WO2023206652A1 - 耐特高电压绝缘树脂及其制备方法 - Google Patents

耐特高电压绝缘树脂及其制备方法 Download PDF

Info

Publication number
WO2023206652A1
WO2023206652A1 PCT/CN2022/093602 CN2022093602W WO2023206652A1 WO 2023206652 A1 WO2023206652 A1 WO 2023206652A1 CN 2022093602 W CN2022093602 W CN 2022093602W WO 2023206652 A1 WO2023206652 A1 WO 2023206652A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
silane
ceramic additive
matrix resin
resin
Prior art date
Application number
PCT/CN2022/093602
Other languages
English (en)
French (fr)
Inventor
叶金蕊
Original Assignee
叶金蕊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 叶金蕊 filed Critical 叶金蕊
Publication of WO2023206652A1 publication Critical patent/WO2023206652A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Definitions

  • the invention belongs to the technical field of insulating resins, and specifically relates to an ultra-high voltage resistant insulating resin and a preparation method thereof.
  • UHV transmission Compared with ordinary high-voltage transmission, UHV transmission has the characteristics of extremely large transmission capacity, extremely long transmission distance, extremely low line loss, and extremely small corridor area. It is the main development direction of the future transmission system.
  • the insulation parts of UHV equipment play the role of electrical insulation and load-bearing, and their performance will directly determine the insulation performance and operational reliability of power transmission and transformation equipment.
  • the current epoxy resin is mainly based on the addition of Al 2 O 3 particles.
  • the addition of Al 2 O 3 particles can improve the thermal properties of the epoxy resin.
  • the mechanical properties, electrical aging resistance and breakdown strength of the epoxy resin will be This will greatly increase the risk of discharge breakdown and product cracking in UHV electric fields, seriously affecting the service life of epoxy resin insulation parts.
  • the present invention proposes an ultra-high voltage resistant insulating resin and a preparation method thereof, which can effectively solve the above problems.
  • the present invention provides an ultra-high voltage insulating resin and a preparation method thereof.
  • the ultra-high voltage insulating resin prepared by the invention has excellent thermal properties, mechanical properties and electrical insulation properties.
  • the present invention provides a method for preparing an ultra-high voltage insulating resin.
  • the preparation method includes the following steps:
  • the matrix resin is one or more of epoxy resin, polyamide-modified epoxy resin, phenolic-modified epoxy resin, boron-modified phenolic resin, and xylene-modified epoxy resin;
  • the toughening agent is one or more of liquid polysulfide rubber, liquid polybutadiene rubber, nitrile rubber and styrene-butadiene rubber;
  • the ceramic additive is forsterite particles, alumina particles, boron nitride particles, One or more of silicon nitride particles, aluminum nitride particles, and quartz ceramic particles;
  • the solvent is ethanol and/or acetone;
  • the silane is methyl orthosilicate, ethyl orthosilicate, or trimethyl orthosilicate.
  • the dispersant is one or more of KH550, KH560, KH570, KH602, KH792; and/or the accelerator is N,N- One or more of dimethylbenzylamine, quaternary ammonium salt, and N,N-di(glycidyl)aniline.
  • the average particle size of the ceramic additive is 1-2 ⁇ m; and/or the purity of the ceramic additive is above 99.5%.
  • the ultra-high voltage insulating resin contains the following components in parts by weight:
  • the weight parts ratio of the toughening agent, the silane, and the ceramic additive is 1:2:3; and/or in the high-voltage resistant insulating resin In the insulating resin, the weight parts ratio of the accelerator to the ceramic additive is 1: (10-15).
  • step (1) stir at 80° C. for 2 hours to obtain a toughened matrix resin; and/or the stirring speed is 100 to 300 r/min.
  • the ball milling speed is 300-500r/min, the ball-milling time is more than 12 hours; and/or the mass ratio of the ceramic additive to the solvent is (1-2 ): (7 ⁇ 8).
  • the mass fraction of the ceramic additive contained in the ceramic additive dispersion is 15 to 25%.
  • the temperature of the vacuum distillation is 40-70°C; and/or the mass percentage of the ceramic additive contained in the silane-modified toughened matrix resin is 3-18 %.
  • step (5) the stirring time is 0.5 to 1 h.
  • the viscosity of the UHV-resistant insulating resin is below 10,000 mPa ⁇ s.
  • the present invention provides an ultra-high voltage insulating resin prepared by the preparation method described in the first aspect of the present invention.
  • the present invention at least has the following beneficial effects:
  • the ultra-high voltage resistant insulating resin produced by the present invention can have a good insulation effect in ultra-high voltage electrical.
  • the present invention obtains a toughened matrix resin by adding a suitable proportion of toughening agent to the matrix resin. Then, ceramic additive dispersion and silane are used to modify the toughened matrix resin to obtain a silane-modified toughened matrix resin, which significantly improves the glass transition temperature and insulation performance of the insulating resin.
  • the appropriate combination in the present invention The addition of a certain amount of toughening agent improves the mechanical properties of the insulating resin.
  • the selection of components of the appropriately proportioned ceramic additive dispersion further improves the insulating performance of the insulating resin. At the same time, it can effectively improve the breakdown strength of the insulating resin and increase the dimensional stability. properties and reduce the tendency of stress cracking.
  • the ceramic additive and the solvent are first ball-milled to obtain a ceramic additive dispersion with a suitable ceramic additive content, and then stirred with the toughened matrix resin, silane, dispersant, etc. at room temperature according to a suitable mass ratio 2 Hours to 3 hours of uniform mixing can greatly improve the dispersion and compatibility of ceramic additives in the toughened matrix resin, thereby ensuring that the final insulating resin has both excellent mechanical properties and electrical insulation properties.
  • the mass percentage of the ceramic additive contained in the silane-modified toughened matrix resin obtained by the present invention is controlled to be 3 to 18%, which is conducive to ensuring that the final insulating resin has both excellent mechanical properties and electrical properties. Insulating properties.
  • the ultra-high voltage resistant insulating resin contains the following components in parts by weight: matrix resin 40 ⁇ 68 parts, toughener 5-6 parts, silane 10-12 parts, ceramic additive 15-18 parts, dispersant 3-8 parts, accelerator 1-3 parts, and in the ultra-high voltage resistant insulating resin , the weight parts ratio of the toughening agent, the silane, and the ceramic additive is 1:2:3, and in the ultra-high voltage insulating resin, the weight parts of the accelerator and the ceramic additive The number ratio is 1: (10 ⁇ 15), which can ensure that the ultra-high voltage insulating resin with the best mechanical properties and the best electrical insulation properties can be obtained.
  • the viscosity of the ultra-high voltage insulating resin produced by the present invention is below 10,000 mPa ⁇ s, and is particularly suitable for molding composite molding.
  • the tensile strength of the composite material obtained by molding the ultra-high voltage resistant insulating resin produced by the present invention is not less than 95MPa, the elongation at break is not less than 3%, the bending strength is not less than 155MPa, and the glass transition The temperature is not less than 200°C, and the dielectric strength is not less than 50kV/mm.
  • the present invention provides a method for preparing an ultra-high voltage insulating resin.
  • the preparation method includes the following steps:
  • Ceramic additive and solvent are ball-milled to obtain a ceramic additive dispersion; preferably, the mass ratio of the ceramic additive to the solvent is (1 to 2): (7 ⁇ 8) (for example, 1:7, 1:8, 2:7 or 2:8); the present invention has no special requirements for the solvent.
  • the solvent can be, for example, ethanol, acetone or other materials that are compatible with the resin.
  • One or more mixed solvents can be used; in some specific embodiments, for example, the ceramic additive and the solvent can be added to the ball mill tank in a mass ratio of (1 to 2): (7 to 8) , use a planetary ball mill for ball milling, the ball mill speed is controlled between 300 rpm and 500 rpm, and the ball milling time is more than 12 hours to prepare a ceramic additive dispersion. More preferably, the quality of the ceramic additive in the ceramic additive dispersion is The percentage content is 15% to 25% (eg 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24% or 25%).
  • the ceramic additive dispersion, the toughened matrix resin, 10 to 25 parts by weight (for example, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 parts by weight) silane and 3 to 8 parts by weight (such as 3, 4, 5, 6, 7 or 8 parts by weight) of dispersant are stirred at room temperature (such as room temperature 15 ⁇ 35°C) for 2 to 3 hours, a mixture is obtained;
  • the mass ratio of the ceramic additive, the silane, the dispersant and the matrix resin in step (1) contained in the ceramic additive dispersion is (10 to 35): ( 10 ⁇ 25): (3 ⁇ 8): (40 ⁇ 68) (for example, 10:10:3:40, 10:12:3:40, 10:15:3:40, 10:18:3:40, 10:20:3:40, 10:25:3:40, 18:10:3:40, 18:12:3:40, 18:15:3:40, 18:18:3:40, 18: 20:3:40, 18:25:
  • the present invention has no special restrictions on the stirring speed in steps (3) and (4), for example, it can be 100 to 300r/min;
  • the accelerator and The mass ratio of the matrix resin in step (1) is (0.5 ⁇ 3): (40 ⁇ 68) (for example, 0.5:40, 0.5:45, 0.5:50, 0.5:55, 0.5:60, 0.5:68, 1 :40, 1:45, 1:50, 1:55, 1:60, 1:68, 1.5:40, 1.5:45, 1.5:50, 1.5:55, 1.5:60, 1.5:68, 2:40 ,2:45,2:50,2:55,2:60,2:68,2.5:40,2.5:45,2.5:50,2.5:55,2.5:60,2.5,2.5
  • the term "high voltage resistant” means that the insulating resin produced by the present invention can withstand AC voltages of 1100 kV and above.
  • the insulating resin produced can withstand AC voltages of 1100 kV/1min.
  • the insulating resin can withstand ultra-high voltage.
  • the prepared ultra-high voltage insulating resin contains the following components in parts by weight:
  • 40 to 68 parts of matrix resin for example, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 or 68 parts
  • 5 to 15 parts of toughening agent such as 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 parts
  • 10 to 25 parts of silane such as 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 parts
  • 10 to 35 parts of ceramic additives such as 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 or 35 parts
  • 3 to 8 parts of dispersant such as 3, 4, 5, 6, 7 or 8 parts
  • accelerator such as 0.5, 1, 1.5, 2, 2.5 or 3 parts
  • the matrix resin is one or more of epoxy resin, polyamide-modified epoxy resin, phenolic-modified epoxy resin, boron-modified phenolic resin, and xylene-modified epoxy resin. species; the present invention has no special restrictions on the source of these preferred matrix resins, for example, products that can be purchased directly on the market or products prepared by existing technologies; the toughening agent is liquid polysulfide One or more of rubber, liquid polybutadiene rubber, nitrile rubber and styrene-butadiene rubber; the present invention has no special restrictions on the source of these preferred tougheners, for example, those that can be purchased directly on the market are used.
  • the ceramic additive is one of forsterite particles, alumina particles, boron nitride particles, silicon nitride particles, aluminum nitride particles, and quartz ceramic particles. Or more; the solvent is ethanol and/or acetone; the silane is one of methyl orthosilicate, ethyl orthosilicate, trimethylethoxysilane, and butyltrimethoxysilane; the The dispersant is one or more of KH550, KH560, KH570, KH602, KH792; and/or the accelerator is N,N-dimethylbenzylamine, quaternary ammonium salt, N,N-bis( Glyceryl) one or more anilines.
  • the toughening agent is liquid polysulfide rubber and liquid polybutadiene rubber in a mass ratio of (5-6):1 (for example, 5:1, 5.5:1 or 6:1) Mixed
  • the ceramic additive is boron nitride particles and aluminum nitride particles mixed according to a mass ratio of 1: (2 to 4) (for example, 1:2, 1:3 or 1:4)
  • the agent is a mixture of N,N-dimethylbenzylamine and N,N-bis(glycidyl)aniline according to a mass ratio of 1:(3 ⁇ 4) (for example, 1:3 or 1:4); the present invention
  • the average particle size of the ceramic additive is 1 to 2 ⁇ m; and/or the purity of the ceramic additive is more than 99.5%; in the present invention, it is preferred that the average particle size of the ceramic additive is 1 to 2 ⁇ m.
  • the present invention found that if the average particle size of the ceramic additive is too large, it is not conducive to dispersion and is not conducive to obtaining the ultra-high voltage insulating resin with better mechanics and better electrical insulation properties. If the average particle size of the ceramic additive is too small, the cost will be too high.
