WO2023202700A1 - 一种枝晶增强的气凝胶隔热复合材料 - Google Patents

一种枝晶增强的气凝胶隔热复合材料 Download PDF

Info

Publication number
WO2023202700A1
WO2023202700A1 PCT/CN2023/089759 CN2023089759W WO2023202700A1 WO 2023202700 A1 WO2023202700 A1 WO 2023202700A1 CN 2023089759 W CN2023089759 W CN 2023089759W WO 2023202700 A1 WO2023202700 A1 WO 2023202700A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal insulation
airgel
composite material
silica
insulation composite
Prior art date
Application number
PCT/CN2023/089759
Other languages
English (en)
French (fr)
Inventor
白元宇
苏文涛
朱力伟
杨尚橙
解洪兴
何新
Original Assignee
中科润资(重庆)气凝胶技术研究院有限公司
中科润资(重庆)节能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2022/088413 external-priority patent/WO2023201689A1/zh
Priority claimed from PCT/CN2022/088412 external-priority patent/WO2023201688A1/zh
Application filed by 中科润资(重庆)气凝胶技术研究院有限公司, 中科润资(重庆)节能科技有限公司 filed Critical 中科润资(重庆)气凝胶技术研究院有限公司
Publication of WO2023202700A1 publication Critical patent/WO2023202700A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/64Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/072Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of specially adapted, structured or shaped covering or lining elements
    • E04F13/075Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of specially adapted, structured or shaped covering or lining elements for insulation or surface protection, e.g. against noise or impact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems

Definitions

  • the invention belongs to the technical field of heat-insulating refractory materials, and specifically relates to a dendrite-reinforced airgel heat-insulating composite material.
  • Fiber mats are used as their skeleton support structures.
  • Commonly used fiber mats include basalt fiber mats, mullite fiber mats, ceramic fiber mats, glass fiber mats, etc. , Basalt fiber felt, mullite fiber felt, and ceramic fiber felt have water-absorbing properties. If used for a long time in a humid environment, they will absorb moisture in the environment. After absorbing water, the internal structure of the fiber is affected, thereby reducing the thermal insulation performance and affecting the product life.
  • the present invention provides a solution.
  • the inventor has modified and optimized the skeleton of the silica airgel felt, so that dendrites grow on the surface of the fiber, and the dendrites are covered with hydrophobic silica airgel. Glue coating and dendrites can also make the hydrophobic silica aerogel more closely combined with the fiber, thus possessing hydrophobic properties.
  • the problem of poor high-temperature insulation performance of silica aerogel was optimized.
  • Anti-shrink additives were added to the silica aerogel to improve its high-temperature insulation properties, thus achieving good durability and high-temperature insulation. Fireproof, heat-insulating, high-temperature material with excellent thermal insulation properties.
  • the invention provides a dendrite-reinforced airgel thermal insulation composite material.
  • the airgel thermal insulation composite material includes a thermal insulation layer, a thermal conductive layer, a heat reflection layer, a heat absorption layer, and a high-temperature expansion layer.
  • the thermal insulation layer contains skeleton fibers, aerogels, and anti-shrink additives.
  • the skeleton fiber is selected from at least one type of alumina fiber, glass fiber, and mullite fiber.
  • the skeleton fiber has hydrophobic properties, and the surface of the skeleton fiber has dendrites.
  • the skeleton fibers are coated with a hydrophobic aerogel; the hydrophobic aerogel is a hydrophobic silica aerogel.
  • the aerogel is selected from the group consisting of silica aerogel, silica/alumina composite aerogel composed of silica and alumina, aluminum silicate aerogel, and alumina aerogel.
  • the outer shell is aluminum silicate or alumina aerogel
  • the inner core is silica aerogel and core-shell structure aerogel
  • the inner core is aluminum silicate
  • the outer shell is silica aerogel core-shell structure aerogel .
  • the anti-shrinkage additive is selected from silica powder, aluminum silicate powder, quartz powder, etc.
  • the thermal insulation layer contains at least one of a high-temperature foaming agent, multifunctional carbon particles, and a stabilizer.
  • the present invention further provides a method for preparing dendrite-reinforced airgel thermal insulation composite materials, which includes the following steps:
  • Fiber dendrite growth preparation The fiber mat is impregnated and freeze-dried.
  • the first immersion liquid is a silicon source solution
  • the second immersion liquid is an AlNO 3 solution
  • the third immersion liquid is an NH 4 F solution. After completing the third impregnation and freezing, drying is performed to obtain a fiber mat with dendrites.
  • the silicon source solution may be a solution of methyl orthosilicate or ethyl orthosilicate.
  • Sol preparation Mix silicon source, water, alcohol and silica powder.
  • a hydrolysis catalyst can also be added to accelerate hydrolysis to obtain a silica-containing sol.
  • the silicon source is selected from sodium silicate, ethyl orthosilicate, methyl orthosilicate, etc.
  • the hydrolysis catalyst is selected from hydrochloric acid, oxalic acid, nitric acid, sulfuric acid, etc.
  • Sunscreen agents can also be added to the sol to enhance the temperature insulation performance at high temperatures. Sunscreen agents include titanium dioxide, carbon black, SiC, potassium hexatitanate, ZrO2 , etc.
  • Gel preparation Add a gel catalyst to transform the silica-containing sol into a gel.
  • the gel catalyst can be ammonia, dimethylformamide, etc. After adding the gel catalyst, let it stand for 24-72h to obtain the gel. You can also add the gel catalyst, pour it into the fiber preform and let it stand for 24-72 hours to obtain the gel. You can also add reinforcing fibers and fiber dispersants after adding the gel catalyst, and let it sit for 24-72 hours to obtain a gel.
  • the reinforcing fiber can be brucite fiber, ceramic fiber, glass fiber, quartz fiber, or mullite fiber; the surface of the ceramic fiber can also have and grafted ceramic dendrites; the surface of the mullite fiber can also have in-situ growth.
  • the process flow of mullite dendrites is shown in Figure 8.
  • Fiber dispersants can be sodium lauryl sulfonate, polyethylene glycol, sodium lauryl sulfate, sodium hexametaphosphate, etc.
  • Solvent replacement When the silicon source contains metal ions, first remove the metal ions by washing with water, and then use an organic solvent for solvent replacement. If the silicon source does not contain metal ions, use organic solvents for solvent replacement.
  • the organic solvent can be one or a mixture of ethanol, isopropyl alcohol, and n-hexane.
  • Modification Use a modifier to modify the gel after solvent replacement.
  • the modifier can be TMCS/n-hexane system, trimethylchlorosilane/n-hexane system (volume ratio 1:9), etc.
  • the modified aerogel has hydrophobic properties.
  • the modification temperature is 20-50°C.
  • Drying methods can be drying at normal temperature and pressure, supercritical drying, etc.
  • the conditions for drying at normal temperature and pressure are to dry at 60, 80 and 120°C for 2 hours respectively, and finally obtain white silica aerogel powder.
  • the solvent is ethanol
  • the solvent is ethanol
  • the temperature is raised to over 200°C and the pressure exceeds 8Mpa, and then the pressure is slowly released to obtain an airgel block.
  • the solvent is ethanol
  • the fluid inside the reactor is released at a slow rate at a constant temperature until the internal and external pressures are balanced. Then when the temperature drops to room temperature, the finished product is obtained.
  • the airgel thermal insulation composite material includes a thermal insulation layer
  • the thermal insulation layer includes ceramic fibers and silica aerogel
  • the ceramic fibers include at least one of alumina fibers and aluminum silicate fibers.
  • the surface of the ceramic fiber has ceramic dendrites
  • the silica aerogel has hydrophobic properties and is completely wrapped on the surface of the ceramic fiber and ceramic dendrites.
  • the airgel thermal insulation composite material further includes a thermal conductive layer, a thermal reflective layer, a heat absorbing layer, and a high temperature expansion layer.
  • the thermal insulation layer includes thermal insulation layer skeleton fibers, airgel, and anti-shrinkage additives.
  • the structure of the airgel is airgel particles composed of silica and alumina, and the airgel particles have Hydrophobic properties, the anti-shrinkage additive is silica micropowder.
  • the thermal insulation layer further includes an anti-shrink additive, and the anti-shrink additive is silica micropowder.
  • the structure of the aerogel includes alumina particles wrapped with a silica aerogel layer, aluminum silicate particles with a silica aerogel layer on the outside, and alumina particles wrapped with an alumina protective layer on the outside. at least one type of silica airgel particles.
  • the particle size of the silica powder is 1000-3000 mesh.
  • the added amount of silica powder is 1-15%.
  • the surface of the silica powder is covered with a titanium dioxide film.
  • the titanium dioxide is nitrogen-doped or fluorine-doped titanium dioxide.
  • the aerogel has a thermal conductivity ranging from 0.01 W/m ⁇ K to 0.06 W/m ⁇ K.
  • the aerogel has a particle size ranging from 10 ⁇ m to 900 ⁇ m.
  • the thermal conductivity of the thermal insulation layer at 600-800°C is 0.015 W/m ⁇ K-0.02 W/m ⁇ K.
  • the thermal insulation layer further includes a light-blocking agent, and the light-blocking agent is titanium dioxide powder or graphite powder.
  • the tensile strength of the thermal insulation layer is ⁇ 1.0MPA at 25°C; ⁇ 0.3MPA at 800°C.
  • the thermal insulation layer has a flexural modulus ⁇ 6000 psi at 25°C; ⁇ 4000 psi at 800°C.
  • the method for producing the thermal insulation layer includes:
  • Silica sol preparation mix silicon source, water, alcohol, and silica powder and stir to obtain silica sol. The stirring time is 60 minutes;
  • the airgel thermal insulation composite material further includes one or more of a thermal conductive layer, a thermal reflective layer, and a thermal absorbing layer.
  • the thermal conductivity layer has a thermal conductivity ranging from 20 W/m ⁇ K to 50 W/m ⁇ K.
  • the thermally conductive layer has thermally conductive structural channels, and the thermally conductive structural channels are double-layer hollow metal plates.
  • the form of the thermal conductive layer includes silicone heat dissipation film, graphite heat dissipation film, metal heat conduction plate, and heat pipe type heat conduction plate.
  • the metal thermally conductive plate is made of copper plate or aluminum plate.
  • the heat absorption capacity of the heat absorption layer is 500 kJ-1000 kJ/kg.
  • the heat absorption layer is a phase change material
  • the phase change temperature of the phase change material is 800°C or 1000°C or 1200°C.
