3000 to 4000 cm 2 /g and a high surface area powder with a Blaine specific surface area in the range of 6000 to 10000 cm 2 /g.
  • the seventh invention further has the following features in any one of the first to sixth inventions.
  • the active filler further includes a pozzolanic material.
  • the eighth invention is a geopolymer cured body, which has the following characteristics.
  • the geopolymer cured body includes an active filler containing at least pulverized blast furnace slag powder, sodium silicate as an activator, and water as a hardening agent.
  • the sodium silicate is sodium orthosilicate or anhydrous sodium metasilicate.
  • the content of sodium orthosilicate is 2 to 50 parts by weight based on 100 parts by weight of the active filler.
  • the sodium silicate is anhydrous sodium metasilicate
  • the content of anhydrous sodium metasilicate is 10 to 30 parts by weight based on 100 parts by weight of the active filler.
  • the ninth invention is a method for producing a cured geopolymer body, and has the following features.
  • the manufacturing method includes: A step of adding water to and kneading a geopolymer composition containing an active filler containing at least pulverized blast furnace slag powder and sodium silicate as an activator; curing the kneaded material obtained in the kneading step at room temperature for 3 hours or more; including.
  • the sodium silicate is sodium orthosilicate or anhydrous sodium metasilicate.
  • the sodium silicate is sodium orthosilicate
  • the content of sodium orthosilicate is 2 to 50 parts by weight based on 100 parts by weight of the active filler.
  • the sodium silicate is anhydrous sodium metasilicate
  • the content of anhydrous sodium metasilicate is 10 to 30 parts by weight based on 100 parts by weight of the active filler.
  • parts by weight means a ratio to the weight of the active filler.
  • when a numerical range is expressed using " ⁇ ”, the range shall include the numerical values at both ends.
  • the geopolymer composition according to the embodiment includes an active filler containing at least pulverized blast furnace slag powder and sodium silicate as an activator.
  • BFS Active Filler Ground blast furnace slag powder
  • the main components of BFS are calcium oxide (CaO), silicon dioxide (SiO 2 ), alumina (Al 2 O 3 ), etc., and the quality thereof is specified in JIS A 6206.
  • BFS is an amorphous material with latent hydraulic properties, and the calcium component contained therein reacts in the geopolymer composition to produce calcium silicate hydrate (CSH) and harden.
  • BFSs are classified based on the range of Blaine specific surface areas.
  • the range of Blaine specific surface area is 2750 cm 2 /g or more and less than 3500 cm 2 /g, 3500 cm 2 /g or more and less than 5000 cm 2 /g, 5000 cm 2 /g or more and less than 7000 cm 2 /g, and 7000 cm 2 /g or more and less than 10000 cm 2 /g.
  • BFS preferably used as the active filler includes standard surface area powders with a Blaine specific surface area of 3000 to 4500 cm 2 /g and high surface area powders with a Blaine specific surface area of 6000 to 10000 cm 2 /g. These BFSs may be used alone or simultaneously.
  • the active filler "contains at least BFS" means that the geopolymer composition according to the embodiment may contain an active filler other than BFS.
  • active fillers include pozzolan substances.
  • a pozzolan substance is a substance other than BFS, and is a general term for a substance that reacts with the calcium component contained therein to produce calcium silicate hydrate.
  • pozzolanic substances include fly ash, metakaolin, silica fume, pulp sludge incineration ash, sewage sludge incineration ash, and waste glass powder. These pozzolanic substances may be used alone or simultaneously.
  • FA fly ash
  • the main components of FA are silicon dioxide, alumina, etc.
  • FA is classified into types I to IV according to JIS A 6201 based on particle size and flow value.
  • Preferred AFs used in combination with BFS include Type I and Type II, which have fine particle sizes and are highly reactive.
  • the blending amount of the active filler is not particularly limited and may be determined depending on the use of the cured geopolymer and the desired mechanical properties such as compressive strength to be imparted to the cured geopolymer. It can be adjusted accordingly.
  • the amount of the active filler is, for example, 10 to 200 parts by weight per 100 parts by weight of BFS. In another example, the amount of active filler other than BFS is 100 to 200 parts by weight per 100 parts by weight of BFS. In another example, the amount of active fillers other than BFS is 10 to 100 parts by weight based on 100 parts by weight of BFS.
  • the sodium silicate used as activator is sodium orthosilicate or anhydrous sodium metasilicate.
  • Sodium silicate is also called water glass, and many of the compounds collectively called water glass are in liquid form.
  • sodium silicate Nos. 1 to 3 specified in JIS K 1408 are all liquids.
  • sodium metasilicate and sodium orthosilicate are in powder form.
  • Sodium metasilicate is classified into three types depending on the number of hydrated water molecules: nonahydrate salt, pentahydrate salt, and anhydrous salt.
  • Sodium metametasilicate used as an activator is an anhydrous salt of these. Hydrated salts of sodium orthosilicate also exist, but there is no classification based on the number of water molecules like sodium metasilicate. That is, the sodium orthosilicate used as the activator may be an anhydrous salt or a hydrated salt.
  • FIG. 1 is a diagram showing a reaction formula between sodium orthosilicate and water.
  • sodium orthosilicate reacts with water to produce sodium metasilicate and sodium hydroxide. Therefore, when sodium orthosilicate is used as an activator, it is possible to omit the use of a highly alkaline solution conventionally required to obtain a cured geopolymer.
  • FIG. 2 is a diagram showing a reaction formula between anhydrous sodium metasilicate and water.
  • anhydrous sodium metasilicate reacts with water to produce a dimer of sodium silicate (water glass) and sodium hydroxide. Therefore, like sodium orthosilicate, when anhydrous sodium metasilicate is used as an activator, the use of highly alkaline solutions can be omitted.
  • the amount of sodium orthosilicate is 2 to 50 parts by weight per 100 parts by weight of the active filler.
  • the lower limit of this blending amount is preferably 5 parts by weight, more preferably 15 parts by weight.
  • the upper limit of this blending amount is preferably 45 parts by weight, more preferably 35 parts by weight.
  • the amount of anhydrous sodium metasilicate is 10 to 30 parts by weight per 100 parts by weight of the active filler.
  • the lower limit of this amount is preferably 15 parts by weight.
  • the upper limit of this amount is preferably 25 parts by weight.
  • the particle size of sodium orthosilicate and anhydrous sodium metasilicate is not particularly limited, but can be adjusted as appropriate depending on the use of the cured geopolymer and the desired mechanical properties to be imparted to the cured geopolymer.
