WO2023207240A1 - 一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法 - Google Patents

一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法 Download PDF

Info

Publication number
WO2023207240A1
WO2023207240A1 PCT/CN2023/074208 CN2023074208W WO2023207240A1 WO 2023207240 A1 WO2023207240 A1 WO 2023207240A1 CN 2023074208 W CN2023074208 W CN 2023074208W WO 2023207240 A1 WO2023207240 A1 WO 2023207240A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
film
temperature
heating
substrate
Prior art date
Application number
PCT/CN2023/074208
Other languages
English (en)
French (fr)
Inventor
王长擂
赵德威
李孝峰
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023207240A1 publication Critical patent/WO2023207240A1/zh
Priority to US18/531,195 priority Critical patent/US20240114760A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the technical field of solar cells, and in particular to a perovskite film and a preparation method.
  • a high-quality perovskite light-absorbing layer needs to meet: 1) good crystallinity, that is, the perovskite grain size needs to be large enough to improve the crystal quality; 2) lower defect state density, that is, the perovskite light-absorbing film should have a relatively high Small number of grain boundaries; 3) Longer carrier lifetime to ensure that photogenerated carriers can reach the electrode through a longer transport distance and avoid recombination losses.
  • Perovskite tandem solar cells need to meet the high efficiency of both wide-bandgap top cells and narrow-bandgap bottom cells.
  • a large amount of halogen bromine needs to be added to increase the band gap, which will cause phase separation within the perovskite material, thus affecting the crystallization quality of the perovskite film.
  • a narrow bandgap perovskite film it is necessary to dope with metal tin ions (Sn 2+ ) to obtain a narrow bandgap material.
  • Narrow bandgap perovskite has poor crystal quality, small grain size, poor film coverage, and short carrier lifetime, which introduces a large number of grain boundaries and defects, affecting the efficiency of narrow bandgap perovskite solar cells.
  • the grain size and crystal quality seriously affect the energy conversion efficiency of solar cells.
  • the small grain size indicates that a large number of crystal nuclei are produced during perovskite crystallization, thus introducing more grain boundaries. These grain boundaries usually appear amorphous and serve as non-radiative recombination centers, causing recombination loss of photogenerated carriers, thereby affecting the performance of solar cells.
  • Increasing the grain size of perovskite films and reducing the number of grain boundaries are necessary means to improve perovskite solar cells.
  • the main solutions to increase the crystallinity of perovskite light-absorbing films include: 1) using additives to increase the perovskite grain size; 2) using a solvent annealing scheme and introducing solvents to increase the perovskite grain size, etc.
  • the above solutions all have certain drawbacks.
  • the perovskite film is thin The film has a small grain size and a large number of grain boundaries; (2) the crystallization speed of the perovskite film is too fast, making it difficult to control the solvent content in the perovskite film, adjust the rate and direction of solvent evaporation, and control the crystal structure. Growth.
  • a confined annealing method for preparing a perovskite light-absorbing layer including the following steps:
  • Step (1) Use a spin coating method to deposit the perovskite precursor liquid on the front side of the substrate to form a perovskite precursor liquid film on the front side of the substrate;
  • Step (2) Place the substrate with the perovskite precursor liquid film on the front side on the heating plate.
  • the heating plate is in direct contact with the back of the substrate, and the heat is transferred to the substrate and the perovskite precursor liquid film in turn; set the heating plate temperature to the a temperature, by controlling the first temperature and the heating time to control the evaporation amount and remaining amount of the solvent in the perovskite precursor liquid film, the perovskite precursor material dissolved in the perovskite precursor liquid crystallizes into perovskite grains, thereby forming Perovskite mesophase films;
  • Step (3) Spread a layer of breathable film on the heating plate, place the perovskite mesophase film containing residual solvent on the breathable film with the back side of the substrate facing upward, keep the temperature at the first temperature and continue heating, and the residual solvent will During volatilization, the boundaries of adjacent perovskite grains dissolve and then fuse with each other; by slowly raising the temperature of the heating plate to the second heating temperature and continuing to heat, the perovskite grains undergo phase change to form the perovskite light-absorbing layer.
  • the perovskite precursor liquid is a solution mixture formed of a perovskite precursor material and a solvent.
  • the optical band gap of the perovskite material ranges from 1.2 to 2.3 electron volts (eV).
  • Preferred perovskite materials include: methylamine lead iodine (MAPbI 3 ), methylamine lead bromine (MAPbBr 3 ), formamidine lead iodine (FAPbI 3 ), formamidine lead bromide (FAPbBr 3 ), formamidine tin One of iodine (FASnI 3 ), cesium lead iodine (CsPbI 3 ), cesium lead bromide (CsPbBr 3 ) or any mixture between them.
  • the perovskite precursor solution uses a highly polar solvent and perovskite precursor material to form a stable solution mixture through the Lewis acid-base method.
  • Strongly polar solvents include: one of dimethyl sulfoxide, dimethylformamide, gamma-martin lactone or any mixture between them.
  • the spin coating method described in step (1) is divided into two steps: in the first step, the spin coating speed is set to: 500 to 1000 rpm, and the duration is 2 to 10 seconds; in the second step, the spin coating speed is set to: Set to: 3000-5000 rpm, duration 1 minute; add anti-solvent dropwise 4-30 seconds after the start of the second step of rotation.
  • the use of antisolvent can induce rapid surface crystallization, achieve rapid heterogeneous nucleation on the surface of the perovskite mesophase film, and avoid the rough surface formed when the perovskite crystallization speed exceeds the nucleation speed, thereby ensuring Flatness and grain shape of perovskite mesophase films.
  • the anti-solvent is a weakly polar solvent.
  • Preferred weakly polar solvents include: diethyl ether, and optionally one of chlorobenzene, ethyl acetate, isopropanol or a mixture thereof in any proportion.
  • the first temperature in step (2) is 60-70°C, and the heating time is 10-50 seconds; the heating time at the first temperature in step (3) is 2-4 minutes; the second heating temperature is 80-120°C. , the heating time is 6 to 15 minutes.
  • step (4) place the substrate front side up on the heating plate, the heating plate is in direct contact with the back side of the substrate, maintain the second heating temperature, and the heating time is 1 to 3 minutes. This process can promote the continued evaporation of residual solvents, This ensures that no organic solvent remains in the crystallized perovskite light-absorbing layer, thereby ensuring good crystallization quality inside the perovskite crystal.
  • the breathable film includes: glass sheets, filter paper, and printing paper.
  • the release rate of the solvent inside the perovskite is different, which affects the volatilization rate and participation content of the solvent inside the perovskite mesophase film, which in turn affects the size of the perovskite grains.
  • the air permeability of the air permeable film has a negative correlation with the impact on the grain size. The higher the air permeability, the smaller the grain size.
  • the heating plate can be a programmable heating plate, which can set and display real-time temperature, ensuring more accurate acquisition of changes in the surface temperature of the hot stage.
  • the breathable film is filter paper.
  • the perovskite precursor liquid is spin-coated on the substrate to form a perovskite precursor liquid film.
  • the perovskite precursor liquid film contains a large amount of solvent, which will volatilize during the subsequent heating process.
  • the first temperature is used as a preheating , by controlling the heating temperature and heating time, the residual amount of the above solvent is accurately adjusted, and the perovskite crystalline state is formed through ion exchange, thereby forming a perovskite interphase film; place the back side of the substrate upward on the breathable film of the heating plate And reheating is carried out at the first temperature, wherein a certain restricted area is formed between the perovskite mesophase film, the breathable film and the heating plate.
  • This restricted area can affect the volatilization path and the residual internal solvent in the perovskite mesophase film. rate; during this heating process, the volatilization path of the residual solvent of the perovskite mesophase film is blocked, and then it is slowly released in the restricted space, and exchanges positions with organic cations, forming a transition from the mesophase to the crystalline phase.
  • the originally formed perovskite grain boundaries will merge with each other with the help of the dissolution and recrystallization process of the residual solvent, and the adjacent small perovskite grains will be combined through the Ostwald ripening process and the ordered adsorption process.
  • the breathable film will change the volatilization direction and ratio of the residual solvent, generally including two directions of transverse volatilization and longitudinal penetration.
  • the transverse process will expand the perovskite crystal grains.
  • the horizontal size of the grains, the longitudinal diffusion process can reduce the perovskite grain boundaries in the vertical direction and form through-type grains; continue to heat the perovskite mesophase film to the second temperature, and the heating process controls the heating rate and final temperature through a program.
  • the large grains originally obtained from the combination of small grains complete the crystallization, forming a large grain, high-quality perovskite light-absorbing layer, reducing the number of grain boundaries, inhibiting the formation of defects, and extending the It increases the lifetime of photogenerated carriers and ensures the high performance of the perovskite light-absorbing layer.
  • the invention can be applied to the preparation of perovskite films with different components, can avoid the use of external solvents to affect the perovskite light-absorbing layer, and solves the problem of uncontrolled crystallization of the perovskite light-absorbing layer.
  • the localized annealing method avoids the selectivity problem of perovskite materials in processes such as additives or solvent annealing, has better compatibility of perovskite components, and has greater advantages over existing technologies. Prepared over large areas.
  • Figure 1 Schematic diagram of common annealing in the prior art
  • Figure 2 Schematic diagram of solvent annealing in the prior art
  • FIG. 3 Heating schematic diagram of the perovskite film preparation method of this application
  • Figure 4 Scanning electron microscope images of perovskite films obtained by different annealing methods.
  • (A) is the ordinary annealing method;
  • (B) is the solvent annealing method, and
  • (C) is the preparation method of the perovskite film of this application;
  • Figure 5 Scanning electron microscope images of perovskite films prepared by different methods.