  • the ultra-high voltage insulating resin contains the following components in parts by weight:
  • 40 to 68 parts of matrix resin for example, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 or 68 parts), 5 to 6 parts of toughening agent (such as 5, 5.5 or 6 parts), 10 to 12 parts of silane (such as 10, 11 or 12 parts), 15 to 18 parts of ceramic additive (such as 15, 16, 17 or 18 parts), 3 to 8 parts of dispersant (such as 3, 4, 5, 6, 7 or 8 parts), 1 to 3 parts of accelerator (such as 1, 1.2, 1.5, 1.8, 2, 2.2, 2.5, 2.8 or 3 parts).
  • matrix resin for example, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 or 68
  • the weight parts ratio of the toughening agent, the silane, and the ceramic additive is 1:2:3; and/or in the In the ultra-high voltage insulating resin, the weight ratio of the accelerator to the ceramic additive is 1: (10-15) (for example, 1:10, 1:11, 1:12, 1:13, 1: 14 or 1:15).
  • the ultra-high voltage resistant insulating resin contains the following components in parts by weight: 40 to 68 parts of matrix resin , 5 to 6 parts of toughening agent, 10 to 12 parts of silane, 15 to 18 parts of ceramic additives, 3 to 8 parts of dispersant, 1 to 3 parts of accelerator, and in the ultra-high voltage resistant insulating resin, the The weight ratio of the toughening agent, the silane, and the ceramic additive is 1:2:3.
  • the weight ratio of the accelerator to the ceramic additive is 1: (10 ⁇ 15), this can ensure that the ultra-high voltage insulating resin with the best mechanical properties and the best electrical insulation properties can be obtained.
  • step (1) stir at 80°C for 2 hours to obtain a toughened matrix resin; and/or the stirring speed is 100 to 300 r/min (for example, 100, 150, 200, 250 or 300r/min).
  • the rotation speed of the ball mill is 300 to 500 r/min (for example, 300, 350, 400, 450 or 500 r/min), and the ball milling time is more than 12 hours; and /or the mass ratio of the ceramic additive to the solvent is (1-2): (7-8) (for example, 1:7, 1:8, 2:7 or 2:8).
  • the mass fraction of the ceramic additive contained in the ceramic additive dispersion is 15 to 25% (for example, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24% or 25%).
  • the temperature of the vacuum distillation is 40-70°C (such as 40°C, 50°C, 60°C or 70°C); and/or the silane modification increases
  • the mass percentage of ceramic additives contained in the tough matrix resin is 3 to 18% (for example, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12% , 13%, 14%, 15%, 16%, 17% or 18%), more preferably 12 to 16.5%.
  • step (5) the stirring time is 0.5 to 1 h.
  • the viscosity of the UHV-resistant insulating resin is below 10,000 mPa ⁇ s.
  • the preparation of the ultra-high voltage resistant insulating resin includes the following steps:
  • the matrix resin is one or more of epoxy resin, polyamide-modified epoxy resin, phenolic-modified epoxy resin, boron-modified phenolic resin, and xylene-modified epoxy resin;
  • the toughening agent is one or more of liquid polysulfide rubber, liquid polybutadiene rubber, nitrile rubber and styrene-butadiene rubber.
  • Step 2 Prepare ceramic additive dispersion
  • the ball mill speed is controlled at 300 rpm ⁇ 500 rpm, and the ball milling time is For more than 12 hours, a ceramic additive dispersion is prepared.
  • the mass percentage of the ceramic additive in the ceramic additive dispersion is 15% to 25%, and the rest is solvent.
  • the solvent is ethanol, acetone or other solvents compatible with the resin. one or several mixed solvents.
  • Step 3 Prepare a mixture of ceramic additive dispersion, toughened matrix resin and silane
  • the above mixture is distilled under reduced pressure at 40°C to 70°C to remove the solvent to obtain ceramic additive particles and silane-modified silane-modified toughened matrix resin, wherein the silane-modified toughened matrix resin contains
  • the mass percentage of ceramic additives is between 3% and 15%.
  • the present invention provides an ultra-high voltage resistant insulating resin prepared by the preparation method described in the first aspect of the present invention.
  • the ultra-high voltage resistant insulating resin includes the following components in parts by weight:
  • 40 to 68 parts of matrix resin for example, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 or 68 parts
  • 5 to 15 parts of toughening agent such as 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 parts
  • 10 to 25 parts of silane such as 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 parts
  • 10 to 35 parts of ceramic additives such as 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 or 35 parts
  • 3 to 8 parts of dispersant such as 3, 4, 5, 6, 7 or 8 parts
  • accelerator such as 0.5, 1, 1.5, 2, 2.5 or 3 parts
  • Step 2 Prepare ceramic additive dispersion
  • Step 3 Prepare a mixture of ceramic additive dispersion, toughened matrix resin and silane
  • the above mixture is distilled under reduced pressure at 50°C to remove the solvent to obtain ceramic additive particles and silane-modified silane-modified toughened matrix resin, wherein the ceramic additive contained in the silane-modified toughened matrix resin is The mass percentage is 12.8%.
  • Step 2 Prepare ceramic additive dispersion
  • boron nitride particles with an average particle size of 2 ⁇ m and ethanol into a ball mill tank at a mass ratio of 2:8, and use a planetary ball mill for ball milling.
  • the ball mill speed is controlled at 400 rpm and the ball milling time is 15 hours to prepare 100 parts.
  • Ceramic additive dispersion, the mass percentage of boron nitride particles in the ceramic additive dispersion is 20% (corresponding to 20 parts of ceramic additive).
  • Step 3 Prepare a mixture of ceramic additive dispersion, toughened matrix resin and silane
  • the above mixture is distilled under reduced pressure at 50°C to remove the solvent to obtain ceramic additive particles and silane-modified silane-modified toughened matrix resin, wherein the ceramic additive contained in the silane-modified toughened matrix resin is The mass percentage is 14.7%.
  • Step 2 Prepare ceramic additive dispersion
  • Step 3 Prepare a mixture of ceramic additive dispersion, toughened matrix resin and silane
  • the above mixture is distilled under reduced pressure at 50°C to remove the solvent to obtain ceramic additive particles and silane-modified silane-modified toughened matrix resin, wherein the ceramic additive contained in the silane-modified toughened matrix resin is The mass percentage is 14.2%.
  • Step 2 Prepare ceramic additive dispersion
  • Step 3 Prepare a mixture of ceramic additive dispersion, toughened matrix resin and silane
  • the above mixture is distilled under reduced pressure at 50°C to remove the solvent to obtain ceramic additive particles and silane-modified silane-modified toughened matrix resin, wherein the ceramic additive contained in the silane-modified toughened matrix resin is The mass percentage is 16.1%.
  • step 4 Add 1.8 parts of accelerator (N,N-dimethylbenzylamine) to the silane-modified toughened matrix resin obtained in step 4, stir at room temperature at a rotation speed of 200r/min for 1 hour, and blend until uniform;
  • accelerator N,N-dimethylbenzylamine
  • Step 2 Prepare ceramic additive dispersion
  • Step 3 Prepare a mixture of ceramic additive dispersion, toughened matrix resin and silane
  • the above mixture is distilled under reduced pressure at 50°C to remove the solvent to obtain ceramic additive particles and silane-modified silane-modified toughened matrix resin, wherein the ceramic additive contained in the silane-modified toughened matrix resin is The mass percentage is 14.7%.
  • Step 2 Prepare ceramic additive dispersion
  • Step 3 Prepare a mixture of ceramic additive dispersion, toughened matrix resin and silane
  • the above mixture is distilled under reduced pressure at 50°C to remove the solvent to obtain ceramic additive particles and silane-modified silane-modified toughened matrix resin, wherein the ceramic additive contained in the silane-modified toughened matrix resin is The mass percentage is 19.4%.
  • Step 2 Prepare ceramic additive dispersion
  • Step 3 Prepare a mixture of ceramic additive dispersion, toughened matrix resin and silane
  • the above mixture is distilled under reduced pressure at 50°C to remove the solvent to obtain ceramic additive particles and silane-modified silane-modified toughened matrix resin, wherein the ceramic additive contained in the silane-modified toughened matrix resin is The mass percentage is 7.9%.
  • Embodiment 8 is basically the same as Embodiment 3, except that:
  • the toughening agent is liquid polybutadiene rubber (LBR352 liquid polybutadiene rubber); the ceramic additive is aluminum nitride particles; and the accelerator is N,N-di(glycidyl)aniline.
  • Embodiment 9 is basically the same as Embodiment 3, except that:
  • the toughening agent is a mixture of liquid polysulfide rubber (JLY-121 liquid polysulfide rubber) and liquid polybutadiene rubber (LBR352 liquid polybutadiene rubber) at a mass ratio of 5:1.
  • the ceramic additive It is made by mixing boron nitride particles and aluminum nitride particles in a mass ratio of 1:2.
  • the accelerator is N,N-dimethylbenzylamine and N,N-bis(glycidyl)aniline in a mass ratio of 1:2. is 1:3.
  • Embodiment 10 is basically the same as Embodiment 3, except that:
  • the toughening agent is a mixture of liquid polysulfide rubber (JLY-121 liquid polysulfide rubber) and liquid polybutadiene rubber (LBR352 liquid polybutadiene rubber) in a mass ratio of 6:1.
  • the ceramic additive It is made by mixing boron nitride particles and aluminum nitride particles in a mass ratio of 1:4.
  • the accelerator is N,N-dimethylbenzylamine and N,N-bis(glycidyl)aniline in a mass ratio of 1:4. is 1:4.
  • Embodiment 11 is basically the same as Embodiment 3, except that:
  • the toughening agent is a mixture of liquid polysulfide rubber (JLY-121 liquid polysulfide rubber) and liquid polybutadiene rubber (LBR352 liquid polybutadiene rubber) in a mass ratio of 4:1.
  • the ceramic additive It is made by mixing boron nitride particles and aluminum nitride particles in a mass ratio of 1:1.
  • the accelerator is N,N-dimethylbenzylamine and N,N-bis(glycidyl)aniline in a mass ratio of 1:1. is 1:2.
  • Embodiment 12 is basically the same as Embodiment 3, except that:
  • the toughening agent is a mixture of liquid polysulfide rubber (JLY-121 liquid polysulfide rubber) and liquid polybutadiene rubber (LBR352 liquid polybutadiene rubber) at a mass ratio of 7:1.
  • the ceramic additive It is made by mixing boron nitride particles and aluminum nitride particles in a mass ratio of 1:5.
  • the accelerator is N,N-dimethylbenzylamine and N,N-bis(glycidyl)aniline in a mass ratio of 1:5. is 1:5.
  • Step 1 Same as step 1 in Example 3.
  • Step 2 Prepare the mixture of ceramic additives, toughened matrix resin and silane
  • step 2 Add 1.5 parts of accelerator (N,N-dimethylbenzylamine) to the silane-modified toughened matrix resin obtained in step 2, stir at room temperature at a rotation speed of 200r/min for 1 hour, and blend until uniform;
  • accelerator N,N-dimethylbenzylamine
  • Step 1 Prepare ceramic additive dispersion
  • Step 2 Prepare a mixture of ceramic additive dispersion, toughener, matrix resin and silane
  • the above mixture is distilled under reduced pressure at 50°C to remove the solvent to obtain ceramic additive particles and silane-modified silane-modified toughened matrix resin, wherein the ceramic additive contained in the silane-modified toughened matrix resin is The mass percentage is 14.2%.
  • step 2 Add 1.5 parts of accelerator (N,N-dimethylbenzylamine) to the silane-modified toughened matrix resin obtained in step 2, stir at room temperature at a rotation speed of 200r/min for 1 hour, and blend until uniform;
  • accelerator N,N-dimethylbenzylamine
  • the present invention conducted performance tests on the insulating resins obtained in Examples 1 to 12 and Comparative Examples 1 to 3, and the results are shown in Table 1.
  • the performance test of the insulating resin is as follows: Preparing the resin casting: Coat the mold with release agent, put it in the oven to preheat, and prepare the insulating resin and curing agent phthalic anhydride at a mass ratio of 1:0.4 The glue liquid is poured into the mold coated with release agent, and placed in the oven for solidification according to the procedure of 80°C/2h+100°C/2h+140°C/2h+160°C/2h.
  • the curing pressure is 2MPa, and the temperature is cooled to After room temperature, the sample is taken out and processed, and its properties are finally tested, including tensile strength, flexural strength, glass transition temperature, dielectric strength and AC pressure test; the test standard for tensile strength is: GB/T2567-2008; bending The test standard for strength is: GB/T2570-1995; the dielectric strength is tested according to ASTM-D149-2009 standard, and the glass transition temperature is tested according to ASTM-D3418-2021 standard; the test standard for AC withstand voltage test is GB/Z24836- In 2009, in Table 1, "passed the power frequency AC withstand voltage test of 1100kV/1min” means that there was no abnormality in the test results in the "AC withstand voltage test of 1100kV/1min”; otherwise, it means “failed to pass 1100kV/1min "Power frequency AC withstand voltage test”.
  • Table 1 Performance indicators of the insulating resins obtained in Examples 1 to 12 and Comparative Examples 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

