WO2023214550A1 - 分岐数制御による相分離構造を有する高分子材料 - Google Patents
分岐数制御による相分離構造を有する高分子材料 Download PDFInfo
- Publication number
- WO2023214550A1 WO2023214550A1 PCT/JP2023/016921 JP2023016921W WO2023214550A1 WO 2023214550 A1 WO2023214550 A1 WO 2023214550A1 JP 2023016921 W JP2023016921 W JP 2023016921W WO 2023214550 A1 WO2023214550 A1 WO 2023214550A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- group
- groups
- branched
- polymer unit
- Prior art date
Links
- 239000002861 polymer material Substances 0.000 title claims abstract description 40
- 238000005191 phase separation Methods 0.000 title abstract description 13
- 229920000642 polymer Polymers 0.000 claims abstract description 251
- 239000002904 solvent Substances 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims description 52
- 150000002009 diols Chemical group 0.000 claims description 50
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 claims description 46
- 125000000524 functional group Chemical group 0.000 claims description 26
- 238000002156 mixing Methods 0.000 claims description 19
- 229920001223 polyethylene glycol Polymers 0.000 claims description 18
- 235000000346 sugar Nutrition 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000002202 Polyethylene glycol Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 125000003827 glycol group Chemical group 0.000 claims description 9
- 229920001477 hydrophilic polymer Polymers 0.000 claims description 7
- 150000008163 sugars Chemical group 0.000 claims description 6
- 150000001543 aryl boronic acids Chemical group 0.000 claims description 5
- 125000005843 halogen group Chemical group 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- 239000000203 mixture Substances 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 7
- 239000007791 liquid phase Substances 0.000 abstract description 4
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 43
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 16
- 239000012071 phase Substances 0.000 description 14
- 125000002947 alkylene group Chemical group 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 125000001424 substituent group Chemical group 0.000 description 11
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 7
- KNXQDJCZSVHEIW-UHFFFAOYSA-N (3-fluorophenyl)boronic acid Chemical compound OB(O)C1=CC=CC(F)=C1 KNXQDJCZSVHEIW-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 235000012209 glucono delta-lactone Nutrition 0.000 description 6
- 125000004450 alkenylene group Chemical group 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 238000000502 dialysis Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000008363 phosphate buffer Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- BMTZEAOGFDXDAD-UHFFFAOYSA-M 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholin-4-ium;chloride Chemical compound [Cl-].COC1=NC(OC)=NC([N+]2(C)CCOCC2)=N1 BMTZEAOGFDXDAD-UHFFFAOYSA-M 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229960003681 gluconolactone Drugs 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000005620 boronic acid group Chemical group 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 125000006833 (C1-C5) alkylene group Chemical group 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 241001662443 Phemeranthus parviflorus Species 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- ZHOGHWVKKXUAPI-UHFFFAOYSA-N fluorooxy(phenyl)borinic acid Chemical compound FOB(O)C1=CC=CC=C1 ZHOGHWVKKXUAPI-UHFFFAOYSA-N 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- -1 methylene, ethylene, propylene, butylene Chemical group 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 239000006174 pH buffer Substances 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical group CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- 150000000180 1,2-diols Chemical class 0.000 description 1
- 150000000185 1,3-diols Chemical class 0.000 description 1
- GHCZTIFQWKKGSB-UHFFFAOYSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;phosphoric acid Chemical compound OP(O)(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O GHCZTIFQWKKGSB-UHFFFAOYSA-N 0.000 description 1
- CZDWJVSOQOMYGC-UHFFFAOYSA-N 4-borono-2-fluorobenzoic acid Chemical compound OB(O)C1=CC=C(C(O)=O)C(F)=C1 CZDWJVSOQOMYGC-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012237 artificial material Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/337—Polymers modified by chemical after-treatment with organic compounds containing other elements
Definitions
- the present invention relates to an associative polymer material in which a liquid-liquid phase separation structure is induced by controlling the number of branches, connectivity, etc. in a polymer unit.
- polymers form meeting points through supramolecular interactions (ionic bonds, hydrophobic functional groups, dynamic covalent bonds), forming a transient three-dimensional network structure in a solvent such as water. It is a substance that has Since the meeting point has a finite lifespan, it is a liquid material that has both viscosity and elasticity, unlike polymeric materials with similar compositions.
- Non-Patent Documents 1 and 2 are being studied for use as rheology control agents in foods and cosmetics, and as injectable internal tamponades and drug carriers (for example, Non-Patent Documents 1 and 2).
- conventional slime-like polymers are compatible with solvents, and in fluids such as those in the body, they mix with solvents and dissolve and decompose, creating problems in their stable storage properties.
- the present invention aims to develop a novel artificial material that is stable against external solvents without changing the chemical composition of the main chain skeleton or solvent that constitutes the polymer material, and without impairing the viscosity or elasticity of the slime-like material.
- An object of the present invention is to provide a slime-like polymer material.
- liquid-liquid phase separation can be induced by controlling the number of branches, terminal bonding ratio, concentration, etc. of the polymer units constituting the polymer material.
- the inventors have discovered that it is possible to provide a slime-like polymeric material, and that the solubility in external solvents can be controlled thereby, and have completed the present invention.
- a non-gelling polymer material containing a solvent in which a plurality of polymer units are connected to form a first region where the polymer units are densely present and a second region where the polymer units are sparsely present.
- the polymer unit has a three-dimensional structure in which the regions exist in a phase-separated state; and a polymer unit B group consisting of one or more branched polymers having a total of two or more diol groups at the chain or end; the number average functional number of boronic acid-containing groups per molecule in the polymer unit A group is 3.
- the number average number of diol functional groups per molecule in the polymer unit B group is in the range of 3 to 1,500;
- the total polymer concentration (c) in the polymeric material is 0.1 to 100 g/L, and is in the range of 10 ⁇ 3 to 5 times the overlap concentration (c * ) of the polymer unit; each molecule of the polymer unit is bonded to another polymer unit.
- N is the following relational expression:
- the polymer material satisfies the following; ⁇ 2> The polymeric material according to ⁇ 1> above, wherein the solvent is water, and the branched polymer constituting the polymer unit groups A and B is a hydrophilic polymer; ⁇ 3> The polymer material according to ⁇ 1> above, wherein the branched polymer constituting the polymer unit groups A and B has a polyethylene glycol skeleton or a polyvinyl skeleton; ⁇ 4> The polymeric material according to ⁇ 1> above, wherein at least one of the polymer units A group and B group is composed of only bi-branched, tri-branched, tetra-branched, or octa-branched polyethylene glycol; ⁇ 5> The polymeric material according to ⁇ 1> above, wherein the branched polymers constituting the polymer unit groups A and B both have a molecular weight
- the invention provides: ⁇ 11> A kit for forming the polymeric material according to any one of ⁇ 1> to ⁇ 10> above, comprising one or more types of boronic acid-containing groups having a total of two or more boronic acid-containing groups in the side chain or terminal.
- a first solution containing a group A of polymer units made of a branched polymer, and a second solution containing a group B of polymer units made of one or more branched polymers having a total of two or more diol groups in the side chain or terminal are separately prepared.
- the number average number of functional groups of boronic acid-containing groups per molecule in the polymer unit A group is in the range of 3 to 60, and the number average number of diol groups per molecule in the polymer unit B group is in the range of The number average number of functional groups is in the range of 3 to 1500;
- the total polymer concentration (c) in the first and second solutions is 0.1 to 100 g/L, and the overlapping concentration of the polymer units is (c * ) in the range of 10 ⁇ 3 to 5 times;
- ⁇ 12> The kit according to ⁇ 11> above, further comprising a binding rate regulator in at least one of the first and second solutions;
- the binding rate regulator is selected from the group consisting of sugars, sugar derivatives, and pH regulators;
- N is the following relational expression: The present invention provides a manufacturing method that satisfies the following.