  • the particle size is 1.2 mm or less. In another example, the particle size is 1.2-2.5 mm.
  • the pH of the highly alkaline solution conventionally required to obtain a cured geopolymer is extremely high, at 13 or more, and it is necessary to pay sufficient attention when handling it during work.
  • sodium hydroxide derived from sodium orthosilicate or anhydrous sodium metasilicate is produced by reaction with water. Therefore, it becomes possible to reduce restrictions on handling the geopolymer composition and improve work safety.
  • sodium orthosilicate or anhydrous sodium metasilicate is in powder form, it can be premixed with an active filler and packed in bags, which can reduce the occurrence of measuring errors at work sites. There is also an advantage.
  • the geopolymer composition according to the embodiment may contain various additives other than the above-mentioned active filler and activator.
  • various additives include aggregates and coagulation modifiers.
  • Aggregates are commonly used to increase the material strength of concrete and mortar. Aggregates are classified into fine aggregates and coarse aggregates based on particle size, natural aggregates and artificial aggregates based on their origin, and lightweight aggregates, normal aggregates, and heavy aggregates based on density. .
  • the aggregate used in the geopolymer composition according to the embodiment is not particularly limited, and can be appropriately selected depending on the use of the cured geopolymer and the desired mechanical properties to be imparted to the cured geopolymer.
  • Preferable aggregates include fine aggregates, and examples of the fine aggregates include silica sand.
  • Silica sand is a sand-like substance whose main component is silicon dioxide.
  • Examples of preferred silica sand include JIS standard products and mixed silica sand whose particle size is adjusted according to JIS standards.
  • the amount of aggregate is not particularly limited and can be adjusted as appropriate depending on the use of the cured geopolymer and the desired mechanical properties to be imparted to the cured geopolymer.
  • the amount of aggregate is, for example, 10 to 300 parts by weight per 100 parts by weight of BFS. In another example, the amount of aggregate is 150 to 300 parts by weight per 100 parts by weight of BFS. In another example, the amount of aggregate is 10 to 150 parts by weight based on 100 parts by weight of BFS.
  • Setting regulators are used to arbitrarily secure working time.
  • setting modifiers include citric acid, tartaric acid, gluconic acid, and malic acid, or salts thereof, alkali metal carbonates, alkali metal bicarbonates, and boric acid.
  • the amount thereof is 1 to 10 parts by weight per 100 parts by weight of the active filler.
  • the upper limit of this amount is preferably 8 parts by weight, more preferably 5 parts by weight.
  • the various additives may further include a fluidizer, a thickener (separation reducing agent), and a rust preventive.
  • Superplasticizers are used to increase fluidity and filling properties without increasing the amount of water.
  • the fluidizing agent include an AE agent, an AE water reducing agent, a water reducing agent, a high performance water reducing agent, and a high performance AE water reducing agent.
  • Thickeners are used to suppress breathing that occurs when the amount of water is large or when the grain size of cement or aggregate is coarse.
  • the thickener include inorganic thickeners such as bentonite, and organic thickeners such as cellulose and acrylic thickeners.
  • Rust inhibitors are used for the purpose of inhibiting corrosion of steel reinforcing materials used in shoring, preliminary construction, etc.
  • Rust inhibitors include inorganic rust inhibitors such as nitrites, chromates, silicates, and phosphates, organic phosphates, organic acid esters, organic acids, sulfonic acids, amines, and alkylphenols. Examples include organic rust preventives such as mercaptans, nitro compounds, and the like.
  • the cured geopolymer according to the embodiment includes the geopolymer composition according to the embodiment and water as a curing agent.
  • a method for producing a cured geopolymer body according to an embodiment will be described with reference to FIG. 3.
  • FIG. 3 is a flowchart illustrating an example of a method for producing a cured geopolymer body according to an embodiment.
  • the example shown in FIG. 3 includes a kneading process S1, a compression process S2, a curing process S3, and a drying process S4.
  • the kneading step S1 is a step of mixing and kneading the geopolymer composition according to the embodiment and water as a curing agent.
  • the amount of water added is appropriately adjusted depending on the use of the cured geopolymer and the desired mechanical properties to be imparted to the cured geopolymer.
  • a geopolymer composition to which the various additives described above are added may be used depending on the use of the cured geopolymer and the desired mechanical properties to be imparted to the cured geopolymer.
  • the compression step S2 is a step of molding and compressing the kneaded material obtained in the kneading step S1.
  • a predetermined pressure for example, a pressure of 1 megapascal or more
  • the kneaded material that has undergone the compression step S2 will also be referred to as a "compression kneaded material”.
  • the curing step S3 is a step of curing the compressed kneaded material to advance the condensation reaction (hardening reaction).
  • the curing conditions are 3 hours or more at room temperature.
  • the reason for this is that, as understood from the experimental examples described below, the geopolymer composition according to the embodiment can obtain desired mechanical properties even under such conditions.
  • the reason why the curing time is set as "3 hours or more” means that the curing time required to obtain the desired mechanical properties is at least 3 hours. That is, the range of curing time is not particularly limited, and may be 3 to 4 hours, 3 to 6 hours, or 3 to 24 hours.
  • the compressed kneaded material that has undergone the curing step S3 will also be referred to as a "cured kneaded material".
  • the kneaded material that has passed through the compression step S2 and before being fed into the curing step S3 is considered to be a kneaded material in which the condensation reaction has not progressed sufficiently, but it is difficult to obtain the desired mechanical properties. Some have. In this case, since the compression step S2 and the curing step S3 are proceeding in parallel, the compression step S2 and the curing step S3 are not strictly distinguished.
  • the drying step S4 is a step of evaporating water in the curing mixture. Drying of the cured kneaded material proceeds naturally, but drying may be accelerated by adjusting environmental conditions such as temperature and humidity around the cured kneaded material.
  • the cured kneaded material that has reached a certain water content corresponds to the geopolymer cured product according to the embodiment.
  • the water content of the kneaded material (that is, the compression kneaded material) before entering the curing step S3 may reach a certain water content.
  • the compression step S2 and the drying step S4 are proceeding in parallel, the compression step S2 and the drying step S4 are not strictly distinguished.
  • the water content of the kneaded material (that is, the cured kneaded material) after passing through the curing step S3 may reach a certain water content.