耐特高电压绝缘树脂及其制备方法。所述方法包括如下步骤:将40~68份基体树脂与5~15份增韧剂混合,然后在惰性气体保护下在60~100℃搅拌1~3h,得到增韧型基体树脂;将10~35份陶瓷添加剂与溶剂进行球磨,得到陶瓷添加剂分散液;将陶瓷添加剂分散液、增韧型基体树脂、10~25份硅烷和3~8份分散剂在室温下搅拌2~3小时,得到混合物;将混合物进行减压蒸馏去除溶剂,得到硅烷改性增韧型基体树脂;往硅烷改性增韧型基体树脂中加入0.5~3份促进剂并搅拌均匀,制得耐特高电压绝缘树脂。制得的耐特高电压绝缘树脂兼具优异的热学性能、力学性能和电气绝缘性能。

Description

耐特高电压绝缘树脂及其制备方法 技术领域
本发明属于绝缘树脂技术领域,具体涉及一种耐特高电压绝缘树脂及其制备方法。
背景技术
相比普通的高压输电,特高压输电具有输送容量特大、送电距离特远、线路损耗特低、走廊占地特少等特点,是将来输电系统中发展的主要方向。特高压设备绝缘件起到电绝缘和承力的作用,其性能将直接决定输变电设备的绝缘性能及运行可靠性。随着我国电力系统朝特高压、直流电、大电流输电网络方向发展,对绝缘件性能提出了更高的要求,特别是1100kV以上交流特高压系统,其综合性能的提高通常难以兼顾,其耐热性能的提高往往以牺牲力学性能和电气性能为代价,如何通过配方及工艺优化来平衡耐热性能、电气绝缘性能及力学性能是目前特高压绝缘件研究的难点。
目前的环氧树脂主要以添加Al 2O 3微粒为主,Al 2O 3微粒的加入可以提高环氧树脂的热学性能,然而环氧树脂的力学性能、耐电老化性能和击穿强度将会降低,从而导致在特高压电场中产生放电击穿和产品开裂的风险大大提高,严重影响环氧树脂绝缘件的使用寿命。
基于上述问题,本发明提出了一种耐特高电压绝缘树脂及其制备方法,可有效解决以上问题。
发明内容
为了解决现有技术中存在的一个或者多个技术问题,本发明提供了一种耐特高电压绝缘树脂及其制备方法。本发明制得的耐特高电压绝缘树脂兼具优异的热学性能、力学性能和电气绝缘性能。
本发明在第一方面提供了一种耐特高电压绝缘树脂的制备方法, 所述制备方法包括如下步骤:
(1)将40~68重量份基体树脂与5~15重量份增韧剂混合,然后在惰性气体保护下在60~100℃搅拌1~3h,得到增韧型基体树脂;
(2)将10~35重量份陶瓷添加剂与溶剂进行球磨,得到陶瓷添加剂分散液;
(3)将所述陶瓷添加剂分散液、所述增韧型基体树脂、10~25重量份硅烷和3~8重量份分散剂在室温下搅拌2~3小时,得到混合物;
(4)将所述混合物进行减压蒸馏去除溶剂,得到硅烷改性增韧型基体树脂;
(5)往所述硅烷改性增韧型基体树脂中加入0.5~3重量份促进剂并搅拌均匀,制得耐特高电压绝缘树脂。
优选地,所述基体树脂为环氧树脂、聚酰胺改性环氧树脂、酚醛改性环氧树脂、硼改性酚醛树脂、二甲苯改性环氧树脂中的一种或者多种;所述增韧剂为液体聚硫橡胶、液体聚丁二烯橡胶、丁腈橡胶和丁苯橡胶中的一种或多种;所述陶瓷添加剂为镁橄榄石颗粒、氧化铝颗粒、氮化硼颗粒、氮化硅颗粒、氮化铝颗粒、石英陶瓷颗粒中的一种或者多种;所述溶剂为乙醇和/或丙酮;所述硅烷为正硅酸甲酯、正硅酸乙酯、三甲基乙氧基硅烷、丁基三甲氧基硅烷中的一种;所述分散剂为KH550、KH560、KH570、KH602、KH792中的一种或多种;和/或所述促进剂为N,N-二甲基苄胺、季铵盐、N,N-二(缩水甘油基)苯胺中的一种或多种。
优选地,所述陶瓷添加剂的平均粒径为1~2μm;和/或所述陶瓷添加剂的纯度为99.5%以上。
优选地,所述耐特高电压绝缘树脂包含以重量份数计的如下组分:
基体树脂40~68份、增韧剂5~6份、硅烷10~12份、陶瓷添加剂15~18份、分散剂3~8份、促进剂1~3份。
优选地,在所述耐特高电压绝缘树脂中,所述增韧剂、所述硅烷、所述陶瓷添加剂的重量份数比为1:2:3;和/或在所述耐特高电压绝缘树 脂中,所述促进剂与所述陶瓷添加剂的重量份数比为1:(10~15)。
优选地,在步骤(1)中:在80℃搅拌2h,得到增韧型基体树脂;和/或所述搅拌的速度为100~300r/min。
优选地,在步骤(2)中:所述球磨的转速为300~500r/min,所述球磨时间为12小时以上;和/或所述陶瓷添加剂与所述溶剂的质量比为(1~2):(7~8)。
优选地,在步骤(2)中:所述陶瓷添加剂分散液中含有的陶瓷添加剂的质量分数为15~25%。
优选地,在步骤(4)中:所述减压蒸馏的温度为40~70℃;和/或所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量为3~18%。
优选地,在步骤(5)中:所述搅拌的时间为0.5~1h。
优选地,所述耐特高压绝缘树脂的粘度在10000mPa·s以下。
本发明在第二方面提供了由本发明在第一方面所述的制备方法制备得到的耐特高电压绝缘树脂。
本发明与现有技术相比至少具有如下有益效果:
(1)本发明制得的耐特高电压绝缘树脂在特高压电气中能够起到良好的绝缘效果,本发明通过往基体树脂中添加合适配比的增韧剂,得到增韧型基体树脂,然后采用陶瓷添加剂分散液与硅烷对增韧型基体树脂进行改性,得到硅烷改性增韧型基体树脂,显著提高了绝缘树脂的玻璃化转变温度以及绝缘性能,同时,本发明中的合适配比的增韧剂的添加提高了绝缘树脂的力学性能,合适配比的陶瓷添加剂分散液的成分选择则进一步提高了绝缘树脂的绝缘性能,同时可以有效提高绝缘树脂的击穿强度,增加尺寸稳定性,减少应力开裂的趋势。
(2)本发明先将陶瓷添加剂与溶剂进行球磨,得到合适的陶瓷添加剂含量的陶瓷添加剂分散液后再与增韧型基体树脂、硅烷、分散剂等按照合适的质量配比在室温下搅拌2小时~3小时混合均匀,可以大大 提高陶瓷添加剂在增韧型基体树脂中的分散性和相容性,从而有利于保证最终制得的绝缘树脂兼具有优异的力学性能以及电气绝缘性能。
(3)本发明得到的硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量控制为3~18%,有利于保证最终制得的绝缘树脂兼具有优异的力学性能以及电气绝缘性能。
(4)本发明经过大量的创造性试验,得到了本发明中所述绝缘树脂最佳的组分配比,即所述耐特高电压绝缘树脂包含以重量份数计的如下组分:基体树脂40~68份、增韧剂5~6份、硅烷10~12份、陶瓷添加剂15~18份、分散剂3~8份、促进剂1~3份,并且在所述耐特高电压绝缘树脂中,所述增韧剂、所述硅烷、所述陶瓷添加剂的重量份数比为1:2:3,在所述耐特高电压绝缘树脂中,所述促进剂与所述陶瓷添加剂的重量份数比为1:(10~15),如此可以保证得到力学性能最好以及电气绝缘性能最好的所述耐特高电压绝缘树脂。
(5)本发明制得的所述耐特高电压绝缘树脂的粘度在10000mPa·s以下,特别适用于模压复合成型。
(6)本发明制得的所述耐特高电压绝缘树脂经模压复合成型得到的复合材料的拉伸强度不小于95MPa,断裂伸长率不小于3%,弯曲强度不小于155MPa,玻璃化转变温度不小于200℃,介电强度不小于50kV/mm。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明在第一方面提供了一种耐特高电压绝缘树脂的制备方法,所述制备方法包括如下步骤:
(1)将40~68重量份(例如40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67或68重量份)基体树脂与5~15重量份(例如5、6、7、8、9、10、11、12、13、14或15份)增韧剂混合,然后在惰性气体(例如N 2)保护下在60~100℃(例如60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃或100℃)搅拌1~3h(例如1、1.5、2、2.5或3h),得到增韧型基体树脂;在本发明中,所述基体树脂与增韧剂按照质量比为(40~68):(5~15)(例如40:5、40:6、40:7、40:8、40:9、40:10、40:11、40:12、40:13、40:14、40:15、45:5、45:6、45:7、45:8、45:9、45:10、45:11、45:12、45:13、45:14、45:15、50:5、50:6、50:7、50:8、50:9、50:10、50:11、50:12、50:13、50:14、50:15、55:5、55:6、55:7、55:8、55:9、55:10、55:11、55:12、55:13、55:14、55:15、60:5、60:6、60:7、60:8、60:9、60:10、60:11、60:12、60:13、60:14、60:15、68:5、68:6、68:7、68:8、68:9、68:10、68:11、68:12、68:13、68:14或68:15)混合;在一些具体的实施例中,将基体树脂与增韧剂按照质量比混合后,启动搅拌,搅拌速度为200r/min,同时,通入N 2,升温至80℃,搅拌搅拌2h;搅拌结束后,获得增韧型基体树脂。
