WO2023217058A1 - 一种制备含吡喃葡萄糖基化合物的方法 - Google Patents

一种制备含吡喃葡萄糖基化合物的方法 Download PDF

Info

Publication number
WO2023217058A1
WO2023217058A1 PCT/CN2023/092648 CN2023092648W WO2023217058A1 WO 2023217058 A1 WO2023217058 A1 WO 2023217058A1 CN 2023092648 W CN2023092648 W CN 2023092648W WO 2023217058 A1 WO2023217058 A1 WO 2023217058A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
compound
water
range
Prior art date
Application number
PCT/CN2023/092648
Other languages
English (en)
French (fr)
Inventor
郑晨光
王涛
石浒
金冶华
朱伟
孟艳华
Original Assignee
浙江华海药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210515735.2A external-priority patent/CN117088924A/zh
Priority claimed from CN202210515612.9A external-priority patent/CN117088860A/zh
Application filed by 浙江华海药业股份有限公司 filed Critical 浙江华海药业股份有限公司
Publication of WO2023217058A1 publication Critical patent/WO2023217058A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to the field of chemical pharmaceuticals, and more specifically, the present invention relates to a method for preparing a glucopyranosyl-containing compound.
  • Compound 1-chloro-4-( ⁇ -D-glucopyranose-1-yl)-2-[4-((S)-tetrahydrofuran-3-yloxy)-benzyl]-benzene (hereinafter referred to as is "Compound I") disclosed in international patent application WO 2005/092877 and has the chemical structure of formula I:
  • the compounds described therein have valuable inhibitory effects on the sodium-dependent glucose cotransporter SGLT, especially SGLT2.
  • the above process directly uses MeSO 3 H/MeOH to quench the reaction, and simultaneously performs deprotection and methyl etherification.
  • the exotherm is violent during the extraction and quenching process, and temperature control is difficult.
  • the amount of methanesulfonic acid is large, the reaction time is long, and The conversion rate is low and the intermediate product remains large.
  • a first aspect of the present invention provides a method for preparing a compound represented by formula II,
  • step (b) Quenching the reaction of step (a) with water to obtain a mixed solution
  • step (c) Layer the mixed liquid obtained in step (b) to separate the organic phase and the aqueous phase, and concentrate the organic phase to obtain the compound represented by formula V:
  • step (d) React the compound represented by formula V obtained in step (c) with methanol under acidic conditions to obtain the compound represented by formula II.
  • the organometallic lithium in step (a) is selected from n-butyllithium, tert-butyllithium or n-hexyllithium.
  • the acid of step (c) is selected from the group consisting of methanesulfonic acid, toluenesulfonic acid, sulfuric acid, acetic acid, trifluoroacetic acid and hydrochloric acid.
  • the organic solvent in step (a) is selected from toluene, tetrahydrofuran, methyltetrahydrofuran, hexane, heptane, dioxane, dimethyl sulfoxide, dichloromethane or any mixture thereof.
  • the operation mode of step (b) is to slowly add the reaction solution of step a) into water, the water is pre-cooled to 0-5°C, and the quenching temperature is controlled at 0-10°C.
  • the layering operation method in step (c) is: heating the mixed solution obtained in step (b) to 20-30°C with stirring to separate the organic phase and the water phase.
  • step (a) is carried out at a temperature of -90°C to -60°C, preferably -80°C to -70°C; the temperature of step (d) methylation is - Carry out at 80°C to 40°C.
  • the main advantages of the first aspect of the present invention include: the present invention changes the operating mode of the existing technology, no acid is needed during the quenching reaction, the quenching conditions are mild, and the temperature control is easy; by heating the reaction liquid, the organic phase and water can be smoothly realized Phase separation removes excess alkali and inorganic impurities; in deprotection and methyl etherification reactions, the amount of acid is small and the time is short; the purity of the methyl etherification product is high, and intermediate hemiketal impurities (formula VI) remain in the product and less five-membered ring isomers (Formula VII).
  • the structures of the hemiketal impurity (Formula VI) and the five-membered ring isomer impurity (Formula VII) according to the present invention are as follows:
  • the present invention also provides a method for preparing the compound represented by formula I, including the above-mentioned steps (a) to (d), and further including the following steps:
  • Another aspect of the present invention also provides a method for effectively purifying compound I, especially a method for purifying the compound with lower cost and higher yield commercially.
  • the method for purifying the compound represented by Formula I provided by the invention includes the following steps:
  • step (g) Optionally, gradually cool the mixed liquid obtained in step (f) to cause crystals of the compound to precipitate;
  • the organic solvent is ethyl acetate or methylene chloride.
