WO2021035318A1 - Processo de obtenção de silicato de sódio em pó a partir de rejeito arenoso oriundo do processo de concentração de minério de ferro - Google Patents
Processo de obtenção de silicato de sódio em pó a partir de rejeito arenoso oriundo do processo de concentração de minério de ferro Download PDFInfo
- Publication number
- WO2021035318A1 WO2021035318A1 PCT/BR2020/050261 BR2020050261W WO2021035318A1 WO 2021035318 A1 WO2021035318 A1 WO 2021035318A1 BR 2020050261 W BR2020050261 W BR 2020050261W WO 2021035318 A1 WO2021035318 A1 WO 2021035318A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tailings
- sodium silicate
- fact
- iron ore
- sodium
- Prior art date
Links
- 239000004115 Sodium Silicate Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 62
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 229910052911 sodium silicate Inorganic materials 0.000 title claims abstract description 56
- 230000008569 process Effects 0.000 title claims abstract description 55
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 22
- 239000000843 powder Substances 0.000 title abstract description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 66
- 239000000463 material Substances 0.000 claims description 47
- 239000000203 mixture Substances 0.000 claims description 17
- 239000000047 product Substances 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000012467 final product Substances 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 230000008719 thickening Effects 0.000 claims description 2
- 238000010977 unit operation Methods 0.000 claims description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 34
- 229920000876 geopolymer Polymers 0.000 abstract description 16
- 239000002699 waste material Substances 0.000 abstract description 16
- 230000007613 environmental effect Effects 0.000 abstract description 7
- 238000012545 processing Methods 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 6
- 230000007423 decrease Effects 0.000 abstract description 3
- 238000004064 recycling Methods 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 73
- 239000000377 silicon dioxide Substances 0.000 description 26
- 235000011121 sodium hydroxide Nutrition 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- 239000004576 sand Substances 0.000 description 13
- 239000011734 sodium Substances 0.000 description 12
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000005188 flotation Methods 0.000 description 8
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 7
- 150000004760 silicates Chemical class 0.000 description 7
- 239000011398 Portland cement Substances 0.000 description 6
- 239000004568 cement Substances 0.000 description 6
- 238000005065 mining Methods 0.000 description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 description 6
- 235000019351 sodium silicates Nutrition 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 238000002386 leaching Methods 0.000 description 5
- -1 ([Na2SiC> 3] n) Chemical compound 0.000 description 4
- 241000209094 Oryza Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 239000010903 husk Substances 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000012670 alkaline solution Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 238000010309 melting process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910001948 sodium oxide Inorganic materials 0.000 description 3
- 238000004876 x-ray fluorescence Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000011045 chalcedony Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001033 granulometry Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 238000009854 hydrometallurgy Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000011022 opal Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000002910 solid waste Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 102100022525 Bone morphogenetic protein 6 Human genes 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 101100348017 Drosophila melanogaster Nazo gene Proteins 0.000 description 1
- 101000899390 Homo sapiens Bone morphogenetic protein 6 Proteins 0.000 description 1
- 101100175313 Mus musculus Gdf3 gene Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 238000011021 bench scale process Methods 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- PMYUVOOOQDGQNW-UHFFFAOYSA-N hexasodium;trioxido(trioxidosilyloxy)silane Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])O[Si]([O-])([O-])[O-] PMYUVOOOQDGQNW-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005456 ore beneficiation Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000010909 process residue Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000009853 pyrometallurgy Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/32—Alkali metal silicates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/32—Alkali metal silicates
- C01B33/325—After-treatment, e.g. purification or stabilisation of solutions, granulation; Dissolution; Obtaining solid silicate, e.g. from a solution by spray-drying, flashing off water or adding a coagulant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/80—Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
Definitions
- the present invention relates to a process of producing powdered sodium silicate from sandy waste from mineral production, notably iron ore beneficiation processes.
- the present invention is mainly intended for the production of raw material used in the manufacture of geopolymers and materials activated in alkaline medium to be used mainly by the construction industry and in paving roads.