  • (D) is the ordinary annealing method
  • (E) is the use of glass as a breathable film
  • (F) is the use of filter paper as the breathability film Film
  • (G) selects printing paper as a breathable film
  • Figure 6 Schematic diagram of the effects of films with different breathability on grain growth
  • Figure 7 Schematic diagram of the fusion of perovskite mesophase film grains
  • Figure 8 Fourier transform infrared transmission spectra of narrow bandgap perovskite films obtained with different preheating times at 65°C;
  • Figure 9 Scanning electron microscope images of narrow bandgap perovskite films prepared with different preheating times at 65°C.
  • preheating time is 0 seconds
  • preheating time is 10 seconds
  • preheating time is 20 seconds
  • preheating time is 30 seconds
  • preheating time is 40 seconds seconds
  • preheating time is 50 seconds
  • Figure 10 Schematic diagram of narrow band gap perovskite solar cell
  • Figure 11 J-V curve of solar cells prepared based on different annealing methods of 1.25eV narrow band gap perovskite light absorbing layer;
  • Figure 12 Schematic diagram of wide bandgap perovskite solar cell
  • Figure 13 J-V curve of solar cells prepared based on different annealing methods of 1.75eV wide bandgap perovskite light absorbing layer;
  • Figure 14 Schematic diagram of all-perovskite tandem solar cells
  • Figure 15 J-V curve of all-perovskite two-terminal tandem solar cells prepared based on different annealing methods of 1.75eV wide-bandgap perovskite light-absorbing layer and 1.25eV narrow-bandgap perovskite light-absorbing layer.
  • a method for preparing a narrow-band perovskite film has a planar composite layer structure, including a substrate and a perovskite light-absorbing layer; the substrate is composed of a conductive substrate and a carrier transport provided on its front side Layer composition, its preparation includes the following steps:
  • Step (1) Use spin coating to deposit the perovskite precursor liquid on the substrate to form a perovskite precursor liquid film on the surface of the carrier transport layer;
  • the perovskite precursor liquid is a perovskite precursor material and a solvent The solution mixture formed; the perovskite precursor liquid film contains a large amount of solvent;
  • Step (2) Place the substrate front side up on the heating plate.
  • the heating plate is in direct contact with the back side of the substrate.
  • the heat is transferred to the conductive substrate, carrier transport layer, and perovskite precursor liquid film in sequence; set the heating plate temperature to The first temperature is controlled by controlling the first temperature and the heating time to control the evaporation amount and remaining amount of the solvent in the perovskite precursor liquid film.
  • the perovskite precursor material dissolved in the perovskite precursor liquid crystallizes on the surface of the carrier transport layer as Perovskite grains, thereby forming a perovskite mesophase film;
  • Step (3) Lay a layer of breathable film on the heating plate, place the perovskite mesophase film containing residual solvent on the breathable film with the back side of the substrate facing upward, keep the temperature at the first temperature and continue heating, and the residual solvent During volatilization, the boundaries of adjacent perovskite grains dissolve and then fuse with each other; by slowly raising the temperature of the heating plate to the second heating temperature and continuing to heat, the perovskite grains undergo phase transformation to form the narrow-band perovskite light-absorbing layer.
  • the conductive substrate includes: ITO glass substrate, FTO glass substrate, and flexible ITO substrate.
  • the first temperature in step (2) is 65°C, and the heating time is 30 seconds; in step (3), filter paper is used as the breathable film, as shown in Figure 3, and the heating time at the first temperature is 2 to 4 minutes. ;Slowly increase the temperature of the heating plate to the second heating temperature of 100°C and continue heating for 7 minutes.
  • the existing method of preparing narrow-band perovskite films using ordinary annealing methods includes the following steps:
  • the specific spin-coating parameters are a low speed of 1000 rpm, a duration of 10 seconds, and a high speed of 4000 rpm. , the duration is 60 seconds, the anti-solvent ether is dropped at the 7th second during the high-speed period, and a moist perovskite mesophase film is obtained;
  • the existing method of preparing narrow-band perovskite films using solvent annealing includes the following steps:
  • the specific spin-coating parameters are a low speed of 1000 rpm, a duration of 10 seconds, and a high speed of 4000 rpm.
  • the duration is 60 seconds, and the antisolvent ether is dropped at the 7th second during the high-speed period to obtain a moist perovskite mesophase film;
  • the narrow bandgap perovskite light-absorbing film prepared by the three methods of ordinary annealing, solvent annealing and the perovskite film preparation method of the present application is shown in Figure 4, in which (A) is the perovskite light-absorbing film prepared by ordinary annealing. , the calculated average grain size is about 400 nanometers, and the grain size distribution is different, indicating that the film has poor crystal quality and a large number of grain boundaries, which will affect the recombination of photogenerated carriers and is not conducive to photogenerated carriers.
  • (B) is a perovskite light-absorbing film obtained by solvent annealing. The grain size is significantly increased, with an average grain size of 500 nanometers.
  • (C) is the perovskite obtained by the perovskite film preparation method of this application.
  • Perovskite film the grain size is significantly increased, the average grain size is 1000 nanometers, the number of grain boundaries is significantly reduced, the crystal quality becomes better, and the surface of the perovskite film is smooth and uniform, which is beneficial to suppressing the generation of defect states and promoting the transport of photogenerated carriers. transport.
  • Filter paper, glass, and printing paper have different air permeabilities, which in turn have different effects on the volatilization process of solvent molecules in the perovskite mesophase film.
  • the breathable films described in step (3) of a perovskite film preparation method of the present application were replaced with glass and printing paper respectively.
  • FIG. 5 shows scanning electron microscope images of perovskite films prepared by different methods.
  • (D) is a perovskite film prepared by ordinary annealing. It is placed here for comparison.
  • the perovskite grain size is about 400 nanometers, and the number of grain boundaries is Among them,
  • (E) selects glass as a breathable film and uses a perovskite film preparation method of the present application to prepare a narrow bandgap perovskite light-absorbing film.
  • the average grain size is about 1500 nanometers and the grain surface is smooth.
  • the number of grain boundaries is reduced;
  • (F) selects the filter paper as a breathable film, and the narrow bandgap perovskite light-absorbing film obtained by the confined annealing method of this application has a grain size of about 1000 nanometers and a certain texture on the grain surface. , indicating that the crystallization state is good;
  • (G) selects the printing paper as a breathable film, and the narrow bandgap perovskite light-absorbing film prepared by the confined annealing method of this application has a grain size of about 900 nanometers, but there is a certain amount near the grain boundary. The small size of the grains will affect the transmission of photogenerated carriers.
  • the evaporation direction of solvent molecules in the perovskite mesophase film is vertically upward, so that it is not affected by space restrictions.
  • the solvent has little impact on the lateral growth of grains; using confined annealing method, when the substrate of the perovskite mesophase film is placed on different breathable films with the back side facing up for annealing, since the volatilization rates of the three breathable films are different in the transverse and longitudinal directions, the volatilization process of the internal solvent molecules is different. different.
  • the solvent molecules inside the perovskite mesophase film only volatilize in the transverse direction, which can increase the lateral fusion of crystal grains.
  • the solvent molecules do not volatilize in the longitudinal direction, and the grain surface has no texture; for filter paper confined annealing, calcium
  • the solvent molecules inside the titanium mesophase film have two components, transverse and longitudinal.
  • the solvent volatilization rate in the transverse direction is greater than the longitudinal volatilization rate.
  • the transverse volatilization of the solvent can promote the lateral fusion between perovskite grains and increase the grain size.
  • the solvent molecules that evaporate longitudinally will have an impact on the ordered texture of the surface; for limited annealing of printing paper
  • the solvent molecules inside the perovskite mesophase film also have two components, transverse and longitudinal.
  • the solvent volatilizes in the transverse direction The rate is smaller than the longitudinal volatilization rate.
  • the transverse volatilization solvent promotes the fusion of grains. When the grain size grows, the longitudinal volatilization solvent dominates, which is beneficial to the formation of texture on the grain surface.
  • FIG 7 a schematic diagram of the fusion of perovskite mesophase film grains. From left to right, the perovskite mesophase film is grown in the first temperature stage and in a limited area. stages and final crystalline state. The first temperature effect is preheating. At this stage, the grain size of the perovskite mesophase film is small, and the internal solvent evaporates longitudinally to control the residual content of the internal solvent. In the confined growth stage, the internal solvent is carried out on the surface of the perovskite mesophase film.
  • the perovskite light-absorbing layer forms efficient absorption of incident light, generates photogenerated electron-hole pairs, and diffuses to the carrier transport layer;
  • the carrier transport layer is provided between the conductive substrate and the perovskite light-absorbing layer, It is used to transport the carriers collected in the perovskite light-absorbing layer to the conductive substrate.
  • the conductive substrate is used to collect the carriers and transport them to the external circuit, and has both light transmission and supporting functions.
  • the carrier transport layer can be replaced with a planar electron transport layer or hole transport layer as needed to form other perovskite films.
  • the heating time of the first temperature described in step (2) in Example 1 is adjusted to 0 seconds, 10 seconds, 20 seconds, 30 seconds, 40 seconds, and 50 seconds respectively, and is tested by a Fourier transform infrared transmission spectrometer to obtain calcium
  • the internal molecular vibration spectrum of the titanite mesophase film is shown in Figure 8.
  • the filter paper was selected as a breathable film, and the scanning electron microscope image of the narrow bandgap perovskite light-absorbing film was obtained by changing different preheating times.
  • (H) is the narrow band obtained with preheating time of 0 seconds.
  • the average size of the gap perovskite light-absorbing film is 1200 nanometers, and there are large holes at the grain boundaries;