  • the crude product of the compound represented by formula I is obtained by the following method: including the above-mentioned steps (a) to (d), and further including the following steps: (e) adding compound II in Lewis acid
  • the compound of formula I is obtained by reacting with a reducing reagent in the presence of a solvent, and the solvent is removed to obtain a crude product of the compound of formula I.
  • the volume to weight ratio of ethyl acetate to the compound represented by Formula I is 1.0 mL/g-3.0 mL/g, preferably 1.5 mL/g-2.0 ml/L.
  • the volume to weight ratio of dichloromethane to the compound represented by Formula I is 1.5 mL/g-4.0 ml/L, preferably 2.0 mL/g-3.0 ml/L.
  • the weight ratio of ethyl acetate to water is in the range of 1:10 to 5:1, preferably in the range of 1:8 to 1:1, and further preferably in the range of 1:6 to 1:2, Such as 1:6, 1:5, 1:4, 1:3, 1:2 or any range therebetween, and more preferably the range of 1:2 to 1:3.3.
  • the weight ratio of methylene chloride to water is in the range of 1:10 to 10:1, preferably in the range of 1:5 to 5:1, and further preferably in the range of 1:3 to 4:1, Such as 1:3, 1:2, 1:1, 2:1, 3:1, 4:1 or any range therebetween, more preferably the range is 1:2 to 1.33:1.
  • step (f) when the organic solvent is ethyl acetate, the heating and stirring temperature is 55-65°C, and when the organic solvent is dichloromethane, the The heating and stirring temperature is 25 to 45°C.
  • step (g) the temperature is preferably lowered to obtain a high yield of precipitated crystals of the compound of formula I.
  • the temperature is lowered continuously or via a predetermined cooling gradient.
  • the cooling process of step (g) includes cooling to a temperature between 0°C and 10°C.
  • the cooling method in step (g) is to gradually cool down to 0-5°C.
  • step (g) when methylene chloride is used, there is also the option of not cooling.
  • step (g) may be between about 30 minutes and 48 hours, preferably between about 3 and 6 hours.
  • Step (g) may be carried out with or without stirring.
  • the purification method according to the present invention is used to obtain high-purity target compound I with higher yield and lower organic solvent consumption, and very effectively reduces the impurities of the following formulas VII and IX in the crystallized compound:
  • % is a weight/weight (w/w) percentage unless otherwise stated.
  • any numerical value such as a solvent amount or a solvent amount range described herein, is to be understood to be modified in all instances by the term "about”, indicating that such values may vary within a certain range.
  • the term "about” should be understood to mean encompassing the larger range of the recited value, taking into account the significant digits. Below, the range included by rounding to that number, and the range including plus or minus 10% of the stated value.
  • the method of Example 1 does not require reagents other than water, the quenching conditions are mild, and the mixture can achieve the purpose of separating the product from the aqueous phase and removing excess alkali and inorganic impurities after the mixture is heated.
  • Deprotection and methyl ether The chemical reaction step (step d) requires a small amount of acid, a short reaction time, high purity of the final product, and small main impurities.
  • Example 5 Purification Example Effects of Different Proportions and Dosages of Ethyl Acetate and Water:
  • Example 2 The ratio and amount of ethyl acetate-water was changed according to the purification method of Example 3, and the crude compound I obtained in Example 2 was refined. The yield (calculated from compound II), purity and main impurity data were summarized. The results are shown in Table 2. .
  • Example 6 Purification Example Effects of Dichloromethane and Water in Different Ratios and Dosages:
  • Example 4 According to the purification method of Example 4, the ratio and dosage of dichloromethane-water are changed, and the crude compound I obtained in Example 2 is refined. The yield (calculated from compound II), purity and main impurity data are summarized. The results are shown in the table 3.
  • the method of the present invention is used to purify the compound of the present invention.
  • high-purity compound I can be obtained by using less organic solvent and water, and the product contains less impurity VIII. , Impurity IX.
  • impurity VIII is less organic solvent and water
  • Impurity IX is less organic solvent and water
  • the content of these two impurities is high, it is difficult to obtain qualified finished API products through subsequent purification. Bringing more of these two impurities into the drug may cause unpredictable safety issues.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明涉及一种制备式II所示化合物的方法,包括在有机溶剂中,将式III所示的化合物与式IV所示的化合物在有机金属锂的作用下反应,以水淬灭得到混合液并分层,分离出有机相并浓缩,然后与甲醇在酸性条件下反应得到式II。本发明提供的方法淬灭条件温和、酸用量少,并且得到的产品纯度高。