- Example 1 Results of mixing 8-branched PEG-FPBA and 8-branched PEG-GDL and controlling the binding property by the amount of sorbitol added ( ⁇ : Formation of phase-separated structure, ⁇ : Single phase without phase separation).
- Example 2 Results of controlling the binding properties by mixing 8-branched PEG-FPBA, 8-branched PEG-GDL, 4-branched PEG-FPBA, and 4-branched PEG-GDL ( ⁇ : Formation of phase-separated structure; single phase).
- Example 3 Results of controlling binding properties by mixing multi-branched PEG-FPBA and multi-branched PEG-GDL (+ symbol in circle: formation of phase-separated structure).
- FIG. 2 is an image observed by a confocal microscope of a sample subjected to fluorescence modification.
- the polymer material of the present invention is a slime-like associative polymer that does not gel (that is, in a non-gelled state), and has a plurality of polymer units connected to each other. It has a three-dimensional structure in which two phases with different polymer concentrations exist in a phase-separated state: a dense phase (first region) in which the units are densely present, and a dilute phase (second region) in which the polymer units are sparsely present. It is an associative polymer material.
- the present invention is characterized by the discovery that a slime-like polymer material in which liquid-liquid phase separation is induced can be obtained by controlling the number of branches, terminal bonding rate, concentration, etc. of the polymer unit. has.
- the polymer material of the present invention is further characterized by satisfying the following requirements.
- the polymer units constituting the polymeric material include polymer unit A group consisting of one or more branched polymers having a total of two or more boronic acid-containing groups in the side chain or terminal, and a polymer unit A group consisting of one or more branched polymers having a total of two or more boronic acid-containing groups in the side chain or terminal and a polymer unit B group consisting of one or more branched polymers having a diol group; 2)
- the number average functional number of boronic acid-containing groups per molecule in the polymer unit A group is in the range of 3 to 60
- the number average functional group number of diol groups per molecule in the polymer unit B group is in the range of 3 to 60.
- N is the average number of the boronic acid-containing groups or the diol groups bonded to other polymer units per molecule of the polymer unit, N is the following relational expression: to satisfy.
- the polymer material of the present invention is characterized by forming a three-dimensional network structure/porous structure through this phase separation, and the network size is on the ⁇ m order.
- the first region is referred to as a "dense phase" in the relative sense that the concentration (density) of polymer units present in that region is greater than the density in the second region.
- the first region has a concentration (density) about three times or more than the second region.
- the polymer units constituting the polymer material of the present invention can form a non-gelling polymer material by being connected to each other, and more specifically, the polymer units constituting the polymer material of the present invention can form a non-gelling polymer material.
- it is a polymer that can form a network structure, particularly a three-dimensional network structure, by linking the polymer units through chemical bonds caused by equilibrium reactions.
- Such polymer units are preferably hydrophilic polymers.
- the polymer unit used in the present invention consists of a polymer unit A group consisting of one or more branched polymers having a total of two or more boronic acid-containing groups in the side chain or terminal, and a polymer unit A group consisting of one or more branched polymers having a total of two or more diol groups in the side chain or terminal. It is a combination of polymer unit B group consisting of one or more branched polymers.
- the total number of boronic acid-containing groups and diol groups is preferably 5 or more. It is further preferred that these functional groups exist at the ends.
- each branch terminal has a boronic acid-containing group
- the polymer unit group B has a bi-branched, tri-branched, tetra-branched, or eight-branched structure
- a so-called linear polymer is also included in the term "branched polymer" as a two-branched polymer.
- Group A and “Group B” are used to mean that they can each include a plurality of polymer units with different structures, and are not necessarily limited to the case of a combination of a plurality of polymer units. This includes the case where the polymer unit is composed of only one type of polymer unit.
- polymer unit group A comprises a combination of a polymer having a total of 4 terminal boronic acid-containing groups and a polymer having a total of 8 terminal boronic acid-containing groups;
- polymer unit B group comprises a total of 4 terminal terminal polymers;
- a combination of a polymer having one diol group and a polymer having a total of eight terminal diol groups can be included.
- hydrophilic polymer a polymer having an affinity for water known in the art can be used, but preferably a biocompatible polymer having a polyalkylene glycol skeleton or a polyvinyl skeleton.
- the polymer having a polyalkylene glycol skeleton is preferably a polymer species having a plurality of branches of a polyethylene glycol skeleton, and bi-branched, tri-branched, quadri-branched or 8-branched polyethylene glycol is particularly preferred.
- a polymeric material consisting of a 4-branched polyethylene glycol skeleton is generally known as a Tetra-PEG polymeric material, and is composed of 4-branched polymers each having two or more types of functional groups that can react with each other at their ends. It is known that a network structure network is constructed by AB type cross-end coupling reaction (Matsunaga et al., Macromolecules, Vol. 42, No. 4, pp. 1344-1351, 2009).
- Tetra-PEG polymer materials can be easily produced on the spot by simply mixing two polymer solutions, and the polymer material production time can be reduced by adjusting the pH and ionic strength during polymer material preparation. It is also possible to control Furthermore, since this polymeric material has PEG as its main component, it also has excellent biocompatibility.
- hydrophilic polymer having a polyvinyl skeleton examples include polyalkyl methacrylates such as polymethyl methacrylate, polyacrylates, polyvinyl alcohol, polyN-alkylacrylamide, polyacrylamide, and the like.
- the branched polymers constituting the polymer unit groups A and B are hydrophilic polymers.
- the branched polymers constituting the polymer unit groups A and B may have a polyethylene glycol skeleton or a polyvinyl skeleton.
- at least one of the branched polymers constituting the polymer units A group and B group can each independently be composed of only 2-branched, 3-branched, 4-branched, or 8-branched polyethylene glycol.
- the hydrophilic polymer has a weight average molecular weight (Mw) in the range 5x10 3 to 1x10 5 , preferably in the range 1x10 4 to 5x10 4 .
- Mw weight average molecular weight
- the branched polymers constituting the polymer units A group and B group both have a molecular weight (Mw) of 5 ⁇ 10 3 to 1 ⁇ 10 5 .
- the polymer units A group and B group have such a boronic acid-containing group and a diol group
- the boronic acid site and the OH group of the diol chemically react, as illustrated in the equilibrium reaction formula below.
- the polymer material of the present invention having a structure in which polymer units are interconnected and associated can be obtained.
- the specific structures of the boronic acid-containing group and diol group shown in the reaction formula are merely examples and are not limited to these, and as described later, other types of boronic acid-containing group and diol group may be used. You can do something.
- the boronic acid-containing group present in polymer unit A group is not particularly limited as long as it has a structure having a boronic acid, but for example, an arylboronic acid, preferably an arylboronic acid which may be substituted with a halogen atom. Something can happen.
- an arylboronic acid phenylboronic acid is preferred.
- the boronic acid-containing groups may be the same or different, but are preferably the same. By having the same functional groups, the reactivity with the diol group becomes uniform, making it easier to obtain a polymeric material having a uniform structure.
- the diol group present in polymer unit B group is not particularly limited as long as it is a functional group having two or more hydroxyl groups (OH groups) such as 1,2-diol and 1,3-diol, but It can be a derivative. It can be a sugar alcohol having a structure derived from sugar, preferably one having a ring-opened structure of a sugar derivative. Such sugars can be monosaccharides, disaccharides, or polysaccharides, and typically monosaccharides such as glucose or fructose. Further, it may be an aromatic diol group, an aliphatic diol group, or a diol group in which one or more carbon atoms in the molecule are substituted with a hetero atom. The diol groups may be the same or different, but it is preferable that they are the same. By having the same functional groups, the reactivity with the boronic acid-containing group becomes uniform, making it easier to obtain a polymeric material having a uniform structure.