- the use of this waste reduces the environmental impact generated by the disposal in large dams, in addition to making it possible to add value to a waste through obtaining a product for commercial application.
- Sodium silicate is an inorganic compound, which has the general formula Na 2 0.xSi0 2 (where x is between 2.06 and 3.87), obtained by combining S1O2 (silicon dioxide or silica) and Na 2 0 (sodium oxide). It can be found both in aqueous solution and in solid form, being widely used in several applications, products and industrial processes, in various sectors of the industry.
- the family of sodium silicates also known as soluble glass (“waterglass”), presents several compounds that contain sodium oxide (Na20) and silica (S1O2), or a mixture of sodium silicates, varying their weight ratios , solids content, density and viscosity.
- Those The materials present a series of compounds, which can be found in the form of sodium orthosilicate (Na4SiC> 4), sodium metasilicate (Na2SiC> 3), sodium polysilicate, ([Na2SiC> 3] n), sodium pyrosilicate (NaeShO? ), among others.
- Such compounds have glassy, colorless and transparent characteristics, and dissolve in water, in addition to being commercially available in the form of powder or viscous solution. Some forms are soluble and others are almost insoluble, insoluble forms being easily dissolved by heating with water under pressure.
- Sodium silicate is stable in neutral and alkaline solutions. In acidic solutions, the silicate ion reacts with hydrogen ions to form silicic acid, which, when heated, forms silica gel, which is a hard, glassy substance.
- sodium silicate are as adhesives / binders, very important in several types of industries such as paper, wood, sheet metal, glass, porcelain, optical applications, insulating materials, refractory cements, cements resistant and acid-proof, briquettes, among others. Soluble silicates can also react with silicon fluoride or silica to produce acid-resistant cements with low shrinkage and thermal expansion close to that of steel.
- sodium silicate is applied due to its ability to disperse particles of clay, sand, quartz, fluorite, kaolin, among others, thus acting as an aid in the grinding stage. It is also widely used in the flotation process, as it acts as a modifying reagent, being used as a depressant and dispersing reagent. Its use in sulfide flotation stands out. There are also references about its application in the remediation of acidic drains in mines, due to its basic characteristic and as a zeolite synthesizer.
- sodium silicate is used in the manufacture of waterproofing materials for floors, walls and slabs. It is also used as an additive to accelerate the curing of cement and in the manufacture of fire and wall partitions due to its resistance to high temperatures. It is also used in the production of thermal insulation. It also finds applications in the cosmetics and detergents industries.
- the conventional process in the manufacture of sodium silicate consists of mixing silica (S1O2) with sodium carbonate (Na2CC> 3) or, less frequently, with sodium sulfate (NazSC), which are melted in an oven with high temperature (from 1200 ° C to 1500 ° C) and pressure.
- a second process involves the dissolution of silicate mineral (sand, chalcedony, opal, diatomite, etc.) in sodium hydroxide solution (NaOH), also with high temperature and pressure, the latter most common in Brazil.
- the glassy mixture is subjected to high pressure in an autoclave, with the injection of steam and water. A clear and slightly viscous fluid is then formed, odorless and completely soluble in water.
- the solution strongly alkaline, is stable under all conditions of use and storage.
- the solution can be dried to form hydrated sodium silicate crystals.
- the final properties of the produced silicate depend on the S1O2 / Na 2 0 ratio, which can be altered by the addition of NaOH during the process, which can be summarized by the reaction:
- Sodium silicate contains three components: silica, which is the primary constituent; alkali, represented by sodium oxide, and water, which provides hydration characteristics.
- Soluble sodium silicates are polymers of silicates.
- Si02 / Na20 ratio which is called "silica module” and varies from 1.6 to 3.75.
- the Si0 2 / Na 2 0 ratio of the silicate usually expressed in mass, determines the physical properties and chemical properties of the product and its functional activity. The variation of this relationship allows multiple uses for sodium silicate.