Description

一种制备含吡喃葡萄糖基化合物的方法
本申请要求于2022年05月12日提交中国专利局、申请号为202210515612.9发明名称为“含吡喃葡萄糖基化合物的纯化方法”和2022年05月12日提交中国专利局、申请号为202210515735.2、发明名称为“一种制备含吡喃葡萄糖基化合物的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及化学制药领域,更具体说,本发明涉及一种制备含吡喃葡萄糖基化合物的方法。
背景技术
化合物1-氯-4-(β-D-吡喃葡萄糖-1-基)-2-[4-((S)-四氢呋喃-3-基氧基)-苄基]-苯(以下将其称为“化合物I”)公开于国际专利申请WO 2005/092877中且具有式I的化学结构:
其中所描述的化合物对钠依赖性葡萄糖共转运载体SGLT(尤其是SGLT2)具有有价值的抑制作用。
国际专利申请WO 2006/120208公开了化合物I制备方法,包括在路易酸存在下,将式II化合物与还原试剂反应得到式I所述的化合物。式II的结构式如下所示:
其中在实施例XVII中公开了化合物II的制备方法,其中包括将式III所示的化合物与式IV所示的化合物在叔丁基锂的作用下发生加成反应,然后加入甲醇和甲磺酸盐溶液反应得到式II所示的化合物。合成路线如下所示:
上述工艺直接使用MeSO3H/MeOH对反应进行淬灭,同时进行脱保护和甲醚化,该萃灭过程中放热剧烈,控温较困难,另甲磺酸用量大,反应时间长,并且转化率低,中间态产物残留较大。
在化合物I的合成中,例如,根据WO 2006/120208,观察到在最终物质中存在一些杂质。此外,发现如WO 2011/039107中公开的结晶方法虽减少了杂质含量并增加了化合物纯度,但仍未获得令人满意的结果。
发明内容
本发明的第一个方面,提供了一种制备式II所示化合物的方法,
其包括以下步骤:
(a)在有机溶剂中,将式III所示的化合物
与式IV所示的化合物在有机金属锂的作用下反应
(b)将步骤(a)的反应以水淬灭得到混合液;
(c)将步骤(b)得到的混合液分层,使有机相与水相分离,浓缩有机相得到式V所示的化合物:
(d)将步骤(c)获得的式V所示的化合物与甲醇在酸性条件下反应得到式II所示的化合物。
在一些实施方式中,步骤(a)所述有机金属锂选自正丁基锂,叔丁基锂或正己基锂。
在一些实施方式中,步骤(c)所述酸选自甲磺酸,甲苯磺酸,硫酸,乙酸,三氟乙酸和盐酸。
在一些实施方式中,步骤(a)所述有机溶剂选自甲苯,四氢呋喃,甲基四氢呋喃,己烷,庚烷,二恶烷,二甲基亚砜,二氯甲烷或它们的任意混合物。
在一些实施方式中,其中步骤(b)的操作方式为将步骤a)的反应液缓慢加入水中,所述水预冷至0~5℃,并控制淬灭温度在0~10℃。
在一些实施方式中,其中步骤(c)分层的操作方式为:将步骤(b)中得到的混合液在搅拌下升温至20~30℃,使有机相与水相分层。
在一些实施方式中,其中步骤(a)加成反应在温度-90℃至-60℃下进行,优选在-80℃至-70℃下进行;步骤(d)甲基化的温度为在-80℃至40℃下进行。
本发明第一个方面的主要优点包括:本发明改变现有技术的操作方式,淬灭反应时无需加酸,淬灭条件温和,控温容易;通过升温反应液,可顺利实现有机相和水相的分离,去除过量碱及无机杂质;脱保护和甲醚化反应中,酸的用量少,时间短;甲醚化产物纯度高,产物中残留中间态的半缩酮杂质(式VI)和五元环异构体(式VII)较少。本发明所述的半缩酮杂质(式VI)和五元环异构体杂质(式VII)结构如下:
本发明还提供了一种制备式I所示化合物的方法,包括以上所述的步骤(a)~(d),以及进一步包括以下步骤:
(e)将化合物II在路易酸存在下与还原试剂在溶剂中反应得到式I所述的化合物:
上述制备I的方法也可参考现有技术,例如WO 2006/120208描述的方法进行。
本发明的另一个方面,还提供了一种有效地纯化化合物I的方法,尤其是在商业上具有较低成本和较高产率的纯化该化合物的方法。
本发明提供的纯化式I所示化合物的方法,包括以下步骤:
(f)将式I所示化合物的粗品加入有机溶剂和水的混合溶剂中,加热搅拌形成混合液;
(g)可选地,将步骤(f)得到的混合液逐步冷却使得所述化合物的晶体析出;
(h)过滤分离得到式I所示化合物的晶体;
其中所述有机溶剂为乙酸乙酯或二氯甲烷。
在一些实施方式中,所述式I所示化合物的粗品,通过以下方法得到:包括以上所述的步骤(a)~(d),以及进一步包括以下步骤:(e)将化合物II在路易酸存在下与还原试剂在溶剂中反应得到式I所述的化合物,除去溶剂得到式I化合物的粗品。
在一些实施方式中,乙酸乙酯与所述式I所示化合物的体积重量比为1.0mL/g-3.0mL/g,优选为1.5mL/g-2.0ml/L。
在一些实施方式中,二氯甲烷与所述式I所示化合物的体积重量比为1.5mL/g-4.0ml/L,优选为2.0mL/g-3.0ml/L。
在一些实施方式中,乙酸乙酯与水的重量比为1:10至5:1的范围,优选为1:8至1:1的范围,进一步优选为1:6至1:2的范围,诸如1:6、1:5、1:4、1:3、1:2或其间任意范围,更进一步优选为1:2~1:3.3的范围。
在一些实施方式中,二氯甲烷与水的重量比为1:10至10:1的范围,优选为1:5至5:1的范围,进一步优选为1:3至4:1的范围,诸如1:3、1:2、1:1、2:1、3:1、4:1或其间任意范围,更进一步优选为1:2至1.33:1的范围。
在一些实施方式中,步骤(f)中,当所述有机溶剂为乙酸乙酯时,所述的加热搅拌的温度为55~65℃,当所述有机溶剂为二氯甲烷时,所述的加热搅拌的温度为25~45℃。
在步骤(g)中,优选降低温度以获得高产率的式I所示化合物的沉淀晶体。可持续或经由预定冷却梯度降低温度。
在一些实施方式中,步骤(g)冷却过程包括降温至0~10℃之间。
在一些实施方式中,步骤(g)中所述冷却方法为逐步降温至0~5℃。
在步骤(g)中,当使用二氯甲烷时,也可以选择不冷却。
步骤(g)的持续时间可为约30分钟至48小时之间,优选约3至6小时之间。
可伴随或不伴随搅拌进行步骤(g)。
利用根据本发明的纯化方法以较高的收率、较低的有机溶剂用量获得高纯度的目标化合物I,非常有效地减少该结晶化合物中下式VII和IX的杂质:
具体实施方式
下面结合具体实施例,进一步阐述本发明。
在本发明中,除非另有说明,否则本发明中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本发明中所用实验室操作步骤均为相应领域内广泛使用的常规步骤。
术语“具有”、“包含”和“包括”应解释为开放式的,表明存在所列举的要素但不排除未列举的任何其他一个或多个要素的存在、出现或添加。
本发明叙述的所有范围包括列举两个值之间的范围的那些端点。不管是否指出,本发明所列举的所有值包括用于测量该值的给定技术的预期实验误差、技术误差和仪器误差的程度。
在本发明中,如无另外说明,%是重量/重量(w/w)的百分数。
除非另有说明,否则任何数值,例如本发明所述的溶剂用量或溶剂用量范围,应理解为在所有情况下均由术语“约”修饰,表示这样的值可在一定范围内变化。当没有记载范围(例如误差范围或图表或数据表中给出的平均值的标准偏差)时,术语“约”应理解为表示包含所记载的值的较大范围,以及在考虑有效数字的情况下,通过四舍五入到该数字而包括的范围,以及包含所记载值的加减10%的范围。
化合物II的HPLC方法:

化合物I的HPLC方法:

实施例1
制备1-氯-4-(D-吡喃葡萄糖-1-基)-2-[4-((S)-四氢呋喃-3-基氧基)-苄基]-苯
氮气保护下,向1L四口圆底烧瓶中加入四氢呋喃(96ml),于-78℃滴加2.5M的正丁基锂正己烷溶液(33ml,84.9mmol),随后滴加化合物III(24g,65.3mmol)的甲苯(192ml)溶液,滴完后继续搅拌30min,再滴加化合物IV(39.6g,84.9mmol)的甲苯(48ml)溶液,控制加料速度,使反应液温度维持在-70℃以下,加完后在-80~-70℃保温搅拌1.5h。通过导管将反应液加入到预冷至0~5℃的水(120ml)中,控制淬灭温度在0~10℃,加完后搅拌下将反应液升温至20~30℃,然后转至分液漏斗中分离各层,有机层直接浓缩得到黄色油状物(式V),水层经TLC检测已无化合物V。将残留物溶于甲醇(120ml),滴加11%HCl甲醇(21.6g,65.3mmol),加完后20~25℃搅拌3h,然后将反应液滴至已预冷至0~5℃的5%碳酸氢钠水溶液(120ml)中,控制温度在10℃以下,随后浓缩除去甲醇。残留物中加入二氯甲烷(120ml)萃取,分层后的水相再用二氯甲烷(60ml)萃取1次,合并有机相,向其加入水(120ml)洗涤,分液,有机相浓缩,即得到化合物II(31.4g)。
比较例:
按照实施例1的方法将水替换成表1中给定的淬灭溶剂,获得的化合物V与甲醇在酸性条件下反应得到式II所示的化合物。将反应液滴至水中淬灭后经脱保护和甲醚化得到的化合物II。
表1各种淬灭溶剂使用效果及得到式II产物质量对比
由表1可见,实施例1的方法无需水以外的试剂,淬灭条件温和,且混合液经升温后即可达到产物与水相分离并去除过量碱及无机杂质的目的,脱保护和甲醚化反应步骤(步骤d)的酸用量少,反应时间短,最终产物纯度高,主要杂质小。
实施例2:化合物I的制备方法
氮气保护下,将无水三氯化铝(14g,105mmol)和二氯甲烷(42mL)投入四口瓶,冷却至10℃,控温10~30℃,滴加乙腈(60mL)至体系澄清;随后滴加三乙基硅烷(14.0g,120mmol),然后控温10~20℃滴加化合物II(24.0g,50mmol)的二氯甲烷(42mL)和乙腈(60mL)溶液,加完升温至20~25℃搅拌1~2h;然后将反应液冷却至10℃以下,滴加水(120mL)淬灭,加完后升温至40~50℃搅拌至溶清并分层,水相再用乙酸乙酯(48mL)萃取1次,有机相合并浓缩,得到残留物为黄色固体化合物I(24.0g,HPLC纯度85.75%,杂质VIII:4.50%,杂质IX:0.95%)。
实施例3:乙酸乙酯和水的纯化实施例
向实施例2所得残留物中加入水(120mL)和乙酸乙酯(36mL),升温至55~65℃搅拌溶清,随后逐步降温至0~5℃,搅拌2~5h;过滤收集固体,并将滤饼依次用水(24mL)和预冷至0~5℃的乙酸乙酯(6mL)淋洗,再将滤饼于真空烘箱45~55℃烘干,得类白色至淡黄色晶体(17.6g,39mmol),产率78%(从化合物II计算),HPLC纯度:99.13%,杂质VIII:0.30%,杂质IX:0.09%。
实施例4:二氯甲烷和水的纯化实施例
向实施例2所得残留物中加入水(64mL)和二氯甲烷(48mL),升温至35~45℃搅拌90分钟,随后逐步降温至0~5℃,搅拌2~5h;过滤收集固体,并将滤饼用预冷至0~5℃的二氯甲烷(6mL)淋洗,再将滤饼于真空烘箱45~55℃烘干,得类白色至淡黄色晶体(18.5g,41mmol),产率82%(从化合物II计算),HPLC纯度:99.22%,杂质VIII:0.50%,杂质IX:0.10%。
实施例5:乙酸乙酯和水不同比例、用量等纯化实施例效果:
按照实例3的纯化方法改变乙酸乙酯-水的比例和用量,对实施例2得到粗制的化合物I进行精制,汇总收率(从化合物II计算)、纯度和主要杂质数据,结果见表2。
表2不同比例、用量的乙酸乙酯和水精制效果
实施例6:二氯甲烷和水不同比例、用量等纯化实施例效果:
按照实施例4的纯化方法改变二氯甲烷-水的比例和用量,对实施例2得到粗制的化合物I进行精制,汇总收率(从化合物II计算)、纯度和主要杂质数据,结果见表3。
表3不同比例、用量的二氯甲烷和水精制效果