  • the curing process S3 and the drying process S4 are proceeding in parallel, the curing process S3 and the drying process S4 are not strictly distinguished.
  • BFS ground blast furnace slag powder
  • A shown in Tables 1 and 2 is a sample with a Blaine specific surface area within the standard range (4160 cm 2 /g), and ground blast furnace slag powder “B” has a Blaine specific surface area of The sample is in a larger range than the standard (8470 cm 2 /g).
  • the Blaine specific surface area is a value measured according to JIS R 5201 (physical testing method for cement).
  • sodium orthosilicate "A” shown in Table 1 is a sample whose particle size has not been adjusted, and sodium orthosilicate "B” is a sample whose particle size has been adjusted to 1.2 mm or less by classification.
  • each sample of the cured product was evaluated based on the measurement results.
  • flow considering workability as a mortar, samples with a flow value of 140 mm or more after being subjected to 15 falling motions were evaluated as "good”.
  • setting time samples that took 15 minutes or more were evaluated as "good” considering the workable time (pot life).
  • compressive strength samples with a compressive strength of 3 N/mm 2 or more at 3 hours of age were evaluated as "good.” The evaluation results are shown in Tables 3 and 4.
  • the sample of Comparative Example 4-8 corresponds to a sample produced according to the conventional method. These samples had good flow value and setting time results (however, the setting time of the sample of Comparative Example 7, in which the active filler was 100% FA, was longer than the other samples). However, the compressive strength results were not good, and it took 28 days for curing at room temperature to obtain the desired compressive strength, and 1 day for curing in steam at 60°C (i.e., high temperature). It took.
  • each sample of Examples 12-17 had no compressive strength after curing in the atmosphere at 20°C (that is, at room temperature) for 3 hours. It showed 3N/mm2 or more .
  • Comparative Examples 10-16 correspond to samples produced according to the conventional method. These samples had good flow value results. However, it required a setting time of 6 hours or more, and also required one day of curing at room temperature to obtain the desired compressive strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

ジオポリマー組成物は、少なくとも高炉スラグ微粉末を含む活性フィラーと、活性剤としてのケイ酸ナトリウムと、を含む。前記ケイ酸ナトリウムは、オルトケイ酸ナトリウム又は無水メタケイ酸ナトリウムである。前記ケイ酸ナトリウムがオルトケイ酸ナトリウムである場合、オルトケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して2~50重量部である。前記ケイ酸ナトリウムが無水メタケイ酸ナトリウムである場合、無水メタケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して10~30重量部である。

Description

ジオポリマー組成物、ジオポリマー硬化体及びジオポリマー硬化体の製造方法
 本発明は、ジオポリマー組成物、この組成物から得られる硬化体、及びこの硬化体の製造方法に関する。
 ジオポリマーはポルトランドセメントに代る新しい結合材として世界中で注目されている。わが国では、ジオポリマーの主原料として、フライアッシュと高炉スラグ微粉末を混合して使用する場合が多い。
 ジオポリマーのCO排出量はその評価方法によっても異なるが、フライアッシュを主原料に用いる場合、ポルトランドセメントに対して約80%のCO削減効果があると言われている。またフライアッシュと高炉スラグ微粉末を併用する場合でも、65~70%のCO削減効果があると言われている。
 ジオポリマーは、ポルトランドセメントの硬化体に比べて、耐酸性、耐熱性(耐火性)に優れる。また、ジオポリマーはアルカリシリカ反応が生じにくく、固化のメカニズムから放射性物質などの有害物質を固定する機能が見出されており、その活用が期待されている。
 本願に関連する従来技術として、特許文献1が挙げられる。特許文献1は、フライアッシュ、高炉スラグ、下水焼却汚泥等の活性フィラーと、アルカリ活性剤としての水ガラスとを含むジオポリマー組成物から硬化体を得る技術を開示する。この従来文献には、メタケイ酸ナトリウムの粉体を水ガラスとして用いると、高強度の硬化体が得られる旨の記載がある。