- the fusion between carbonate and sand occurs in the oven at a temperature of 1,500 ° C. Subsequently, the product obtained from this fusion (100% sodium silicate) is sent to the autoclave and water is added. Under pressure, the silicate is dissolved, becoming a sodium silicate solution, which is then filtered.
- Mining waste has the advantage of having chemical characteristics very similar to ordinary sand, which increases the potential to be used instead of sand (S1O2).
- the process included extracting the silica by alkaline leaching with sodium hydroxide, producing sodium silicate and residual rice husk ash.
- the extraction was carried out in the concentrations of 1.5 and 3.0 N of sodium hydroxide, at temperatures of 80 and 90 ° C.
- the reaction was evaluated at 1 and 2 hours for each concentration studied.
- the soluble silicates had silica modules between 2.04 and 2.83. For this resulting silicate, density, viscosity and percentage of silica were measured.
- the sodium silicate produced experimentally was tested as a deflocculant for ceramic raw materials with a percentage of 0.40, comparing it with one of 0.37% of the commercial silicate.
- This process differs from the present invention, since it uses a hydrometallurgical process (alkaline leaching) to obtain sodium silicate, instead of a pyrometallurgical process.
- This document presents an application for solid waste from diamond mining (kimberlite), whose typical composition is: Si0 2 30-32%; Al 2 0 3 2-5%; Ti0 2 5-8%; CaO 8-10%; 20-24% MgO; Fe 2 0 3 5-11%; loss to fire (PF) 15%.
- the proposed route involves the use of kimberlite tailings as a source of silica for the production of sodium silicate.
- the waste is subjected to a cleaning step, leaching with 18% w / v hydrochloric acid, in a ratio of 1: 4, at a temperature of 95-100 ° C, for 3 to 5 hours.
- the pulp is filtered and washed until it reaches neutral pH.
- it is subjected to digestion with caustic soda, where a 10% by weight solution of NaOFI 8 is added to the material, at a liquid solid ratio of 1: 4, at a temperature of 95-190 ° C, in a closed system. , or at boiling temperature in an open system for a period of 3 to 4 hours, obtaining sodium silicate in the required properties.
- sodium silicate is obtained by the reaction of sodium hydroxide with the flotation tailings at temperatures of the order of 450 ° C for 2.5 hours.
- Powdered sodium silicate Na 2 Si0 3
- iron oxide is obtained mixed with the residual iron oxide from the tailings.
- Geopolymers are inorganic polymers of high resistance, obtained from a reactive mineral solid that contain silicon and aluminum oxide and which receive a basic solution of activation with hydroxides or alkaline silicates.
- Geopolymers are products that have numerous applications in civil construction as a substitute for cement, in addition to promoting the reduction of CO2 emissions, because they do not use products of fossil origin, such as oil. Its use in paving is very positive, as it considerably decreases the frequency of corrective maintenance, since it does not present cracking and melting with heat, which also implies in reducing paving and road maintenance costs.
- the present invention also presents an alternative to the production of geopolymers, where the sandy tailings from the iron ore concentration process are used as aggregate and the sodium silicate produced from the same tailings. Obtaining geopolymers from these wastes presents itself as an alternative to the reduction of tailings storage areas and the elimination of dams.
- the present invention has as its general objective to provide a process for obtaining sodium silicate from sandy tailings of the iron ore concentration process, as a source of silica, for use in the manufacture of geopolymers.
- the objectives of the present invention are also to reduce the disposal of tailings in iron ore processing units, which represents a great environmental impact, and the use of this tailings, transforming it into a commercial product.
- Another objective of the present invention is, therefore, to reduce the environmental impact generated by the disposal of waste from mineral processing in dams, which is possible through the use of this material as a source of silicate material for the production of sodium silicate.