  • the phase change material is a molten salt, including carbonate, chloride salt, and fluoride salt.
  • the airgel thermal insulation composite material further includes a high-temperature expansion layer located on the outermost side relative to the metal inner wall and/or outer wall.
  • the thickness of the high-temperature expansion layer is 1-5 mm, and the thickness after expansion is 20-100 mm.
  • the high-temperature expansion layer includes a high-temperature foaming agent, multifunctional carbon particles, and a stabilizer.
  • the high-temperature foaming agent has a foaming temperature greater than 500°C, and the high-temperature foaming agent is silicon carbide powder or particles.
  • the multifunctional carbon particles can be graphite or graphene; the stabilizer is manganese dioxide.
  • the present invention modifies and optimizes the skeleton fibers of the insulation layer of the airgel thermal insulation composite material to obtain fibers with dendrites on the surface. These dendrites can make the skeleton fibers and silica airgel more closely combined. , so that the second silica aerogel can be better wrapped on the fiber surface, thereby improving the thermal insulation effect of the thermal insulation layer. Because the heat transfer of ceramic fiber fibers is faster, each other After the phases are overlapped together, the thermal insulation effect of the entire thermal insulation layer will be reduced due to the effect of heat conduction. Silica aerogel has better thermal insulation effect and can better wrap the fibers, so that the fibers are separated from each other by silica with better thermal insulation performance, thereby improving the thermal insulation effect of the entire thermal insulation layer. . At the same time, the skeleton line has also obtained hydrophobic properties after treatment. The hydrophobic fiber avoids the problem of water absorption affecting the internal structure of the ceramic fiber in a humid environment, thereby reducing the thermal insulation performance and affecting the product life
  • the present invention solves the problem of shrinkage and collapse of the silica aerogel structure at high temperatures.
  • the inventor Adding anti-shrink additives to composite aerogels can inhibit and reduce the shrinkage and collapse of the silica part through the crystal form and volume changes of the anti-shrink additives at high temperatures, further improving the temperature resistance of the composite aerogels. Enhance the performance of the thermal insulation layer to improve the temperature resistance and insulation performance of airgel insulation composite materials.
  • silica aerogel has very good thermal insulation properties, its high temperature resistance has certain defects.
  • Traditional silica aerogel begins to melt at temperatures exceeding 600°C, and nanopores begin to collapse above 800°C. , when the temperature is higher than 1000°C, it has basically lost its fireproof and heat insulation function, and cannot meet the fire resistance requirements in emergency situations.
  • the present invention improves the internal structure of the silica airgel material and combines it with better fire resistance but slightly worse thermal insulation performance.
  • the aluminum oxide/aluminum salt material is combined with the silica aerogel to form composite silica airgel particles with an outer shell of aluminum oxide/aluminum salt and a core of silica aerogel, or an outer shell of silica aerogel.
  • Silica airgel and the core is composite silica airgel particles of aluminum oxide/aluminum salt. This can make the silica aerogel remain stable at high temperatures.
  • the composite particles have better thermal insulation properties and can also maintain better physical and chemical properties. Applying them to the thermal insulation layer can improve the insulation of the aerogel. High temperature insulation properties of thermal composites.
  • the present invention improves and optimizes the airgel of the airgel thermal insulation composite material, and synthesizes and uses a silica/alumina composite aerogel composed of silica and alumina.
  • a silica/alumina composite aerogel composed of silica and alumina.
  • the silica part provides excellent thermal insulation capabilities
  • the alumina part provides excellent temperature resistance.
  • the combination of alumina and silica molecules can inhibit and reduce the shrinkage, melting and crystal change of silica molecules at high temperatures on a microscopic level, and reduce the powder loss of the thermal insulation layer (airgel felt) on a macroscopic level, making The airgel particles still have thermal insulation properties under high temperature conditions and maintain relatively good physical and chemical properties, thereby improving the high-temperature thermal insulation properties of the airgel thermal insulation composite materials.
  • a sunscreen agent is added to the thermal insulation layer of the airgel insulation composite material.
  • the sunscreen agent includes silicon powder coated with titanium dioxide on the surface. Titanium dioxide, as a sunscreen agent, can reduce radiation heat transfer at high temperatures. Enhance the high-temperature thermal insulation properties of silica aerogels. However, due to the easy agglomeration of titanium dioxide itself, the high-temperature heat insulation effect of directly adding titanium dioxide into airgel is not good.
  • coating titanium dioxide on the surface of silica powder and then adding it to the aerogel can In order to take advantage of the characteristics of silica powder in regulating and inhibiting the shrinkage of silica airgel at high temperatures, it can also solve the problem of titanium dioxide agglomeration, thereby further improving the high-temperature thermal insulation performance.
  • the airgel thermal insulation composite material also includes a thermal conductive layer.
  • the thermal conductive layer can quickly disperse local high temperatures and reduce the damage of local high temperatures to the airgel thermal insulation composite material.
  • the airgel thermal insulation composite material further includes a heat absorption layer, and the heat absorption layer is composed of a heat storage material.
  • Thermal storage materials can absorb heat and keep the temperature constant, allowing the material to be used longer under high temperature conditions.
  • the airgel thermal insulation composite material also includes a high-temperature expansion layer.
  • the high-temperature expansion layer rapidly expands after reaching a set high temperature, and its thermal insulation performance is rapidly enhanced after expansion, thereby strengthening the entire airgel.
  • the thermal insulation performance of thermal insulation composite materials at high temperatures can reduce the volume and cost of airgel thermal insulation composite materials under normal circumstances.
  • FIG. 1 Schematic diagram of airgel insulation composite material
  • Figure 3 is a schematic diagram of an airgel wrapped with high-temperature resistant additives
  • FIG. 4 Schematic diagram of the thermal insulation layer being wrapped by a high temperature resistant protective layer
  • FIG. 1 Schematic diagram of dendritic ceramic fiber aerogel
  • FIG. 6 Schematic diagram of titanium dioxide coating on the surface of silicon powder
  • Figure 7 Schematic diagram of the morphology of the high-temperature expansion layer at different temperatures
  • 200-heat shielding composite material 210-insulation layer; 211-silica powder; 212-airgel particles; 213-high temperature resistant additive; 214-aerogel; 215-titanium dioxide slurry; 216-titanium dioxide slurry Coated silicon powder particles; 220-thermal conductive layer; 230-heat reflective layer; 250-high temperature resistant protective layer; 260-high temperature expansion layer; 300-ceramic fiber; 310-ceramic dendrites; 320-dendrite ceramic fiber air condensation glue.
  • Thermal insulation layer is part of the airgel insulation composite material and insulates heat through its own low thermal conductivity.
  • Thermal conductive layer is part of the airgel insulation composite material. Through its own high thermal conductivity characteristics, the concentrated heat The amount is quickly dispersed, reducing the risk of structural damage caused by local high temperatures.
  • Heat reflective layer is a part of the airgel insulation composite material. It uses its own reflection function to reflect heat radiation under high temperature conditions and reduce the internal temperature.
  • High temperature resistant additive is a formula for the thermal insulation layer, used to improve the physical and chemical properties of the thermal insulation layer under high temperature conditions.
  • the airgel thermal insulation composite material includes a thermal insulation layer, and optionally a thermal conductive layer, a thermal reflective layer, a thermal conductive layer, and a thermal conductive layer. layer, heat reflection layer, heat absorption layer, and high temperature expansion layer, as shown in Figure 2.
  • the thermal insulation layer contains skeleton fibers, aerogels, and anti-shrink additives.
  • the skeleton fiber is made of fiber material, and the fiber material is at least one selected from the group consisting of alumina fiber, glass fiber, mullite fiber and aluminum silicate fiber.
  • Silicon-aluminum dendrite (dendrite) structure ceramic fibers are used as skeleton fibers, and ceramic dendrites are grafted on the surface of the skeleton fibers; airgel is wrapped on the surfaces of ceramics and ceramic dendrites to form dendritic ceramic fiber aerogels. It can be silica aerogel or alumina aerogel. Its form is shown in Figure 5.
  • the skeleton fiber has hydrophobic properties, and the surface of the skeleton fiber has dendrites.
  • the skeleton fibers are coated with a hydrophobic aerogel; the hydrophobic aerogel is a hydrophobic silica aerogel.
  • the airgel is filled in the skeleton fibers. Furthermore, the silica aerogel is filled in the skeleton fiber in the form of particles.
  • the airgel is selected from the group consisting of silica airgel particles wrapped with high-temperature resistant additives, aluminum salt or aluminum oxide particles wrapped with silica airgel, and silicon-aluminum composite airgel particles.
  • the surface of the mullite fiber has dendrites.
  • the thermal insulation layer contains high-temperature foaming agent and stabilizer.
  • the high-temperature foaming agent is silicon carbide powder or particles, and the foaming temperature of the high-temperature foaming agent is greater than 500°C.
  • the stabilizer is manganese dioxide.
  • the thickness of the insulation layer after adding high-temperature foaming agent is 1-5mm, and the thickness of the insulation layer after high-temperature foaming is 20-100mm.
  • the anti-shrinkage additives are silica powder, aluminum silicate powder, and quartz powder.
  • the silica powder can be crystalline silica powder particles or amorphous (amorphous) silica powder particles.
  • thermal insulation layer thermal conductive layer
  • heat reflective layer are fixed to each other through bonding and hot pressing.
  • the outside of the airgel insulation composite material can also be wrapped with fiberglass cloth and aluminum foil layers to prevent the airgel from breaking and falling off.
  • the inventor found that the airgel thermal insulation composite material will be locally affected by high temperature, thereby affecting its structural stability. Most of the remaining positions of the airgel thermal insulation composite material did not reach the design limit and performance problems occurred. This kind of In case of emergencies such as fire, overheating, etc. Therefore, the inventor believes that thermal conductivity can be used to improve the thermal insulation and temperature resistance properties of the overall airgel insulation composite material, spread the local high temperature to the rest of the airgel insulation composite material, and reduce the local high temperature so that the airgel Insulation composite materials will not cause fire or overheating problems.
  • the inventor also believes that the local high temperature can be reduced by providing a heat-absorbing layer on the airgel insulation composite material, which can also prevent the airgel insulation composite material from misfire and overheating problems and improve safety.
  • the above method can also prevent the internal silica airgel particles from melting at high temperatures, such as above 600°C, so that the airgel insulation can meet the usage requirements.