 特許文献2は、カルシウムアルミネート類を硬化促進剤として含むジオポリマー組成物を開示する。特許文献3は、高炉スラグ微粉末とフライアッシュの混合粉体に対する高炉スラグ微粉末の容量割合を35~80%に調整したジオポリマー組成物を開示する。
日本特開2008-239446号公報 日本特開2018-087139号公報 日本特開2021-066613号公報
 しかしながら、特許文献1~3では硬化体を得るために、水酸化カリウム溶液、水酸化ナトリウム溶液といった高アルカリ性溶液を使用している。そのため、アルカリ火傷や失明といった危険から作業員の身を守るため、作業中の取り扱いに十分な注意を払う必要がある。また、作業現場での調整時に作業員による高アルカリ性溶液の計量にミスが起きると、硬化体に品質不良が生じ易いという課題もある。この点、水以外の全ての原料を粉末化し、プレミックスして袋詰めしておけば作業現場での調整を簡略化できるので、計量ミス等の発生を抑えることが可能となる。ところが、アルカリは潮解性が高いので、粉末状のアルカリを含むプレミックスを保存しておくとは現実的に不可能である。
 本発明の1つの目的は、取り扱い上の制約が少なく、作業現場での硬化体の調整作業を簡略化することが可能なジオポリマー組成物、及びこれに関連する技術を提供することにある。
 ケイ酸ナトリウムは水ガラスとも呼ばれ、水ガラスと総称される化合物の多くは液体状を呈しているが、メタケイ酸ナトリウムとオルトケイ酸ナトリウムのみ粉体状を呈している。本発明者らは、粉体状のケイ酸ナトリウムのうちの、オルトケイ酸ナトリウムと無水メタケイ酸ナトリウムに着目して検討を行った。すると、これらのケイ酸ナトリウムを用いると、高アルカリ性溶液の不存在下でもジオポリマーの縮合反応が進行することを偶然にも見出した。
 オルトケイ酸ナトリウムは水と反応して、メタケイ酸ナトリウムと水酸化ナトリウムを生成する。そのため、オルトケイ酸ナトリウムを活性剤として用いれば、硬化体を得るために高アルカリ性溶液を別途加える必要がない。また、無水メタケイ酸ナトリウムは水と反応して、水ガラスと水酸化ナトリウムを生成する。故に、オルトケイ酸ナトリウム同様、無水メタケイ酸ナトリウムを活性剤として用いれば、高アルカリ性溶液の添加を不要とすることができる。
 そこで、本発明者らは、更に検討を重ねたところ、これらのケイ酸ナトリウムの配合割合を適切な範囲に調整することで、水の添加によって得られる硬化体が実用上極めて優れることを見出し、本発明を完成させた。
 第1の発明は、ジオポリマー組成物であり、次の特徴を有する。
 前記ジオポリマー組成物は、少なくとも高炉スラグ微粉末を含む活性フィラーと、活性剤としてのケイ酸ナトリウムと、を含む。
 前記ケイ酸ナトリウムは、オルトケイ酸ナトリウム又は無水メタケイ酸ナトリウムである。
 前記ケイ酸ナトリウムがオルトケイ酸ナトリウムである場合、オルトケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して2~50重量部である。
 前記ケイ酸ナトリウムが無水メタケイ酸ナトリウムである場合、無水メタケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して10~30重量部である。
 第2の発明は、第1の発明において更に次の特徴を有する。
 前記オルトケイ酸ナトリウムの含有量の下限が5重量部である。
 第3の発明は、第1又は2の発明において更に次の特徴を有する。
 前記オルトケイ酸ナトリウムの含有量の上限が45重量部である。
 第4の発明は、第1~3の発明の何れか1つにおいて更に次の特徴を有する。
 前記無水メタケイ酸ナトリウムの含有量の下限が15重量部である。
 第5の発明は、第1~3の発明の何れか1つにおいて更に次の特徴を有する。
 前記無水メタケイ酸ナトリウムの含有量の上限が25重量部である。
 第6の発明は、第1~5の発明の何れか1つにおいて更に次の特徴を有する。
 前記高炉スラグ微粉末は、ブレーン比表面積の範囲が3000~4000cm/gの標準表面積粉末、及び、ブレーン比表面積の範囲が6000~10000cm/gの高表面積粉末の少なくとも一方を含む。
 第7の発明は、第1~6の発明の何れか1つにおいて更に次の特徴を有する。
 前記活性フィラーが、ポゾラン物質を更に含む。
 第8の発明は、ジオポリマー硬化体であり、次の特徴を有する。
 前記ジオポリマー硬化体は、少なくとも高炉スラグ微粉末を含む活性フィラーと、活性剤としてのケイ酸ナトリウムと、硬化剤としての水と、を含む。
 前記ケイ酸ナトリウムは、オルトケイ酸ナトリウム又は無水メタケイ酸ナトリウムである。
 前記ケイ酸ナトリウムがオルトケイ酸ナトリウムである場合、オルトケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して2~50重量部である。
 前記ケイ酸ナトリウムが無水メタケイ酸ナトリウムである場合、無水メタケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して10~30重量部である。
 第9の発明は、ジオポリマー硬化体の製造方法であり、次の特徴を有する。
 前記製造方法は、
 少なくとも高炉スラグ微粉末を含む活性フィラーと、活性剤としてのケイ酸ナトリウムとを含むジオポリマー組成物に水を加えて混練する工程と、
 前記混練工程により得られた混練物を、常温下で3時間以上養生する工程と、
 を含む。
 前記ケイ酸ナトリウムは、オルトケイ酸ナトリウム又は無水メタケイ酸ナトリウムである。
 前記ケイ酸ナトリウムがオルトケイ酸ナトリウムである場合、オルトケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して2~50重量部である。
 前記ケイ酸ナトリウムが無水メタケイ酸ナトリウムである場合、無水メタケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して10~30重量部である。
オルトケイ酸ナトリウムと水の反応式を示す図である。 無水メタケイ酸ナトリウムと水の反応式を示す図である。 ジオポリマー硬化体の製造方法の一例を示すフローチャートである。
 本発明の実施の形態を以下に詳細に説明する。尚、本明細書において、「重量部」とは、活性フィラーの重量を基準としたときの当該重量に対する比率を意味する。また、「~」を用いて数値範囲が表される場合、その範囲は両端の数値を含むものとする。
1.ジオポリマー組成物
 実施形態に係るジオポリマー組成物は、少なくとも高炉スラグ微粉末を含む活性フィラーと、活性剤としてのケイ酸ナトリウムと、を含む。
1-1.活性フィラー
 活性フィラーに使用される高炉スラグ微粉末(以下、「BFS」とも称す。)は、高炉で鉄を精製する際に得られる副産物である。BFSの主成分は、酸化カルシウム(CaO)、二酸化ケイ素(SiO)、アルミナ(Al)等で、その品質はJIS A 6206に規定されている。BFSは、潜在水硬性を有する非晶質物質であり、これに含有されるカルシウム成分がジオポリマー組成物中で反応して、カルシウムシリケート水和物(CSH)を生成し、硬化する。
 BFSは、ブレーン比表面積の範囲に基づいて分類される。ブレーン比表面積の範囲としては、2750cm/g以上3500cm/g未満、3500cm/g以上5000cm/g未満、5000cm/g以上7000cm/g未満、及び、7000cm/g以上10000cm/g未満が挙げられる。活性フィラーに好ましく使用されるBFSとしては、ブレーン比表面積が3000~4500cm/gの標準表面積粉末、及び、ブレーン比表面積が6000~10000cm/gの高表面積粉末が挙げられる。これらのBFSは、単独で又は同時に使用される。