- the present invention in its preferred embodiment, discloses a process for obtaining powdered sodium silicate from sandy tailings from the iron ore concentration process comprising the following steps: a) remove the ultrafine fraction (granulometry less than 40 pm), also called mud, present in the sandy tailings from the iron ore concentration process; b) submit the ignited material to the removal of excess moisture; c) drying the resulting material after removing excess moisture; d) add to the dry material a sodium hydroxide solution, at a concentration between 33 and 38 mol / L, in the proportion of one part by mass of tailings to two parts by mass of solution; e) submit the tailings and the sodium hydroxide solution to the mixture in suitable equipment, guaranteeing its perfect homogenization; f) subject the mixture to heat treatment at a temperature between 400 ° C and 500 ° C and then cool the material obtained; and g) pack the cooled material, this being the final product, avoiding moisture absorption due to its hygroscopic behavior.
- Figure 1 illustrates a simplified block diagram of the production of sodium silicate from the melting process (a) or hydrothermal process (b);
- Figure 2 presents a simplified block diagram of the production process of powdered sodium silicate from sandy tailings from the iron ore concentration process, according to the present invention
- Figure 3 shows a process for obtaining a geopolymer using sodium silicate obtained from sandy tailings
- Figure 4 illustrates an X-ray diffractogram of the obtained sodium silicate.
- the sodium silicate production process of the present invention uses, as a source of material containing silica, the sandy tailings from the process of concentration of iron ore by flotation, which has similar characteristics to common sand and can be used in this production process, replacing sand as a source of silica.
- the production process of the sodium silicate of the present invention comprises the following steps: a) removing the ultrafine fraction (granulometry less than 40 pm), also called sludge, present in the sandy tailings from the process concentration of iron ore; b) submit the ignited material to the removal of excess moisture; c) drying the resulting material after removing excess moisture; d) add to the dry material a sodium hydroxide solution, at a concentration between 33 and 38 mol / L, in the proportion of one part by mass of tailings to two parts by mass of solution; e) submit the tailings and the sodium hydroxide solution to the mixture in suitable equipment, guaranteeing its perfect homogenization; f) subject the mixture to heat treatment at a temperature between 400 ° C and 500 ° C and then cool the material obtained; and g) pack the cooled material, this being the final product, avoiding moisture absorption due to its hygroscopic behavior.
- the ultrafine fraction granulometry less than 40 pm
- sludge also called
- the process begins with the removal of the ultrafine material (with a particle size less than 40 pm), also called mud, present in the sandy tailings, which can be carried out by cyclonation, thickening, or centrifugation or, more appropriately, in a combination of these unitary operations, resulting in a material with suitable particle size for subsequent processing.
- the ultrafine material with a particle size less than 40 pm
- mud also called mud
- the ignited material After removing the ultrafine fraction, the ignited material, with a percentage of solids that can vary from 20 to 65% (by mass), is sent to a dewatering step, which can be by filtration or centrifugation, preparing it for the next step, drying.
- the purpose of filtration is to minimize the humidity of the material, which implies less energy consumption.
- the humidity of the cake obtained is related, in addition to the presence of fines, also with the minerals present.
- a pie is preferably obtained with moisture of up to 15% by mass, however, it is not limited to this value.
- the next drying step is important to ensure the removal of excess moisture from the material.
- This process can be carried out in various ways, however the most usual for solids are based on heat exchanges and, in the case of the present invention, they can preferably be by direct (convection) or indirect (conduction) method. Drying is done in a conventional dryer, which can be of the rotary dryer or fluidized bed type, for example.
- the drying temperature used industrially, in general when it comes to materials with no problem of being oxidized, is up to 105 ° C, but as well as the time required, it can be defined depending on the type of equipment to be used. Depending on the climatic conditions and the availability of storage, drying can also be done over time.
- sodium hydroxide solution is added to the dry material at a concentration between 33 and 38 gmol / L, at a mass ratio of one part of dry material and two parts of the solution, to obtain a paste.
- a mixer is used and an efficient mixing and homogeneity of the material must be guaranteed. The mixing is carried out for about 2 minutes, steadily, without the release of heat.
- the obtained mixture is directed to a thermal stage, and a rotary kiln can be used, at a process temperature between 400 ° C and 500 ° C.