  • (I) is the narrow-bandgap perovskite light-absorbing film obtained by preheating for 10 seconds, the average size of the grains is 1500 nanometers, and the surface of the grains Smooth;
  • (J) is the narrow band gap perovskite light absorbing film obtained by preheating for 20 seconds, the average size of the grains is 1100 nanometers, and the grain surface is smooth;
  • K is the narrow band gap perovskite light absorbing film obtained by preheating for 30 seconds, The average size of the grains is 1100 nanometers, and there is a textured pattern on the surface of the grains;
  • (L) is the narrow bandgap perovskite light-absorbing film obtained by preheating for 40 seconds.
  • the average size of the grains is 800 nanometers. There are granular patterns on the surface of the grains. The size of the grains The size is not uniform; (M) is a narrow bandgap perovskite light-absorbing film obtained by preheating for 50 seconds. The average grain size is 500 nanometers and there are many grain boundaries.
  • the narrow bandgap perovskite solar cell is as shown in Figure 10 and has a planar composite layer structure, including a substrate, a perovskite light-absorbing layer, an electron transport layer, and a metal electrode;
  • the substrate is composed of a conductive substrate and a hole transport layer provided on its front surface, and its preparation includes:
  • Step (1) Deposit the perovskite precursor liquid on the substrate using a spin coating method to form a perovskite precursor liquid film on the surface of the hole transport layer;
  • the spin coating parameters are low speed 1000 rpm and duration of 10 seconds, high speed 4000 rpm and duration of 60 seconds.
  • the anti-solvent ether is dropped at the 7th second during the high speed period;
  • Step (2) Place the substrate front side up on the heating plate, the first temperature is 65°C, and heat for 30 seconds to obtain a perovskite mesophase film;
  • Step (3) Lay a layer of breathable film on the heating plate, with the back side of the substrate facing upward. Place the perovskite mesophase film containing residual solvent on the breathable film, heat it at the first temperature for 3 minutes, and then raise the temperature to the second temperature. is 100°C, the heating rate is 40°C/minute, and after reaching 100°C, the heating is maintained for 7 minutes;
  • Step (4) Place the substrate front side up on the heating plate, and continue heating at a second temperature of 100°C for 3 minutes to obtain a perovskite light-absorbing layer;
  • Step (5) Use thermal evaporation method to deposit an electron transport layer coupled with a 20nm C60 layer and an 8nm BCP layer on the surface of the perovskite light-absorbing layer;
  • Step (6) uses thermal evaporation method to deposit a 100nm metal electrode on the surface of the electron transport layer, and finally obtains a narrow bandgap perovskite solar cell.
  • the performance of the obtained narrow bandgap perovskite solar cell was tested, and the sunlight irradiation was simulated.
  • the energy density was 100mW/cm 2 .
  • the specific conditions for JV measurement were: scanning voltage range -0.1 ⁇ 0.93V, step size 10mV, scanning Speed 150mV/s.
  • step (3) of this example is replaced with the ordinary annealing method.
  • the perovskite mesophase film is placed on a 65°C hot plate and heated for 3 minutes. Then it is transferred to a 100°C hot plate and continues to be heated for 7 minutes to obtain an ordinary annealing method. Annealed narrow-bandgap perovskite light-absorbing films.
  • step (3) of this example replaces the solvent annealing method.
  • the perovskite mesophase film is placed on a heating plate at room temperature, and 10 microliters of dimethylformamide solvent is dropped 1 cm away from the perovskite mesophase film. , cover the glass petri dish, turn on the heating switch of the heating plate, the heating rate is 40°C/min, and maintain heating for 3 minutes when it reaches 65°C.
  • the heating plate continues to heat to 100°C and maintains heating for 7 minutes to obtain solvent annealed narrow bandgap perovskite. Light absorbing film.
  • the narrow band gap perovskite solar cell prepared by confined annealing has the highest efficiency, reaching 21.51%; while the efficiency of the narrow band gap perovskite solar cell prepared by ordinary annealing is slightly lower, at 19.63%; the narrow band gap perovskite solar cell prepared by solvent annealing has the highest efficiency, reaching 21.51%.
  • the efficiency of gap perovskite solar cells is the worst, only 15.86%.
  • the wide-bandgap perovskite solar cell as shown in Figure 12, has a planar composite layer structure, including a substrate, a perovskite light-absorbing layer, a hole transport layer, and a metal Electrode; the substrate is composed of a conductive substrate and an electron transport layer provided on its front side, and its preparation includes:
  • Step (1) Use spin coating to deposit the perovskite precursor liquid on the substrate to form a perovskite precursor liquid film on the surface of the electron transport layer;
  • the spin coating parameters are low speed 500 rpm, duration 3 seconds, high speed 4000 rpm, duration 60 seconds, anti-solvent ether is dropped at the 25th second during the high speed period;
  • Step (2) Place the substrate face up on a heating plate at a first temperature of 65°C for 3 minutes to obtain a perovskite mesophase film;
  • Step (3) Lay a layer of breathable film on the heating plate, with the back side of the substrate facing upward. Place the perovskite mesophase film containing residual solvent on the breathable film, heat it at the first temperature for 3 minutes, and then raise the temperature to the second temperature. is 100°C, the heating rate is 40°C/minute, and after reaching 100°C, the heating is maintained for 7 minutes;
  • Step (4) Place the substrate front side up on the heating plate, and continue heating at a second temperature of 100°C for 3 minutes to obtain a perovskite light-absorbing layer;
  • Step (5) using a spin coating method to deposit a hole transport layer on the surface of the perovskite light-absorbing layer;
  • Step (6) uses thermal evaporation method to deposit metal electrodes on the surface of the hole transport layer, and finally obtains a wide bandgap perovskite solar cell.
  • the performance of the obtained narrow bandgap perovskite solar cell was tested and irradiated by simulated sunlight.
  • the energy density was 100mW/cm 2 .
  • the specific conditions for JV measurement were: scanning voltage range -0.1 ⁇ 1.3V, step size 10mV, scanning speed 150mV/s.
  • step (3) in this example is replaced with the ordinary annealing method.
  • the perovskite mesophase film is placed on a 65°C hot plate and heated for 3 minutes. Then it is transferred to a 100°C hot plate and continues to be heated for 10 minutes to obtain an ordinary annealing method. Annealed wide-bandgap perovskite light-absorbing films.
  • step (3) of this example replaces the solvent annealing method.
  • the perovskite mesophase film is placed on a heating plate at room temperature, and 10 microliters of dimethylformamide solvent is dropped 1 cm away from the perovskite mesophase film. , cover the glass petri dish, turn on the heating switch of the heating plate, the heating rate is 40°C/minute, and maintain heating for 3 minutes when it reaches 65°C.
  • the heating plate continues to heat to 100°C, and maintains heating for 10 minutes.
  • Solvent annealed wide bandgap perovskite is obtained. Light absorbing film.
  • the wide-bandgap perovskite solar cell prepared by confined annealing has the highest efficiency, reaching 18.58%; the wide-bandgap perovskite solar cell prepared by ordinary annealing has the lowest efficiency, which is 17.22%; the wide-bandgap calcium solar cell prepared by solvent annealing has the highest efficiency, reaching 18.58%. Titanium solar cells have the worst efficiency at 18.14%.
  • the laminated solar cell has a planar composite layer structure, including a substrate, a hole transport layer, a wide bandgap perovskite light absorbing layer, an electron transport layer, and an intermediate connection. layer, a hole transport layer, a narrow bandgap perovskite light-absorbing layer, an electron transport layer, and a metal electrode;
  • the substrate is composed of a conductive substrate and a hole transport layer provided on its front side, and its preparation includes:
  • Step (1) Deposit the perovskite precursor liquid on the substrate using a spin coating method to form a perovskite precursor liquid film on the surface of the hole transport layer;
  • the spin coating parameters are low speed 500 rpm, duration 3 seconds, high speed 4000 rpm, duration 60 seconds, the antisolvent ether is dropped at the 25th second during high speed;
  • Step (2) Place the substrate face up on a heating plate at a first temperature of 65°C for 3 minutes to obtain a perovskite mesophase film;
  • Step (3) Lay a layer of breathable film on the heating plate, with the back side of the substrate facing upward. Place the perovskite mesophase film containing residual solvent on the breathable film, heat it at the first temperature for 30 seconds, and then raise the temperature to the second temperature. is 100°C, the heating rate is 40°C/minute, and after reaching 100°C, the heating is maintained for 7 minutes;
  • Step (4) Place the substrate front side up on the heating plate, and continue heating at a second temperature of 100°C for 3 minutes to obtain a wide bandgap perovskite light-absorbing layer;
  • Step (5) sequentially provide an electron transport layer, an intermediate connection layer, and a hole transport layer on the surface of the perovskite light-absorbing layer;
  • Step (6) Coating the perovskite precursor liquid on the surface of the hole transport layer in step 5 by spin coating;
  • the spin coating parameters are low speed 1000 rpm and duration of 10 seconds, high speed 4000 rpm and duration of 60 seconds.
  • the anti-solvent ether is dropped at the 7th second during the high speed period;
  • Step (7) uses a confined annealing method to prepare a narrow bandgap perovskite light-absorbing layer
  • Step (8) depositing an electron transport layer on the surface of the narrow band gap perovskite light absorption layer
  • Step (9) uses thermal evaporation method to deposit metal electrodes on the surface of the hole transport layer, and finally obtains a tandem solar cell.
  • the performance of the obtained all-perovskite two-terminal laminated solar cell was tested.
  • the specific conditions for J-V measurement were: scanning voltage range -0.1 ⁇ 2.2V, step size 10mV, and scanning speed 150mV/s.
  • steps (3) and (7) in this example were replaced with ordinary annealing methods.
  • the perovskite mesophase film was placed on a 65°C hot plate and heated for 3 minutes. Then, it was transferred to a 100°C hot plate and continued to be heated for 10 minutes. Minutes, an ordinary annealed perovskite light-absorbing film is obtained.
  • the tandem solar cell obtained by combining the wide-bandgap perovskite light-absorbing layer and the narrow-bandgap perovskite light-absorbing layer prepared by confined annealing has the highest efficiency, reaching 25.05%; while the wide-bandgap calcium
  • the efficiency of the tandem solar cell obtained by combining the titanium light-absorbing layer and the narrow-bandgap perovskite light-absorbing layer is low, at 22.85%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法。制备方法包括:将正面涂有钙钛矿前驱液薄膜的基底放置于加热板上,加热板与基底背面直接接触,将加热板温度设置为第一温度,通过控制第一温度及加热时长控制钙钛矿前驱液薄膜中溶剂的蒸发量与剩余量,钙钛矿前驱液中溶解的钙钛矿前驱材料结晶为钙钛矿晶粒从而形成钙钛矿中间相薄膜;基底背面向上将钙钛矿中间相薄膜放置于透气性薄膜上,继续加热,残余溶剂在挥发时促使相邻钙钛矿晶粒边界溶解后互融;将加热板温度缓慢升温至第二加热温度并继续加热,钙钛矿晶粒发生相变形成钙钛矿吸光层。提升了钙钛矿结晶质量,使得钙钛矿吸光层的性能参数得到提升。