 活性フィラーが「少なくともBFSを含む」としているのは、実施形態に係るジオポリマー組成物が、BFS以外の活性フィラーを含んでいてもよいことを意味する。このような活性フィラーとしては、ポゾラン物質が例示される。本明細書において、ポゾラン物質とは、BFS以外の物質であって、これに含まれるカルシウム成分と反応してカルシウムシリケート水和物を生成する物質を総称する。ポゾラン物質としては、フライアッシュ、メタカオリン、シリカフューム、パルプスラッジ焼却灰、下水汚泥焼却灰、及び、廃ガラス粉末が例示される。これらのポゾラン物質は、単独で又は同時に使用される。
 BFSと併用される好ましいポゾラン物質としては、フライアッシュ(以下、「FA」とも称す。)が例示される。FAは、石炭火力発電所で石炭燃焼の際に発生する石炭灰で、集塵機により排ガス中から回収される。FAの主成分は二酸化ケイ素、アルミナ等である。FAはJIS A 6201で、粒度やフロー値に基づきI~IV種に分類される。BFSと併用される好ましいAFとしては、粒度が細かく反応性に富むI種及びII種が挙げられる。
 BFSとBFS以外の活性フィラーが併用される場合の当該活性フィラーの配合量は特に限定されず、ジオポリマー硬化体の用途や、ジオポリマー硬化体に付与する圧縮強度等の所望の機械的特性に応じて適宜調整することができる。BFSとBFS以外の活性フィラーが併用される場合、当該活性フィラーの配合量は、例えば、BFS100重量部に対して10~200重量部である。別の例では、BFS以外の活性フィラーの配合量は、BFS100重量部に対して100~200重量部である。また別の例では、BFS以外の活性フィラーの配合量は、BFS100重量部に対して10~100重量部である。
1-2.活性剤
 活性剤として使用されるケイ酸ナトリウムは、オルトケイ酸ナトリウム又は無水メタケイ酸ナトリウムである。ケイ酸ナトリウムは水ガラスとも呼ばれ、水ガラスと総称される化合物の多くは液体状を呈している。例えば、JIS K 1408に規定されるケイ酸ナトリウム1号~3号は何れも液体である。一方、メタケイ酸ナトリウムとオルトケイ酸ナトリウムは粉体状を呈している。メタケイ酸ナトリウムは、水和している水分子の数に応じて9水和塩、5水和塩及び無水塩の3種類に分類される。活性剤に使用されるメタメタケイ酸ナトリウムは、このうちの無水塩である。オルトケイ酸ナトリウムにも水和塩が存在するが、メタケイ酸ナトリウムのような水分子の数に基づいた分類はない。つまり、活性剤に使用されるオルトケイ酸ナトリウムは、無水塩でもよいし水和塩でもよい。
 図1は、オルトケイ酸ナトリウムと水の反応式を示す図である。この反応式から理解されるように、オルトケイ酸ナトリウムは水と反応して、メタケイ酸ナトリウムと水酸化ナトリウムを生成する。そのため、オルトケイ酸ナトリウムを活性剤として用いると、ジオポリマー硬化体を得るために従来必要とされた高アルカリ性溶液の使用を省略できる。
 図2は、無水メタケイ酸ナトリウムと水の反応式を示す図である。この反応式から理解されるように、無水メタケイ酸ナトリウムは水と反応して、ケイ酸ナトリウムの二量体(水ガラス)と水酸化ナトリウムを生成する。故に、オルトケイ酸ナトリウム同様、無水メタケイ酸ナトリウムを活性剤として用いると、高アルカリ性溶液の使用を省略できる。
 ケイ酸ナトリウムとしてオルトケイ酸ナトリウムが使用される場合、オルトケイ酸ナトリウムの配合量は、活性フィラー100重量部に対して2~50重量部である。この配合量の下限は、5重量部であることが好ましく、15重量部であることがより好ましい。一方、この配合量の上限は、45重量部であることが好ましく、35重量部であることがより好ましい。
 ケイ酸ナトリウムとして無水メタケイ酸ナトリウムが使用される場合、無水メタケイ酸ナトリウムの配合量は、活性フィラー100重量部に対して10~30重量部である。この配合量の下限は、15重量部であることが好ましい。一方、この配合量の上限は、25重量部であることが好ましい。
 オルトケイ酸ナトリウム及び無水メタケイ酸ナトリウムの粒度は、特に限定されないが、ジオポリマー硬化体の用途や、ジオポリマー硬化体に付与する所望の機械的特性に応じて適宜調整することができる。一例として、粒度は1.2mm以下である。別の例では、粒度は1.2~2.5mmである。
 ジオポリマー硬化体を得るために従来必要とされた高アルカリ性溶液のpHは13以上と極めて高く、作業中の取り扱い時に十分な注意を払う必要がある。この点、実施形態に係るジオポリマー組成物によれば、オルトケイ酸ナトリウム又は無水メタケイ酸ナトリウム由来の水酸化ナトリウムが、水との反応によって生成される。そのため、ジオポリマー組成物の取り扱い上の制約を減らして作業の安全性を高めることが可能となる。また、オルトケイ酸ナトリウム又は無水メタケイ酸ナトリウムは粉体状であるため、活性フィラーとプレミックスして袋詰めしておくことが可能であり、作業現場での計量ミス等の発生を抑えることができるという利点もある。
1-3.その他の添加剤
 実施形態に係るジオポリマー組成物は、上述した活性フィラー及び活性剤以外の各種添加剤を含んでいてもよい。各種添加剤としては、骨材及び凝結調整剤が例示される。
 骨材は、コンクリートやモルタルの材料強度を高めるために一般的に使用される。骨材は、粒子の大きさによって細骨材及び粗骨材に分類され、成因によって天然骨材及び人工骨材に分類され、密度によって軽量骨材、普通骨材及び重量骨材に分類される。実施形態に係るジオポリマー組成物に使用される骨材に特に制限はなく、ジオポリマー硬化体の用途や、ジオポリマー硬化体に付与する所望の機械的特性に応じて適宜選択することができる。
 好ましい骨材としては細骨材が挙げられ、この細骨材としてはケイ砂が例示される。ケイ砂は、二酸化ケイ素を主成分とする砂状物質である。好ましいケイ砂としては、JIS規格品及びJIS規格に応じて粒度が調整された混合ケイ砂が例示される。
 骨材が添加される場合、その配合量は特に限定されず、ジオポリマー硬化体の用途や、ジオポリマー硬化体に付与する所望の機械的特性に応じて適宜調整することができる。骨剤が添加される場合、骨材の配合量は、例えば、BFS100重量部に対して10~300重量部である。別の例では、骨材の配合量は、BFS100重量部に対して150~300重量部である。また別の例では、骨材の配合量は、BFS100重量部に対して10~150重量部である。
 凝結調整剤は、作業時間を任意に確保するために使用される。凝結調整剤としては、クエン酸、酒石酸、グルコン酸及びリンゴ酸、又はそれらの塩、アルカリ金属炭酸塩、アルカリ金属重炭酸塩、並びに、ホウ酸が例示される。
 凝結調整剤が添加される場合、その配合量は、活性フィラー100重量部に対して1~10重量部である。この配合量の上限は、8重量部であることが好ましく、5重量部であることがより好ましい。
 各種添加剤は、更に、流動化剤、増粘剤(分離低減剤)及び防錆剤を含んでいてもよい。流動化剤は、水量を増加せずに流動性や充填性を高めるために使用される。流動化剤としては、AE剤、AE減水剤、減水剤、高性能減水剤、及び高性能AE減水剤が例示される。増粘剤は、水量が多い場合やセメント、骨材の粒度が粗い場合に発生するブリージングを抑える目的で使用される。増粘剤としては、ベントナイト等の無機系の増粘剤、及び、セルロース系やアクリル系などの有機系の増粘剤が例示される。防錆剤は、支保工、先受工等において使用する鋼製補強材の腐食抑制を目的として使用される。防錆剤としては、亜硝酸塩、クロム酸塩、ケイ酸塩、リン酸塩等の無機系の防錆剤、有機リン酸塩、有機酸のエステル類、有機酸類、スルホン酸類、アミン類、アルキルフェノール、メルカプタン類、ニトロ化合物等の有機系の防錆剤が例示される。