(2)将10~35重量份(例如10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34或35重量份)陶瓷添加剂与溶剂进行球磨,得到陶瓷添加剂分散液;优选的是,所述陶瓷添加剂与所述溶剂的质量比为(1~2):(7~8)(例如1:7、1:8、2:7或2:8);本发明对所述溶剂没有特别的要求,所述溶剂例如可以为乙醇、丙酮或其他能与树脂相容的溶剂中的一种或多种混合溶剂均可;在一些具体的实施例中,例如可以将陶瓷添加剂与溶剂按质量比为(1~2):(7~8)加入到球磨罐中,采用行星球磨机进行球磨,球磨机转速控制在300转/分钟~500转/分钟,球磨时间为12小时以上,制备出陶瓷添加剂分散液,更优选的是,陶瓷添加剂分散液中的陶瓷添加剂的质量百分含量为15%~25%(例如15%、16%、17%、 18%、19%、20%、21%、22%、23%、24%或25%)。
(3)将所述陶瓷添加剂分散液、所述增韧型基体树脂、10~25重量份(例如10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25重量份)硅烷和3~8重量份(例如3、4、5、6、7或8重量份)分散剂在室温(例如室温15~35℃)下搅拌2~3小时,得到混合物;在本发明中,所述陶瓷添加剂分散液中含有的陶瓷添加剂、所述硅烷、所述分散剂与步骤(1)中的基体树脂的质量比为(10~35):(10~25):(3~8):(40~68)(例如10:10:3:40、10:12:3:40、10:15:3:40、10:18:3:40、10:20:3:40、10:25:3:40、18:10:3:40、18:12:3:40、18:15:3:40、18:18:3:40、18:20:3:40、18:25:3:40、25:10:3:40、25:12:3:40、25:15:3:40、25:18:3:40、25:20:3:40、25:25:3:40、35:10:3:40、35:12:3:40、35:15:3:40、35:18:3:40、35:20:3:40、35:25:3:40、10:10:5:50、10:12:5:50、10:15:5:50、10:18:5:50、10:20:5:50、10:25:5:50、18:10:5:50、18:12:5:50、18:15:5:50、18:18:5:50、18:20:5:50、18:25:5:50、25:10:5:50、25:12:5:50、25:15:5:50、25:18:5:50、25:20:5:50、25:25:5:50、35:10:5:50、35:12:5:50、35:15:5:50、35:18:5:50、35:20:5:50、35:25:5:50、10:10:8:68、10:12:8:68、10:15:8:68、10:18:8:68、10:20:8:68、10:25:8:68、18:10:8:68、18:12:8:68、18:15:8:68、18:18:8:68、18:20:8:68、18:25:8:68、25:10:8:68、25:12:8:68、25:15:8:68、25:18:8:68、25:20:8:68、25:25:8:68、35:10:8:68、35:12:8:68、35:15:8:68、35:18:8:68、35:20:8:68或35:25:8:68)。
(4)将所述混合物进行减压蒸馏去除溶剂,得到硅烷改性增韧型基体树脂;本发明发现,经本发明步骤(1)至步骤(4)得到的硅烷改性增韧型基体树脂相比采用陶瓷添加剂、增韧剂、基体树脂、硅烷、分散剂与溶剂直接进行球磨,然后经减压蒸馏去除多余溶剂得到的硅烷改性增韧型基体树脂,或者相比直接采用陶瓷添加剂而未将陶瓷添加剂预先进行分散的方式,更有利于提高各组分的分散性和相容性,避免团聚发生,从而保证制得兼具有优异的力学性能以及电气绝缘性能的所述耐特高电压绝缘树脂。
(5)往所述硅烷改性增韧型基体树脂中加入0.5~3重量份(例如0.5、1、1.5、2、2.5或3重量份)促进剂并搅拌均匀(例如室温下搅拌30分钟~1小时),制得耐特高电压绝缘树脂;本发明对步骤(3)和步骤(4)中出现的搅拌的转速没有特别的限制,例如可以是100~300r/min;所述促进剂与步骤(1)中的基体树脂的质量比为(0.5~3):(40~68)(例如0.5:40、0.5:45、0.5:50、0.5:55、0.5:60、0.5:68、1:40、1:45、1:50、1:55、1:60、1:68、1.5:40、1.5:45、1.5:50、1.5:55、1.5:60、1.5:68、2:40、2:45、2:50、2:55、2:60、2:68、2.5:40、2.5:45、2.5:50、2.5:55、2.5:60、2.5:68、3:40、3:45、3:50、3:55、3:60或3:68);本发明发现,在得到陶瓷颗粒与硅烷改性后的硅烷改性增韧型基体树脂之后再加入促进剂,相比在陶瓷颗粒与硅烷改性时同步加入促进剂,更有利于得到保证制得兼具有优异的力学性能以及电气绝缘性能的所述耐特高电压绝缘树脂。特别说明的是,在本发明中,耐特高电压指的是,本发明制得的绝缘树脂可以耐1100千伏及以上的交流电压,例如,当制得的绝缘树脂可以通过1100kV/1min的工频交流耐压试验时,即可认为该绝缘树脂可以耐特高电压。
在本发明中,制得的所述耐特高电压绝缘树脂包含以重量份数计的如下组分:
基体树脂40~68份(例如40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67或68份)、增韧剂5~15份(例如5、6、7、8、9、10、11、12、13、14或15份)、硅烷10~25份(例如10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25份)、陶瓷添加剂10~35份(例如10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34或35份)、分散剂3~8份(例如3、4、5、6、7或8份)、促进剂0.5~3份(例如0.5、1、1.5、2、2.5或3份)。
根据一些优选的实施方式,所述基体树脂为环氧树脂、聚酰胺改性 环氧树脂、酚醛改性环氧树脂、硼改性酚醛树脂、二甲苯改性环氧树脂中的一种或者多种;本发明对这些优选的所述基体树脂的来源没有特别的限制,例如采用市面上可以直接购买的产品或者通过现有技术制备而成的产品均可;所述增韧剂为液体聚硫橡胶、液体聚丁二烯橡胶、丁腈橡胶和丁苯橡胶中的一种或多种;本发明对这些优选的所述增韧剂的来源没有特别的限制,例如采用市面上可以直接购买的产品或者通过现有技术制备而成的产品均可;所述陶瓷添加剂为镁橄榄石颗粒、氧化铝颗粒、氮化硼颗粒、氮化硅颗粒、氮化铝颗粒、石英陶瓷颗粒中的一种或者多种;所述溶剂为乙醇和/或丙酮;所述硅烷为正硅酸甲酯、正硅酸乙酯、三甲基乙氧基硅烷、丁基三甲氧基硅烷中的一种;所述分散剂为KH550、KH560、KH570、KH602、KH792中的一种或多种;和/或所述促进剂为N,N-二甲基苄胺、季铵盐、N,N-二(缩水甘油基)苯胺中的一种或多种。
根据一些更优选的实施方式,所述增韧剂为液体聚硫橡胶与液体聚丁二烯橡胶按照质量比为(5~6):1(例如5:1、5.5:1或6:1)混合而成,所述陶瓷添加剂为氮化硼颗粒与氮化铝颗粒按照质量比为1:(2~4)(例如1:2、1:3或1:4)混合而成,所述促进剂为N,N-二甲基苄胺与N,N-二(缩水甘油基)苯胺按照质量比为1:(3~4)(例如1:3或1:4)混合而成;本发明经过大量的创造性试验,在无数的增韧剂、陶瓷添加剂和促进剂种类中,获得了本发明中最佳的相匹配的增韧剂、陶瓷添加剂和促进剂成分,本发明意外发现,在该优选的增韧剂、陶瓷添加剂以及促进剂成分条件下,有利于制得力学更加优异以及电气绝缘性能更加优异的所述耐特高电压绝缘树脂。
根据一些优选的实施方式,所述陶瓷添加剂的平均粒径为1~2μm;和/或所述陶瓷添加剂的纯度为99.5%以上;在本发明中,优选为所述陶瓷添加剂的平均粒径为1~2μm,本发明发现,若所述陶瓷添加剂的平均粒径过大,则不利于分散,不利于得到力学更加优异以及电气绝缘性能更加优异的所述耐特高电压绝缘树脂,而若所述陶瓷添加剂的平 均粒径过小,则会导致成本过高。
根据一些优选的实施方式,所述耐特高电压绝缘树脂包含以重量份数计的如下组分:
基体树脂40~68份(例如40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67或68份)、增韧剂5~6份(例如5、5.5或6份)、硅烷10~12份(例如10、11或12份)、陶瓷添加剂15~18份(例如15、16、17或18份)、分散剂3~8份(例如3、4、5、6、7或8份)、促进剂1~3份(例如1、1.2、1.5、1.8、2、2.2、2.5、2.8或3份)。