Description

一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法 技术领域
本发明涉及太阳能电池技术领域,具体涉及一种钙钛矿薄膜及制备方法。
背景技术
有机无机杂化钙钛矿因其自身优越的光电特性得到了广泛研究与发展,单结钙钛矿太阳能器件效率在近十年时间从3.8%提升到25.7%。由于单结光伏器件的肖克莱-奎伊瑟(Shockley-Queisser)极限效率的限制,传统单结钙钛矿太阳能电池的效率提升空间已较为有限。得益于钙钛矿材料的高吸收系数,平面结构钙钛矿光伏器件表现出良好光吸收特性,因而可免除表面制绒等复杂工艺,同时结合钙钛矿的宽光谱调节范围,可实现多结叠层太阳能电池,拓展光伏材料吸收光谱、降低能量热化损失,得到高效率光伏器件,将是下一个效率竞争点。
虽然,基于钙钛矿材料的单结和双结叠层器件效率均获得较大进步,但其实际效率与理论效率仍存在较大差距,主要归因于钙钛矿吸光薄膜结晶质量不佳、晶粒尺寸小、缺陷态多、非辐射复合较大,从而引起太阳能电池效率较差。为确保单结太阳能电池及叠层太阳能电池的高效工作,高质量的钙钛矿吸光层是必备条件。高质量钙钛矿吸光层需要满足:1)良好的结晶性,即钙钛矿晶粒尺寸需要足够大以提高结晶质量;2)较低的缺陷态密度,即钙钛矿吸光薄膜应具有较少的晶界数量;3)较长的载流子寿命,以保证光生载流子可以经过较长的输运距离到达电极,避免复合损失。
钙钛矿叠层太阳能电池需要同时满足宽带隙顶电池和窄带隙底电池的高效性。一方面,在制备宽带隙钙钛矿薄膜时,需要加入大量的卤素溴以增加带隙,这就会造成钙钛矿材料内部出现物相分离,从而影响钙钛矿薄膜结晶质量。另一方面,在制备窄带隙钙钛矿薄膜时,需要通过金属锡离子(Sn2+)掺杂得到窄带隙材料,由于锡基钙钛矿结晶速度过快而难以精确控制,这就会引起窄带隙钙钛矿的结晶质量较差,晶粒尺寸小,薄膜覆盖率差,载流子寿命短,从而引入大量的晶界和缺陷,影响窄带隙钙钛矿太阳能电池的效率。
对于上述钙钛矿材料而言,晶粒尺寸以及结晶质量严重影响太阳能电池的能量转化效率。晶粒尺寸小则说明钙钛矿结晶时产生了大量的晶核,从而引入了较多的晶界。而这些晶界通常表现为非晶态,同时作为非辐射复合中心,引起光生载流子的复合损失,进而影响到太阳能电池的性能。增加钙钛矿薄膜晶粒尺寸、减少晶界数量是提升钙钛矿太阳能电池的必要手段。
目前,增加钙钛矿吸光薄膜结晶性的方案主要有:1)使用添加剂增大钙钛矿晶粒尺寸;2)采用溶剂退火方案,引入溶剂参与以增大钙钛矿晶粒尺寸等。然而上述方案均存在一定的弊端。
首先,针对添加剂的选择与使用方案并非对不同组分钙钛矿均有效,并且添加剂会引入杂质,从而影响钙钛矿材料的纯度和物相稳定性,例如,在窄带隙钙钛矿中引入硫氰酸铅(Pb(SCN)2)对晶粒尺寸增大作用较小,反而引入杂质相碘化铅(PbI2)。
其次,采用普通加热方式,如图1所示,钙钛矿薄膜中存在以下不足:(1)钙钛矿薄 膜的晶粒尺寸较小,晶界数量众多;(2)钙钛矿薄膜的结晶速度过快,难以控制钙钛矿薄膜里的溶剂含量,无法调节溶剂挥发的速率和方向,难以操纵晶体的生长过程。
再次,针对溶剂退火方案,如图2所示,对于含锡组分钙钛矿而言,会导致吸光薄膜出现孔洞,从而影响钙钛矿吸光薄膜的覆盖率变差,极大降低光电转换效率。所以,当前提升钙钛矿结晶质量的工作存在晶粒尺寸不可控、制备过程复杂、普适性较差等问题,适用的钙钛矿组分较为局限,对于不同组分钙钛矿材料的适用性不佳,尚未有工作可以兼顾宽带隙钙钛矿和窄带隙钙钛矿以及常规带隙钙钛矿薄膜结晶质量的提高。
发明内容
为解决钙钛矿结晶质量差所带来的光电转换效率低的问题,采取如下技术方案:
一种限域退火法,用于制备钙钛矿吸光层,包括如下步骤:
步骤(1)采用旋涂法将钙钛矿前驱液沉积在基底正面,在基底正面形成钙钛矿前驱液薄膜;
步骤(2)将正面涂有钙钛矿前驱液薄膜的基底放置于加热板上,加热板与基底背面直接接触,热量依次传递至基底、钙钛矿前驱液薄膜;将加热板温度设置为第一温度,通过控制第一温度及加热时长控制钙钛矿前驱液薄膜中溶剂的蒸发量与剩余量,钙钛矿前驱液中溶解的钙钛矿前驱材料结晶为钙钛矿晶粒,从而形成钙钛矿中间相薄膜;
步骤(3)加热板上铺一层透气性薄膜,基底背面向上将含有残余溶剂的钙钛矿中间相薄膜放置于所述透气性薄膜上,保持温度为第一温度并继续加热,残余溶剂在挥发时相邻钙钛矿晶粒边界溶解后互融;将加热板温度缓慢升温至第二加热温度并继续加热,钙钛矿晶粒发生相变形成所述钙钛矿吸光层。
所述钙钛矿前驱液为钙钛矿前驱材料与溶剂形成的溶液混合物,所述的钙钛矿材料的光学带隙范围为1.2至2.3电子伏特(eV)之间。优选的所述钙钛矿材料包括:括甲胺铅碘(MAPbI3)、甲胺铅溴(MAPbBr3)、甲脒铅碘(FAPbI3)、甲脒铅溴(FAPbBr3)、甲脒锡碘(FASnI3)、铯铅碘(CsPbI3)、铯铅溴(CsPbBr3)之一或它们之间的任意比例混合物。
钙钛矿前驱液选用强极性溶剂与钙钛矿前驱材料,通过路易斯酸碱方法形成稳定的溶液混合物。强极性溶剂包括:二甲亚砜、二甲基甲酰胺、伽马丁内酯之一或它们之间的任意比例混合物。
进一步地,步骤(1)中所述旋涂法分为两步:第一步先将旋涂转速设置为:500~1000转/分钟,持续时间2~10秒;第二步将旋涂转速设置为:3000~5000转/分钟,持续时间为1分钟;在第二步旋转开始后4~30秒滴加反溶剂。在制备前驱液薄膜时,采用反溶剂可以诱导表面快速结晶,实现钙钛矿中间相薄膜表面的快速异质成核,避免了钙钛矿结晶速度超过成核速度而形成的粗糙表面,从而保证钙钛矿中间相薄膜的平整度与晶粒形状。
所述的反溶剂选用弱极性溶剂。优选的所述弱极性溶剂包括:乙醚,并可选氯苯、乙酸乙酯、异丙醇之一或它们之间的任意比例混合物。
进一步地,步骤(2)第一温度为60~70℃,加热时长为10~50秒;步骤(3)中第一温度下加热时长为2~4分钟;第二加热温度为80~120℃,加热时长为6~15分钟。
进一步地,还包括步骤(4):将基底正面向上放置于加热板上,加热板与基底背面直接接触,保持第二加热温度,加热时长为1~3分钟。该过程可以促使残余溶剂继续挥发, 保证已结晶的钙钛矿吸光层不再残留有机溶剂,进而保证了钙钛矿晶体内部的良好结晶质量。
进一步地,所述的透气性薄膜包括:玻璃片、滤纸、打印纸。通过选取不同的透气性薄膜,其对钙钛矿内部溶剂的释放速率不同,从而影响钙钛矿中间相薄膜内部溶剂的挥发速度与参与含量,进而对钙钛矿晶粒大小产生影响。所述透气性薄膜的透气性高低对晶粒影响呈负相关,透气性越高,晶粒尺寸越小。