  • the thermal insulation layer is bonded to at least one of a thermal conductive layer, a thermal reflective layer, and a thermal absorbing layer to form an airgel thermal insulation composite material.
  • the heat-conducting layer can be a metal heat-conducting plate, such as copper, aluminum and other metal materials with high thermal conductivity; it can also be a heat-conducting metal structure, such as a hollow heat-conducting interlayer; or it can be the heat-conducting layer of a device equipped with a heat pipe.
  • the thermal conductive layer, the thermal reflective layer, and the thermal insulation layer are stacked in sequence to form an airgel thermal insulation composite material.
  • One arrangement method is to attach the heat reflective layer, the thermal conductive layer, and the thermal insulation layer in sequence.
  • One arrangement method is to laminate the thermal conductive layer, the thermal reflective layer, the thermal absorbing layer, and the thermal insulation layer in sequence.
  • One arrangement method is to attach the heat reflective layer, the heat absorbing layer, and the heat insulating layer in sequence.
  • Thermal conductive layer forms include silicone heat dissipation film, graphite heat dissipation film, metal heat conduction plate, and heat pipe heat conduction plate.
  • the material of the metal thermal conductive plate can be copper plate or aluminum plate.
  • the form of the thermal conductive layer can also be a channel with a thermal conductive structure, such as a double-layer hollow metal thermal conductive plate.
  • the thermal conductivity range of the thermal conductive layer at 800°C is 20W/m ⁇ K-50W/m ⁇ K.
  • the material of the heat absorbing layer is selected from phase change materials, heated volatile materials, etc.
  • Phase change materials are molten salts, and molten salts include carbonate, chloride salt, and fluoride salt. Materials that volatilize when heated include water and compressed carbon dioxide.
  • the high-temperature expansion layer includes high-temperature foaming agent, multifunctional carbon particles, and stabilizer.
  • the high temperature foaming agent is silicon carbide powder or particles.
  • Multifunctional carbon particles can be graphite or graphene.
  • the stabilizer is manganese dioxide.
  • the high temperature expansion layer also includes airgel particles.
  • the high-temperature expansion layer may also contain a water-reducing agent, which is sodium tripolyphosphate or sodium hexametaphosphate.
  • the surface of the thermal insulation layer can also be covered with a high temperature resistant protective layer, or the thermal insulation layer can be wrapped with a high temperature resistant protective layer, as shown in Figure 4.
  • the high-temperature resistant protective layer can be made of heat-resistant materials such as aluminum oxide and aluminum silicate.
  • the thermal insulation layer is obtained by impregnating the thermal insulation layer with aluminum-containing slurry and drying it at high temperature to obtain an thermal insulation layer with an aluminum oxide temperature-resistant shell.
  • the mullite fibers used in the thermal insulation layer of the airgel thermal insulation composite material can also be mullite fibers with dendrite reinforcement on the fiber surface. Since aluminum silicate can be used in an environment of 1200°C for a long time, mullite dendrites are grown in situ on the surface of aluminum silicate/mullite fibers through dipping and freeze-drying methods. Using mullite fiber as the skeleton fiber, vacuum impregnation method and sol-gel process are used to prepare high temperature resistant and low thermal conductivity fiber based on mullite fiber. Mullite dendrite reinforced silica airgel insulation material. The process flow is shown in Figure 8.
  • a preferred technical solution is that the aerogel coated on the dendrites has hydrophobic properties.
  • Another preferred technical solution is to surface-treat the dendrites and fibers to have hydrophobic properties.
  • the anti-shrinkage additive is silica powder, which can be crystalline silica powder particles or amorphous (amorphous) silica powder particles.
  • the volume of airgel will shrink at high temperatures (above 800 degrees), resulting in structural changes and reduced thermal insulation performance.
  • Silicon powder especially the volume change caused by the crystal phase change of amorphous silica powder particles at high temperatures, is used to adjust and suppress the shrinkage of the insulation layer at high temperatures.
  • amorphous silicon powder can also improve the strength of the insulation layer.
  • Amorphous silicon powder is a silica material. Under temperature changes, there will be a volume change caused by the transformation of the crystal form. The expansion of the volume of amorphous silicon powder will inhibit and reduce the internal stress when the insulation layer experiences high temperature, thereby reducing the structural changes inside the insulation layer in the airgel insulation composite material and stabilizing its thermal insulation performance under high temperature conditions. .
  • the particle size of amorphous silicon powder is 800-8000 mesh, 1000-2000 mesh, 2000-3000 mesh, 3000-4000 mesh, 4000-5000 mesh, 5000-6000 mesh, 6000-7000 mesh, 7000-8000 mesh, 1000 mesh -1500 mesh, 1500 mesh-3000 mesh, or 10-800nm, 10-100nm, 50-200nm, 100-400nm, 300-800nm.
  • Preferred particle sizes are 800-1000 mesh, 1000-1200 mesh, and 1000-3000 mesh.
  • the addition amount of silica powder is 3-25%, 1-10%, 3-15%, 5-20%, 5-25%, 10-25%. The preferred addition amount is 1%, 2%, 3%, 4 %, 5%, 6%, 7%, 8%.
  • the added amounts of amorphous silicon powder are 1-20%, 1-15%, 2-10%, and 3-8%.
  • the preferred particle size can better promote the bonding of silicon, aluminum and oxygen bonds, making the structure more stable.
  • the optimal addition amount can better improve the material's ability to resist shrinkage at high temperatures while maintaining high thermal insulation performance and mechanical strength.
  • silica aerogels suffer from internal microstructure collapse.
  • the high-temperature resistant additives can be heat-resistant materials such as alumina and aluminum silicate.
  • the preparation process and form are shown in Figure 3; or silica gas can be used.
  • the gel-coated aluminum salt or aluminum oxide particles can prevent the internal molecular structure of the silica airgel particles from melting above 600°C, so that the thermal insulation layer can still maintain the thermal insulation effect at high temperatures and meet the high temperature resistance requirements.
  • Silica aerogel is filled in the skeleton fiber in the form of particles.
  • the thermal conductivity range of airgel particles coated with high-temperature resistant additives at 800°C is 0.01W/m ⁇ K-0.3W/m ⁇ K.
  • the thermal conductivity of silica aerogel coated with high-temperature resistant additives is The initial melting temperature is 1000°C.
  • the thermal conductivity of the insulation layer is 0.01W/m ⁇ K-0.5W/m ⁇ K.
  • the particle size range of silica airgel coated with high-temperature resistant additives is 10 ⁇ m-900 ⁇ m.
  • the thickness of the high temperature resistant additive coating ranges from 5 ⁇ m to 500 ⁇ m.
  • the particle size range of silica airgel coated with high-temperature resistant additives is 10 ⁇ m-900 ⁇ m, and the preferred particle size range is 10 ⁇ m-50 ⁇ m, 50 ⁇ m-100 ⁇ m, 100 ⁇ m-200 ⁇ m, 200 ⁇ m-300 ⁇ m, 300 ⁇ m-500 ⁇ m, 500 ⁇ m-600 ⁇ m, 600 ⁇ m-800 ⁇ m, 800 ⁇ m-900 ⁇ m.
  • the thickness range of the high temperature resistant additive 213 coating layer is 5 ⁇ m-500 ⁇ m, and the preferred thickness range is 5 ⁇ m-15 ⁇ m, 15 ⁇ m-40 ⁇ m, 40 ⁇ m-80 ⁇ m, 80 ⁇ m-150 ⁇ m, 150 ⁇ m-300 ⁇ m, and 300 ⁇ m-500 ⁇ m.
  • the high-temperature performance of the thermal insulation layer is improved by combining alumina materials with stronger fire resistance and high temperature resistance with silica aerogel through technological means.
  • the use of silicon-aluminum composite airgel particles can prevent the pure silica airgel structure from melting above 600°C, and at the same time improve the thermal insulation performance compared with pure alumina airgel. This enables the thermal insulation layer to still have a thermal insulation effect under high temperature conditions.
  • the thermal conductivity range of silicon-aluminum composite airgel particles at 800°C is 0.01W/m ⁇ K-0.2W/m ⁇ K, and the initial melting temperature of silicon-aluminum composite airgel particles is 1000°C.
  • the thermal conductivity of the insulation layer is 0.01W/m ⁇ K-0.1W/m ⁇ K.
  • the particle size range of silicon-aluminum composite airgel is 10 ⁇ m-900 ⁇ m.
  • Titanium dioxide is a commonly used sunscreen agent, but titanium dioxide is prone to agglomeration during the addition process, making it impossible to disperse the titanium dioxide evenly. Especially during the sol-gel process, agglomeration occurs, which affects the final sunscreen effect.
  • the sunscreen agent is titanium dioxide. Since titanium dioxide is easy to agglomerate during the addition process, a dispersant is also added during the addition process to inhibit the agglomeration of titanium dioxide.
  • Titanium dioxide can also be coated on the surface of silica powder to stably combine with the surface of silica powder, thereby inhibiting the agglomeration of titanium dioxide, as shown in Figure 6. Titanium dioxide can use fluorine-doped or nitrogen-doped titanium dioxide nanoparticles to enhance the light-shielding effect in the infrared band.
  • the crystalline form of titanium dioxide may be anatase.
  • the principle of anti-reflection coating can also be applied to enhance the absorption of infrared band radiation by setting the thickness of the coating.
  • the absorption of infrared band radiation can also be further enhanced by setting a multi-layer anti-reflection coating.
  • silica powder When silica powder is exposed to high temperatures and contains aluminum elements, it will react and transform in the direction of mullite. Mullite is an excellent refractory material, so the addition of silica powder further improves the performance of the silica airgel felt. High temperature resistance.
  • the fire rating of the insulation layer is non-combustible Class A.
  • the density of the thermal insulation layer is 50-500kg/m 3 , and the preferred density is 60kg/m 3 , 70kg/m 3 , 80kg/m 3 , 90kg/m 3 , 100kg/m 3 , 150kg/m 3 , 200kg/m 3 , 250kg/m 3 , 300kg/m 3 , 350kg/m 3 , 400kg/m 3 , 450kg/m 3 , 500kg/m 3 .
  • the thermal conductivity range of the thermal insulation layer is: ⁇ 0.025W/(m ⁇ K)(25°C), the preferred range is ⁇ 0.020W/(m ⁇ K)(25°C); ⁇ 0.080W/(m ⁇ K)( 600°C); the preferred range is ⁇ 0.060W/(m ⁇ K)(600°C).