根据一些优选的实施方式,在所述耐特高电压绝缘树脂中,所述增韧剂、所述硅烷、所述陶瓷添加剂的重量份数比为1:2:3;和/或在所述耐特高电压绝缘树脂中,所述促进剂与所述陶瓷添加剂的重量份数比为1:(10~15)(例如1:10、1:11、1:12、1:13、1:14或1:15)。
本发明经过大量的创造性试验,得到了本发明中所述绝缘树脂最佳的组分配比,即所述耐特高电压绝缘树脂包含以重量份数计的如下组分:基体树脂40~68份、增韧剂5~6份、硅烷10~12份、陶瓷添加剂15~18份、分散剂3~8份、促进剂1~3份,并且在所述耐特高电压绝缘树脂中,所述增韧剂、所述硅烷、所述陶瓷添加剂的重量份数比为1:2:3,在所述耐特高电压绝缘树脂中,所述促进剂与所述陶瓷添加剂的重量份数比为1:(10~15),如此可以保证得到力学性能最好以及电气绝缘性能最好的所述耐特高电压绝缘树脂。
根据一些优选的实施方式,在步骤(1)中:在80℃搅拌2h,得到增韧型基体树脂;和/或所述搅拌的速度为100~300r/min(例如100、150、200、250或300r/min)。
根据一些优选的实施方式,在步骤(2)中:所述球磨的转速为300~500r/min(例如300、350、400、450或500r/min),所述球磨时间为12小时以上;和/或所述陶瓷添加剂与所述溶剂的质量比为(1~2):(7~8)(例如1:7、1:8、2:7或2:8)。
根据一些优选的实施方式,在步骤(2)中:所述陶瓷添加剂分散液中含有的陶瓷添加剂的质量分数为15~25%(例如15%、16%、17%、18%、19%、20%、21%、22%、23%、24%或25%)。
根据一些优选的实施方式,在步骤(4)中:所述减压蒸馏的温度为40~70℃(例如40℃、50℃、60℃或70℃);和/或所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量为3~18%(例如3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%或18%),更优选为12~16.5%。
根据一些优选的实施方式,在步骤(5)中:所述搅拌的时间为0.5~1h。
根据一些优选的实施方式,所述耐特高压绝缘树脂的粘度在10000mPa·s以下。
根据一些具体的实施方式,所述耐特高电压绝缘树脂的制备包括如下步骤:
步骤一:制备增韧型基体树脂
将基体树脂与增韧剂按照比例混合后,启动搅拌,搅拌速度为200r/min,同时,通入N 2,升温至80℃,搅拌2h;搅拌结束后,自此获得增韧型基体树脂;所述的基体树脂为环氧树脂、聚酰胺改性环氧树脂、酚醛改性环氧树脂、硼改性酚醛树脂、二甲苯改性环氧树脂中的一种或多种;所述的增韧剂为液体聚硫橡胶、液体聚丁二烯橡胶、丁腈橡胶和丁苯橡胶中的一种或多种。
步骤二:制备陶瓷添加剂分散液
将陶瓷添加剂固体粉末和溶剂按质量比(1~2):(7~8)加入到球磨罐中,采用行星球磨机进行球磨,球磨机转速控制在300转/分钟~500转/分钟,球磨时间为12小时以上,制备出陶瓷添加剂分散液,陶瓷添加剂分散液中的陶瓷添加剂的质量百分含量为15%~25%,其余部分为溶剂,溶剂为乙醇、丙酮或其他能与树脂相容的溶剂中的一种或几种混合溶剂。
步骤三:制备陶瓷添加剂分散液、增韧型基体树脂和硅烷的混合物
将上述陶瓷添加剂分散液、增韧型基体树脂、硅烷和分散剂进行混合,室温下搅拌2小时~3小时,得到混合均匀的混合物。
步骤四:制备硅烷改性增韧型基体树脂
将上述混合物在40℃~70℃进行减压蒸馏,去除溶剂,得到陶瓷添加剂颗粒和硅烷改性的硅烷改性增韧型基体树脂,其中,所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量在3%~15%之间。
步骤五:加入促进剂
在步骤四中所得的硅烷改性增韧型基体树脂中加入促进剂,搅拌30分钟~1小时,共混至均匀,使其粘度在10000mPa·s以下;
至此,完成一种适用于模压复合成型的耐特高电压绝缘树脂的制备。
本发明在第二方面提供了由本发明在第一方面所述的制备方法制备得到的耐特高电压绝缘树脂,所述耐特高电压绝缘树脂包含以重量份数计的如下组分:
基体树脂40~68份(例如40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67或68份)、增韧剂5~15份(例如5、6、7、8、9、10、11、12、13、14或15份)、硅烷10~25份(例如10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25份)、陶瓷添加剂10~35份(例如10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34或35份)、分散剂3~8份(例如3、4、5、6、7或8份)、促进剂0.5~3份(例如0.5、1、1.5、2、2.5或3份)。
特别说明的是,本发明中的“份”均指的是“重量份”。
下文将通过举例的方式对本发明进行进一步的说明,但是本发明的保护范围不限于这些实施例。本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发 明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
实施例1
步骤一:制备增韧型基体树脂
将50份酚醛改性环氧树脂(双酚F型环氧树脂F-44)与5份增韧剂液体聚硫橡胶(JLY-121液体聚硫橡胶)混合后,启动搅拌,搅拌速度为200r/min,同时,通入N 2,升温至80℃,搅拌2h;搅拌结束后,获得增韧型基体树脂。
步骤二:制备陶瓷添加剂分散液
将平均粒径为2μm的氮化硼颗粒和乙醇按质量比2:8加入到球磨罐中,采用行星球磨机进行球磨,球磨机转速控制在400转/分钟,球磨时间为15小时,制备出50份陶瓷添加剂分散液,陶瓷添加剂分散液中的氮化硼颗粒的质量百分含量为20%(对应陶瓷添加剂10份)。
步骤三:制备陶瓷添加剂分散液、增韧型基体树脂和硅烷的混合物
将上述陶瓷添加剂分散液、增韧型基体树脂、10份硅烷(三甲基乙氧基硅烷)和3份分散剂(KH792)进行混合,室温下在转速为200r/min搅拌2.5小时,得到混合均匀的混合物。
步骤四:制备硅烷改性增韧型基体树脂
将上述混合物在50℃进行减压蒸馏,去除溶剂,得到陶瓷添加剂颗粒和硅烷改性的硅烷改性增韧型基体树脂,其中,所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量在12.8%。
步骤五:加入促进剂
在步骤四中所得的硅烷改性增韧型基体树脂中加入0.5份促进剂(N,N-二甲基苄胺),室温下在转速为200r/min搅拌1小时,共混至均匀;
至此,完成一种适用于模压复合成型的耐特高电压绝缘树脂的制备。
实施例2
步骤一:制备增韧型基体树脂
将68份双酚F型环氧树脂F-44与15份增韧剂液体聚硫橡胶(JLY-121液体聚硫橡胶)混合后,启动搅拌,搅拌速度为200r/min,同时,通入N 2,升温至80℃,搅拌2h;搅拌结束后,获得增韧型基体树脂。
步骤二:制备陶瓷添加剂分散液
将平均粒径为2μm的氮化硼颗粒和乙醇按质量比2:8加入到球磨罐中,采用行星球磨机进行球磨,球磨机转速控制在400转/分钟,球磨时间为15小时,制备出100份陶瓷添加剂分散液,陶瓷添加剂分散液中的氮化硼颗粒的质量百分含量为20%(对应陶瓷添加剂20份)。
步骤三:制备陶瓷添加剂分散液、增韧型基体树脂和硅烷的混合物
将上述陶瓷添加剂分散液、增韧型基体树脂、25份硅烷(三甲基乙氧基硅烷)和8份分散剂(KH792)进行混合,室温下在转速为200r/min搅拌2.5小时,得到混合均匀的混合物。
步骤四:制备硅烷改性增韧型基体树脂
将上述混合物在50℃进行减压蒸馏,去除溶剂,得到陶瓷添加剂颗粒和硅烷改性的硅烷改性增韧型基体树脂,其中,所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量为14.7%。
步骤五:加入促进剂
在步骤四中所得的硅烷改性增韧型基体树脂中加入3份促进剂(N,N-二甲基苄胺),室温下在转速为200r/min搅拌1小时,共混至均匀;
至此,完成一种适用于模压复合成型的耐特高电压绝缘树脂的制备。
实施例3
步骤一:制备增韧型基体树脂
将68份双酚F型环氧树脂F-44与5份增韧剂液体聚硫橡胶(JLY-121液体聚硫橡胶)混合后,启动搅拌,搅拌速度为200r/min,同时,通入N 2,升温至80℃,搅拌2h;搅拌结束后,获得增韧型基体树脂。
步骤二:制备陶瓷添加剂分散液