优选的,所述的加热板可采用程控加热板,可设置并显示实时温度,可保证更精准地获得热台表面温度的变化。
优选的,透气性薄膜采用滤纸。
本申请将钙钛矿前驱液旋涂在基底上,形成钙钛矿前驱液薄膜,该钙钛矿前驱液薄膜中含有大量的溶剂,会在后续的加热过程中挥发,第一温度作为预加热,通过控制加热温度、加热时间来精确调节上述溶剂的残余量,通过离子交换方式形成钙钛矿结晶态,从而形成钙钛矿中间相薄膜;将基底背面向上置于加热板的透气性薄膜上并进行第一温度下再加热,其中钙钛矿中间相薄膜、透气性薄膜与加热板之间形成一定的限制区域,该限制区域可以影响钙钛矿中间相薄膜中残余内部溶剂的挥发路径与速率;该加热过程中,钙钛矿中间相薄膜的残余溶剂的挥发路径受阻,进而会在限制空间中缓慢释放,并与有机阳离子进行位置交换,形成由中间相到结晶相的转变,此时,原来已经形成的钙钛矿晶粒边界将借助于残余溶剂的溶解再结晶过程相互融合,相邻的小钙钛矿晶粒将通过奥斯特瓦尔德熟化过程和有序化吸附过程结合在一起,从而形成更大尺寸的钙钛矿晶粒;所述的透气性薄膜将会改变残余溶剂的挥发方向与比率,一般包含横向挥发与纵向渗透两个方向,横向过程将扩大钙钛矿晶粒水平尺寸,纵向扩散过程可以减少垂直方向的钙钛矿晶粒边界,形成贯通式晶粒;继续加热钙钛矿中间相薄膜至第二温度,该升温过程通过程序控制升温速率和最终温度,达到钙钛矿结晶的相变温度之后,原来由小晶粒结合而得到的大晶粒完成结晶,形成了大晶粒、高质量钙钛矿吸光层,减少晶界数量,抑制缺陷形成,延长了光生载流子寿命,保证了钙钛矿吸光层的高性能。
本发明可以适用于制备不同组分钙钛矿薄膜,可以避免使用外来溶剂对钙钛矿吸光层产生影响,解决了钙钛矿吸光层结晶不受控制的问题。同时,所述限域退火方法避免了添加剂或溶剂退火等过程对钙钛矿材料的选择性问题,具有更加优秀的钙钛矿组分兼容性,相比于现有技术具有更大的优势适用于大面积制备。
附图说明
图1:现有技术中的普通退火示意图;
图2:现有技术中的溶剂退火示意图;
图3:本申请钙钛矿薄膜制备方法的加热示意图;
图4:不同退火方式得到的钙钛矿薄膜扫描电子显微镜图,
图中(A)为普通退火方式;(B)为溶剂退火方式,(C)为本申请钙钛矿薄膜制备方法;
图5:选择不同方法所制备的钙钛矿薄膜扫面电子显微镜图,
图中(D)为普通退火方式;(E)为选用玻璃为透气性薄膜,(F)为选用滤纸为透气性 薄膜,(G)为选用打印纸为透气性薄膜;
图6:不同透气性薄膜对晶粒生长的影响示意图;
图7:钙钛矿中间相薄膜晶粒相互融合示意图;
图8:65℃不同预加热时间得到的窄带隙钙钛矿薄膜傅里叶红外透射光谱;
图9:65℃不同预加热时间所制备的窄带隙钙钛矿薄膜扫面电子显微镜图,
图中(H)预加热时间为0秒,(I)预加热时间为10秒,(J)预加热时间为20秒,(K)预加热时间为30秒,(L)预加热时间为40秒,(M)预加热时间为50秒;
图10:窄带隙钙钛矿太阳能电池示意图;
图11:基于不同退火方式的1.25eV窄带隙钙钛矿吸光层制备所得的太阳能电池J-V曲线图;
图12:宽带隙钙钛矿太阳能电池示意图;
图13:基于不同退火方式的1.75eV宽带隙钙钛矿吸光层制备所得的太阳能电池J-V曲线图;
图14:全钙钛矿叠层太阳能电池示意图;
图15:基于不同退火方式的1.75eV宽带隙钙钛矿吸光层以及1.25eV窄带隙钙钛矿吸光层制备所得的全钙钛矿两端叠层太阳能电池J-V曲线图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将合附图对本申请做进一步地详细描述。以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。
实施例一
一种窄带钙钛矿薄膜制备方法,所述的窄带钙钛矿薄膜为平面复合层结构,包括基底、钙钛矿吸光层;所述的基底由导电衬底以及其正面设置的载流子传输层组成,其制备包括以下步骤:
步骤(1):采用旋涂法将钙钛矿前驱液沉积在基底上,在载流子传输层表面形成钙钛矿前驱液薄膜;所述钙钛矿前驱液为钙钛矿前驱材料与溶剂形成的溶液混合物;钙钛矿前驱液薄膜包含大量的溶剂;
步骤(2):将基底正面向上放置于加热板上,加热板与基底背面直接接触,热量依次传递至导电衬底、载流子传输层、钙钛矿前驱液薄膜;将加热板温度设置为第一温度,通过控制第一温度及加热时长控制钙钛矿前驱液薄膜中溶剂的蒸发量与剩余量,钙钛矿前驱液中溶解的钙钛矿前驱材料在载流子传输层表面结晶为钙钛矿晶粒,从而形成钙钛矿中间相薄膜;
步骤(3):加热板上铺一层透气性薄膜,基底背面向上将含有残余溶剂的钙钛矿中间相薄膜放置于所述透气性薄膜上,保持温度为第一温度并继续加热,残余溶剂在挥发时相邻钙钛矿晶粒边界溶解后互融;将加热板温度缓慢升温至第二加热温度并继续加热,钙钛矿晶粒发生相变形成所述窄带钙钛矿吸光层。
优选的,导电衬底包括:ITO玻璃衬底、FTO玻璃衬底、柔性ITO衬底。
更为详尽地步骤(2)中第一温度为65℃,加热时间30秒;步骤(3)中透气性薄膜选用滤纸,如图3所示,中第一温度下加热时长为2~4分钟;将加热板温度缓慢升温至第二加热温度100℃并继续加热7分钟。
为了和本实施例的技术方案进行对比,以下分别给出使用现有技术中普通退火、溶剂退火的制备步骤。
如图1,现有技术采用普通退火方式制备窄带钙钛矿薄膜的方法包括以下步骤:
(1)在清洗干净的导电衬底上旋涂空穴传输材料,经过退火后得到空穴传输层;
(2)采用反溶剂法在(1)中衬底上旋涂制备窄带隙钙钛矿前驱液薄膜,其具体旋涂参数为低速1000转/分钟,持续时间为10秒,高速4000转/分钟,持续时间为60秒,反溶剂乙醚在高速期间第7秒滴下,得到湿润的钙钛矿中间相薄膜;
(3)将(2)中所得的钙钛矿中间相薄膜进行普通退火处理,保持基底正面向上,首先在65℃的加热板上加热,时间为3分钟;之后将钙钛矿中间相薄膜转移至100℃的加热板上,并继续加热7分钟,从而得到窄带隙钙钛矿吸光薄膜。
如图2,现有技术采用溶剂退火方式制备窄带钙钛矿薄膜的方法包括以下步骤:
(1)在清洗干净的导电衬底上旋涂空穴传输材料,经过退火后得到空穴传输层;
(2)采用反溶剂法在(1)中衬底上旋涂制备窄带隙钙钛矿吸光层,其具体旋涂参数为低速1000转/分钟,持续时间为10秒,高速4000转/分钟,持续时间为60秒,反溶剂乙醚在高速期间第7秒滴下,得到湿润的钙钛矿中间相薄膜;