使用本发明的方法纯化本发明化合物,当以乙酸乙酯和二氯甲烷为有机溶剂时,使用较少的有机溶剂和水就能够获得高纯度的化合物I,且产品中含较少的杂质VIII、杂质IX,这两个杂质含量较高时后续纯化较难得到合格原料药成品,较多的这2个杂质带入药物可能造成难预料的安全性问题。
比较例:
按照实施例3的纯化方法将水-乙酸乙酯替换成表4中给定的溶剂体系,分别采用不同溶剂体系和配比对实施例2得到粗制的化合物I进行精制,对比收率、纯度和主要杂质,结果见表4。
表4不同溶剂体系和配比精制效果
当以乙酸异丙酯-水为纯化化合物I的溶剂时,乙酸异丙酯与所述化合物的体积重量比为5.0mL/g时,无法完全溶解所述化合物,乙酸异丙酯用量需要达到9.0mL/g才能获得澄清的溶液。当以甲苯、乙腈、乙醇等有机溶剂或其混合溶剂为纯化本发明化合物的溶剂时,同样需要较高的有机溶剂用量,存在较大的溶剂回收问题,或者不具备足够的精制效果。
应理解,前述详细描述和随附实例仅仅是示例性的并且不认为是对本发明范围的限制,本发明的范围仅由随附权利要求书以及其等效物限定。对所公开的实施例的各种改变和修改对于本领域技术人员来说将是显而易见的。这类改变和修改,包含但不限于与本发明的方法有关的那些改变和修改,或此类改变和修改的任何组合,可在不脱离本发明的精神和范围情况下实行。

Claims (13)