- the mixture can be heated at an average heating rate of 10 ° C / min, with a preferred residence time of 2.5 hours, not being restricted to that time.
- the material is subjected to a cooling step in a heat exchanger, which can be of the hull and tube type.
- a heat exchanger which can be of the hull and tube type.
- the temperature of the powdered sodium silicate, the final product of the present invention must be in the range between 60 ° C and 75 ° C. This product, due to its high hygroscopicity, must be stored in a container or closed place, in order to avoid moisture absorption.
- VGR1 and VGR2 Two flotation rejects from an iron ore concentration unit, identified as VGR1 and VGR2.
- the chemical composition of the samples is shown in Table 1.
- Table 1 Average chemical composition of iron ore flotation tailings samples (Technique: X-Ray Fluorescence)
- the tailings pulp was first decanted, siphoning the supernatant, which contained the ultrafine fraction, less than 40 pm.
- the decanted and thickened material was dried in an oven for 24 hours, at a temperature of 100 ° C. After drying, the material was disaggregated and homogenized.
- Table 2 shows the chemical composition of the powdered sodium silicate obtained. Note that the Si0 2 / Na 2 0 ratio is less than 1, unlike commercial silicates, whose ratio is in the range between 1.60 and 3.75. This excess of Na 2 0 is an important characteristic of this product, because the addition of water to obtain the binder paste provides the necessary alkaline medium for the dissolution of alumina and silicate ions from metakaolin or other sources of these ions for the formation of the geopolymer.
- Table 2 Chemical composition of samples obtained from sodium silicate from sandy tailings (Technique: X-Ray Fluorescence)
- Powdered sodium silicate (Na 2 SiC> 3), obtained from the process described by the present invention, derived from sandy tailings from the iron ore concentration process, can be used in the production of geopolymer, which has application in road paving, for example, whose process of obtaining it is shown in the block diagram of Figure 3.
- the sodium silicate powder obtained by the technique presented, as shown in Figure 3 can be mixed with metakaolinite or another source of powdered amorphous aluminum-silicate together with the flotation tailings. Then, water is added to this mixture, producing a paste, which is molded to obtain hardened monoliths.
- This material can replace Portland cement mortar, with the advantage of incorporating a high fraction of tailings, which is not possible with this type of cement.
- the geopolymer obtained can be used in civil construction or in paving works for sidewalks and roads. Obtaining geopolymer from alternative sources containing silica has been the subject of research and its use has the advantage of avoiding the manipulation of highly alkaline solutions, in addition to having a process very similar to obtaining Portland cement mortars.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227002961A KR20220078555A (ko) | 2019-08-30 | 2020-07-15 | 철광석 정광 공정으로부터 유래한 모래 광미로부터 분말화 소듐 실리케이트를 수득하는 공정 |
MX2022000832A MX2022000832A (es) | 2019-08-30 | 2020-07-15 | Proceso de obtencion de silicato de sodio en polvo a partir de relaves arenosos del proceso de concentracion de mineral de hierro. |
JP2022505358A JP7509862B2 (ja) | 2019-08-30 | 2020-07-15 | 鉄鉱石精鉱過程で生じる砂状尾鉱から粉末ケイ酸ナトリウムを得る方法 |