(3)将(2)中所得的钙钛矿中间相薄膜进行溶剂退火处理,将基底正面向上放置于室温条件下的加热板上,加热板未开始工作;在钙钛矿中间相薄膜附近1厘米处滴加一定量二甲基甲酰胺溶剂(如10微升),然后覆盖一玻璃培养皿,该培养皿可以将钙钛矿中间相薄膜和二甲基甲酰胺溶液同时覆盖在内;之后启动加热板加热程序,升温速度约为40℃/分钟,在达到65℃时稳定时间为3分钟;之后加热板温度升至100℃并保持7分钟,可以观察到二甲基甲酰胺溶剂逐渐挥发完毕,从而得到窄带隙钙钛矿薄膜。
经过所述普通退火、溶剂退火和本申请钙钛矿薄膜制备方法三种方式所制备窄带隙钙钛矿吸光薄膜如图4所示,其中(A)为普通退火方式所制备钙钛矿吸光薄膜,经计算所得平均晶粒尺寸约为400纳米,且晶粒尺寸分布不一,说明该薄膜结晶质量不佳、晶界数量众多,进而会影响光生载流子的复合情况,不利于光生载流子的输运;(B)为溶剂退火方式得到的钙钛矿吸光薄膜,其晶粒尺寸明显增大,平均晶粒尺寸为500纳米,晶界数量有所减少,但是却引入了部分孔洞,说明额外引入的二甲基甲酰胺溶剂会破坏已经形成的晶粒,进而引入孔洞造成光生载流子在传输过程中的复合增加;(C)为本申请钙钛矿薄膜制备方法得到的钙钛矿薄膜,晶粒尺寸明显增加,平均晶粒尺寸1000纳米,晶界数量显著减少,结晶质量变好,并且钙钛矿薄膜表面平整均一,有利于抑制缺陷态产生,促进光生载流子的输运。
滤纸、玻璃、打印纸三者的透气性不同,进而对钙钛矿中间相薄膜中溶剂分子的挥发过程产生影响也不同。为了对比不同透气性薄膜对钙钛矿薄膜制备的影响,将本申请一种钙钛矿薄膜制备方法步骤(3)所述透气性薄膜分别替换为玻璃、打印纸。
图5给出了选择不同方法所制备的钙钛矿薄膜扫面电子显微镜图。其中,(D)为普通退火制备的钙钛矿薄膜,放此处用以进行对比,钙钛矿晶粒尺寸约为400纳米,晶界数量 众多;其中,(E)为选取玻璃为透气性薄膜,通过本申请一种钙钛矿薄膜制备方法制备的窄带隙钙钛矿吸光薄膜,其平均晶粒尺寸约为1500纳米,晶粒表面光滑,晶界数量减少;(F)为选取滤纸为透气性薄膜,通过本申请限域退火法得到的窄带隙钙钛矿吸光薄膜,晶粒尺寸约为1000纳米,晶粒表面具有一定的纹理状,说明结晶状态良好;(G)为选取打印纸为透气性薄膜,通过本申请限域退火法制备的窄带隙钙钛矿吸光薄膜,晶粒尺寸约为900纳米,但是晶界附近存在一定量的小尺寸晶粒,会影响光生载流子的传输。
如图6所示,采用普通退火方式,钙钛矿中间相薄膜内部溶剂分子挥发方向为竖直向上,从而不受空间限制的影响,溶剂对晶粒的横向生长影响较小;采用限域退火法,钙钛矿中间相薄膜所在基底采用背面向上方式放置在不同的透气性薄膜上进行退火时,由于三种透气性薄膜在横向和纵向的挥发速率有所不同,内部溶剂分子的挥发过程而不同。对于玻璃限域退火,钙钛矿中间相薄膜内部溶剂分子只在横向进行挥发,可以增加晶粒的横向融合,溶剂分子在纵向没有挥发,其晶粒表面没有纹理;对于滤纸限域退火,钙钛矿中间相薄膜内部溶剂分子具备横向和纵向两个分量,实验得出溶剂在横向挥发速率大于纵向挥发速率,横向挥发溶剂可以促进钙钛矿晶粒之间的横向融合,增大晶粒尺寸,而纵向挥发的溶剂分子会对表面的有序状纹理产生影响;对于打印纸限域退火,钙钛矿中间相薄膜内部溶剂分子同样具备横向和纵向两个分量,实验得出溶剂在横向挥发速率小于纵向挥发速率,横向挥发溶剂对于晶粒融合有促进作用,晶粒尺寸长大,纵向挥发溶剂占据主导,利于形成晶粒表面的纹理。
以限域退火方式选取滤纸为透气性薄膜为例,见图7钙钛矿中间相薄膜晶粒相互融合示意图,从左至右分别为钙钛矿中间相薄膜在第一温度阶段、限域生长阶段和最终结晶状态。第一温度作用为预加热,这一阶段钙钛矿中间相薄膜晶粒尺寸小,内部溶剂纵向挥发,控制内部溶剂残余含量;限域生长阶段,内部溶剂在钙钛矿中间相薄膜表面上进行横向挥发,溶解原来存在的晶界,使相邻的小晶粒相互粘合在一起,长成大晶粒;继续退火,所有残存溶剂均挥发完毕,钙钛矿薄膜完成从中间相到结晶相的转变,即形成大晶粒、高质量钙钛矿吸光薄膜。
所述的钙钛矿吸光层对入射光形成高效吸收,产生光生电子空穴对,并扩散至载流子传输层;载流子传输层设置于导电衬底与钙钛矿吸光层之间,用于将钙钛矿吸光层中收集的载流子输送至导电衬底,所述的导电衬底用于收集载流子并传输至外电路,并且兼顾透光和支撑作用。载流子传输层可根据需要替换为平面电子传输层或空穴传输层,从而形成其他钙钛矿薄膜。
实施例二
将实施例一中步骤(2)所述第一温度的加热时间进行调控,分别为0秒、10秒、20秒、30秒、40秒、50秒,通过傅立叶变换红外透射光谱仪测试,得到钙钛矿中间相薄膜的内部分子振动谱,如图8所示。该分子振动光谱中,在波数为1016cm-1时,得到硫氧双键(S=O)的振动特征峰;经过不同预加热时间变换从0秒增加到50秒,该硫氧双键的振动强度由强变弱,说明钙钛矿中间相薄膜内部残余溶剂含量降低,实现钙钛矿中间相薄膜内部溶剂的精确控制。
如图9所示,采取限域退火方式,选取滤纸为透气性薄膜,通过改变不同预加热时间得到窄带隙钙钛矿吸光薄膜的扫描电子显微镜图。其中,(H)为预加热时间0秒所得窄带 隙钙钛矿吸光薄膜,晶粒平均尺寸为1200纳米,晶界处存在大孔洞;(I)为预加热时间10秒所得窄带隙钙钛矿吸光薄膜,晶粒平均尺寸1500纳米,晶粒表面光滑;(J)为预加热时间20秒所得窄带隙钙钛矿吸光薄膜,晶粒平均尺寸1100纳米,晶粒表面光滑;(K)为预加热时间30秒所得窄带隙钙钛矿吸光薄膜,晶粒平均尺寸1100纳米,晶粒表面有纹理状图案;(L)为预加热时间40秒所得窄带隙钙钛矿吸光薄膜,晶粒平均尺寸800纳米,晶粒表面存在颗粒状,晶粒尺寸大小不均一;(M)为预加热时间50秒所得窄带隙钙钛矿吸光薄膜,晶粒平均尺寸500纳米,晶界数量众多。
实施例三
一种窄带隙钙钛矿太阳能电池制备方法,所述的窄带隙钙钛矿太阳能电池如图10所示,为平面复合层结构,包括基底、钙钛矿吸光层、电子传输层、金属电极;所述的基底由导电衬底以及其正面设置的空穴传输层组成,其制备包括:
步骤(1)采用旋涂法将钙钛矿前驱液沉积在基底上,在空穴传输层表面形成钙钛矿前驱液薄膜;
旋涂参数为低速1000转/分钟,持续时间为10秒,高速4000转/分钟,持续时间为60秒,反溶剂乙醚在高速期间第7秒滴下;
步骤(2)将基底正面向上放置于加热板上,第一温度65℃,加热30秒得到钙钛矿中间相薄膜;