  1. 一种制备式II所示化合物的方法,
    其包括以下步骤:
    (a)在有机溶剂中,将式III所示的化合物
    与式IV所示的化合物在有机金属锂的作用下反应
    (b)将步骤(a)的反应以水淬灭得到混合液;
    (c)将步骤(b)得到的混合液分层,使有机相与水相分离,浓缩分离出的有机相得到式V所示的化合物
    (d)将步骤(c)获得的式V所示的化合物与甲醇在酸性条件下反应得到式II所示的化合物。
  2. 根据权利要求1所述的方法,其中,步骤(b)的操作方式为:将步骤(a)的反应液缓慢加入水中,控制淬灭温度在0~10℃。
  3. 根据权利要求2所述的方法,其中,所述水预冷至0~5℃。
  4. 根据权利要求1所述的方法,其中,步骤(c)中分层的操作方式为:将步骤(b)中得到的混合液在搅拌下升温至20~30℃,使机相与水相分层。
  5. 根据权利要求1所述的方法,其中步骤(a)的反应在温度-90℃至-60℃下进行,优选在-80℃至-70℃下进行;步骤(d)的反应温度为-80℃至40℃。
  6. 一种制备式I所示化合物的方法,其中,包括以下步骤,
    (e)将根据权利要求1-5中任一项所述的方法制备得到式II所示的化合物在路易酸存在下与还原试剂在溶剂中反应得到式I所示的化合物。
  7. 一种纯化式I所示化合物的方法,其特征在于,包括以下步骤:
    (e)将根据权利要求1-5中任一项所述的方法制备得到式II所示的化合物在路易酸存在下与还原试剂在溶剂中反应得到式I所示的化合物,除去溶剂得到式I化合物的粗品;
    (f)将步骤(e)得到的式I所示化合物粗品加入有机溶剂和水的混合溶剂中,加热搅拌形成混合液;
    (g)可选地,将步骤(f)得到的混合液冷却使得所述化合物的晶体析出;
    (h)过滤分离得到式I所示化合物的晶体;
    其中所述有机溶剂为乙酸乙酯或二氯甲烷,
    其中乙酸乙酯与水的重量比为1:10至5:1的范围;
    其中二氯甲烷与水的重量比为1:10至10:1的范围。
  8. 根据权利要求7所述的方法,其特征在于,乙酸乙酯与所述化合物的体积重量比为1.0mL/g-3.0mL/g,优选为1.5mL/g-2.0ml/L。
  9. 根据权利要求7所述的方法,其特征在于,二氯甲烷与所述化合物的体积重量比为1.5mL/g-4.0ml/L,优选为2.0mL/g-3.0ml/L。
  10. 根据权利要求7所述的方法,其特征在于,乙酸乙酯与水的重量比为1:8至1:1的范围,进一步优选为1:6至1:2的范围,更进一步优选为1:2~1:3.3的范围。
  11. 根据权利要求7所述的方法,其特征在于,二氯甲烷与水的重量比为1:5至5:1的范围,进一步优选为1:3至4:1的范围,更进一步优选为1:3.3~1:2的范围。
  12. 根据权利要求7所述的方法,其特征在于,步骤(f)中,当所述有机溶剂为乙酸乙酯时,所述的加热搅拌的温度为55~65℃,当所述有机溶剂为二氯甲烷时,所述的加热搅拌的温度为25~45℃。
  13. 根据权利要求7所述的方法,其特征在于,步骤(g)中所述冷却方式为逐步降温至0~5℃。
PCT/CN2023/092648 2022-05-12 2023-05-08 一种制备含吡喃葡萄糖基化合物的方法 WO2023217058A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210515735.2 2022-05-12
CN202210515735.2A CN117088924A (zh) 2022-05-12 2022-05-12 一种制备含吡喃葡萄糖基化合物的方法
CN202210515612.9A CN117088860A (zh) 2022-05-12 2022-05-12 含吡喃葡萄糖基化合物的纯化方法
CN202210515612.9 2022-05-12

Publications (1)

Publication Number Publication Date
WO2023217058A1 true WO2023217058A1 (zh) 2023-11-16