- OH groups
- the number average number of functional groups of boronic acid-containing groups per molecule in polymer unit A group is in the range of 3 to 100, preferably in the range of 3 to 60.
- the number average number of functional groups of diol groups per molecule in polymer unit B group is in the range of 3 to 1,500, preferably in the range of 3 to 100, more preferably in the range of 3 to 60.
- a desired phase-separated structure can be obtained by setting the number of functional groups within a predetermined range and setting a polymer unit concentration that satisfies the formula for the average number of bonds N, which will be described later.
- the "number average number of functional groups” is the average value of the number of boronic acid-containing groups or diol groups per molecule of the branched polymer contained in the polymer unit A group or B group.
- Preferred non-limiting specific examples of the branched polymer constituting the polymer unit group A include, for example, a polymer represented by the following formula (I) having four polyethylene glycol skeleton branches and a boronic acid-containing group at each end. Examples of such compounds include:
- X is a boronic acid-containing group, and in a preferred embodiment, X can be a phenylboronic acid-containing group or a fluorophenylboronic acid-containing group having the following structure (in the partial structure , the wavy lines are the connections to R 11 to R 14 ).
- n 11 to n 14 may be the same or different. The closer the values of n 11 to n 14 are, the more uniform the three-dimensional structure can be, and the higher the strength. Therefore, in order to obtain a high-strength polymeric material, it is preferable that they be the same. If the value of n 11 to n 14 is too high, the strength of the polymeric material will be weakened, and if the value of n 11 to n 14 is too low, it will be difficult to form a polymeric material due to steric hindrance of the compound. Therefore, n 11 to n 14 have integer values of 25 to 250, preferably 35 to 180, more preferably 50 to 115, and particularly preferably 50 to 60.
- R 11 to R 14 which are the same or different, are linker moieties that connect the functional group and the core portion.
- R 11 to R 14 may be the same or different, but are preferably the same in order to produce a high-strength polymeric material having a uniform three-dimensional structure.
- R 11 to R 14 are a direct bond, a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, -NH-R 15 -, -CO-R 15 -, -R 16 -O-R 17 -, -R 16 -NH-R 17 -, -R 16 -CO 2 -R 17 -, -R 16 -CO 2 -NH-R 17 -, -R 16 -CO-R 17 -, or -R 16 -CO -NH-R 17 - is shown.
- R 15 represents a C 1 -C 7 alkylene group.
- R 16 represents a C 1 -C 3 alkylene group.
- R 17 represents a C 1 -C 5 alkylene group.
- C 1 -C 7 alkylene group means an alkylene group having 1 or more and 7 or less carbon atoms, which may have a branch, and is a straight chain C 1 -C 7 alkylene group or 1 or 2 carbon atoms. It means a C 2 -C 7 alkylene group having three or more branches (the number of carbon atoms including branches is 2 or more and 7 or less). Examples of C 1 -C 7 alkylene groups are methylene, ethylene, propylene, butylene.
- C 1 -C 7 alkylene groups are -CH 2 -, -(CH 2 ) 2 -, -(CH 2 ) 3 -, -CH(CH 3 )-, -(CH 2 ) 3 -, -( CH(CH 3 )) 2 -, -(CH 2 ) 2 -CH(CH 3 )-, -(CH 2 ) 3 -CH(CH 3 )-, -(CH 2 ) 2 -CH(C 2 H 5 )-, -(CH 2 ) 6 -, -(CH 2 ) 2 -C(C 2 H 5 ) 2 -, and -(CH 2 ) 3 C(CH 3 ) 2 CH 2 -.
- a "C 2 -C 7 alkenylene group” is a branched or branched alkenylene group having 2 to 7 carbon atoms and having one or more double bonds in the chain. Examples include divalent groups having a double bond formed by removing 2 to 5 hydrogen atoms from adjacent carbon atoms from an alkylene group.
- branched polymer constituting the polymer unit group B include the following formula (II) having four polyethylene glycol skeleton branches and a diol group at each end.
- formula (II) having four polyethylene glycol skeleton branches and a diol group at each end. Examples of such compounds include:
- Y is a diol group, and in a preferred embodiment, Y can be a group having the following structure (in the partial structure, the wavy line portion is a link to R 21 to R 24 ).
- n 21 to n 24 may be the same or different. The closer the values of n 21 to n 24 are, the more uniform the three-dimensional structure of the polymer material can be, resulting in higher strength, so it is preferable, and it is preferable that they are the same. If the value of n 21 to n 24 is too high, the strength of the polymeric material will be weakened, and if the value of n 21 to n 24 is too low, it will be difficult to form a polymeric material due to steric hindrance of the compound. Therefore, n 21 to n 24 have an integer value of 5 to 300, preferably 20 to 250, more preferably 30 to 180, even more preferably 45 to 115, and even more preferably 45 to 55.
- R 21 to R 24 are linker moieties that connect the functional group and the core portion.
- R 21 to R 24 may be the same or different, but are preferably the same in order to produce a high-strength polymeric material having a uniform three-dimensional structure.
- R 21 to R 24 are each the same or different and include a direct bond, a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, -NH-R 25 -, -CO-R 25 - , -R 26 -O-R 27 -, -R 26 -NH-R 27 -, -R 26 -CO 2 -R 27 -, -R 26 -CO 2 -NH-R 27 -, -R 26 -CO -R 27 - or -R 26 -CO-NH-R 27 -.
- R 25 represents a C 1 -C 7 alkylene group.
- R 26 represents a C 1 -C 3 alkylene group.
- R 27 represents a C 1 -C 5 alkylene group.
- the alkylene group and alkenylene group may have one or more arbitrary substituents.
- substituents include an alkoxy group, a halogen atom (which may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group.
- the polymeric material can include, but is not limited to, a group, an aryl group, or the like. When an alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl moieties of other substituents containing alkyl moieties (eg, alkyloxy groups, aralkyl groups, etc.).
- substituents include, but are not limited to, alkyl groups, alkoxy groups, hydroxyl groups, carboxyl groups, halogen atoms, sulfo groups, amino groups, alkoxycarbonyl groups, and oxo groups. There isn't. Further substituents may be present in these substituents.
- the total concentration (c 1 ) of polymer unit groups A and B is 1 to 200 g/L, preferably 5 to 100 g/L. It is. At the same time, the total concentration c 1 is in the range 0.02 to 3 times the overlap concentration (c 1 * ) of the polymer units, preferably in the range 0.1 to 2.
- overlap concentration refers to the concentration at which polymers in the solvent begin to spatially contact each other
- overlap concentration c * is expressed by the following formula: expressed. (where M w is the weight average molecular weight of the polymer; ⁇ is the specific gravity of the solvent; N A is Avogadro's constant; R g is the radius of gyration of the polymer).
- a method of calculating the overlap density c * for example, refer to Polymer Physics (written by M. Rubinstein and R. Colby). Specifically, for example, it can be determined by measuring the viscosity of a dilute solution using the Flory-Fox equation.
- the polymer material of the present invention is characterized in that the bonding rate between polymer units is within a predetermined range. Thereby, a desired phase separation structure can be obtained. More specifically, when N is the average number of boronic acid-containing groups or diol groups bonded to other polymer units per molecule of a polymer unit, N is the following relational expression: satisfy.
- the average number of bonds N can be calculated using the equilibrium constant in the reaction between polymer units.
- the network bonding ratio is the ratio of the number of connected bonds in an equilibrium state to the total number of reactive functional groups (i.e., boronic acid-containing groups and diol groups).