2.ジオポリマー硬化体及びその製造方法
 実施形態に係るジオポリマー硬化体は、実施形態に係るジオポリマー組成物と、硬化剤としての水とを含む。以下、実施形態に係るジオポリマー硬化体の製造方法について図3を参照しながら説明する。
 図3は、実施形態に係るジオポリマー硬化体の製造方法の一例を示すフローチャートである。図3に示される例は、混練工程S1と、圧縮工程S2と、養生工程S3と、乾燥工程S4と、を備えている。
 混練工程S1は、実施形態に係るジオポリマー組成物と、硬化剤としての水とを混合して練り混ぜる工程である。水の添加量は、ジオポリマー硬化体の用途や、ジオポリマー硬化体に付与する所望の機械的特性に応じて適宜調整される。混練工程S1では、ジオポリマー硬化体の用途や、ジオポリマー硬化体に付与する所望の機械的特性に応じて、上述した各種添加剤が添加されたジオポリマー組成物が用いられてもよい。
 圧縮工程S2は、混練工程S1により得られた混練物を、成型して圧縮する工程である。圧縮工程S2では、混練物の形状を安定化させて高密度化する観点から、所定の圧力(例えば、1メガパスカル以上の圧力)が混練物に印加される。以下、圧縮工程S2を経た混練物を「圧縮混練物」とも称す。
 養生工程S3は、圧縮混練物を養生して縮合反応(硬化反応)を進行させる工程である。養生条件は、常温下で3時間以上である。この理由は、後述される実験例から理解されるように、実施形態に係るジオポリマー組成物によれば、このような条件下でも所望の機械的特性を得られるためである。また、養生時間を「3時間以上」とした理由は、所望の機械的特性を得るために必要な養生時間が最低3時間であることを意味している。つまり、養生時間の範囲は特に限定されず、3~4時間でもよいし、3~6時間でもよいし、3~24時間でもよい。以下、養生工程S3を経た圧縮混練物を「養生混練物」とも称す。
 尚、圧縮工程S2を経て養生工程S3に投入される前の混練物(つまり、圧縮混練物)は、縮合反応が十分に進んでいない混練物であるとも考えられるが、所望の機械的特性を有しているものもある。この場合は、圧縮工程S2と養生工程S3が並行して進行していることから、圧縮工程S2と養生工程S3が厳密に区別されない。
 乾燥工程S4は、養生混練物内の水を蒸発させる工程である。養生混練物の乾燥は自然に進むが、養生混練物の周囲の温度、湿度といった環境条件を調整することで、乾燥を促進させてもよい。一定の含水率に到達した養生混練物は、実施形態に係るジオポリマー硬化体に相当する。
 尚、養生工程S3に入る前の混練物(つまり、圧縮混練物)の含水率が一定の含水率に到達している場合もある。この場合は、圧縮工程S2と乾燥工程S4が並行して進行していることから、圧縮工程S2と乾燥工程S4が厳密に区別されない。また、養生工程S3を経た後の混練物(つまり、養生混練物)の含水率が一定の含水率に到達している場合もある。この場合は、養生工程S3と乾燥工程S4が並行して進行していることから、養生工程S3と乾燥工程S4が厳密に区別されない。
3.実験例
 次に、実施の形態について実験例を参照しながら詳細に説明する。
3-1.オルトケイ酸ナトリウムを含むサンプルの調製
 表1に示す各種成分を表1に示す配合割合で有する実施例1-11のサンプルと、比較例1-8のサンプルとを準備した。
Figure JPOXMLDOC01-appb-T000001
3-2.無水メタケイ酸ナトリウムを含むサンプルの調製
 表2に示す各種成分を表2に示す配合割合で有する実施例12-17のサンプルと、比較例9-16のサンプルとを準備した。
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示すBFS(高炉スラグ微粉末)“A”は、ブレーン比表面積が標準的な範囲にある試料であり(4160cm/g)、高炉スラグ微粉末“B”はブレーン比表面積が標準よりも大きい範囲にある試料である(8470cm/g)。尚、ブレーン比表面積は、JIS R 5201(セメントの物理試験方法)に従って測定された値である。また、表1に示すオルトケイ酸ナトリウム“A”は粒度未調整の試料であり、オルトケイ酸ナトリウム“B”は分級によって1.2mm以下に粒度調整された試料である。
3-3.サンプルの評価
 実施例及び比較例のサンプルを混練し、硬化体のサンプルを作製した。そして、作製した硬化体の各サンプルについて、(i)フロー、(ii)凝結時間、及び(iii)圧縮強度を測定した。(i)フローは、JIS R 5201の「12.フロー試験」に記載の手法に従って測定された。(ii)凝結時間は、JIS R 5201の「9.凝結試験」に記載の手法に従って測定された。(iii)圧縮強度は、JIS R 5201の「11.強さ試験」に記載の手法に従って測定された。
 更に、測定結果に基づいて、硬化体の各サンプルについて評価を行った。(i)フローについては、モルタルとしての作業性を考慮し、15回の落下運動を与えた後のフロー値が140mm以上のサンプルを「良好」と評価した。(ii)凝結時間については、作業可能な時間(可使時間)を考慮し、15分以上のサンプルを「良好」と評価した。(iii)圧縮強度については、材齢3時間の圧縮強度が3N/mm以上のサンプルを「良好」と評価した。評価結果を表3及び4に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示される「フロー」の結果から理解されるように、実施例1-11の各サンプルのフロー値は何れも良好であった。また、「凝結時間」の結果から理解されるように、実施例1-3、5-9の各サンプルの凝結時間は何れも良好であった。実施例4及び10の各サンプルの凝結時間は15分未満であったが、実施例11の結果から、クエン酸が添加されることで凝結時間が延長されることが確認された。更に、「圧縮強度」の結果から理解されるように、実施例1-11の各サンプルは、20℃の大気中(つまり、常温下)での養生を3時間行った後に圧縮強度が何れも3N/mm以上を示した。
 一方、比較例1のサンプルは、フロー値は良好であるものの28日以内に硬化することはなかった。この理由は、オルトケイ酸ナトリウムの配合割合が少な過ぎることに起因すると考えられた。一方、比較例2及び3のサンプルは、この配合割合が過多なサンプルであり、故に、フロー値が低く凝結時間も短く、実用性に欠けるという結論に至った。
 比較例4-8のサンプルは、従来手法に従って作製されたサンプルに相当するものである。これらのサンプルは、フロー値及び凝結時間の結果は良好であった(但し、活性フィラーがFA100%である比較例7のサンプルの凝結時間は、他のサンプルに比べると長くなった)。しかしながら、圧縮強度の結果が良好でないこと、及び、所望の圧縮強度を得るために常温下の養生で28日を要し、60℃の蒸気中(つまり、高温下)での養生でも1日を要した。
Figure JPOXMLDOC01-appb-T000004
 表4に示される「フロー」の結果から理解されるように、実施例12-17の各サンプルのフロー値は何れも良好であった。また、「凝結時間」の結果から理解されるように、実施例12-17の各サンプルの凝結時間は何れも良好であった。更に、「圧縮強度」の結果から理解されるように、実施例12-17の各サンプルは、20℃の大気中(つまり、常温下)での養生を3時間行った後に圧縮強度が何れも3N/mm以上を示した。