EP20858337.7A EP3992148B1 (en) | 2019-08-30 | 2020-07-15 | Process for obtaining sodium silicate powder from sandy tailings from the process of concentrating iron ore |
CA3144908A CA3144908C (en) | 2019-08-30 | 2020-07-15 | Process of obtaining powdered sodium silicate from sand tailings originated from the iron ore concentration process |
CN202080054025.3A CN114174227B (zh) | 2019-08-30 | 2020-07-15 | 从铁矿石选矿过程中产生的砂性尾矿获取粉状硅酸钠的方法 |
AU2020337184A AU2020337184B2 (en) | 2019-08-30 | 2020-07-15 | Process of obtaining powdered sodium silicate from sand tailings originated from the iron ore concentration process |
US17/630,436 US20220250923A1 (en) | 2019-08-30 | 2020-07-15 | Process of obtaining powdered sodium silicate from sand tailings originated from the iron ore concentration process |
ES20858337T ES2969573T3 (es) | 2019-08-30 | 2020-07-15 | Proceso de obtención de silicato de sodio en polvo a partir de relaves de arena originados en el proceso de concentración del mineral de hierro |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102019018080-3A BR102019018080B1 (pt) | 2019-08-30 | 2019-08-30 | Processo de obtenção de silicato de sódio em pó a partir de rejeito arenoso oriundo do processo de concentração de minério de ferro |
BRBR1020190180803 | 2019-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021035318A1 true WO2021035318A1 (pt) | 2021-03-04 |
Family
ID=69054085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2020/050261 WO2021035318A1 (pt) | 2019-08-30 | 2020-07-15 | Processo de obtenção de silicato de sódio em pó a partir de rejeito arenoso oriundo do processo de concentração de minério de ferro |
Country Status (13)
Country | Link |
---|---|
US (1) | US20220250923A1 (pt) |
EP (1) | EP3992148B1 (pt) |
JP (1) | JP7509862B2 (pt) |
KR (1) | KR20220078555A (pt) |
CN (1) | CN114174227B (pt) |
AR (1) | AR119860A1 (pt) |
AU (1) | AU2020337184B2 (pt) |
BR (1) | BR102019018080B1 (pt) |
CA (1) | CA3144908C (pt) |
ES (1) | ES2969573T3 (pt) |
MX (1) | MX2022000832A (pt) |
TW (1) | TWI760829B (pt) |
WO (1) | WO2021035318A1 (pt) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114669585A (zh) * | 2022-03-14 | 2022-06-28 | 昆明理工大学 | 一种硅酸盐物料风化成土及资源化利用的方法 |
WO2023219029A1 (ja) * | 2022-05-13 | 2023-11-16 | 学校法人大阪産業大学 | ジオポリマー組成物、ジオポリマー硬化体及びジオポリマー硬化体の製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR102020016451B1 (pt) | 2020-08-12 | 2021-11-03 | Pq Silicas Brazil Ltda | Solução estável de silicato de sódio e ferro, processo para preparar a referida solução e seus usos |
CN112845524B (zh) * | 2021-01-04 | 2023-02-21 | 包头钢铁(集团)有限责任公司 | 一种铁矿固体废物综合利用方法 |
CN114685104B (zh) * | 2022-04-11 | 2023-02-24 | 重庆工商大学 | 一种深海浮岛建设用硅藻土碱激发多孔轻质混凝土及其制备方法和用途 |
CN115572176B (zh) * | 2022-09-30 | 2023-06-20 | 广西欧神诺陶瓷有限公司 | 一种利用金属尾矿制备的轻质陶瓷砖及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7335342B2 (en) | 2005-11-10 | 2008-02-26 | Council Of Scientific And Industrial Research | Process for the preparation of sodium silicate from Kimberlite tailing |
RU2335456C1 (ru) * | 2007-04-03 | 2008-10-10 | Государственное образовательное учреждение высшего профессионального образования "Братский государственный университет" | Способ получения жидкого стекла |
RU2374177C1 (ru) * | 2008-06-25 | 2009-11-27 | Государственное образовательное учреждение высшего профессионального образования "Братский государственный университет" | Способ получения жидкого стекла |
CN102583417A (zh) * | 2012-03-26 | 2012-07-18 | 西安科技大学 | 利用煤矸石制取水玻璃的方法 |