- p can be calculated.
- bond formation between polymer units is a secondary reaction. Therefore, the kinetics of bond formation can be expressed as:
- n bond is the molar concentration of bonds
- n F,0 and n G,0 are the initial concentrations of polymer unit A group and polymer unit B group, respectively.
- n bond is expressed as follows.
- the mesh connection rate p is It can be expressed as
- the average number (N) of reactive functional groups bonded per molecule of polymer unit having the number of branches (f) in an actual system is It can be calculated as
- a bonding regulator may be further included in order to adjust the above-mentioned average number of bonds N to an appropriate range.
- Such bond modifiers can be broadly divided into (1) compounds that can inhibit the bond between polymer units to some extent, and (2) compounds that can adjust the surrounding environment that affects the bond between polymer units.
- Examples of the compound (1) that can inhibit the bonding between polymer units to some extent include sugars such as glucose and sugar derivatives such as sorbitol. Further, as the compound (2) that can adjust the surrounding environment, a pH adjuster can be mentioned. As such a pH adjuster, a pH buffering agent known in the art can be used.
- the amount of the binding regulator added can be adjusted as appropriate, but for example, when a sugar derivative is used, it can be in a molar ratio of 0.1 to 50 with respect to monomer unit B group.
- the polymer material of the present invention contains a solvent and has a polymer content of 200 g/L or less, preferably 150 g/L or less, more preferably 100 g/L or less.
- the lower limit of the polymer content is not particularly limited, but from the viewpoint of obtaining desired physical properties such as viscosity, the lower limit is preferably 0.1 g/L or more.
- the polymer material of the present invention is characterized by having a porous structure on the ⁇ m order or an aggregate structure due to a phase separation structure.
- the mesh size formed by the first region can be from 1 to 500 ⁇ m, preferably from 10 to 100 ⁇ m.
- the mesh size means the length of the long side of a mesh unit (i.e., a hole) whose outer periphery is formed by the first region, which is a dense phase. Alternatively, if the mesh unit is approximately circular, the length may be the diameter of the mesh unit.
- a second region of dilute phase and/or a solvent Inside such network units there is a second region of dilute phase and/or a solvent. Alternatively, in the dilute phase, there exists an aggregated dense phase with a pore size of 1 to 500 ⁇ m, preferably 10 to 100 ⁇ m.
- the first region, the concentrated phase has a polymer concentration of 1 to 20% by weight, based on the entire gel including solvent, and the second region, the dilute phase, has a polymer concentration of 0 to 3% by weight. It has a high molecular concentration.
- the first region has a polymer concentration of 1 to 10% by weight and the second region has a polymer concentration of 0.01 to 2% by weight.
- any solvent can be used as long as it dissolves the aggregate formed by the polymer units, but typically water or an organic solvent can be used.
- an organic solvent can be used.
- alcohols such as ethanol and polar solvents such as DMSO can be used.
- the solvent is water.
- the polymeric material of the present invention can typically be produced by mixing a raw material containing polymer unit A group and a raw material containing polymer unit B group.
- concentration, addition rate, mixing rate, and mixing ratio of each solution are not particularly limited, and can be adjusted as appropriate by those skilled in the art.
- water, alcohols such as ethanol, DMSO, etc. can be used as the solvent for such a solution.
- a suitable pH buffer such as a phosphate buffer can be used.
- the polymeric material of the present invention can be prepared using the kit described below.
- Kit and manufacturing method The present invention, in another aspect, relates to a kit and manufacturing method for forming the above-mentioned polymeric material.
- Such a kit includes a first solution containing a polymer unit group A consisting of one or more branched polymers having a total of two or more boronic acid-containing groups on the side chain or end; and a total of two or more diol groups on the side chain or end.
- a first solution containing a polymer unit group A consisting of one or more branched polymers having a total of two or more boronic acid-containing groups on the side chain or end; and a total of two or more diol groups on the side chain or end.
- the number average number of functional groups per molecule in the polymer unit group A is in the range of 3 to 60
- the number average number of functional groups per molecule in the polymer unit B group is in the range of 3 to 1,500.
- the polymer units in the two solutions are set in the following concentration ranges.
- the total polymer concentration (c) when the first and second solutions are mixed is 0.1 to 100 g/L, and is 10 ⁇ 3 to 5 times the overlap concentration (c * ) of the polymer units. range.
- At least one of the first and second solutions may further contain a binding rate regulator. Details such as the type of binding rate regulator are as already described.
- the solvent in the first and second solutions is water, but depending on the case, a mixed solvent containing alcohols such as ethanol or other organic solvents may be used.
- these polymer solutions are aqueous solutions containing water as the sole solvent.
- the volume of each polymer solution can be adjusted as appropriate depending on the area and complexity of the structure of the affected area to which it is applied, but typically it is in the range of 0.1 to 20 ml, preferably in the range of 0.1 to 20 ml. The volume is 1 to 10 ml.
- the pH of each polymer solution is typically in the range of 4 to 8, preferably in the range of 5 to 7.
- a pH buffer agent known in the art can be used.
- the pH can be adjusted within the above range by using a citric acid-phosphate buffer (CPB) and changing the mixing ratio of citric acid and disodium hydrogen phosphate.
- CPB citric acid-phosphate buffer
- a two-component mixing syringe as disclosed in International Publication No. WO 2007/083522 can be used.
- the temperature of the two liquids at the time of mixing is not particularly limited, and may be any temperature at which each polymer unit is dissolved and each liquid has fluidity.
- the temperatures of the two liquids may be different, but it is preferable that the two liquids are at the same temperature because the two liquids can be mixed easily.
- a device such as a sprayer containing a polymer solution can be used as a container in the kit of the present invention.
- a device such as a sprayer containing a polymer solution
- the nebulizer any one known in the art can be used as appropriate, and preferably a medical nebulizer.
- the present invention also relates to a method for producing the above-mentioned polymeric material.
- the production method includes polymer unit A group consisting of one or more branched polymers having a total of two or more boronic acid-containing groups in the side chain or terminal, and one or more polymer units having a total of two or more diol groups in the side chain or terminal.
- the method includes a step of preparing a polymer solution by mixing a polymer unit B group consisting of polymers with a solvent.
- the number average number of functional groups per molecule in the polymer unit group A is in the range of 3 to 60, and the number average number of functional groups per molecule in the polymer unit B group is in the range of 3 to 1,500.
- the total polymer concentration (c) in the polymer solution is 0.1 to 100 g/L, and is in the range of 10 ⁇ 3 to 5 times the overlap concentration (c * ) of the polymer units;
- N is the following relational expression: satisfy.
- At least one of the first and second solutions may further contain a binding rate regulator.
- the manufacturing method of the present invention may include a step of separately adding a third solution containing a binding rate regulator.
- polymeric material 1-1 Synthesis of polymer unit Tetra-PEG-GDL, Octa-PEG-GDL, which has a diol group (opened ring structure of gluconolactone) at the end of 4-branched or 8-branched tetrapolyethylene glycol, is used as a polymer unit constituting the polymer material. , and Tetra-PEG-FPBA and Octa-PEG-FPBA having a fluorophenylboronic acid group at the end.
- Tetra-PEG-NH 2 molecular weight Mw of 5k, 10k, and 20k, respectively; Yuka Sangyo Co., Ltd.
- Octa-PEG-NH 2 molecular weight Mw of 5k, 10k, and 20k, respectively; Yuka Sangyo Co., Ltd.
- 4-carboxy-3-fluorophenylboronic acid FPBA
- FPBA Fluji Film Wako Pure Chemical Industries, Ltd.