 一方、比較例9のサンプルは、フロー値が低く凝結時間も短く、実用性に欠けるという結論に至った。この理由は、無水メタケイ酸ナトリウムの配合割合が多過ぎることに起因すると考えられた。この点、比較例10のサンプルは良好なフロー値を示したが28日以内に硬化することはなかった。この理由は、無水メタケイ酸ナトリウムの配合割合が少な過ぎることに起因すると考えられた。
 比較例10-16のサンプルは、従来手法に従って作製されたサンプルに相当するものである。これらのサンプルは、フロー値の結果は良好であった。しかしながら、6時間以上の凝結時間を要し、また、所望の圧縮強度を得るために常温下の養生で1日を要した。
 このような実験結果から、実施形態によれば、より短い凝結時間で所望の圧縮強度を有する、実用性の高いジオポリマー硬化体が得られることが確認された。また、クエン酸を添加することで、凝結時間を延ばすことが可能であることが確認された。

Claims (9)

  1.  少なくとも高炉スラグ微粉末を含む活性フィラーと、活性剤としてのケイ酸ナトリウムと、を含むジオポリマー組成物であって、
     前記ケイ酸ナトリウムは、オルトケイ酸ナトリウム又は無水メタケイ酸ナトリウムであり、
      前記ケイ酸ナトリウムがオルトケイ酸ナトリウムである場合、オルトケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して2~50重量部であり、
      前記ケイ酸ナトリウムが無水メタケイ酸ナトリウムである場合、無水メタケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して10~30重量部である
     ことを特徴とするジオポリマー組成物。
  2.  請求項1に記載のジオポリマー組成物であって、
     前記オルトケイ酸ナトリウムの含有量の下限が5重量部であるジオポリマー組成物。
  3.  請求項1又は2に記載のジオポリマー組成物であって、
     前記オルトケイ酸ナトリウムの含有量の上限が45重量部であるジオポリマー組成物。
  4.  請求項1に記載のジオポリマー組成物であって、
     前記無水メタケイ酸ナトリウムの含有量の下限が15重量部であるジオポリマー組成物。
  5.  請求項1又は2に記載のジオポリマー組成物であって、
     前記無水メタケイ酸ナトリウムの含有量の上限が25重量部であるジオポリマー組成物。
  6.  請求項1~5の何れか1項に記載のジオポリマー組成物であって、
     前記高炉スラグ微粉末は、ブレーン比表面積の範囲が3000~4000cm/gの標準表面積粉末、及び、ブレーン比表面積の範囲が6000~10000cm/gの高表面積粉末の少なくとも一方を含むジオポリマー組成物。
  7.  請求項1~6の何れか1項に記載のジオポリマー組成物であって、
     前記活性フィラーが、ポゾラン物質を更に含むジオポリマー組成物。
  8.  少なくとも高炉スラグ微粉末を含む活性フィラーと、活性剤としてのケイ酸ナトリウムと、硬化剤としての水と、を含むジオポリマー硬化体であって、
     前記ケイ酸ナトリウムは、オルトケイ酸ナトリウム又は無水メタケイ酸ナトリウムであり、
      前記ケイ酸ナトリウムがオルトケイ酸ナトリウムである場合、オルトケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して2~50重量部であり、
      前記ケイ酸ナトリウムが無水メタケイ酸ナトリウムである場合、無水メタケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して10~30重量部である
     ことを特徴とするジオポリマー硬化体。
  9.  少なくとも高炉スラグ微粉末を含む活性フィラーと、活性剤としてのケイ酸ナトリウムとを含むジオポリマー組成物に水を加えて混練する工程と、
     前記混練工程により得られた混練物を、常温下で3時間以上養生する工程と、
     を含み、
     前記ケイ酸ナトリウムは、オルトケイ酸ナトリウム又は無水メタケイ酸ナトリウムであり、
      前記ケイ酸ナトリウムがオルトケイ酸ナトリウムである場合、オルトケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して2~50重量部であり、
      前記ケイ酸ナトリウムが無水メタケイ酸ナトリウムである場合、無水メタケイ酸ナトリウムの含有量が前記活性フィラー100重量部に対して10~30重量部である
     ことを特徴とするジオポリマー硬化体の製造方法。
PCT/JP2023/017037 2022-05-13 2023-05-01 ジオポリマー組成物、ジオポリマー硬化体及びジオポリマー硬化体の製造方法 WO2023219029A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-079509 2022-05-13
JP2022079509 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023219029A1 true WO2023219029A1 (ja) 2023-11-16

Family

ID=88730486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017037 WO2023219029A1 (ja) 2022-05-13 2023-05-01 ジオポリマー組成物、ジオポリマー硬化体及びジオポリマー硬化体の製造方法

Country Status (1)

Country Link
WO (1) WO2023219029A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848549A (ja) * 1994-08-05 1996-02-20 Nippon Steel Corp スラグ硬化材
JP2005060189A (ja) * 2003-08-19 2005-03-10 Kimio Fukuzawa 硬化材及びこれを用いた硬化体の製造方法
JP2007269583A (ja) * 2006-03-31 2007-10-18 Doboku Chishitsu Kk 耐酸水硬性硬化体用ガラス質固化材、耐酸水硬性硬化体用ガラス質固化材の製造方法、耐酸水硬性硬化体、耐酸水硬性硬化体の製造方法、耐酸水硬性硬化体用ガラス質硬化促進材および粉末状耐酸水硬性硬化体用ガラス質固化材
WO2011071687A1 (en) * 2009-12-08 2011-06-16 Dow Global Technologies Llc Geopolymer precursor dry mixture, package, processes and methods
KR20190108323A (ko) * 2018-03-14 2019-09-24 한국과학기술원 자기충전 지오폴리머 콘크리트 조성물 및 이를 이용한 자기충전 지오폴리머 콘크리트의 제조 방법
WO2020037349A1 (en) * 2018-08-22 2020-02-27 The University Of Melbourne Process for preparation of geopolymer foam compositions
WO2021035318A1 (pt) * 2019-08-30 2021-03-04 Vale S.A. Processo de obtenção de silicato de sódio em pó a partir de rejeito arenoso oriundo do processo de concentração de minério de ferro