步骤(3)加热板上铺一层透气性薄膜,基底背面向上将含有残余溶剂的钙钛矿中间相薄膜放置于所述透气性薄膜上,第一温度下加热3分钟,升温至第二温度为100℃,升温速率为40℃/分钟,到达100℃之后,维持加热7分钟;
步骤(4)将基底正面向上放置于加热板上,在第二温度100℃下继续加热3分钟,即得到钙钛矿吸光层;
步骤(5)采用热蒸发方法在钙钛矿吸光层表面上沉积20nm的C60层和8nm BCP层耦合的电子传输层;
步骤(6)采用热蒸发方法在电子传输层表面上沉积100nm的金属电极,最终得到窄带隙钙钛矿太阳能电池。
对所得到的窄带隙钙钛矿太阳能电池进行性能检测,加以模拟太阳光照射,能量密度为100mW/cm2,J-V测量的具体条件为:扫描电压范围-0.1~0.93V,步长10mV,扫描速度150mV/s。
作为对比本实施例步骤(3)替换为普通退火方式,钙钛矿中间相薄膜放置于65℃加热板上,加热3分钟,之后转移到100℃加热板上,继续加热7分钟,即得到普通退火窄带隙钙钛矿吸光薄膜。
作为对比本实施例步骤(3)替换溶剂退火方式,钙钛矿中间相薄膜放置于室温的加热板上,在钙钛矿中间相薄膜距离1厘米处滴加10微升二甲基甲酰胺溶剂,覆盖玻璃培养皿,打开加热板加热开关,升温速率为40℃/分钟,到达65℃维持加热3分钟,加热板继续加热至100℃,维持加热7分钟,即得到溶剂退火窄带隙钙钛矿吸光薄膜。
由图11可知,限域退火制备的窄带隙钙钛矿太阳能电池效率最高,达到21.51%;而普通退火制备的窄带隙钙钛矿太阳能电池效率略低,为19.63%;通过溶剂退火制备的窄带隙钙钛矿太阳能电池效率最差,仅有15.86%。
实施例四
一种宽带隙钙钛矿太阳能电池的制备方法,所述的宽带隙钙钛矿太阳能电池如图12所示,为平面复合层结构,包括基底、钙钛矿吸光层、空穴传输层、金属电极;所述的基底由导电衬底以及其正面设置的电子传输层组成,其制备包括:
步骤(1)采用旋涂法将钙钛矿前驱液沉积在基底上,在电子传输层表面形成钙钛矿前驱液薄膜;
旋涂参数为低速500转/分钟,持续时间为3秒,高速4000转/分钟,持续时间为60秒,反溶剂乙醚在高速期间第25秒滴下;
步骤(2)将基底正面向上放置于加热板上,第一温度65℃,加热3分钟得到钙钛矿中间相薄膜;
步骤(3)加热板上铺一层透气性薄膜,基底背面向上将含有残余溶剂的钙钛矿中间相薄膜放置于所述透气性薄膜上,第一温度下加热3分钟,升温至第二温度为100℃,升温速率为40℃/分钟,到达100℃之后,维持加热7分钟;
步骤(4)将基底正面向上放置于加热板上,在第二温度100℃下继续加热3分钟,即得到钙钛矿吸光层;
步骤(5)采用旋涂方法在钙钛矿吸光层表面上沉积空穴传输层;
步骤(6)采用热蒸发方法在空穴传输层表面上沉积金属电极,最终得到宽带隙钙钛矿太阳能电池。
对得到的窄带隙钙钛矿太阳能电池进行性能检测,加以模拟太阳光照射,能量密度为100mW/cm2,J-V测量的具体条件为:扫描电压范围-0.1~1.3V,步长10mV,扫描速度150mV/s。
作为对比本实施例步骤(3)替换为普通退火方式,钙钛矿中间相薄膜放置于65℃加热板上,加热3分钟,之后转移到100℃加热板上,继续加热10分钟,即得到普通退火宽带隙钙钛矿吸光薄膜。
作为对比本实施例步骤(3)替换溶剂退火方式,钙钛矿中间相薄膜放置于室温的加热板上,在钙钛矿中间相薄膜距离1厘米处滴加10微升二甲基甲酰胺溶剂,覆盖玻璃培养皿,打开加热板加热开关,升温速率为40℃/分钟,到达65℃维持加热3分钟,加热板继续加热至100℃,维持加热10分钟,即得到溶剂退火宽带隙钙钛矿吸光薄膜。
由图13可知,限域退火制备的宽带隙钙钛矿太阳能电池效率最高,达到18.58%;普通退火制备的宽带隙钙钛矿太阳能电池效率最低,为17.22%;通过溶剂退火制备的宽带隙钙钛矿太阳能电池效率最差,为18.14%。
实施例五
一种叠层太阳能电池的制备方法,所述叠层太阳能电池如图14所示,为平面复合层结构,包括基底、空穴传输层、宽带隙钙钛矿吸光层、电子传输层、中间连接层、空穴传输层、窄带隙钙钛矿吸光层、电子传输层、金属电极;所述的基底由导电衬底以及其正面设置的空穴传输层组成,其制备包括:
步骤(1)采用旋涂法将钙钛矿前驱液沉积在基底上,在空穴传输层表面形成钙钛矿前驱液薄膜;
旋涂参数为低速500转/分钟,持续时间为3秒,高速4000转/分钟,持续时间为60 秒,反溶剂乙醚在高速期间第25秒滴下;
步骤(2)将基底正面向上放置于加热板上,第一温度65℃,加热3分钟得到钙钛矿中间相薄膜;
步骤(3)加热板上铺一层透气性薄膜,基底背面向上将含有残余溶剂的钙钛矿中间相薄膜放置于所述透气性薄膜上,第一温度下加热30秒,升温至第二温度为100℃,升温速率为40℃/分钟,到达100℃之后,维持加热7分钟;
步骤(4)将基底正面向上放置于加热板上,在第二温度100℃下继续加热3分钟,即得到宽带隙钙钛矿吸光层;
步骤(5)在钙钛矿吸光层表面依次设置电子传输层、中间连接层、空穴传输层;
步骤(6)在步骤5的空穴传输层表面采用旋涂法涂布钙钛矿前驱液;
旋涂参数为低速1000转/分钟,持续时间为10秒,高速4000转/分钟,持续时间为60秒,反溶剂乙醚在高速期间第7秒滴下;
步骤(7)采用限域退火方法制备窄带隙钙钛矿吸光层;
步骤(8)在窄带隙钙钛矿吸光层表面沉积电子传输层;
步骤(9)采用热蒸发方法在空穴传输层表面上沉积金属电极,最终得到叠层太阳能电池。
对得到的全钙钛矿两端叠层太阳能电池进行性能检测,J-V测量的具体条件为:扫描电压范围-0.1~2.2V,步长10mV,扫描速度150mV/s。
作为对比本实施例步骤(3)和步骤(7)替换为普通退火方式,钙钛矿中间相薄膜放置于65℃加热板上,加热3分钟,之后转移到100℃加热板上,继续加热10分钟,即得到普通退火钙钛矿吸光薄膜。
由图15可知,基于限域退火制备的宽带隙钙钛矿吸光层和窄带隙钙钛矿吸光层联合使用所得到的叠层太阳能电池效率最高,达到25.05%;而普通退火制备的宽带隙钙钛矿吸光层和窄带隙钙钛矿吸光层联合使用所得到的叠层太阳能电池效率较低,为22.85%。
需要说明的是,本发明上述钙钛矿太阳电池性能检测中若无特殊限定或具体说明的操作方法及操作步骤,均按照本领域常规方法进行。
以上内容仅仅是对本发明结构所做的举例和说明,所属本领域的技术人员不经创造性劳动即对所描述的具体实施例做的修改或补充或采用类似的方式替代仍属本专利的保护范围。