将平均粒径为2μm的氮化硼颗粒和乙醇按质量比2:8加入到球磨罐中,采用行星球磨机进行球磨,球磨机转速控制在400转/分钟,球磨时间为15小时,制备出75份陶瓷添加剂分散液,陶瓷添加剂分散液中的氮化硼颗粒的质量百分含量为20%(对应陶瓷添加剂15份)。
步骤三:制备陶瓷添加剂分散液、增韧型基体树脂和硅烷的混合物
将上述陶瓷添加剂分散液、增韧型基体树脂、10份硅烷(三甲基乙氧基硅烷)和8份分散剂(KH792)进行混合,室温下在转速为200r/min搅拌2.5小时,得到混合均匀的混合物。
步骤四:制备硅烷改性增韧型基体树脂
将上述混合物在50℃进行减压蒸馏,去除溶剂,得到陶瓷添加剂颗粒和硅烷改性的硅烷改性增韧型基体树脂,其中,所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量为14.2%。
步骤五:加入促进剂
在步骤四中所得的硅烷改性增韧型基体树脂中加入1.5份促进剂(N,N-二甲基苄胺),室温下在转速为200r/min搅拌1小时,共混至均匀;
至此,完成一种适用于模压复合成型的耐特高电压绝缘树脂的制备。
实施例4
步骤一:制备增韧型基体树脂
将68份双酚F型环氧树脂F-44与6份增韧剂液体聚硫橡胶(JLY-121液体聚硫橡胶)混合后,启动搅拌,搅拌速度为200r/min,同时,通入N 2,升温至80℃,搅拌2h;搅拌结束后,获得增韧型基体树脂。
步骤二:制备陶瓷添加剂分散液
将平均粒径为2μm的氮化硼颗粒和乙醇按质量比2:8加入到球磨罐中,采用行星球磨机进行球磨,球磨机转速控制在400转/分钟,球磨时间为15小时,制备出90份陶瓷添加剂分散液,陶瓷添加剂分散 液中的氮化硼颗粒的质量百分含量为20%(对应陶瓷添加剂18份)。
步骤三:制备陶瓷添加剂分散液、增韧型基体树脂和硅烷的混合物
将上述陶瓷添加剂分散液、增韧型基体树脂、12份硅烷(三甲基乙氧基硅烷)和8份分散剂(KH792)进行混合,室温下在转速为200r/min搅拌2.5小时,得到混合均匀的混合物。
步骤四:制备硅烷改性增韧型基体树脂
将上述混合物在50℃进行减压蒸馏,去除溶剂,得到陶瓷添加剂颗粒和硅烷改性的硅烷改性增韧型基体树脂,其中,所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量在16.1%。
步骤五:加入促进剂
在步骤四中所得的硅烷改性增韧型基体树脂中加入1.8份促进剂(N,N-二甲基苄胺),室温下在转速为200r/min搅拌1小时,共混至均匀;
至此,完成一种适用于模压复合成型的耐特高电压绝缘树脂的制备。
实施例5
步骤一:制备增韧型基体树脂
将68份双酚F型环氧树脂F-44与6份增韧剂液体聚硫橡胶(JLY-121液体聚硫橡胶)混合后,启动搅拌,搅拌速度为200r/min,同时,通入N 2,升温至80℃,搅拌2h;搅拌结束后,获得增韧型基体树脂。
步骤二:制备陶瓷添加剂分散液
将平均粒径为2μm的氮化硼颗粒和乙醇按质量比2:8加入到球磨罐中,采用行星球磨机进行球磨,球磨机转速控制在400转/分钟,球磨时间为15小时,制备出80份陶瓷添加剂分散液,陶瓷添加剂分散液中的氮化硼颗粒的质量百分含量为20%(对应陶瓷添加剂16份)。
步骤三:制备陶瓷添加剂分散液、增韧型基体树脂和硅烷的混合物
将上述陶瓷添加剂分散液、增韧型基体树脂、11份硅烷(三甲基乙氧基硅烷)和8份分散剂(KH792)进行混合,室温下在转速为 200r/min搅拌2.5小时,得到混合均匀的混合物。
步骤四:制备硅烷改性增韧型基体树脂
将上述混合物在50℃进行减压蒸馏,去除溶剂,得到陶瓷添加剂颗粒和硅烷改性的硅烷改性增韧型基体树脂,其中,所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量为14.7%。
步骤五:加入促进剂
在步骤四中所得的硅烷改性增韧型基体树脂中加入1份促进剂(N,N-二甲基苄胺),室温下在转速为200r/min搅拌1小时,共混至均匀;
至此,完成一种适用于模压复合成型的耐特高电压绝缘树脂的制备。
实施例6
步骤一:制备增韧型基体树脂
将68份双酚F型环氧树脂F-44与8份增韧剂液体聚硫橡胶(JLY-121液体聚硫橡胶)混合后,启动搅拌,搅拌速度为200r/min,同时,通入N 2,升温至80℃,搅拌2h;搅拌结束后,获得增韧型基体树脂。
步骤二:制备陶瓷添加剂分散液
将平均粒径为2μm的氮化硼颗粒和乙醇按质量比2:8加入到球磨罐中,采用行星球磨机进行球磨,球磨机转速控制在400转/分钟,球磨时间为15小时,制备出120份陶瓷添加剂分散液,陶瓷添加剂分散液中的氮化硼颗粒的质量百分含量为20%(对应陶瓷添加剂24份)。
步骤三:制备陶瓷添加剂分散液、增韧型基体树脂和硅烷的混合物
将上述陶瓷添加剂分散液、增韧型基体树脂、16份硅烷(三甲基乙氧基硅烷)和8份分散剂(KH792)进行混合,室温下在转速为200r/min搅拌2.5小时,得到混合均匀的混合物。
步骤四:制备硅烷改性增韧型基体树脂
将上述混合物在50℃进行减压蒸馏,去除溶剂,得到陶瓷添加剂颗粒和硅烷改性的硅烷改性增韧型基体树脂,其中,所述硅烷改性增韧 型基体树脂中含有的陶瓷添加剂的质量百分含量为19.4%。
步骤五:加入促进剂
在步骤四中所得的硅烷改性增韧型基体树脂中加入2.4份促进剂(N,N-二甲基苄胺),室温下在转速为200r/min搅拌1小时,共混至均匀;
至此,完成一种适用于模压复合成型的耐特高电压绝缘树脂的制备。
实施例7
步骤一:制备增韧型基体树脂
将68份双酚F型环氧树脂F-44与15份增韧剂液体聚硫橡胶(JLY-121液体聚硫橡胶)混合后,启动搅拌,搅拌速度为200r/min,同时,通入N 2,升温至80℃,搅拌2h;搅拌结束后,获得增韧型基体树脂。
步骤二:制备陶瓷添加剂分散液
将平均粒径为2μm的氮化硼颗粒和乙醇按质量比2:8加入到球磨罐中,采用行星球磨机进行球磨,球磨机转速控制在400转/分钟,球磨时间为15小时,制备出50份陶瓷添加剂分散液,陶瓷添加剂分散液中的氮化硼颗粒的质量百分含量为20%(对应陶瓷添加剂10份)。
步骤三:制备陶瓷添加剂分散液、增韧型基体树脂和硅烷的混合物
将上述陶瓷添加剂分散液、增韧型基体树脂、25份硅烷(三甲基乙氧基硅烷)和8份分散剂(KH792)进行混合,室温下在转速为200r/min搅拌2.5小时,得到混合均匀的混合物。
步骤四:制备硅烷改性增韧型基体树脂
将上述混合物在50℃进行减压蒸馏,去除溶剂,得到陶瓷添加剂颗粒和硅烷改性的硅烷改性增韧型基体树脂,其中,所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量为7.9%。
步骤五:加入促进剂
在步骤四中所得的硅烷改性增韧型基体树脂中加入1.5份促进剂(N,N-二甲基苄胺),室温下在转速为200r/min搅拌1小时,共混至 均匀;
至此,完成一种适用于模压复合成型的耐特高电压绝缘树脂的制备。
实施例8
实施例8与实施例3基本相同,不同之处在于:
所述增韧剂为液体聚丁二烯橡胶(LBR352液体聚丁二烯橡胶);所述陶瓷添加剂为氮化铝颗粒;所述促进剂N,N-二(缩水甘油基)苯胺。
实施例9
实施例9与实施例3基本相同,不同之处在于:
所述增韧剂为液体聚硫橡胶(JLY-121液体聚硫橡胶)与液体聚丁二烯橡胶(LBR352液体聚丁二烯橡胶)按照质量比为5:1混合而成,所述陶瓷添加剂为氮化硼颗粒与氮化铝颗粒按照质量比为1:2混合而成,所述促进剂为N,N-二甲基苄胺与N,N-二(缩水甘油基)苯胺按照质量比为1:3。
实施例10
实施例10与实施例3基本相同,不同之处在于:
所述增韧剂为液体聚硫橡胶(JLY-121液体聚硫橡胶)与液体聚丁二烯橡胶(LBR352液体聚丁二烯橡胶)按照质量比为6:1混合而成,所述陶瓷添加剂为氮化硼颗粒与氮化铝颗粒按照质量比为1:4混合而成,所述促进剂为N,N-二甲基苄胺与N,N-二(缩水甘油基)苯胺按照质量比为1:4。
实施例11
实施例11与实施例3基本相同,不同之处在于:
所述增韧剂为液体聚硫橡胶(JLY-121液体聚硫橡胶)与液体聚丁二烯橡胶(LBR352液体聚丁二烯橡胶)按照质量比为4:1混合而成,所述陶瓷添加剂为氮化硼颗粒与氮化铝颗粒按照质量比为1:1混合而成,所述促进剂为N,N-二甲基苄胺与N,N-二(缩水甘油基)苯胺按照 质量比为1:2。
实施例12
实施例12与实施例3基本相同,不同之处在于:
所述增韧剂为液体聚硫橡胶(JLY-121液体聚硫橡胶)与液体聚丁二烯橡胶(LBR352液体聚丁二烯橡胶)按照质量比为7:1混合而成,所述陶瓷添加剂为氮化硼颗粒与氮化铝颗粒按照质量比为1:5混合而成,所述促进剂为N,N-二甲基苄胺与N,N-二(缩水甘油基)苯胺按照质量比为1:5。
对比例1
步骤一:与实施例3的步骤一相同。
步骤二:制备陶瓷添加剂、增韧型基体树脂和硅烷的混合物