CN108726525A (zh) * | 2018-05-22 | 2018-11-02 | 广西银亿新材料有限公司 | 一种红土镍矿浸出渣生产水玻璃的方法 |
RU2682635C1 (ru) * | 2018-01-18 | 2019-03-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" | Способ получения жидкого стекла |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1982214A (zh) * | 2005-12-12 | 2007-06-20 | 秦才东 | 无水钠或钾的硅酸盐的生产方法 |
CN103803571B (zh) * | 2014-03-11 | 2015-09-30 | 斯莱登(北京)化工科技有限公司 | 一种由铜镍渣制备水玻璃的方法 |
CN103910362B (zh) * | 2014-04-29 | 2016-01-13 | 深圳市国大长兴科技有限公司 | 利用含硅尾矿矿粉制备硅酸盐水溶液的方法 |
EP3349907B1 (en) | 2015-09-18 | 2023-06-07 | The Trustees of Columbia University in the City of New York | Methods and systems for recovering products from iron and steel slag |
CN105692638A (zh) * | 2016-04-27 | 2016-06-22 | 王嘉兴 | 一种水玻璃的制备方法 |
CN109012517B (zh) | 2018-08-28 | 2020-09-29 | 浙江工业大学 | 一种以铁尾矿为原料制备复合型硅基气凝胶的方法 |
-
2019
- 2019-08-30 BR BR102019018080-3A patent/BR102019018080B1/pt active IP Right Grant
-
2020
- 2020-07-15 CN CN202080054025.3A patent/CN114174227B/zh active Active
- 2020-07-15 CA CA3144908A patent/CA3144908C/en active Active
- 2020-07-15 KR KR1020227002961A patent/KR20220078555A/ko unknown
- 2020-07-15 JP JP2022505358A patent/JP7509862B2/ja active Active
- 2020-07-15 WO PCT/BR2020/050261 patent/WO2021035318A1/pt unknown
- 2020-07-15 EP EP20858337.7A patent/EP3992148B1/en active Active
- 2020-07-15 MX MX2022000832A patent/MX2022000832A/es unknown
- 2020-07-15 AU AU2020337184A patent/AU2020337184B2/en active Active
- 2020-07-15 ES ES20858337T patent/ES2969573T3/es active Active
- 2020-07-15 US US17/630,436 patent/US20220250923A1/en active Pending
- 2020-08-28 TW TW109129577A patent/TWI760829B/zh active
- 2020-08-28 AR ARP200102428A patent/AR119860A1/es active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7335342B2 (en) | 2005-11-10 | 2008-02-26 | Council Of Scientific And Industrial Research | Process for the preparation of sodium silicate from Kimberlite tailing |
RU2335456C1 (ru) * | 2007-04-03 | 2008-10-10 | Государственное образовательное учреждение высшего профессионального образования "Братский государственный университет" | Способ получения жидкого стекла |
RU2374177C1 (ru) * | 2008-06-25 | 2009-11-27 | Государственное образовательное учреждение высшего профессионального образования "Братский государственный университет" | Способ получения жидкого стекла |
CN102583417A (zh) * | 2012-03-26 | 2012-07-18 | 西安科技大学 | 利用煤矸石制取水玻璃的方法 |
RU2682635C1 (ru) * | 2018-01-18 | 2019-03-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" | Способ получения жидкого стекла |
CN108726525A (zh) * | 2018-05-22 | 2018-11-02 | 广西银亿新材料有限公司 | 一种红土镍矿浸出渣生产水玻璃的方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114669585A (zh) * | 2022-03-14 | 2022-06-28 | 昆明理工大学 | 一种硅酸盐物料风化成土及资源化利用的方法 |
CN114669585B (zh) * | 2022-03-14 | 2023-11-10 | 昆明理工大学 | 一种硅酸盐物料风化成土及资源化利用的方法 |
WO2023219029A1 (ja) * | 2022-05-13 | 2023-11-16 | 学校法人大阪産業大学 | ジオポリマー組成物、ジオポリマー硬化体及びジオポリマー硬化体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114174227B (zh) | 2023-12-19 |
ES2969573T3 (es) | 2024-05-21 |
CN114174227A (zh) | 2022-03-11 |
EP3992148A4 (en) | 2023-03-22 |
MX2022000832A (es) | 2022-02-10 |
EP3992148C0 (en) | 2023-11-15 |
KR20220078555A (ko) | 2022-06-10 |
TWI760829B (zh) | 2022-04-11 |
AR119860A1 (es) | 2022-01-19 |
CA3144908C (en) | 2023-05-09 |
JP7509862B2 (ja) | 2024-07-02 |
TW202116680A (zh) | 2021-05-01 |
AU2020337184B2 (en) | 2023-12-07 |
BR102019018080A2 (pt) | 2019-12-17 |
US20220250923A1 (en) | 2022-08-11 |
EP3992148B1 (en) | 2023-11-15 |