  • the thickness range of the thermal insulation layer is ⁇ 1mm; the preferred thickness range is ⁇ 30mm.
  • the heat absorption layer is composed of heat storage materials.
  • the heat storage materials can be phase change materials, heated volatile materials, or preset cooling materials. Materials such as preset water tank, preset carbon dioxide tank, etc. When encountering high temperatures, it can release the loaded cooling carriers such as water and carbon dioxide to absorb heat.
  • the phase change material can absorb heat and keep the temperature constant, so that when there is a local high temperature, it absorbs heat and produces a phase change without increasing the temperature, thereby protecting the airgel structure of the insulation layer from collapse, allowing the insulation layer to maintain the insulation effect. , so that the entire airgel thermal insulation composite material can still maintain the thermal insulation effect at high temperatures.
  • Phase change materials are molten salts, and molten salts include carbonate, chloride salt, and fluoride salt.
  • the high-temperature expansion layer includes high-temperature foaming agent, multifunctional carbon particles, and stabilizer.
  • the foaming temperature of the high-temperature foaming agent is greater than 500°C.
  • the high-temperature foaming agent is silicon carbide powder or particles, as shown in Figure 7.
  • Multifunctional carbon particles can be graphite or graphene.
  • the stabilizer is manganese dioxide.
  • the thickness of the high temperature expansion layer is 1-5mm, and the thickness after expansion is 20-100mm.
  • a preferred solution is that the high-temperature expansion layer also includes airgel particles to improve the thermal insulation performance of the high-temperature expansion layer. The added mass proportion of airgel particles is 3-5%.
  • the high-temperature expansion layer may also contain a water-reducing agent, which is sodium tripolyphosphate or sodium hexametaphosphate.
  • the high-temperature expansion layer will expand and foam when it encounters high temperatures.
  • the thickness of the high-temperature expansion layer increases and the thermal conductivity decreases.
  • the multi-functional carbon particles added inside also act as a sunscreen under high temperature conditions, reducing the risk of damage under high temperature conditions. Heat radiation. Protect the structural stability of the smoke exhaust duct under high temperature conditions.
  • the high-temperature expansion layer is not foamed (below 500°C)
  • the multifunctional carbon particles are still in a tightly pressed state. They have relatively good thermal conductivity and can quickly disperse heat and reduce local overheating.
  • the high-temperature expansion layer expands and foams, and the multifunctional carbon particles in it are dispersed and no longer have close connection with thermal conductivity. disappears, and the high-temperature expansion layer changes from a thermal conductive function to a functional layer with high-temperature thermal insulation properties.
  • these multifunctional carbon particles have the effect of absorbing infrared rays and acting as sunscreen agents in this situation, further improving the thermal insulation performance of airgel thermal insulation composite materials at high temperatures.
  • the invention provides a method for preparing a dendrite-reinforced airgel thermal insulation composite material. The steps are as follows:
  • the impregnation liquid which is a silicon source solution.
  • the impregnation environment can be low pressure or vacuum, and the impregnation time is 15 minutes.
  • the above-mentioned fibers may also be in the form of fiber mats.
  • the fiber mat can be aluminum silicate fiber mat, mullite fiber mat, or glass fiber mat.
  • the silicon source solution may be a solution of methyl orthosilicate or ethyl orthosilicate.
  • Sol preparation Mix silicon source, water, alcohol, and silica powder. You can also add a hydrolysis catalyst to accelerate hydrolysis to obtain a silicon-containing sol.
  • the silicon source is selected from sodium silicate, ethyl orthosilicate, methyl orthosilicate, etc.
  • the hydrolysis catalyst is selected from hydrochloric acid, oxalic acid, nitric acid, sulfuric acid, etc.
  • Microsilica powder is selected from crystalline silica powder particles and amorphous (amorphous) silica powder particles.
  • the alcohol is selected from ethanol or methanol.
  • Sunscreen agent enhancement Add sunscreen agent and dispersant to the prepared sol.
  • the sunscreen agent is selected from titanium dioxide, carbon black, SiC, potassium hexatitanate, ZrO2, etc.
  • the titanium dioxide can be titanium dioxide powder or silicon coated with titanium dioxide film. Micronized powder.
  • the dispersant is selected from sodium silicate, sodium tripolyphosphate, sodium hexametaphosphate, polycarboxylate, polyammonium methacrylate, and polyethylene glycol.
  • Gel preparation Add a gel catalyst to transform the silica-containing sol into a gel.
  • the gel catalyst is selected from ammonia, dimethylformamide, etc. After adding the gel catalyst, let it stand for 24-72h to obtain the gel. You can also add the gel catalyst, pour it into the fiber preform and let it stand for 24-72 hours to obtain the gel. You can also add reinforcing fiber and fiber dispersant after adding gel catalyst, and let it stand for 24-72 hours to obtain gel; reinforcing fiber is selected from brucite fiber, ceramic fiber, glass fiber, quartz fiber; fiber dispersion
  • the agent can be sodium lauryl sulfonate, polyethylene glycol, sodium lauryl sulfate, sodium hexametaphosphate, etc.
  • Solvent replacement When the silicon source contains metal ions, first remove the metal ions by washing with water, and then use an organic solvent for solvent replacement. If the silicon source does not contain metal ions, use organic solvents for solvent replacement.
  • the organic solvent can be one or a mixture of ethanol, isopropyl alcohol, and n-hexane.
  • Modification Use a modifier to modify the gel after solvent replacement.
  • the modifier can be TMCS/n-hexane system, trimethylchlorosilane/n-hexane system (volume ratio 1:9), etc.
  • the modified aerogel has hydrophobic properties.
  • the modification temperature is 20-50°C.
  • Drying methods can be drying at normal temperature and pressure, supercritical drying, etc.
  • the conditions for drying at normal temperature and pressure are: drying at 60, 80 and 120°C for 2 hours, and finally the white silica aerogel is obtained.
  • the solvent is ethanol
  • the preferred soaking time in liquid carbon dioxide is 3 or 4 days, and release the displaced ethanol; then heat it up to 30-50°C, 9-15MPa and keep for 1-3h, and then slowly release the pressure to normal pressure at a rate of 0.1-1MPa/h to obtain an airgel block.
  • the temperature is raised to over 200°C and the pressure exceeds 8Mpa, and then the pressure is slowly released to obtain an airgel block.
  • the solvent is ethanol
  • the fluid inside the reactor is released at a slow rate at a constant temperature until the internal and external pressures are balanced. Then when the temperature drops to room temperature, the finished product is obtained.
  • the silicon micropowder titanium dioxide coating method is as follows:
  • titanium dioxide precursor The formula includes titanium source, deionized water, acid, hydrolysis inhibitor, and solvent; the titanium source can be titanate esters such as tetrabutyl titanate, tetraethyl titanate, and tetrapropyl titanate. at least one of them.
  • the formula includes silicon source, acidic catalyst, solvent, and pH regulator; the silicon source can be methyl orthosilicate, ethyl orthosilicate, methyltrimethoxysilane, methyltriethoxy At least one of siloxanes such as silane, dimethyldiethoxysilane, vinyltriethoxysilane, or titanium dioxide powder. Silicon-containing precursors may also include polypropylene glycol and ethylene oxide.
  • titanium dioxide sol Mix titanium dioxide precursor and silicon-containing precursor to prepare titanium dioxide sol. Or directly use titanium dioxide precursor as titanium dioxide sol.
  • Silica powder coating Dip the silica powder into the titanium dioxide sol for 5-15 minutes, take it out, and dry it at 400-600°C.
  • the silicon source in it can better combine the titanium source/titanium dioxide with the surface of the silicon powder.
  • the coating method of high temperature resistant protective layer is as follows:
  • the high temperature resistant protective layer covers the surface of the thermal insulation layer or wraps the thermal insulation layer, as shown in Figure 4.
  • the high-temperature resistant protective layer can be made of heat-resistant materials such as aluminum oxide and aluminum silicate.
  • the thermal insulation layer with an aluminum oxide temperature-resistant shell is obtained by impregnating the thermal insulation layer with aluminum-containing slurry and drying it at high temperature.
  • the specific preparation method is:
  • Preparation of high-temperature resistant slurry Mix aluminum hydroxide, ceramic fiber, and water in a certain proportion to make slurry.
  • aluminum salt, ceramic fiber, and water can be mixed in a certain proportion, and the pH can be adjusted to generate a slurry containing aluminum hydroxide.
  • Hydrophobic treatment Wrap hydrophobic material outside the thermal insulation layer.
  • the hydrophobic material can be polymer coating, spray repellent, etc.
  • the preparation method of alumina gel particles is as follows:
  • alumina sol 50g of hydrated alumina powder (pure boehmite powder produced by Condea Company in Germany), 300ml of water, add 60ml of 1.6mol/l nitric acid, hydrolysis temperature is 85°C, 2h, to obtain stable alumina sol.
  • the preparation method of alumina sol is as follows: mix 30g of aluminum isopropoxide and 270ml of water, add 0.1ml of ethyl acetoacetate, and hydrolyze aluminum isopropoxide.
  • the hydrolysis temperature is 75°C and the hydrolysis time is 3 hours to obtain a stable alumina sol.
  • an airgel thermal insulation composite material is provided, and its preparation method is as follows.
  • Impregnation Dip the mullite fiber felt into the impregnation liquid.
  • the impregnation liquid is methyl orthosilicate solution.
  • the impregnation time is 15 minutes.
  • silica sol Mix silicon source, water and alcohol, take 440ml of ethyl orthosilicate, 72ml of water, 720ml of ethanol, 1ml of hydrochloric acid, 20g of silica powder with a particle size of 1000 mesh, add it to the container and stir , you can also add an ultrasonic dispersion step to better disperse the silica powder and obtain silica sol.
  • the stirring or ultrasonic dispersing time is 30min-120min, the preferred stirring time is 60mi, and the preferred ultrasonic dispersing time is 30min.
  • Gel preparation Take 500ml of silica sol, add 1ml of ammonia, pour it into a mullite fiber felt with whiskers, and let it stand for 36 hours to obtain a gel.
  • the preparation method of the airgel thermal insulation composite material of this embodiment is basically the same as that of Embodiment 1, except that in step B), the amount of silica powder is 30g.
  • the preparation method of the airgel thermal insulation composite material of this embodiment is basically the same as that of Embodiment 1. The difference is that in step B), the silica powder is replaced with 20g of silica powder with a titanium dioxide coating on the surface.