- DMT-MM 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride
- DMT-MM Glucono- ⁇ -lactone
- GDL Tokyo Kasei Kogyo Co., Ltd.
- Tetra-PEG-GDL Tetra-PEG-NH 2 having an amino group at the end was dissolved in methanol at a concentration of 50 mg/mL, and the molar ratio was 10 times that of the terminal amino group of Tetra-PEG-NH 2 .
- of gluconolactone and 20 times as much triethylamine were added, and the mixture was stirred at 35°C for 3 days.
- Transfer the reaction solution to a dialysis membrane MWCO: 6-8,000 for 20k, MWCO: 3,500 for 10k, 5k
- dialyze with methanol for 2 days and water for 2 days pass through a 0.45 um syringe filter. , freeze-dried and recovered as a powder. Completion of the synthesis was confirmed by 1 H-NMR.
- Tetra-PEG-FPBA Tetra-PEG-FPBA Tetra-PEG-NH 2 was dissolved in methanol at a concentration of 50 mg/mL, and the molar ratio of FPBA to the terminal amino group of Tetra-PEG-NH 2 was 5 times that of FPBA and 10 times that of Tetra-PEG-NH 2 . DMT-MM was added and stirred at room temperature overnight. Transfer the reaction solution to a dialysis membrane (MWCO: 6-8,000 for 20k, MWCO: 3,500 for 10k, 5k), and soak in hydrochloric acid aqueous solution (10 mM) for half a day and sodium hydroxide aqueous solution (10 mM) for half a day.
- MWCO dialysis membrane
- Hyperbranched PEG-NH2 was dissolved in methanol at a concentration of 50 mg/mL, gluconolactone at a molar ratio of 10 equivalents and triethylamine at 20 equivalents relative to the NH2 terminal were added, and the mixture was stirred at 35°C for 3 days.
- the reaction solution was transferred to a dialysis membrane (MWCO: 6-8,000 for 20k, MWCO: 3,500 for 10k, 5k), dialyzed against methanol and deionized water for 1 day each, and filtered through a 0.45 ⁇ m syringe filter. Thereafter, the reaction solution was freeze-dried, and the reaction product was recovered as a GDL end-modified product (hyperbranched PEG-GDL).
- hyperbranched PEG-NH2 was dissolved in methanol at a concentration of 50 mg/mL, 5 equivalents of FPBA and 10 equivalents of DMT-MM were added in a molar ratio to the NH2 end, and the solution was incubated overnight at room temperature. Stirred. Transfer the reaction solution to a dialysis membrane (MWCO: 6-8,000 for 20k, MWCO: 3,500 for 10k, 5k) and soak for half a day in aqueous hydrochloric acid solution (10 mM) or half a day in an aqueous sodium hydroxide solution (10 mM).
- a dialysis membrane MWCO: 6-8,000 for 20k, MWCO: 3,500 for 10k, 5k
- Example 3 the obtained hyperbranched PEG-FPBA and hyperbranched PEG-GDL were dissolved in a pH 7.4 phosphate buffer at 10, 20, and 30 g/L, and mixed in equal amounts. A polymer material was obtained.
- Figure 1 shows a plot of the results of confirming the formation of a phase-separated structure for various polymer materials synthesized in .
- a sample that has undergone fluorescence modification such as fluorescein is observed using a confocal laser microscope (LSM800, manufactured by Zeiss) at an excitation wavelength of 498 nm and an observation wavelength of 598 nm.
- LSM800 confocal laser microscope
- Tetra-PEG-NH2 or Octa-PEG-NH2 (molecular weights Mw of 5k, 10k, and 20k were used, respectively; Yuka Sangyo Co., Ltd.) was dissolved in methanol at a concentration of 50 mg/ml.
- the NH2 terminal was reacted with fluorescein isothiocyanate (FITC) (manufactured by Sigma Aldrich) at a concentration of 0.001 times, and stirred at 25°C for 1 day. Thereafter, 10 times the amount of gluconolactone and 20 equivalents of triethylamine were added to the NH2 terminal, and the mixture was stirred at 35°C for 3 days.
- FITC fluorescein isothiocyanate
- reaction solution Transfer the reaction solution to a dialysis membrane (MWCO: 6-8,000 for 20k, MWCO: 3,500 for 10k, 5k), dialyze with methanol and deionized water for 1 day each, and filter with a 0.45 ⁇ m syringe filter. Ta. Thereafter, the reaction solution was freeze-dried and the reaction product was recovered as a solid.
- a fluorescence-modified sample was obtained by mixing Tetra-PEG-FPBA and Octa-PEG-FPBA synthesized in . It has been confirmed that there is almost no change in physical properties due to fluorescence modification.
- the horizontal axis is the total concentration of polymer units (c)/overlapping concentration of polymer units (c * ); the vertical axis is the concentration of polymer units bonded to other polymer units per molecule of polymer units.
- the average number of boronic acid-containing groups or diol groups is N.
- Example 1 is the result of mixing 8-branched PEG-FPBA and 8-branched PEG-GDL, and controlling the binding property by adjusting the amount of sorbitol added.
- ⁇ indicates that formation of a phase-separated structure was confirmed
- x indicates that a single phase was formed without phase separation.
- Example 2 is the result of controlling the binding properties by mixing 8-branched PEG-FPBA, 8-branched PEG-GDL, 4-branched PEG-FPBA, and 4-branched PEG-GDL.
- ⁇ indicates the formation of a phase-separated structure
- 10 indicates a single phase without phase separation.
- Example 3 is the result of controlling the binding properties by mixing multi-branched PEG-FPBA and multi-branched PEG-GDL.