CA3144908A1 (en) | 2021-03-04 |
AU2020337184A1 (en) | 2022-03-03 |
EP3992148A1 (en) | 2022-05-04 |
JP2022545616A (ja) | 2022-10-28 |
BR102019018080B1 (pt) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021035318A1 (pt) | Processo de obtenção de silicato de sódio em pó a partir de rejeito arenoso oriundo do processo de concentração de minério de ferro | |
Lemougna et al. | Recent developments on inorganic polymers synthesis and applications | |
Sayehi et al. | Reutilization of silicon-and aluminum-containing wastes in the perspective of the preparation of SiO2-Al2O3 based porous materials for adsorbents and catalysts | |
Rozhkovskaya et al. | Synthesis of high-quality zeolite LTA from alum sludge generated in drinking water treatment plants | |
Payá et al. | Application of alkali-activated industrial waste | |
BR102013024226A2 (pt) | processo para obtenção de composição química para produção de adição ativa capaz de substituir clínquer portland, composição química e uso desta composição | |
BR112021009551A2 (pt) | geopolímeros produzidos a partir de subprodutos do processamento mineral | |
Wang et al. | Preparation of high-quality glass-ceramics entirely derived from fly ash of municipal solid waste incineration and coal enhanced with pressure pretreatment | |
CN106277862A (zh) | 一种利用石煤提钒酸浸渣制备地聚合物的方法 | |
Harech et al. | A comparative study of the thermal behaviour of phosphate washing sludge from Tunisia and Morocco | |
Kırsever et al. | Effect of porcelain polishing waste additive on properties and corrosion resistance of ceramic foams produced from zeolite | |
Missoum et al. | Elaboration of geopolymer binder from pharmaceutical glass waste and optimization of its synthesis parameters | |
Matekonis et al. | Hydrothermal synthesis and characterization of Na+ and [Al3++ Na+]-substituted tobermorite in CaO-SiO2· nH2O-H2O system | |
JPWO2021035318A5 (ja) | 鉄鉱石精鉱過程で生じる砂状尾鉱から粉末ケイ酸ナトリウムを得る方法 | |
AU2022201537B2 (en) | Process of obtaining powdered sodium silicate from sandy tailings originated from the iron ore concentration process, use of the sodium silicate, and sodium silicate | |
CN106495173A (zh) | 一种用硅质废弃物和电石渣微波加热生产雪硅钙石的方法 | |
BR102020024799A2 (pt) | Processo de produção de silicato de sódio a partir de microssílica | |
TW201412431A (zh) | 用於鑄造模及模芯之製造之微粒耐火組合物、其製備方法及對應用途 | |
CN106517223A (zh) | 一种微波辅助煤矸石和电石渣合成硬硅钙石纤维的方法 | |
ES2883555T3 (es) | Método para preparar una composición refractaria en partículas para su uso en la producción de moldes y machos de fundición, usos correspondientes y mezcla de recuperación para tratamiento térmico | |
Phavongkham et al. | Enhancement of geopolymerisation reactivity and thermal resistance using mixed types of fly ash | |
RU2752198C1 (ru) | Способ получения теплоизоляционного материала | |
RU2085489C1 (ru) | Способ получения жидкого стекла | |
Paya et al. | 13.1 Alkali-activated cement and concrete | |
Murta | Production and characterization of diatomaceous earth-based geopolymers and geopolymeric mortars |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20858337 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3144908 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2022505358 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020858337 Country of ref document: EP Effective date: 20220126 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020337184 Country of ref document: AU Date of ref document: 20200715 Kind code of ref document: A |