  • the technical problem to be solved by the embodiments of the present invention is to add titanium dioxide sunscreen in order to suppress the enhancement of thermal radiation at high temperatures, but the titanium dioxide sunscreen will cause agglomeration. It uses silicon powder coated with titanium dioxide coating on the surface. While solving the problem of titanium dioxide agglomeration, it can also suppress the problem of high-temperature shrinkage of airgel materials.
  • the preparation method of the airgel thermal insulation composite material of this embodiment is basically the same as that of Embodiment 1. The difference is that in step C), after obtaining the gel, the gel is broken into silica gel particles, and the broken Add 50g of silica gel particles to 200ml of alumina sol, and add 15g of polyethylene glycol to gel the alumina sol. Finally, a core-shell structure aerogel in which the outer shell is alumina aerogel and the core is silica aerogel is obtained.
  • the preparation method of the airgel thermal insulation composite material of this embodiment is basically the same as that of Embodiment 1. The difference is that in step B), 100 g of alumina gel particles are also added; in step C, the amount of silica sol is 300 ml. Finally, a core-shell structure aerogel in which the outer shell is silica aerogel and the core is alumina aerogel is obtained.
  • the preparation method of the airgel thermal insulation composite material of this comparative example is basically the same as that of Example 1. The difference is that in step C), 200 ml of silica sol and 150 ml of alumina sol are taken, 1 ml of ammonia is added, and left to stand for 36 hours to obtain a gel. .
  • the preparation method of the airgel thermal insulation composite material of this comparative example is basically the same as that of Example 1. The difference is that step A) is not performed and in step C), mullite fiber mat without whiskers is used.
  • the preparation method of the airgel thermal insulation composite material of this comparative example is basically the same as that of Example 1. The difference is that step A) is not performed. In step C), after adding ammonia water to the silica sol, it is directly left to stand for 36 hours to obtain the gel without pouring. to fiber felt.
  • the preparation method of the airgel thermal insulation composite material of this comparative example is basically the same as that of Example 1. The difference is that step A) is not performed; in step B), no silica powder is added; in step C), after ammonia water is added to the silica sol, The gel was obtained by leaving it alone for 36 hours without pouring it into the fiber mat.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及保温耐火材料技术领域,提供了一种枝晶增强的气凝胶隔热复合材料,使用了耐高温性能更好的骨架纤维,同时使得作为骨架纤维的纤维表面生长出了枝晶,这些枝晶可以使骨架纤维与二氧化硅气凝胶结合的更紧密,使二样氧化硅气凝胶更好的包裹在纤维表面,同时加入了抗收缩添加剂,提升了高温情况下的隔热性能,从而提高气凝胶隔热复合材料的隔热保温效果。

Description

一种枝晶增强的气凝胶隔热复合材料 技术领域
本发明属于隔热耐火材料技术领域,具体涉及一种枝晶增强的气凝胶隔热复合材料。
背景技术
随着科技的快速发展,在许多领域对于基础材料技术性能提升的需求也在不断发展,其中包括在防火保温的基础材料领域。尤其在消防隔热的技术方向,为了能够更好的保障生命财产安全,减少和有效控制火灾风险,在住宅、公共建筑、交通载具等多场景都对于基础防火材料提出了更高的性能需求,尤其是在高温环境下材料的稳定性以及隔热性能。现有的技术方案主要是增加耐火材料的厚度。这样会导致耐火材料占据更大的空间,而且质量会进一步增加。在有限的空间下,一定程度的增厚耐火材料可能仍然无法实现预期的消防和隔热效果。不仅如此,传统的火材料主要为岩棉毡、硅酸铝毡等材料,吸水性问题严重,耐火材料吸水后会导致内部结构坍塌,使得其寿命较短。
发明内容
发明人经大量研究发现,现有的二氧化硅气凝胶毡大多使用纤维毡作为其骨架支撑结构,常用的纤维毡例如玄武岩纤维毡、莫来石纤维毡、陶瓷纤维毡、玻璃纤维毡等,玄武岩纤维毡、莫来石纤维毡、陶瓷纤维毡具有吸水的特性,在潮湿环境中长期使用,会吸收环境中的水分。吸水后纤维的内部结构受到影响,从而降低隔热性能,影响产品寿命。
本发明提供了一个解决方案,发明人通过对二氧化硅气凝胶毡的骨架进行了改性和优化,使纤维表面生长出了枝晶,枝晶外被具备疏水特性的二氧化硅气凝胶包覆,枝晶还可以使得疏水二氧化硅气凝胶与纤维结合的更紧密,从而具备疏水特性。同时针对二氧化硅气凝胶高温隔热性能差的问题进行了优化,在二氧化硅气凝胶中加入了抗收缩添加剂,改善了其高温的隔热特性,从而获得了耐久性好、高温隔热性能优异的防火隔热、高温材料。
本发明提供一种枝晶增强的气凝胶隔热复合材料,该气凝胶隔热复合材料包括绝热层、导热层、热反射层、吸热层、高温膨胀层。
绝热层包含骨架纤维、气凝胶、抗收缩添加剂。
根据本发明的实施方案,骨架纤维选自氧化铝纤维、玻璃纤维、莫来石纤维的至少一种。
根据本发明的实施方案,骨架纤维具有疏水特性,骨架纤维表面具有枝晶。
根据本发明的实施方案,骨架纤维被疏水气凝胶包覆;所述疏水气凝胶是疏水二氧化硅气凝胶。
根据本发明的实施方案,气凝胶选自二氧化硅气凝胶、二氧化硅与氧化铝复合的二氧化硅/氧化铝复合气凝胶、硅酸铝气凝胶、氧化铝气凝胶;外壳是硅酸铝或氧化铝气凝胶,内核是二氧化硅气凝胶和核壳结构气凝胶;内核是硅酸铝,外壳是二氧化硅气凝胶的核壳结构气凝胶。
根据本发明的实施方案,抗收缩添加剂选自硅微粉、硅酸铝粉、石英粉等。
根据本发明的实施方案,绝热层含有高温发泡剂、多功能碳颗粒、稳定剂的至少一种。
本发明进一步提供枝晶增强的气凝胶隔热复合材料的制备方法,包括如下步骤:
纤维枝晶生长制备:将纤维毡进行浸渍与进行冷冻干燥处理。第一次的浸渍液是硅源溶液、第二次的浸渍液是AlNO3溶液、第三次的浸渍液是NH4F溶液。完成第三次浸渍与冷冻后,进行干燥处理即得到具有枝晶的纤维毡。硅源溶液可以是正硅酸甲酯、正硅酸乙酯的溶液。
溶胶制备:将硅源、水、醇、硅微粉混合。还可以加入水解催化剂加速水解获得含硅溶胶。硅源选自硅酸钠、正硅酸乙酯、正硅酸甲酯等,水解催化剂选自盐酸、草酸、硝酸、硫酸等。溶胶中还可以加入遮光剂增强在高温情况下的隔温性能,遮光剂包括二氧化钛、炭黑、SiC、六钛酸钾、ZrO2等。
凝胶制备:加入凝胶催化剂使得含硅溶胶转变为凝胶。凝胶催化剂可以是氨水、二甲基甲酰胺等。加入凝胶催化剂后,静置24-72h获得凝胶。还可以加入凝胶催化剂后,将其浇筑至纤维预制件中后静置24-72h获得凝胶。还可以在加入凝胶催化剂后,再加入增强纤维以及纤维分散剂,并静置静置24-72h获得凝胶。增强纤维可以是水镁石纤维、陶瓷纤维、玻璃纤维、石英纤维、莫来石纤维;其中陶瓷纤维表面还可以具备、枝接陶瓷枝晶;其中莫来石纤维表面还可以具备原位生长出的莫来石枝晶,工艺流程如图8所示。纤维分散剂可以是十二烷基磺酸钠、聚乙二醇、十二烷基硫酸钠、六偏磷酸钠等。
老化/陈化:加入乙醇后,静置24-48h。
溶剂置换:在硅源中含有金属离子的情况下,先用水洗去除金属离子,再使用有机溶剂进行溶剂置换。若硅源中不含有金属离子,使用有机溶剂进行溶剂置换。有机溶剂可以是乙醇、异丙醇、正己烷的一种或混合。
改性:使用改性剂对溶剂置换后的凝胶进行改性处理。改性剂可以是TMCS/正已烷体系、三甲基氯硅烷/正己烷体系(体积比1:9)等,使用改性剂浸泡24-48h进行改性,改性后用 正己烷洗涤。改性后的气凝胶具备疏水特性。改性温度是20-50℃。
干燥:干燥的方法可以是常温常压干燥、超临界干燥等。常温常压干燥的条件是,分别在60、80和120℃干燥2h,最后得白色二氧化硅气凝胶粉末。在溶剂是乙醇的情况下,在5-20℃,4-8MPa下用液态二氧化碳浸泡2-5天,并放出置换出的乙醇;然后升温至30-50℃,9-15MPa并保持1-3h,然后以0.1-1MPa/h的速度缓慢泄压至常压,即得到气凝胶块体。在溶剂是乙醇的情况下,升温至超过200℃,压力超过8Mpa后,缓慢泄压,得到气凝胶块体。在溶剂是乙醇的情况下,按预设程序升温升压至临界点后,在恒定温度状态下,以缓慢的速度释放反应釜内部的流体,直至内外压力平衡。随后当温度降至室温时,得到成品。
在一些实施例中,气凝胶隔热复合材料,包括绝热层,所述绝热层包括陶瓷纤维和二氧化硅气凝胶,所述陶瓷纤维包括氧化铝纤维、硅酸铝纤维中的至少一种,所述陶瓷纤维表面具有陶瓷枝晶,所述二氧化硅气凝胶具有疏水特性,并完全包裹于陶瓷纤维和陶瓷枝晶的表面。
在一些实施例中,所述气凝胶隔热复合材料进一步包括导热层、热反射层、吸热层、高温膨胀层。
在一些实施例中,所述绝热层包括绝热层骨架纤维、气凝胶、抗收缩添加剂,气凝胶的结构是二氧化硅与氧化铝复合的气凝胶颗粒,所述气凝胶颗粒具有疏水特性,所述抗收缩添加剂是硅微粉。
在一些实施例中,所述绝热层还包括抗收缩添加剂,所述抗收缩添加剂是硅微粉。
在一些实施例中,气凝胶的结构包括外部包裹二氧化硅气凝胶层的氧化铝颗粒、外部包括二氧化硅气凝胶层的硅酸铝颗粒、外部包裹氧化铝保护层的二氧化硅气凝胶颗粒中的至少一种。
在一些实施例中,所述硅微粉的粒径是1000-3000目。
在一些实施例中,所述硅微粉的添加量是1-15%。
在一些实施例中,所述硅微粉的表面覆有二氧化钛膜。
在一些实施例中,所述二氧化钛是氮掺杂或者氟掺杂的二氧化钛。
在一些实施例中,所述气凝胶的导热率范围是0.01W/m·K-0.06W/m·K。
在一些实施例中,所述气凝胶的粒径范围是10μm-900μm。
在一些实施例中,所述绝热层的在600-800℃下的导热系数是0.015W/m·K-0.02W/m·K。
在一些实施例中,所述绝热层还包括遮光剂,所述遮光剂是二氧化钛粉、石墨粉。
在一些实施例中,所述绝热层的拉伸强度≥1.0MPA,25℃;≥0.3MPA,800℃。
在一些实施例中,所述绝热层的挠曲模量≥6000psi,25℃;≥4000psi,800℃。
在一些实施例中,所述绝热层的生产方法包括:
(A)二氧化硅溶胶制备:将硅源、水、醇、硅微粉混合并搅拌,得到二氧化硅溶胶,搅拌时间为60min;
(B)二氧化硅凝胶制备:向制得的二氧化硅溶胶中加入碱,调节ph值后静置,二氧化硅凝胶;
(C)溶剂置换:使用乙醇对二氧化硅凝胶进行溶剂置换;
(D)干燥:使用常温常压干燥或超临界干燥方式对溶剂置换后的二氧化硅凝胶进行干燥。
在一些实施例中,所述气凝胶隔热复合材料还包括导热层、热反射层、吸热层的一种或多种。
在一些实施例中,所述导热层的导热系数范围是20W/m·K-50W/m·K。
在一些实施例中,所述导热层是具有导热结构通道,所述导热结构通道是双层中空金属板。
在一些实施例中,所述导热层的形式包括硅胶散热膜、石墨散热膜、金属导热板、热管式导热板。
在一些实施例中,所述金属导热板的材料铜板或铝板。
在一些实施例中,所述吸热层的吸热能力是500kJ-1000kJ/kg。
在一些实施例中,所述吸热层是相变材料,所述相变材料的相变温度是800℃或1000℃或1200℃。
在一些实施例中,所述相变材料是熔融盐,所述熔融盐包括碳酸盐、氯化盐、氟化盐。
在一些实施例中,所述气凝胶隔热复合材料还包括高温膨胀层,所述高温膨胀层位于相对于金属内壁和/或外壁的最外侧。
在一些实施例中,所述高温膨胀层的厚度是1-5mm,膨胀后的厚度是20-100mm。
在一些实施例中,所述高温膨胀层包含高温发泡剂、多功能碳颗粒和稳定剂。
在一些实施例中,所述高温发泡剂的发泡温度大于500℃,所述高温发泡剂是碳化硅粉末或颗粒。
在一些实施例中,所述多功能碳颗粒可以是石墨、石墨烯;所述稳定剂是二氧化锰。
产品特性/有益效果:
本发明通过对气凝胶隔热复合材料绝热层的骨架纤维进行了改性和优化,得到表面带有枝晶的纤维,这些枝晶可以使骨架纤维与二氧化硅气凝胶结合的更紧密,使二样氧化硅气凝胶更好的包裹在纤维表面,从而提升绝热层的隔热效果。因为陶瓷纤维纤维的传热较快,互 相搭接在一起后由于热传导的效应会降低整个绝热层的隔热效果。二氧化硅气凝胶具有更好的隔热效果,更好的把纤维包裹起来,使得纤维间被隔热性能更好的二氧化硅互相分隔开,从而提高整个绝热层的隔热保温效果。同时骨架线为经处理还获得了疏水性能,疏水的纤维避免了在潮湿环境中因吸水影响陶瓷纤维的内部结构,从而降低隔热性能、影响产品寿命的问题。
本发明通过对气凝胶隔热复合材料的二氧化硅氧化铝气凝胶做了进一步的改性和优化,解决了二氧化硅气凝胶在高温情况下结构出现收缩坍塌的问题,发明人向复合气凝胶中加入抗收缩添加剂,通过抗收缩添加剂在高温下的晶型变化、体积变化,可以抑制和减少二氧化硅部分的收缩坍塌问题,进一步提高复合气凝胶的耐温性能,增强绝热层性能从而提升气凝胶隔热复合材料的耐温隔热表现。
发明人发现虽然二氧化硅气凝胶的隔热性能非常好,但是其耐高温性能存在一定程度的缺陷,传统二氧化硅气凝胶在超过600℃开始融化,在800℃以上纳米孔道开始坍塌,在温度高于1000℃场合已基本失去防火隔热功能,无法满足在应急情况下的耐火要求。
本发明通过对气凝胶隔热复合材料的二氧化硅气凝胶做了改性和优化,改进了二氧化硅气凝胶材料的内部结构,将耐火性能更好但隔热性能略差的铝氧化物/铝盐材料与二氧化硅气凝胶结合,形成外壳是铝氧化物/铝盐而内核是二氧化硅气凝胶的复合二氧化硅气凝胶颗粒,或者形成外壳是二氧化硅气凝胶而内核是铝氧化物/铝盐的复合二氧化硅气凝胶颗粒。这样能够使得二氧化硅气凝胶在高温情况下保持稳定,同时复合的颗粒具有较好的隔热性能,还可以维持比较好的物理化学性能,将其应用于绝热层可以提升气凝胶隔热复合材料的高温隔热性能。
本发明通过对气凝胶隔热复合材料的气凝胶进行了改进和优化,合成和使用了由二氧化硅与氧化铝复合的二氧化硅/氧化铝复合气凝胶,复合气凝胶中的二氧化硅部分提供优秀的隔热能力,氧化铝部分提供优秀的耐温性能。氧化铝与二氧化硅分子结合,微观上可以抑制和降低二氧化硅分子在高温情况下的收缩、融化和晶型变化,宏观情况下减少绝热层(气凝胶毡)的掉粉情况,使得气凝胶颗粒在高温情况下仍有隔热性能,以及以维持比较好的物理化学性能,提升气凝胶隔热复合材料的高温隔热性能。
另外,在一些实施例中,在气凝胶隔热复合材料的绝热层中添加遮光剂,遮光剂包括表面镀有二氧化钛的硅微粉,二氧化钛作为一种遮光剂可以减少高温下的辐射传热,增强二氧化硅气凝胶的高温隔热性能。但由于二氧化钛本身容易团聚的特性,使得将二氧化钛直接加入气凝胶中的高温隔热效果不好。因此将二氧化钛镀膜至硅微粉表面,再加入气凝胶中,既可 以发挥硅微粉在高温情况下调节抑制二氧化硅气凝胶收缩的特点,还可以解决二氧化钛团聚的问题,从而进一步的提升高温隔热性能。
另外,在一些实施例中,气凝胶隔热复合材料还包括导热层,导热层可以迅速的将局部高温分散,降低局部高温对气凝胶隔热复合材料的破坏。
另外,在一些实施例中,气凝胶隔热复合材料还包括吸热层,吸热层由储热材料构成。储热材料可以吸收热量并保持温度恒定,使得材料可以在高温情况下维持更久的使用时间。
另外,在一些实施例中,气凝胶隔热复合材料还包括高温膨胀层,高温膨胀层在达到设定的高温后迅速膨胀,其隔热性能在膨胀后迅速增强,从而增强整个气凝胶隔热复合材料在高温情况下的隔热量性能,减少正常情况下气凝胶隔热复合材料的体积,降低成本。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1氧化铝包裹的二氧化硅气凝胶颗粒绝热层制备流程;