Claims (10)

  1. 一种限域退火法,其特征在于,包括如下步骤:
    步骤(1)采用旋涂法将钙钛矿前驱液沉积在基底正面,在基底正面形成钙钛矿前驱液薄膜;
    步骤(2)将正面涂有钙钛矿前驱液薄膜的基底放置于加热板上,加热板与基底背面直接接触,热量依次传递至基底、钙钛矿前驱液薄膜;将加热板温度设置为第一温度,通过控制第一温度及加热时长控制钙钛矿前驱液薄膜中溶剂的蒸发量与剩余量,钙钛矿前驱液中溶解的钙钛矿前驱材料结晶为钙钛矿晶粒,从而形成钙钛矿中间相薄膜;
    步骤(3)加热板上铺一层透气性薄膜,基底背面向上将含有残余溶剂的钙钛矿中间相薄膜放置于所述透气性薄膜上,保持温度为第一温度并继续加热,残余溶剂在挥发时促使相邻钙钛矿晶粒边界溶解后互融;将加热板温度缓慢升温至第二加热温度并继续加热,钙钛矿晶粒发生相变形成所述钙钛矿吸光层。
  2. 根据权利要求1所述的限域退火法,其特征在于,
    所述的钙钛矿材料的光学带隙范围为1.2至2.3电子伏特之间;
    所述的透气性薄膜包括:玻璃片、滤纸、打印纸或聚合物薄膜之一。
  3. 根据权利要求2所述的限域退火法,其特征在于,
    所述钙钛矿材料包括:甲胺铅碘、甲胺铅溴、甲脒铅碘、甲脒铅溴、甲脒锡碘、铯铅碘、铯铅溴之一或它们之间的任意比例混合物;
    所述的溶剂包括:二甲亚砜、二甲基甲酰胺、伽马丁内酯之一或它们之间的任意比例混合物。
  4. 根据权利要求1所述的限域退火法,其特征在于,
    钙钛矿前驱液为通过路易斯酸碱方法将钙钛矿材料溶解于溶剂形成稳定的溶液混合物。
  5. 根据权利要求1所述的限域退火法,其特征在于,
    步骤(1)中所述旋涂法包括:
    第一步先将旋涂转速设置为:500~1000转/分钟,持续时间2~10秒;
    第二步将旋涂转速设置为:3000~5000转/分钟,持续时间为1分钟;且在第二步旋转开始后4~30秒滴加反溶剂。
  6. 根据权利要求5所述的限域退火法,其特征在于,
    所述反溶剂包括:
    乙醚,并可选氯苯、乙酸乙酯、异丙醇之一或它们之间的任意比例混合物。
  7. 根据权利要求1所述的限域退火法,其特征在于,
    步骤(2)中第一温度为60~70℃,加热时长为10~50秒;
    步骤(3)中第一温度下加热时长为2~4分钟;第二加热温度为80~120℃,加热时长为6~15分钟。
  8. 根据权利要求1至7之一所述的限域退火法,其特征在于,还包括:
    步骤(4):将基底正面向上放置于加热板上,加热板与基底背面直接接触,保持第二加热温度,加热时长为1~3分钟。
  9. 一种钙钛矿薄膜的制备方法,所述钙钛矿薄膜为窄带隙钙钛矿薄膜或宽带隙钙钛矿薄膜,其特征在于,使用权利要求1至8之一的所述限域退火法。
  10. 一种太阳能电池的制备方法,所述太阳能电池为窄带隙钙钛矿太阳能电池、宽带隙钙钛矿太阳能电池、叠层太阳能电池之一,其特征在于,使用权利要求1至8之一的所述的限域退火法。
PCT/CN2023/074208 2022-04-26 2023-02-02 一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法 WO2023207240A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/531,195 US20240114760A1 (en) 2022-04-26 2023-12-06 Close space annealing method and method for preparing perovskite film or solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210449863.1A CN115312667A (zh) 2022-04-26 2022-04-26 一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法
CN202210449863.1 2022-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/531,195 Continuation US20240114760A1 (en) 2022-04-26 2023-12-06 Close space annealing method and method for preparing perovskite film or solar cell

Publications (1)

Publication Number Publication Date
WO2023207240A1 true WO2023207240A1 (zh) 2023-11-02

Family

ID=83854398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074208 WO2023207240A1 (zh) 2022-04-26 2023-02-02 一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法

Country Status (3)

Country Link
US (1) US20240114760A1 (zh)
CN (1) CN115312667A (zh)
WO (1) WO2023207240A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312667A (zh) * 2022-04-26 2022-11-08 苏州大学 一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887511A (zh) * 2017-11-22 2018-04-06 苏州大学 一种基于二维材料石墨烯相氮化碳制备钙钛矿太阳能电池的方法
CN109494305A (zh) * 2018-10-18 2019-03-19 东华大学 一种低温制备大晶粒钙钛矿薄膜的方法
CN111740017A (zh) * 2020-08-06 2020-10-02 江西省科学院能源研究所 一种制备钙钛矿太阳能电池吸光层薄膜的方法
CN111987218A (zh) * 2020-07-14 2020-11-24 香港理工大学深圳研究院 一种室温下制备的高效稳定钙钛矿薄膜、太阳能电池及其制备方法
US20210308934A1 (en) * 2017-03-16 2021-10-07 Board Of Regents, The University Of Texas System Nanoimprinting organo-metal perovskites for optoelectronic and photovoltaic applications
CN115312667A (zh) * 2022-04-26 2022-11-08 苏州大学 一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210308934A1 (en) * 2017-03-16 2021-10-07 Board Of Regents, The University Of Texas System Nanoimprinting organo-metal perovskites for optoelectronic and photovoltaic applications
CN107887511A (zh) * 2017-11-22 2018-04-06 苏州大学 一种基于二维材料石墨烯相氮化碳制备钙钛矿太阳能电池的方法
CN109494305A (zh) * 2018-10-18 2019-03-19 东华大学 一种低温制备大晶粒钙钛矿薄膜的方法
CN111987218A (zh) * 2020-07-14 2020-11-24 香港理工大学深圳研究院 一种室温下制备的高效稳定钙钛矿薄膜、太阳能电池及其制备方法
CN111740017A (zh) * 2020-08-06 2020-10-02 江西省科学院能源研究所 一种制备钙钛矿太阳能电池吸光层薄膜的方法
CN115312667A (zh) * 2022-04-26 2022-11-08 苏州大学 一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法

Also Published As

Publication number Publication date
CN115312667A (zh) 2022-11-08
US20240114760A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
CN110854274B (zh) 一种钙钛矿薄膜的制备方法及其在太阳能电池中的应用
WO2019148326A1 (zh) 钙钛矿薄膜的制备方法及其应用
CN112467043B (zh) 一种钙钛矿太阳能电池及其制作方法
CN109742246B (zh) 可控混合溶剂体系及其在制备钙钛矿材料中的用途
CN112447907B (zh) 一种调控钙钛矿结晶过程的方法
WO2023207240A1 (zh) 一种限域退火法及钙钛矿薄膜或太阳能电池的制备方法
CN112289932B (zh) 钙钛矿薄膜及其制备方法和应用
CN113903861B (zh) 空气中快速退火的钙钛矿太阳能电池及其制备方法
KR20180096044A (ko) 고결정 페로브스카이트 광흡수층 제조방법, 및 그의 제조방법을 포함하는 태양전지의 제조방법
CN112331557A (zh) 一种无机无铅双钙钛矿薄膜、太阳能电池及其制备方法
CN113130762A (zh) 太阳能电池的吸光层材料、三元阳离子钙钛矿太阳能电池及其制备方法
KR102080748B1 (ko) 고품질 페로브스카이트 광 활성층 박막 제조 방법 및 이를 포함하는 페로브스카이트 태양전지
CN111697142A (zh) 一种有机无机杂化钙钛矿薄膜的制备方法
CN113637355A (zh) 操作时间窗口可控调节的钙钛矿溶液、电池、制备方法及应用
CN110571337A (zh) 基于预成核控制法在空气中制备钙钛矿薄膜的方法及应用
US10734582B1 (en) High-speed hybrid perovskite processing
CN114583061A (zh) 三维结构的无铅锡基钙钛矿薄膜及其太阳能电池的制备方法
CN115843205B (zh) 一种钙钛矿膜层的制备方法及钙钛矿太阳能电池
CN116456790B (zh) 钙钛矿薄膜制备方法及钙钛矿太阳能电池、叠层电池
CN115124747B (zh) 用于制备钙钛矿太阳能电池的反溶剂、钙钛矿-pmma复合薄膜的制备方法
KR20230146758A (ko) 대면적 페로브스카이트 광흡수층의 제조방법 및 페로브스카이트 태양전지
CN113675347B (zh) 一种制备2d/3d有机-无机杂化钙钛矿太阳能电池的方法
CN117580424A (zh) 一种高效且稳定的甲脒基钙钛矿太阳能电池及其制备方法
CN116887604A (zh) 一种激光电池及其制备方法
CN117560979A (zh) 一种钙钛矿薄膜制备方法及其在太阳能电池器件中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794676

Country of ref document: EP

Kind code of ref document: A1