Family

ID=88729729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092648 WO2023217058A1 (zh) 2022-05-12 2023-05-08 一种制备含吡喃葡萄糖基化合物的方法

Country Status (1)

Country Link
WO (1) WO2023217058A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193903A (zh) * 2005-05-10 2008-06-04 贝林格尔.英格海姆国际有限公司 制备吡喃葡萄糖基取代的苄基苯衍生物及其中间体的方法
CN106632288A (zh) * 2016-11-07 2017-05-10 安徽九华华源药业有限公司 恩格列净的制备方法
WO2017141202A1 (en) * 2016-02-17 2017-08-24 Lupin Limited Complex of sglt2 inhibitor and process for preparation thereof
CN110305118A (zh) * 2019-06-20 2019-10-08 四川科伦药物研究院有限公司 一种适合工业生产恩格列净的合成方法
CN110655511A (zh) * 2019-05-31 2020-01-07 北京莱瑞森医药科技有限公司 一种高纯度恩格列净的制备和精制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193903A (zh) * 2005-05-10 2008-06-04 贝林格尔.英格海姆国际有限公司 制备吡喃葡萄糖基取代的苄基苯衍生物及其中间体的方法
WO2017141202A1 (en) * 2016-02-17 2017-08-24 Lupin Limited Complex of sglt2 inhibitor and process for preparation thereof
CN106632288A (zh) * 2016-11-07 2017-05-10 安徽九华华源药业有限公司 恩格列净的制备方法
CN110655511A (zh) * 2019-05-31 2020-01-07 北京莱瑞森医药科技有限公司 一种高纯度恩格列净的制备和精制方法
CN110305118A (zh) * 2019-06-20 2019-10-08 四川科伦药物研究院有限公司 一种适合工业生产恩格列净的合成方法

Similar Documents

Publication Publication Date Title
TWI752307B (zh) 新穎化合物及製造化合物之方法
KR101778603B1 (ko) 3α-히드록시, 3β-메틸-5α-프레그난-20-온 (가낙솔론)의 제조 방법
CN107556302A (zh) 一种制备依帕列净的方法
CN110305118B (zh) 一种适合工业生产恩格列净的合成方法
CN110655511B (zh) 一种高纯度恩格列净的制备和精制方法
CN112194655B (zh) 一种恩格列净的制备方法
WO2016173551A1 (zh) 伊格列净的制备方法
WO2023217058A1 (zh) 一种制备含吡喃葡萄糖基化合物的方法
CN111099975A (zh) 一种5-溴-2-氯-4’-乙氧基二苯甲酮的制备方法
CN116159601A (zh) 艾日布林中间体及其制备方法
CN112062669A (zh) 芳烃类化合物的制备方法
CN113214263B (zh) 瑞德西韦关键中间体的一种合成方法
CN112851730B (zh) 一种nmn中间体nr氯化物合成方法
CN110551064B (zh) 艾沙康唑硫酸酯及其中间体的制备方法
JPH0782246A (ja) アスタキサンチンの製法
CN111072450A (zh) 一种烯丙醇类衍生物的合成方法
CN114891005B (zh) 一种乌帕利斯对甲苯磺酸盐的制备工艺
CN115215788B (zh) 一种色瑞替尼关键中间体的制备方法
CN114773266B (zh) 一种改进的孟鲁司特钠的合成方法
CN114437169B (zh) 一种屈螺酮关键中间体溴代物的合成方法
CN111825688B (zh) 一种6-叔丁基-3’,3’,3-三甲基吡喃[3,2-a]咔唑的制备方法
CN113004202B (zh) 一种高纯度托伐普坦的制备方法
CN111848419B (zh) (e)-4-羟基-3-甲基-2-丁烯基胺及玉米素的合成方法
CN117088860A (zh) 含吡喃葡萄糖基化合物的纯化方法
CN115850305A (zh) 一种高纯度克立硼罗的精制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802830

Country of ref document: EP

Kind code of ref document: A1