将15份陶瓷添加剂(平均粒径为2μm的氮化硼颗粒)、增韧型基体树脂、10份硅烷(三甲基乙氧基硅烷)和8份分散剂(KH792)进行混合,室温下在转速为200r/min搅拌2.5小时,得到混合均匀的混合物,即为硅烷改性增韧型基体树脂;其中,所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量为14.2%。
步骤三:加入促进剂
在步骤二中所得的硅烷改性增韧型基体树脂中加入1.5份促进剂(N,N-二甲基苄胺),室温下在转速为200r/min搅拌1小时,共混至均匀;
至此,完成一种绝缘树脂的制备。
对比例2
步骤一:制备陶瓷添加剂分散液
将平均粒径为2μm的氮化硼颗粒和乙醇按质量比2:8加入到球磨罐中,采用行星球磨机进行球磨,球磨机转速控制在400转/分钟,球磨时间为15小时,制备出75份陶瓷添加剂分散液,陶瓷添加剂分散液中的氮化硼颗粒的质量百分含量为20%(对应陶瓷添加剂15份)。
步骤二:制备陶瓷添加剂分散液、增韧剂、基体树脂和硅烷的混合 物
将上述陶瓷添加剂分散液、5份增韧剂(增韧剂液体聚硫橡胶)、68份双酚F型环氧树脂F-44、10份硅烷(三甲基乙氧基硅烷)和8份分散剂(KH792)进行混合,室温下在转速为200r/min搅拌2.5小时,得到混合均匀的混合物。
步骤三:制备硅烷改性增韧型基体树脂
将上述混合物在50℃进行减压蒸馏,去除溶剂,得到陶瓷添加剂颗粒和硅烷改性的硅烷改性增韧型基体树脂,其中,所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量为14.2%。
步骤四:加入促进剂
在步骤三中所得的硅烷改性增韧型基体树脂中加入1.5份促进剂(N,N-二甲基苄胺),室温下在转速为200r/min搅拌1小时,共混至均匀;
至此,完成一种绝缘树脂的制备。
对比例3
步骤一:制备增韧型基体树脂
将68份双酚F型环氧树脂F-44与5份增韧剂液体聚硫橡胶(JLY-121液体聚硫橡胶)混合后加入启动搅拌,搅拌速度为200r/min,同时,通入N 2,升温至80℃,搅拌2h;搅拌结束后,获得增韧型基体树脂。
步骤二:制备硅烷改性增韧型基体树脂
将平均粒径为2μm的氮化硼颗粒15份和乙醇60份、上述增韧型基体树脂、10份硅烷(三甲基乙氧基硅烷)和8份分散剂(KH792)加入到球磨罐中,采用行星球磨机进行球磨,球磨机转速控制在400转/分钟,球磨时间为15小时,制备硅烷改性增韧型基体树脂分散液,然后将硅烷改性增韧型基体树脂分散液在50℃进行减压蒸馏,去除溶剂,得到硅烷改性增韧型基体树脂,其中,所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量为14.2%。
步骤三:加入促进剂
在步骤二中所得的硅烷改性增韧型基体树脂中加入1.5份促进剂(N,N-二甲基苄胺),室温下在转速为200r/min搅拌1小时,共混至均匀;
至此,完成一种绝缘树脂的制备。
本发明对实施例1~12与对比例1~3得到的绝缘树脂进行了性能测试,结果如表1所示。
表1中,绝缘树脂的性能测试为:制备树脂浇铸体:将模具涂上脱模剂,放入烘箱预热,将绝缘树脂与固化剂邻苯二甲酸酐按质量比为1:0.4比例配制胶液,浇注到涂有脱模剂的模具里,放入烘箱按照80℃/2h+100℃/2h+140℃/2h+160℃/2h程序进行固化,固化压力为2MPa,待温度冷却至室温后取出试样并加工,最终测试其性能,包括拉伸强度、弯曲强度、玻璃化转变温度、介电强度以及AC耐压试验;拉伸强度的测试标准为:GB/T2567-2008;弯曲强度的测试标准为:GB/T2570-1995;介电强度按照ASTM-D149-2009标准进行,玻璃化转变温度按照ASTM-D3418-2021标准进行;进行AC耐压试验的测试标准为GB/Z24836-2009,表1中,“通过1100kV/1min的工频交流耐压试验”表示的是在“1100kV/1min的AC耐压试验”中,测试结果无异常;反之,则表示“不能通过1100kV/1min的工频交流耐压试验”。
表1:实施例1~12与对比例1~3得到的绝缘树脂的性能指标。
Figure PCTCN2022093602-appb-000001
Figure PCTCN2022093602-appb-000002
本发明未详细说明部分为本领域技术人员公知技术。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的 普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种耐特高电压绝缘树脂的制备方法,其特征在于,所述制备方法包括如下步骤:
    (1)将40~68重量份基体树脂与5~15重量份增韧剂混合,然后在惰性气体保护下在60~100℃搅拌1~3h,得到增韧型基体树脂;
    (2)将10~35重量份陶瓷添加剂与溶剂进行球磨,得到陶瓷添加剂分散液;
    (3)将所述陶瓷添加剂分散液、所述增韧型基体树脂、10~25重量份硅烷和3~8重量份分散剂在室温下搅拌2~3小时,得到混合物;
    (4)将所述混合物进行减压蒸馏去除溶剂,得到硅烷改性增韧型基体树脂;
    (5)往所述硅烷改性增韧型基体树脂中加入0.5~3重量份促进剂并搅拌均匀,制得耐特高电压绝缘树脂。
  2. 根据权利要求1所述的制备方法,其特征在于:
    所述基体树脂为环氧树脂、聚酰胺改性环氧树脂、酚醛改性环氧树脂、硼改性酚醛树脂、二甲苯改性环氧树脂中的一种或者多种;
    所述增韧剂为液体聚硫橡胶、液体聚丁二烯橡胶、丁腈橡胶和丁苯橡胶中的一种或多种;
    所述陶瓷添加剂为镁橄榄石颗粒、氧化铝颗粒、氮化硼颗粒、氮化硅颗粒、氮化铝颗粒、石英陶瓷颗粒中的一种或者多种;
    所述溶剂为乙醇和/或丙酮;
    所述硅烷为正硅酸甲酯、正硅酸乙酯、三甲基乙氧基硅烷、丁基三甲氧基硅烷中的一种;
    所述分散剂为KH550、KH560、KH570、KH602、KH792中的一种或多种;和/或
    所述促进剂为N,N-二甲基苄胺、季铵盐、N,N-二(缩水甘油基)苯胺中的一种或多种。
  3. 根据权利要求1或2所述的制备方法,其特征在于:
    所述陶瓷添加剂的平均粒径为1~2μm;和/或
    所述陶瓷添加剂的纯度为99.5%以上。
  4. 根据权利要求1或2所述的制备方法,其特征在于,所述耐特高电压绝缘树脂包含以重量份数计的如下组分:
    基体树脂40~68份、增韧剂5~6份、硅烷10~12份、陶瓷添加剂15~18份、分散剂3~8份、促进剂1~3份。
  5. 根据权利要求4所述的制备方法,其特征在于:
    在所述耐特高电压绝缘树脂中,所述增韧剂、所述硅烷、所述陶瓷添加剂的重量份数比为1:2:3;和/或
    在所述耐特高电压绝缘树脂中,所述促进剂与所述陶瓷添加剂的重量份数比为1:(10~15)。
  6. 根据权利要求1或2所述的制备方法,其特征在于,在步骤(1)中:
    在80℃搅拌2h,得到增韧型基体树脂;和/或
    所述搅拌的速度为100~300r/min。
  7. 根据权利要求1或2所述的制备方法,其特征在于,在步骤(2)中:
    所述球磨的转速为300~500r/min,所述球磨时间为12小时以上;和/或
    所述陶瓷添加剂与所述溶剂的质量比为(1~2):(7~8)。
  8. 根据权利要求1或2所述的制备方法,其特征在于,在步骤(2)中:
    所述陶瓷添加剂分散液中含有的陶瓷添加剂的质量分数为15~25%。
  9. 根据权利要求1或2所述的制备方法,其特征在于,在步骤(4)中:
    所述减压蒸馏的温度为40~70℃;和/或
    所述硅烷改性增韧型基体树脂中含有的陶瓷添加剂的质量百分含量为3~18%。
  10. 根据权利要求1或2所述的制备方法,其特征在于,在步骤(5)中:
    所述搅拌的时间为0.5~1h。
  11. 根据权利要求1或2所述的制备方法,其特征在于:
    所述耐特高压绝缘树脂的粘度在10000mPa·s以下。
  12. 由权利要求1至11中任一项所述的制备方法制备得到的耐特高电压绝缘树脂。
PCT/CN2022/093602 2022-04-25 2022-05-18 耐特高电压绝缘树脂及其制备方法 WO2023206652A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210440605.7A CN114702788B (zh) 2022-04-25 2022-04-25 一种耐特高电压绝缘树脂及其制备方法
CN202210440605.7 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023206652A1 true WO2023206652A1 (zh) 2023-11-02