- a symbol with a 10 inside a circle indicates the formation of a phase-separated structure.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
<1>溶媒を含有する非ゲル化高分子材料であって、複数のポリマーユニットが連結することで、前記ポリマーユニットが密に存在する第1領域と、前記ポリマーユニットが疎に存在する第2領域が相分離状態で存在する3次元構造を有し;前記ポリマーユニットが、側鎖又は末端に合計2以上のボロン酸含有基を有する1種以上の分岐ポリマーよりなるポリマーユニットA群と、側鎖又は末端に合計2以上のジオール基を有する1種以上の分岐ポリマーよりなるポリマーユニットB群とを含み;前記ポリマーユニットA群における1分子当たりのボロン酸含有基の数平均官能基数が、3~60の範囲であり、かつ前記ポリマーユニットB群における1分子当たりのジオール基の数平均官能基数が、3~1500の範囲であって;前記高分子材料中の合計ポリマー濃度(c)が、0.1~100g/Lであり、かつ前記ポリマーユニットの重なり合い濃度(c*)の10-3~5倍の範囲であり;前記ポリマーユニットの1分子当たり、他のポリマーユニットと結合している前記ボロン酸含有基又は前記ジオール基の平均数をNとした場合に、Nが以下の関係式
<2>前記溶媒が水であり、前記ポリマーユニットA群及びB群を構成する分岐ポリマーが親水性ポリマーである、上記<1>に記載の高分子材料;
<3>前記ポリマーユニットA群及びB群を構成する分岐ポリマーが、ポリエチレングリコール骨格又はポリビニル骨格を有する、上記<1>に記載の高分子材料;
<4>前記ポリマーユニットA群及びB群の少なくとも一方が、2分岐、3分岐、4分岐、又は8分岐のポリエチレングリコールのみで構成される、上記<1>に記載の高分子材料;
<5>前記ポリマーユニットA群及びB群を構成する分岐ポリマーが、いずれも5x103~1x105の分子量(Mw)を有する、上記<1>に記載の高分子材料;
<6>前記ボロン酸含有基が、ハロゲン原子で置換されていてもよいアリールボロン酸である、上記<1>に記載の高分子材料;
<7>前記ジオール基が、糖誘導体の開環構造を有する、上記<1>に記載の高分子材料;
<8>前記ポリマーユニットA群が、末端に合計4つのボロン酸含有基を有するポリマーと末端に合計8つのボロン酸含有基を有するポリマーの組合せを含み;前記ポリマーユニットB群が、末端に合計4つのジオール基を有するポリマーと末端に合計8つのジオール基を有するポリマーの組合せを含む、上記<1>に記載の高分子材料;
<9>結合率調整剤をさらに含む、上記<1>に記載の高分子材料;
<10>結合率調整剤が、糖、糖誘導体及びpH調整剤よりなる群から選択される、上記<1>に記載の高分子材料。
を提供するものである。
<11>上記<1>~<10>のいずれか1に記載の高分子材料を形成するためのキットであって、側鎖又は末端に合計2以上のボロン酸含有基を有する1種以上の分岐ポリマーよりなるポリマーユニットA群を含む第1の溶液、及び側鎖又は末端に合計2以上のジオール基を有する1種以上の分岐ポリマーよりなるポリマーユニットB群を含む第2の溶液をそれぞれ別個に格納した容器を含み;前記ポリマーユニットA群における1分子当たりのボロン酸含有基の数平均官能基数が、3~60の範囲であり、かつ前記ポリマーユニットB群における1分子当たりのジオール基の数平均官能基数が、3~1500の範囲であって;前記第1及び第2の溶液におけるポリマー濃度の合計(c)が、0.1~100g/Lであり、かつ前記ポリマーユニットの重なり合い濃度(c*)の10-3~5倍の範囲である、該キット;
<12>前記第1及び第2の溶液の少なくともいずれか一方に結合率調整剤をさらに含む、上記<11>に記載のキット;
<13>前記結合率調整剤が、糖、糖誘導体及びpH調整剤よりなる群から選択される、上記<11>に記載のキット;
<14>上記<1>~<10>のいずれか1に記載の高分子材料の製造方法であって、側鎖又は末端に合計2以上のボロン酸含有基を有する1種以上の分岐ポリマーよりなるポリマーユニットA群と、側鎖又は末端に合計2以上のジオール基を有する1種以上のポリマーよりなるポリマーユニットB群と、溶媒を混合してポリマー溶液を調製する工程を含み;前記ポリマーユニットA群における1分子当たりの数平均官能基数が、3~60の範囲であり、かつ前記ポリマーユニットB群における1分子当たりの数平均官能基数が、3~1500の範囲であり;前記ポリマー溶液におけるポリマー濃度(c)が、0.1~100g/Lであり、かつ前記ポリマーユニットの重なり合い濃度(c*)の10-3~5倍の範囲であり;前記ポリマーユニットの1分子当たり、他のポリマーユニットと結合している前記ボロン酸含有基又は前記ジオール基の平均数をNとした場合に、Nが以下の関係式
を提供するものである。
本発明の高分子材料は、ゲル化しない(すなわち、非ゲル化状態)、かつスライム状の会合性高分子であって、複数のポリマーユニットが連結することで、前記ポリマーユニットが密に存在する濃厚相(第1領域)と、前記ポリマーユニットが疎に存在す希薄相(第2領域)というポリマー濃度が異なる2つの相が相分離状態で存在する3次元構造を有する会合性高分子材料である。そして、本発明では、上記ポリマーユニットの分岐数、末端結合率、及び濃度等を制御することにより、液-液相分離が誘起されたスライム状高分子材料が得られることを見出した点に特徴を有する。
1)高分子材料を構成するポリマーユニットが、側鎖又は末端に合計2以上のボロン酸含有基を有する1種以上の分岐ポリマーよりなるポリマーユニットA群と、側鎖又は末端に合計2以上のジオール基を有する1種以上の分岐ポリマーよりなるポリマーユニットB群とを含むこと;
2)前記ポリマーユニットA群における1分子当たりのボロン酸含有基の数平均官能基数が、3~60の範囲であり、かつ前記ポリマーユニットB群における1分子当たりのジオール基の数平均官能基数が、3~1500の範囲であること;
3)高分子材料中の合計ポリマー濃度(c)が、0.1~100g/Lであり、かつ前記ポリマーユニットの重なり合い濃度(c*)の10-3~5倍の範囲であること;
4)ポリマーユニットの1分子当たり、他のポリマーユニットと結合している前記ボロン酸含有基又は前記ジオール基の平均数をNとした場合に、Nが以下の関係式
本発明の高分子材料を構成するポリマーユニットは、互いに連結することによって非ゲル性の高分子材料を形成し得るものであって、より詳細には、最終的な高分子材料において、当該ポリマーユニットが平衡反応による化学結合を介して連結することにより網目構造、特に、3次元網目構造の会合体を形成し得るポリマーである。かかるポリマーユニットは、好ましくは親水性ポリマーである。
本発明の高分子材料において、ポリマーユニットA群及びB群の合計濃度(c1)は、1~200g/Lであり、好ましくは5~100g/Lである。同時に、合計濃度c1は、ポリマーユニットの重なり合い濃度(c1 *)の0.02~3倍の範囲、好ましくは、0.1~2の範囲である。
好ましい態様において、上述の結合平均数Nを適切な範囲とするために、結合調整剤をさらに含むことができる。かかる結合調整剤としては、大きく分けて、(1)ポリマーユニット間の結合をある程度阻害し得る化合物、及び(2)ポリマーユニット間の結合に影響する周囲環境を調節し得る化合物が含まれる。
ことができる。
本発明は、別の観点において、上記高分子材料を形成するためのキット及び製造方法に関する。
前記ポリマーユニットA群における1分子当たりの数平均官能基数が、3~60の範囲であり、かつ前記ポリマーユニットB群における1分子当たりの数平均官能基数が、3~1500の範囲であることを特徴とする。
前記ポリマー溶液におけるポリマー濃度の合計(c)が、0.1~100g/Lであり、かつ前記ポリマーユニットの重なり合い濃度(c*)の10-3~5倍の範囲であり;
前記ポリマーユニットの1分子当たり、他のポリマーユニットと結合している前記ボロン酸含有基又は前記ジオール基の平均数をNとした場合に、Nが以下の関係式
1-1.ポリマーユニットの合成
高分子材料を構成するポリマーユニットとして、4分岐、または8分岐テトラポリエチレングリコールの末端にジオール基(グルコノラクトンの開環構造)を有するTetra-PEG-GDL、Octa-PEG-GDL、及び末端にフルオロフェニルボロン酸基を有するTetra-PEG-FPBA、Octa-PEG-FPBAを合成した。
Tetra-PEG-NH2(分子量Mwは、それぞれ5k、10k、20kのものを用いた;油化産業株式会社);
Octa-PEG-NH2(分子量Mwは、それぞれ5k、10k、20kのものを用いた;油化産業株式会社);
4-carboxy-3-fluorophenylboronic acid(FPBA)(富士フィルム和光純薬株式会社);
4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride(DMT-MM)(富士フィルム和光純薬株式会社);
グルコノ-δ-ラクトン(GDL)(東京化成工業株式会社)。
アミノ基を末端に有するTetra-PEG-NH2をメタノールに50 mg/mLの濃度で溶解し、Tetra-PEG-NH2の末端アミノ基に対してモル比で10倍のグルコノラクトン、20倍のトリエチルアミンを添加し、35℃で3日間撹拌した。反応液を透析膜に移し(20kの場合はMWCO: 6-8,000、10k, 5kの場合はMWCO: 3,500)、メタノールで2日間、水で2日間透析し、0.45 umのシリンジフィルターを通した後、凍結乾燥して粉体で回収した。1H-NMRで合成の完了を確認した。