图2气凝胶隔热复合材料示意图;
图3被耐高温添加剂包裹而制成的气凝胶示意图;
图4绝热层被耐高温保护层包裹示意图;
图5枝晶陶瓷纤维气凝胶示意图;
图6硅微粉表面镀二氧化钛镀层示意图;
图7高温膨胀层在不同温度下形态示意图;
图8枝晶硅酸铝纤维增强的二氧化硅气凝胶制备流程;
图中:200-热屏蔽复合材料;210-绝热层;211-硅微粉;212-气凝胶颗粒;213-耐高温添加剂;214-气凝胶;215-二氧化钛浆料;216-二氧化钛浆料包覆的硅微粉颗粒;220-导热层;230-热反射层;250-耐高温保护层;260-高温膨胀层;300-陶瓷纤维;310-陶瓷枝晶;320-枝晶陶瓷纤维气凝胶。
在附图的描述中,相同、相似或相应的附图标记代表相同、相似的或相应的单元、元件或功能。
具体实施方式
术语解释
绝热层:绝热层是气凝胶隔热复合材料的一部分,通过自身低热导率的特性隔绝热量。
导热层:导热层是气凝胶隔热复合材料的一部分,通过自身高热导率的特性,将集中的热 量迅速分散,降低局部高温导致的结构破坏风险。
热反射层:热反射层是气凝胶隔热复合材料的一部分,通过自身的反射功能将高温情况下的热辐射反射出去,降低内部的温度。
耐高温添加剂:耐高温添加剂是绝热层的一种配方,用于提高绝热层在高温情况下的理化性能。
[枝晶增强的气凝胶隔热复合材料]
在本发明所涉及的一个技术方案中,提供一种枝晶增强的气凝胶隔热复合材料,气凝胶隔热复合材料包括绝热层,以及可选地包括导热层、热反射层、导热层、热反射层、吸热层、高温膨胀层,如图2所示。
绝热层包含骨架纤维、气凝胶、抗收缩添加剂。
骨架纤维由纤维材料制成,纤维材料选自氧化铝纤维、玻璃纤维、莫来石纤维、硅酸铝纤维的至少一种。
硅铝枝连(枝晶)结构:以陶瓷纤维为骨架纤维,骨架纤维表面枝接陶瓷枝晶;气凝胶包裹于陶瓷与陶瓷枝晶表面,形成枝晶陶瓷纤维气凝胶,气凝胶可以是二氧化硅气凝胶、氧化铝气凝胶。其形式如图5所示。
骨架纤维具有疏水特性,骨架纤维表面具有枝晶。骨架纤维被疏水气凝胶包覆;所述疏水气凝胶是疏水二氧化硅气凝胶。
气凝胶填充于骨架纤维中。进一步地,二氧化硅气凝胶是以颗粒形式填充于骨架纤维中。
气凝胶选自耐高温添加剂包裹的二氧化硅气凝胶颗粒、二氧化硅气凝胶包裹的铝盐或铝氧化物颗粒、硅铝复合的气凝胶颗粒。
进一步地,莫来石纤维表面具有枝晶。
进一步地,绝热层含有高温发泡剂、稳定剂。
高温发泡剂是碳化硅粉末或颗粒,高温发泡剂的发泡温度大于500℃。稳定剂是二氧化锰。加入高温发泡剂的绝热层的厚度是1-5mm,高温发泡后的绝热层的厚度是20-100mm。
抗收缩添加剂是硅微粉、硅酸铝粉、石英粉,所述硅微粉可以是晶态二氧化硅粉粒,也可以是非晶态(无定型)二氧化硅粉粒。
绝热层、导热层、热反射层通过粘合、热压的方式相互固定。气凝胶隔热复合材料外部还可以使用玻纤布、铝箔层包裹,防止气凝胶碎裂掉粉的现象发生。
进一步地,发明人发现气凝胶隔热复合材料会局部受到高温影响,从而影响到其结构稳定性,气凝胶隔热复合材料的其余大部分位置,并没有达到设计极限而出现性能问题,这种 情况下如失火、过热等紧急情况。因此发明人认为,可以使用导热提升整体气凝胶隔热复合材料隔热、耐温性能,将局部的高温扩散至气凝胶隔热复合材料其余的位置,降低局部的高温从而使得气凝胶隔热复合材料不至于发生失火、过热的问题。
进一步地,发明人还认为,可以在气凝胶隔热复合材料设置吸热层的方式降低局部高温,也可以使得气凝胶隔热复合材料不至于发生失火、过热的问题,提高安全性。同时上述方式还可以避免内部的二氧化硅气凝胶颗粒在高温如600℃以上融化,使得气凝胶绝热达到使用要求。
在本发明所涉及的一个技术方案中,绝热层与导热层、热反射层、吸热层的至少一种进行贴合构成气凝胶隔热复合材料。
导热层可以是金属导热板,如铜、铝等高导热性能的金属材料;还可以是导热金属结构,如中空的导热夹层;还可以是设置有热管的装置的导热层。其中导热层、热反射层、绝热层依次叠加构成气凝胶隔热复合材料。
一种布置方式是热反射层、导热层、绝热层依次贴合。
一种布置方式是导热层、热反射层、吸热层、绝热层依次贴合。
一种布置方式是热反射层、吸热层、绝热层依次贴合。
导热层的形式包括硅胶散热膜、石墨散热膜、金属导热板、热管式导热板。金属导热板的材料可以是铜板、铝板。导热层的形式还可以是具有导热结构的通道,如双层中空金属导热板。导热层的在800℃情况下的导热系数范围是20W/m·K-50W/m·K。
吸热层的材料选自相变材料、受热挥发材料等。相变材料为融盐类,熔融盐包括碳酸盐、氯化盐、氟化盐。受热挥发材料包括水、压缩二氧化碳。
高温膨胀层包括高温发泡剂、多功能碳颗粒、稳定剂。高温发泡剂是碳化硅粉末或颗粒。多功能碳颗粒可以是石墨、石墨烯。稳定剂是二氧化锰。高温膨胀层还包括气凝胶颗粒。高温膨胀层还可以包含减水剂,减水剂为三聚磷酸钠或六偏磷酸钠。
在绝热层表面还可以覆盖耐高温保护层,或者使用耐高温保护层包裹绝热层,如图4所示。耐高温保护层可以是氧化铝、硅酸铝等耐热材料。绝热层通过将绝热层浸渍含铝浆料,并经过高温烘干后得到具有氧化铝耐温外壳的绝热层。
在本发明所涉及的一个技术方案中,气凝胶隔热复合材料中绝热层使用的莫来石纤维还可以是纤维表面具有枝晶增强的莫来石纤维。由于硅酸铝可以在1200℃环境下长期使用,通过浸渍和冷冻干燥法在硅酸铝/莫来石纤维表面原位生长出莫来石枝晶。以莫来石纤维为骨架纤维,结合真空浸渍法、溶胶凝胶工艺在莫来石纤维的基础上制备具有耐高温、低导热率的 莫来石枝晶增强二氧化硅气凝胶隔热材料。工艺流程如图8所示。
由于硅酸铝材料具有吸水的特性,在潮湿环境中长期使用,会吸收环境中的水分。吸水后硅酸铝纤维的内部结构受到影响,从而降低隔热性能,影响产品寿命。一种优选的技术方案是,枝晶外所包覆的气凝胶具备疏水特性。另一种优选的技术方案是,枝晶以及纤维经过表面处理具备疏水特性。
抗收缩添加剂是硅微粉,所述硅微粉可以是晶态二氧化硅粉粒,也可以是非晶态(无定型)二氧化硅粉粒。气凝胶的体积在高温情况下(800度以上)会发生体积收缩的现象,导致结构变化而降低隔热保温性能。利用硅微粉,特别是非晶态二氧化硅粉粒在高温情况下的晶相变化导致的体积变化,调整和抑制绝热层在高温下的收缩情况,同时非晶态硅微粉还可以提升绝热层的温度耐受能力。非晶态硅微粉是二氧化硅材料,在温度变化下会有晶型的转变带来的体积变化的现象。非晶态硅微粉体积的膨胀在绝热层经历高温过程中会抑制和降低内应力,从而减少气凝胶隔热复合材料中绝热层内部的结构变化而稳定其在高温情况下的隔热保温性能。
非晶态硅微粉的粒径是800-8000目、1000-2000目、2000-3000目、3000-4000目、4000-5000目、5000-6000目、6000-7000目、7000-8000目、1000-1500目、1500目-3000目,或10-800nm、10-100nm、50-200nm、100-400nm、300-800nm。优选的粒径是800-1000目、1000-1200目、1000-3000目。硅微粉添加量是3-25%、1-10%、3-15%、5-20%、5-25%、10-25%,优选的添加量是1%、2%、3%、4%、5%、6%、7%、8%。非晶态硅微粉的添加量为1-20%、1-15%、2-10%、3-8%。优选的粒径可以更好的促进硅、铝和氧键的结合,使得结构更加稳定。优选的添加量可以更好的提升材料在高温的抗收缩的能力,同时保持较高的隔热性能与机械强度。
在高温情况下,二氧化硅气凝胶会发生内部微观结构坍塌的问题。通过将耐高温添加剂包覆在二氧化硅气凝胶颗粒表面,耐高温添加剂可以是氧化铝、硅酸铝等耐热材料,其制备流程及形式如图3所示;或者使用二氧化硅气凝胶包裹铝盐或铝氧化物颗粒,可以避免二氧化硅气凝胶颗粒内部分子结构在600℃以上融化,使得绝热层在高温情况下仍能位置隔温效果,满足耐高温需求。二氧化硅气凝胶以颗粒形式填充于骨架纤维中。
耐高温添加剂包覆后的气凝胶颗粒在800℃情况下的导热系数范围是0.01W/m·K-0.3W/m·K,耐高温添加剂包覆后的二氧化硅气凝胶的起始融化温度是1000℃。绝热层的导热系数是0.01W/m·K-0.5W/m·K。耐高温添加剂包覆后的二氧化硅气凝胶粒径范围是10μm-900μm。耐高温添加剂包覆层的厚度范围是5μm-500μm。
耐高温添加剂包覆后的二氧化硅气凝胶粒径范围是10μm-900μm,优选的粒径范围是10 μm-50μm、50μm-100μm、100μm-200μm、200μm-300μm、300μm-500μm、500μm-600μm、600μm-800μm、800μm-900μm。耐高温添加剂213包覆层的厚度范围是5μm-500μm,优选的厚度范围是5μm-15μm、15μm-40μm、40μm-80μm、80μm-150μm、150μm-300μm、300μm-500μm。
根据本发明的实施方案,通过工艺手段将耐火、耐高温性能更强的氧化铝材料与二氧化硅气凝胶复合的方法提升绝热层的高温性能。使用硅铝复合的气凝胶颗粒,可以避免单纯的二氧化硅气凝胶结构在600℃以上融化,同时提高比单纯的氧化铝气凝胶的隔热性能。使得绝热层在高温情况下仍能位置隔温效果。
硅铝复合的气凝胶颗粒在800℃情况下的导热系数范围是0.01W/m·K-0.2W/m·K,硅铝复合的气凝胶颗粒的起始融化温度是1000℃。绝热层的导热系数是0.01W/m·K-0.1W/m·K。硅铝复合的气凝胶颗粒径范围是10μm-900μm。