Family

ID=82174827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093602 WO2023206652A1 (zh) 2022-04-25 2022-05-18 耐特高电压绝缘树脂及其制备方法

Country Status (2)

Country Link
CN (1) CN114702788B (zh)
WO (1) WO2023206652A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273596A (ja) * 1997-02-03 1998-10-13 Shin Etsu Chem Co Ltd 高電圧電気絶縁体用シリコーンゴム組成物及びポリマー碍子
EP1354916A1 (de) * 2002-04-17 2003-10-22 Abb Research Ltd. Selbstheilende Epoxidharze für die Herstellung von elektrischen Isolierungen
CN103694644A (zh) * 2013-12-30 2014-04-02 景旺电子科技(龙川)有限公司 一种环氧树脂组合物、金属基覆铜板及其制作方法
CN105860437A (zh) * 2016-04-19 2016-08-17 西安思坦电气技术有限公司 微-纳米改性环氧基耐温导热绝缘复合材料及其制备方法
CN108948659A (zh) * 2018-06-06 2018-12-07 镇江市鑫泰绝缘材料有限公司 一种超高耐电压环氧树脂绝缘板及其加工工艺
CN110408219A (zh) * 2019-09-02 2019-11-05 南京思甲宁新材料科技有限公司 一种高压电缆附件用防闪络绝缘胶料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008981B2 (en) * 2003-12-23 2006-03-07 Industrial Technology Reserarch Institute Organic-inorganic hybrid compositions with high dielectric constant and high thermal stability, and cured compositions thereof
JP4922108B2 (ja) * 2007-09-05 2012-04-25 積水化学工業株式会社 絶縁シート及び積層構造体
CN105504688B (zh) * 2016-01-08 2018-05-01 武汉理工大学 一种f级电机灌封用复合陶瓷/环氧树脂复合材料及其制备方法
CN106566200A (zh) * 2016-11-07 2017-04-19 苏州圣杰特种树脂有限公司 一种基于增韧改性的环氧树脂组合物
CN108264735B (zh) * 2018-01-23 2020-06-09 河北工业大学 一种增韧导热绝缘的环氧树脂基复合材料的制备方法
CN110982224A (zh) * 2019-11-05 2020-04-10 上海乾乐欣展实业有限公司 一种高导热无凝胶绝缘无毒新材料及其加工工艺
CN111363315B (zh) * 2020-05-11 2022-04-22 全球能源互联网研究院有限公司 一种环氧树脂绝缘材料及其制备方法和应用
CN114350110A (zh) * 2021-12-02 2022-04-15 西安理工大学 纳米级填料和液体橡胶共改性环氧复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273596A (ja) * 1997-02-03 1998-10-13 Shin Etsu Chem Co Ltd 高電圧電気絶縁体用シリコーンゴム組成物及びポリマー碍子
EP1354916A1 (de) * 2002-04-17 2003-10-22 Abb Research Ltd. Selbstheilende Epoxidharze für die Herstellung von elektrischen Isolierungen
CN103694644A (zh) * 2013-12-30 2014-04-02 景旺电子科技(龙川)有限公司 一种环氧树脂组合物、金属基覆铜板及其制作方法
CN105860437A (zh) * 2016-04-19 2016-08-17 西安思坦电气技术有限公司 微-纳米改性环氧基耐温导热绝缘复合材料及其制备方法
CN108948659A (zh) * 2018-06-06 2018-12-07 镇江市鑫泰绝缘材料有限公司 一种超高耐电压环氧树脂绝缘板及其加工工艺
CN110408219A (zh) * 2019-09-02 2019-11-05 南京思甲宁新材料科技有限公司 一种高压电缆附件用防闪络绝缘胶料及其制备方法

Also Published As

Publication number Publication date
CN114702788A (zh) 2022-07-05
CN114702788B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
JP4319332B2 (ja) 電気絶縁材料およびその製造方法
WO2022179375A1 (zh) 一种绝缘电线及其制备方法、线圈和电子、电气设备
WO2021208318A1 (zh) 一种电动汽车电机用耐atf油、耐电晕漆包线及其制备方法
CN114032063B (zh) 高导热低粘度双组分有机硅灌封胶及其制备方法
CN113549301B (zh) 一种环氧树脂超高导热绝缘材料及制备方法
WO2021109730A1 (zh) 一种双组份有机硅灌封胶及其应用方法
CN113336978A (zh) 一种环氧微纳米共掺复合材料的制备方法
WO2023206652A1 (zh) 耐特高电压绝缘树脂及其制备方法
CN114380958B (zh) 高压电机用高导热环氧vpi树脂及其制备方法和应用
CN114031409B (zh) 一种高导热填料用高纯氮化铝粉的制备方法
CN105924743A (zh) 一种铝溶胶改性耐热光缆料及其制备方法
CN113527981B (zh) 一种薄涂耐高湿热绝缘粉末及其制备方法
CN112646315A (zh) 低电导温度系数环氧树脂纳米复合绝缘材料及其制备方法
CN112852102B (zh) 一种户外复合绝缘子用柔性环氧组合物的制备方法
CN114464347A (zh) 一种耐温抗老化绝缘介质浆料及其制备方法
CN115011077B (zh) 一种双组份高导热环氧灌封树脂及其制备方法和应用
CN112646316A (zh) 低电导温度系数环氧树脂/富勒烯复合材料及其制备方法
CN105936695A (zh) 一种氮化铝增强耐热光缆料及其制备方法
CN114702787B (zh) 一种适用于真空吸注成型的耐特高电压绝缘树脂及其制备方法
CN115536905B (zh) 一种复合导热填料及其制备方法和应用
CN114437501B (zh) 一种环氧树脂用粉末改性剂及其制备方法和其改性环氧树脂
CN108912601A (zh) 一种电气开关用高强度环氧树脂材料
CN108219379A (zh) 一种集成电路板用改性环氧树脂及其制备方法
KR102224020B1 (ko) 저수축, 저점도 중전기기용 에폭시 소재 조성물 및 이의 제조 방법
WO2024141110A1 (zh) 用于轴或轴承的绝缘涂层、轴承、新能源汽车用电机及绝缘涂层的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939486

Country of ref document: EP

Kind code of ref document: A1