Tetra-PEG-NH2をメタノールに50 mg/mLの濃度で溶解し、Tetra-PEG-NH2の末端アミノ基に対してモル比で5倍のFPBA、10倍のDMT-MMを添加し、室温で一晩撹拌した。反応液を透析膜に移し(20kの場合はMWCO: 6-8,000、10k, 5kの場合はMWCO: 3,500)、塩酸水溶液(10 mM)で半日間・水酸化ナトリウム水溶液(10 mM)で半日、リン酸緩衝液(pH 7.4、10 mM)で半日、食塩水(100 mM)で1日、最後に純水で1日透析し、0.45 umのシリンジフィルターを通した後、凍結乾燥して粉体で回収した。1H-NMRで合成の完了を確認した。
活性エステル末端Tetra-PEG-OSu (製品名SUNBRIGHT PTE-100HS;油化産業株式会社)およびアミン末端Tetra-PEG-NH2 (製品名SUNBRIGHT PTE-100PA;油化産業株式会社)を、pH7.4のリン酸緩衝液に、60 g/Lとなるように溶解した。それぞれの溶液を体積比で、0.14:0.86となるように混合し、ゲル化する直前の溶液を作製した。この溶液を、水で透析したのち、凍結乾燥によって粉末を得た。得られた粉末PEGは、アミン末端を過剰に有する多分岐体(多分岐PEG-NH2)である。
得られたポリマーユニットを含む溶液、さらに、場合により結合調整剤である糖誘導体を含む溶液を調製し、これらポリマー溶液を混合して、以下の表に示す組成の高分子材料を合成した。
上記1.で合成した各種高分子材料について、相分離構造の形成の有無を確認した結果をプロットしたものを図1に示す。ここで、相分離構造の形成の確認は、フルオロセインなどの蛍光修飾を施した試料について共焦点レーザー顕微鏡(LSM800 、Zeiss社製)にて励起波長498nm、観察波長598nmで観察し、5μm以上の構造体(すなわち、取得される画像上に異なる色で示される構造)が確認されたものを相分離構造と認定した(図2)。
Tetra-PEG-NH2またはOcta-PEG-NH2 (分子量Mwは、それぞれ5k、10k、20kのものを用いた;油化産業株式会社)をメタノールに 50mg/ml の濃度で溶解し、NH2 末端に対して0.001倍の Fluorescein isothiocyanate (FITC) (Sigma Aldrich社製) と反応させ、25°Cで1日間攪拌した。その後、NH2 末端に対して 10 倍のグルコノラクトン、20等量のトリエチルアミンを加え、35℃ で 3 日間攪拌した。反応液を透析膜 (20kの場合はMWCO: 6-8,000、10k, 5kの場合はMWCO: 3,500)に移し、メタノールと脱イオン水で 1 日間ずつ透析し、0.45 μm のシリンジフィルターでフィルタリングを行った。その後、反応液に凍結乾燥をかけ反応物を固体として回収した。得られた蛍光修飾されたTetra-PEG-GDL、Octa-PEG-GDLと上記1.で合成したTetra-PEG-FPBA、Octa-PEG-FPBAを混合することで、蛍光修飾試料を取得した。蛍光修飾による物性の変化はほぼないことを確認している。
Claims (14)
- 溶媒を含有する非ゲル化高分子材料であって、
複数のポリマーユニットが連結することで、前記ポリマーユニットが密に存在する第1領域と、前記ポリマーユニットが疎に存在する第2領域が相分離状態で存在する3次元構造を有し;
前記ポリマーユニットが、側鎖又は末端に合計2以上のボロン酸含有基を有する1種以上の分岐ポリマーよりなるポリマーユニットA群と、側鎖又は末端に合計2以上のジオール基を有する1種以上の分岐ポリマーよりなるポリマーユニットB群とを含み;
前記ポリマーユニットA群における1分子当たりのボロン酸含有基の数平均官能基数が、3~60の範囲であり、かつ前記ポリマーユニットB群における1分子当たりのジオール基の数平均官能基数が、3~1500の範囲であって;
前記高分子材料中の合計ポリマー濃度(c)が、0.1~100g/Lであり、かつ前記ポリマーユニットの重なり合い濃度(c*)の10-3~5倍の範囲であり;
前記ポリマーユニットの1分子当たり、他のポリマーユニットと結合している前記ボロン酸含有基又は前記ジオール基の平均数をNとした場合に、Nが以下の関係式
該高分子材料。 - 前記溶媒が水であり、前記ポリマーユニットA群及びB群を構成する分岐ポリマーが親水性ポリマーである、請求項1に記載の高分子材料。
- 前記ポリマーユニットA群及びB群を構成する分岐ポリマーが、ポリエチレングリコール骨格又はポリビニル骨格を有する、請求項1に記載の高分子材料。
- 前記ポリマーユニットA群及びB群の少なくとも一方が、2分岐、3分岐、4分岐、又は8分岐のポリエチレングリコールのみで構成される、請求項1に記載の高分子材料。
- 前記ポリマーユニットA群及びB群を構成する分岐ポリマーが、いずれも5x103~1x105の分子量(Mw)を有する、請求項1に記載の高分子材料。
- 前記ボロン酸含有基が、ハロゲン原子で置換されていてもよいアリールボロン酸である、請求項1に記載の高分子材料。
- 前記ジオール基が、糖誘導体の開環構造を有する、請求項1に記載の高分子材料。
- 前記ポリマーユニットA群が、末端に合計4つのボロン酸含有基を有するポリマーと末端に合計8つのボロン酸含有基を有するポリマーの組合せを含み;
前記ポリマーユニットB群が、末端に合計4つのジオール基を有するポリマーと末端に合計8つのジオール基を有するポリマーの組合せを含む、
請求項1に記載の高分子材料。 - 結合率調整剤をさらに含む、請求項1に記載の高分子材料。
- 結合率調整剤が、糖、糖誘導体及びpH調整剤よりなる群から選択される、請求項1に記載の高分子材料。
- 請求項1~10のいずれか1に記載の高分子材料を形成するためのキットであって、
側鎖又は末端に合計2以上のボロン酸含有基を有する1種以上の分岐ポリマーよりなるポリマーユニットA群を含む第1の溶液、及び
側鎖又は末端に合計2以上のジオール基を有する1種以上の分岐ポリマーよりなるポリマーユニットB群を含む第2の溶液
をそれぞれ別個に格納した容器を含み;
前記ポリマーユニットA群における1分子当たりのボロン酸含有基の数平均官能基数が、3~60の範囲であり、かつ前記ポリマーユニットB群における1分子当たりのジオール基の数平均官能基数が、3~1500の範囲であって;
前記第1及び第2の溶液におけるポリマー濃度の合計(c)が、0.1~100g/Lであり、かつ前記ポリマーユニットの重なり合い濃度(c*)の10-3~5倍の範囲である、
該キット。 - 前記第1及び第2の溶液の少なくともいずれか一方に結合率調整剤をさらに含む、請求項11に記載のキット。
- 前記結合率調整剤が、糖、糖誘導体及びpH調整剤よりなる群から選択される、請求項11に記載のキット。
- 請求項1~10のいずれか1に記載の高分子材料の製造方法であって、
側鎖又は末端に合計2以上のボロン酸含有基を有する1種以上の分岐ポリマーよりなるポリマーユニットA群と、側鎖又は末端に合計2以上のジオール基を有する1種以上のポリマーよりなるポリマーユニットB群と、溶媒を混合してポリマー溶液を調製する工程を含み;
前記ポリマーユニットA群における1分子当たりの数平均官能基数が、3~60の範囲であり、かつ前記ポリマーユニットB群における1分子当たりの数平均官能基数が、3~1500の範囲であり;
前記ポリマー溶液におけるポリマー濃度(c)が、0.1~100g/Lであり、かつ前記ポリマーユニットの重なり合い濃度(c*)の10-3~5倍の範囲であり;
前記ポリマーユニットの1分子当たり、他のポリマーユニットと結合している前記ボロン酸含有基又は前記ジオール基の平均数をNとした場合に、Nが以下の関係式
該製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2023264383A AU2023264383A1 (en) | 2022-05-03 | 2023-04-28 | Polymer material having phase separation structure obtained by controlling number of branches |
CN202380011868.9A CN117377725A (zh) | 2022-05-03 | 2023-04-28 | 具有由支链数量控制的相分离结构的高分子材料 |
US18/565,147 US20240279403A1 (en) | 2022-05-03 | 2023-04-28 | Polymer material with phase-separated structure obtained by controlling the number of branches |
EP23799480.1A EP4332173A1 (en) | 2022-05-03 | 2023-04-28 | Polymer material having phase separation structure obtained by controlling number of branches |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022076349 | 2022-05-03 | ||
JP2022-076349 | 2022-05-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023214550A1 true WO2023214550A1 (ja) | 2023-11-09 |
Family
ID=88646488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/016921 WO2023214550A1 (ja) | 2022-05-03 | 2023-04-28 | 分岐数制御による相分離構造を有する高分子材料 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240279403A1 (ja) |
EP (1) | EP4332173A1 (ja) |