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848549A (ja) * 1994-08-05 1996-02-20 Nippon Steel Corp スラグ硬化材
JP2005060189A (ja) * 2003-08-19 2005-03-10 Kimio Fukuzawa 硬化材及びこれを用いた硬化体の製造方法
JP2007269583A (ja) * 2006-03-31 2007-10-18 Doboku Chishitsu Kk 耐酸水硬性硬化体用ガラス質固化材、耐酸水硬性硬化体用ガラス質固化材の製造方法、耐酸水硬性硬化体、耐酸水硬性硬化体の製造方法、耐酸水硬性硬化体用ガラス質硬化促進材および粉末状耐酸水硬性硬化体用ガラス質固化材
WO2011071687A1 (en) * 2009-12-08 2011-06-16 Dow Global Technologies Llc Geopolymer precursor dry mixture, package, processes and methods
KR20190108323A (ko) * 2018-03-14 2019-09-24 한국과학기술원 자기충전 지오폴리머 콘크리트 조성물 및 이를 이용한 자기충전 지오폴리머 콘크리트의 제조 방법
WO2020037349A1 (en) * 2018-08-22 2020-02-27 The University Of Melbourne Process for preparation of geopolymer foam compositions
WO2021035318A1 (pt) * 2019-08-30 2021-03-04 Vale S.A. Processo de obtenção de silicato de sódio em pó a partir de rejeito arenoso oriundo do processo de concentração de minério de ferro

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASKARIAN MAHYA; TAO ZHONG; SAMALI BIJAN; ADAM GEORGIUS; SHUAIBU RICHARD: "Mix composition and characterisation of one-part geopolymers with different activators", CONSTRUCTION AND BUILDING MATERIALS, ELSEVIER, NETHERLANDS, vol. 225, 25 July 2019 (2019-07-25), Netherlands , pages 526 - 537, XP085805971, ISSN: 0950-0618, DOI: 10.1016/j.conbuildmat.2019.07.083 *
BEHZAD NEMATOLLAHI, JAY SANJAYAN, FAIZ UDDIN AHMED SHAIKH: "Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate", CERAMICS INTERNATIONAL, ELSEVIER, AMSTERDAM., NL, vol. 41, no. 4, 1 May 2015 (2015-05-01), NL , pages 5696 - 5704, XP055378649, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2014.12.154 *
BONG SHIN HAU; XIA MING; NEMATOLLAHI BEHZAD; SHI CAIJUN: "Ambient temperature cured ‘just-add-water’ geopolymer for 3D concrete printing applications", CEMENT AND CONCRETE COMPOSITES, ELSEVIER APPLIED SCIENCE, BARKING,, GB, vol. 121, 24 April 2021 (2021-04-24), GB , XP086611470, ISSN: 0958-9465, DOI: 10.1016/j.cemconcomp.2021.104060 *

Similar Documents

Publication Publication Date Title
EP2389345B1 (en) Tailored geopolymer composite binders for cement and concrete applications
JP5453440B2 (ja) 高い早期強度発現性を有するポゾランセメントブレンド
JP5091519B2 (ja) ジオポリマー組成物及びその製造方法
JP5580306B2 (ja) 膨張材およびその製造方法
CN110818294B (zh) 含垃圾焚烧飞灰和钢渣矿渣的胶凝材料及制备方法和应用
JP2010163360A (ja) セメント混和材として好適に使用される高炉徐冷スラグ粉末を選択する方法
TWI701228B (zh) 混凝土組成物以及其製造方法
WO2020039370A1 (en) High strength class c fly ash cementitious compositions with controllable setting
US5928420A (en) Cement composition for alkali-reactive aggregate and for sulphate resistance
KR101750011B1 (ko) 폴리실리콘 슬러지 건조 분말을 포함하는 콘크리트 결합재 조성물
JP2018158876A (ja) 石炭灰硬化物
WO2023219029A1 (ja) ジオポリマー組成物、ジオポリマー硬化体及びジオポリマー硬化体の製造方法
JP6278147B1 (ja) 混合セメント
JP2012188317A (ja) アルカリ骨材反応抑制材及びアルカリ骨材反応抑制方法
WO2019044484A1 (ja) モルタル又はコンクリート組成物及びその製造方法
JP2018203583A (ja) 石炭灰組成物
JP2017019714A (ja) 脱硫スラグを用いた水和固化体
JP2012201520A (ja) セメント組成物及びその製造方法
JP4459379B2 (ja) セメント混和材及びセメント組成物
JPH07242449A (ja) セメント組成物
TWI752742B (zh) 含低膨脹性不鏽鋼電弧爐氧化碴之建材
JP7181355B1 (ja) セメント混和材、セメント混和材の製造方法及びセメント組成物
CN115259729B (zh) 一种过硫磷石膏-矿渣胶凝材料改性剂及其应用、过硫磷石膏-矿渣胶凝材料组合物
JP2012166973A (ja) セメント組成物及びその製造方法
JP5701546B2 (ja) 吹付け材料およびそれを用いた吹付け工法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803506

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)