CN (1) | CN117377725A (ja) |
AU (1) | AU2023264383A1 (ja) |
WO (1) | WO2023214550A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007083522A1 (ja) | 2006-01-18 | 2007-07-26 | Next21 K. K. | 医療用ゲル形成組成物,その組成物の投与デバイス及び薬剤放出制御担体 |
JP2012500208A (ja) * | 2008-08-13 | 2012-01-05 | カリフォルニア インスティテュート オブ テクノロジー | 担体ナノ粒子ならびに関連する組成物、方法およびシステム |
CN109575269A (zh) * | 2019-02-02 | 2019-04-05 | 清华大学 | 一种具有双重动态网络的自愈性水凝胶及其制备方法 |
CN109721744A (zh) * | 2018-12-26 | 2019-05-07 | 清华大学 | 一种基于硼酸酯键的自修复抗菌水凝胶 |
CN111138687A (zh) * | 2019-12-24 | 2020-05-12 | 中国药科大学 | 一种可注射葡萄糖响应自愈水凝胶、其制备方法及应用 |
CN112851983A (zh) * | 2020-12-31 | 2021-05-28 | 东华大学 | 一种水凝胶的静电喷涂膜及其制备方法与应用 |
WO2022092043A1 (ja) * | 2020-10-29 | 2022-05-05 | 国立大学法人 東京大学 | 会合性高分子材料 |
-
2023
- 2023-04-28 US US18/565,147 patent/US20240279403A1/en active Pending
- 2023-04-28 CN CN202380011868.9A patent/CN117377725A/zh active Pending
- 2023-04-28 WO PCT/JP2023/016921 patent/WO2023214550A1/ja active Application Filing
- 2023-04-28 AU AU2023264383A patent/AU2023264383A1/en active Pending
- 2023-04-28 EP EP23799480.1A patent/EP4332173A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007083522A1 (ja) | 2006-01-18 | 2007-07-26 | Next21 K. K. | 医療用ゲル形成組成物,その組成物の投与デバイス及び薬剤放出制御担体 |
JP2012500208A (ja) * | 2008-08-13 | 2012-01-05 | カリフォルニア インスティテュート オブ テクノロジー | 担体ナノ粒子ならびに関連する組成物、方法およびシステム |
CN109721744A (zh) * | 2018-12-26 | 2019-05-07 | 清华大学 | 一种基于硼酸酯键的自修复抗菌水凝胶 |
CN109575269A (zh) * | 2019-02-02 | 2019-04-05 | 清华大学 | 一种具有双重动态网络的自愈性水凝胶及其制备方法 |
CN111138687A (zh) * | 2019-12-24 | 2020-05-12 | 中国药科大学 | 一种可注射葡萄糖响应自愈水凝胶、其制备方法及应用 |
WO2022092043A1 (ja) * | 2020-10-29 | 2022-05-05 | 国立大学法人 東京大学 | 会合性高分子材料 |
CN112851983A (zh) * | 2020-12-31 | 2021-05-28 | 东华大学 | 一种水凝胶的静电喷涂膜及其制备方法与应用 |
Non-Patent Citations (3)
Title |
---|
MATSUNAGA ET AL., MACROMOLECULES, vol. 42, no. 4, 2009, pages 1344 - 1351 |
OOKI T ET AL., DEVELOPMENTAL CELL, vol. 49, 2019, pages 590 - 604 |
RAINER G ET AL., BR J OPHTHALMOL, vol. 85, 2001, pages 139 - 142 |
Also Published As
Publication number | Publication date |
---|---|
AU2023264383A1 (en) | 2023-12-14 |
EP4332173A1 (en) | 2024-03-06 |
CN117377725A (zh) | 2024-01-09 |
US20240279403A1 (en) | 2024-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Seera et al. | Physical and chemical crosslinked microcrystalline cellulose-polyvinyl alcohol hydrogel: Freeze–thaw mediated synthesis, characterization and in vitro delivery of 5-fluorouracil | |
WO2022092043A1 (ja) | 会合性高分子材料 | |
JP7350940B2 (ja) | 新規な架橋アルギン酸 | |
Ni et al. | Supramolecular hydrogels based on self‐assembly between PEO‐PPO‐PEO triblock copolymers and α‐cyclodextrin | |
JP7272672B2 (ja) | スポンジ様の多孔体構造を有する高分子ゲル | |
WO2021125255A1 (ja) | 新規な架橋アルギン酸 | |
WO2014190849A1 (zh) | 阿霉素前药及其制备方法和可注射的组合物 | |
CN110078941B (zh) | 一种改性纳米羟基磷灰石超分子复合水凝胶及制备方法 | |
US20170204364A1 (en) | Method for modifying polysaccharides by grafting polyetheramines, polysaccharides thus modified and preparations comprising same and having heat-sensitive rheological properties | |
WO2014157186A1 (ja) | 温度応答性ポリマーを含む低膨潤度の新規ハイドロゲル | |
WO2023214550A1 (ja) | 分岐数制御による相分離構造を有する高分子材料 | |
WO2023214551A1 (ja) | 相分離構造を有する高分子材料 | |
Chen et al. | In situ forming hydrogels based on oxidized hydroxypropyl cellulose and Jeffamines | |
JP2017222809A (ja) | 機能性超分子化合物 | |
CN114042034A (zh) | 一种可注射温敏型药物缓释载体水凝胶及其制备方法 | |
Song et al. | In situ crosslinkable hydrogel formed from a polysaccharide-based hydrogelator | |
WO2021153489A1 (ja) | 再生医療用ゲル材料 | |
Li et al. | Injectable supramolecular hydrogels self-assembled by polymers and cyclodextrins for controlled drug delivery | |
WO2024203856A1 (ja) | ゲル化剤、液体組成物及びハイドロゲル | |
EP4331633A1 (en) | Method for producing hydrogel having porous structure | |
CN112979965A (zh) | 一种有机高分子化合物及其制备工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202380011868.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023799480 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023264383 Country of ref document: AU Ref document number: AU2023264383 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2023799480 Country of ref document: EP Effective date: 20231128 |
|
ENP | Entry into the national phase |
Ref document number: 2023264383 Country of ref document: AU Date of ref document: 20230428 Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23799480 Country of ref document: EP Kind code of ref document: A1 |