在高温情况下,热辐射的现象增强。为了减少高温情况下由于热辐射现象导致的隔热性能变差的情况,可以在材料中添加遮光剂,降低辐射现象。二氧化钛是一种常用的遮光剂,但是二氧化钛在添加的过程中容易出现团聚的现象,使得二氧化钛无法均匀分散,尤其在溶胶-凝胶过程中会出现团聚现象,影响最终的遮光效果。
遮光剂是二氧化钛,由于二氧化钛在添加过程中容易团聚,因此在添加过程中还加入分散剂抑制二氧化钛的团聚现象。
还可以通过将二氧化钛镀膜至硅微粉表面,使其稳定的与硅微粉表面结合,从而抑制二氧化钛的团聚现象,如图6所示。二氧化钛可以采用氟掺杂或者氮掺杂的二氧化钛纳米颗粒,增强红外波段的遮光效果。二氧化钛晶型可以是锐钛矿型。
还可以应用增透膜原理,通过设置镀膜的厚度增强对红外波段辐射的吸收,还可以通过设置多层增透膜进一步的增强对红外波段辐射的吸收。
硅微粉在高温并含有铝元素的情况下,会向莫来石方向进行反应和转变,莫来石是一种优秀的耐火材料,因此硅微粉的加入进一步提高了二氧化硅气凝胶毡的耐高温能力。
绝热层的防火等级是不燃A级。绝热层的密度是50-500kg/m3,优选的密度是60kg/m3、70kg/m3、80kg/m3、90kg/m3、100kg/m3、150kg/m3、200kg/m3、250kg/m3、300kg/m3、350kg/m3、400kg/m3、450kg/m3、500kg/m3。绝热层的导热系数范围是:≤0.025W/(m·K)(25℃),优选的范围是≤0.020W/(m·K)(25℃);≤0.080W/(m·K)(600℃);优选的范围是≤0.060W/(m·K)(600℃)。绝热层的厚度范围是≥1mm;优选的厚度范围是≥30mm。
吸热层由储热材料构成,储热材料可以是相变材料、受热挥发材料,还可以是预置的降温 材料如预置水仓、预置二氧化碳仓等。在遇到高温时候可以释放装载的水、二氧化碳等降温载体,吸收热量。相变材料可以吸收热量并保持温度恒定,从而在局部有高温的情况下,吸收热量产生相变而温度不升高,进而保护绝热层的气凝胶结构不坍塌,使得绝热层维持隔热效果,从而使得整个气凝胶隔热复合材料中在高温下仍能保持隔温效果。相变材料为融盐类,熔融盐包括碳酸盐、氯化盐、氟化盐。
高温膨胀层包括高温发泡剂、多功能碳颗粒、稳定剂。高温发泡剂的发泡温度大于500℃,高温发泡剂是碳化硅粉末或颗粒,如图7所示。多功能碳颗粒可以是石墨、石墨烯。稳定剂是二氧化锰。高温膨胀层的厚度是1-5mm,膨胀后的厚度是20-100mm。一种优选的方案是高温膨胀层还包括气凝胶颗粒,以提升高温膨胀层的隔热性能。气凝胶颗粒的添加的质量比例是3-5%。高温膨胀层还可以包含减水剂,减水剂为三聚磷酸钠或六偏磷酸钠。
高温膨胀层在遇到高温时候碳化硅会膨胀发泡,高温膨胀层的厚度增加、导热率降低,同时内部添加的多功能碳颗粒在高温情况下兼具遮光剂的作用,减少高温情况下的热辐射。保护防排烟风管在高温情况下的结构稳定。多功能碳颗粒在高温膨胀层未发泡情况下(500℃以下),由于还处于紧密压合状态,其具有比较好的导热功能,可以快速分散热量,降低局部过热的情况。当温度超过500℃以上时,通过导热分散也无法使得整体温度低于排烟风管可耐受的温度时候,高温膨胀层膨胀发泡,其中的多功能碳颗粒由于被分散不在紧密连接导热性能消失,高温膨胀层由导热功能变为具有高温隔热性能的功能层。同时这些多功能碳颗粒在这种状况下,具有对红外线的吸收作用,起到了遮光剂的作用,进一步提高了气凝胶隔热复合材料中在高温状态下的隔热性能。
[枝晶增强的气凝胶隔热复合材料的制备方法]
本发明提供了一种枝晶增强的气凝胶隔热复合材料的制备方法,步骤如下:
纤维枝晶制备:
(1)浸渍:将纤维毡浸入浸渍液中,浸渍液是硅源溶液。浸渍环境可以是低压、真空,浸渍的时间为15min。上述纤维也可以是纤维毡的形式。纤维毡可以是硅酸铝纤维毡、莫来石纤维毡、玻璃纤维毡。硅源溶液可以是正硅酸甲酯、正硅酸乙酯的溶液。
(2)冷冻干燥:将浸渍硅溶胶的纤维毡进行冷冻处理,冷冻温度是-20℃,冷冻时间30分钟。
(3)重复操作:重复步骤(1)浸渍和(2)干燥步骤,第二次浸渍的浸渍液是AlNO3溶液,第三次为NH4F溶液。三次浸渍的硅源、铝源、氟源的摩尔比例是1:3:12。
(4)热处理:完成三次浸渍及冷冻干燥后,将浸渍后的硅酸铝纤维毡放入高温烧结炉中 进行热处理。热处理时,起始温度为50℃,先以2℃/min的升温速率升至200℃,然后以5℃/min的升温速率升至1200℃,保温2h,最后让烧结炉自然冷却至室温,制得具有莫来石枝晶硅酸铝纤维。
溶胶制备:将硅源、水、醇、硅微粉混合,还可以加入水解催化剂加速水解获得含硅溶胶。硅源选自硅酸钠、正硅酸乙酯、正硅酸甲酯等,水解催化剂选自盐酸、草酸、硝酸、硫酸等。硅微粉选自晶态二氧化硅粉粒、非晶态(无定型)二氧化硅粉粒。醇选自乙醇或甲醇。
遮光剂增强:向制备好的溶胶中加入遮光剂、分散剂,遮光剂选自二氧化钛、炭黑、SiC、六钛酸钾、ZrO2等,二氧化钛可以是二氧化钛粉粒或镀有二氧化钛膜的硅微粉。分散剂选自硅酸钠、三聚磷酸钠、六偏磷酸钠、聚羧酸酯、聚甲基丙烯酸铵、聚乙二醇。
凝胶制备:加入凝胶催化剂使得含硅溶胶转变为凝胶。凝胶催化剂选自氨水、二甲基甲酰胺等。加入凝胶催化剂后,静置24-72h获得凝胶。还可以加入凝胶催化剂后,将其浇筑至纤维预制件中后静置24-72h获得凝胶。还可以在加入凝胶催化剂后,再加入增强纤维以及纤维分散剂,并静置静置24-72h获得凝胶;增强纤维选自水镁石纤维、陶瓷纤维、玻璃纤维、石英纤维;纤维分散剂可以是十二烷基磺酸钠、聚乙二醇、十二烷基硫酸钠、六偏磷酸钠等。
老化/陈化:加入乙醇后,静置24-48h。
溶剂置换:在硅源中含有金属离子的情况下,先用水洗去除金属离子,再使用有机溶剂进行溶剂置换。若硅源中不含有金属离子,使用有机溶剂进行溶剂置换。有机溶剂可以是乙醇、异丙醇、正己烷的一种或混合。
改性:使用改性剂对溶剂置换后的凝胶进行改性处理。改性剂可以是TMCS/正已烷体系、三甲基氯硅烷/正己烷体系(体积比1:9)等,使用改性剂浸泡24-48h进行改性,改性后用正己烷洗涤。改性后的气凝胶具备疏水特性。改性温度是20-50℃。
干燥:干燥的方法可以是常温常压干燥、超临界干燥等。常温常压干燥的条件是,分别在60、80和120℃干燥2h,最后得白色二氧化硅气凝胶。在溶剂是乙醇的情况下,在5-20℃,4-8MPa下用液态二氧化碳浸泡2-5天,优选的液态二氧化碳浸泡时间是3天或4天,并放出置换出的乙醇;然后升温至30-50℃,9-15MPa并保持1-3h,然后以0.1-1MPa/h的速度缓慢泄压至常压,即得到气凝胶块体。使用乙醇超临界干燥的情况下,升温至超过200℃,压力超过8Mpa后,缓慢泄压,得到气凝胶块体。在溶剂是乙醇的情况下,按预设程序升温升压至临界点后,在恒定温度状态下,以缓慢的速度释放反应釜内部的流体,直至内外压力平衡。随后当温度降至室温时,得到成品。
制备例1
硅微粉二氧化钛镀膜方法如下:
(1)二氧化钛前驱体制备:配方包括钛源、去离子水、酸、水解抑制剂、溶剂;钛源可以是钛酸四丁酯、钛酸四乙酯、钛酸四丙酯等钛酸酯中的至少一种。
(2)含硅前驱体制备:配方包括硅源、酸性催化剂、溶剂、pH调节剂;硅源可以是正硅酸甲酯、正硅酸乙酯、甲基三甲氧基硅烷、甲基三乙氧基硅烷、二甲基二乙氧基硅烷、乙烯基三乙氧基硅烷等硅氧烷中的至少一种,或者二氧化钛粉末。含硅前驱体还可以包括聚丙二醇、环氧乙烷。
(3)二氧化钛溶胶液制备:将二氧化钛前驱体与含硅前驱体混合制得二氧化钛溶胶。或者直接使用二氧化钛前驱体作为二氧化钛溶胶。
(4)硅微粉镀膜:将硅微粉浸渍于二氧化钛溶胶中5-15min后取出,并至于400-600℃烘干。
在二氧化钛溶胶中加入含硅前驱体,其中的硅源可以更好的使得钛源/二氧化钛与硅微粉表面结合。
制备例2
耐高温保护层包覆方法如下:
耐高温保护层覆盖于绝热层表面,或者包裹绝热层,如图4所示。耐高温保护层可以是氧化铝、硅酸铝等耐热材料。通过将绝热层浸渍含铝浆料,并经过高温烘干后得到具有氧化铝耐温外壳的绝热层。具体的制备方法是:
(1)耐高温浆料制备:将氢氧化铝、陶瓷纤维、水按照一定比例混合制成浆料。或者还可以将铝盐、陶瓷纤维、水按照一定比例混合后,调节酸碱度生成含有氢氧化铝的浆料。
(2)耐高温浆料涂覆:将绝热层浸渍至耐高温浆料中。
(3)耐高温保护层干燥:将经过耐高温浆料浸渍的绝热层加热进行高温处理,烘干浆料制得含有耐高温保护层的绝热层。
(4)疏水性处理:在绝热层外部包裹疏水材料,疏水材料可以是聚合物包膜、疏喷剂等。
制备例3
氧化铝凝胶颗粒的制备方法如下:
(1)制备氧化铝溶胶:水合氧化铝粉体(德国Condea公司产纯勃姆石粉)50g,300ml水,加入60ml的1.6mol/l硝酸,水解温度是85℃,2h,得到稳定的氧化铝溶胶。
(2)制备氧化铝凝胶:向150ml氧化铝溶胶中加入5ml乙酰乙酸乙酯,得到氧化铝凝胶, 并通过机械破碎的方式得到氧化铝凝胶颗粒。
制备例4
氧化铝溶胶制备方法是:将异丙醇铝30g、270ml水混合,加入0.1ml乙酰乙酸乙酯,将异丙醇铝水解,水解温度是75℃,水解时间3h,得到稳定的氧化铝溶胶。
实施例1
在本发明所涉及的一个技术方案中,提供一种气凝胶隔热复合材料,其制备方法如下。
A、纤维枝晶制备:
(1)浸渍:将莫来石纤维毡浸入浸渍液中,浸渍液是正硅酸甲酯溶液,浸渍的时间为15min。
(2)冷冻干燥:将浸渍硅溶胶的莫来石纤维毡进行冷冻处理,冷冻温度是-20℃,冷冻时间30分钟。
(3)重复操作:重复步骤(1)浸渍和(2)干燥步骤,第二次浸渍的浸渍液是AlNO3溶液,第三次为NH4F溶液。三次浸渍的硅源、铝源、氟源的摩尔比例是1:3:12。
(4)热处理:完成三次浸渍及冷冻干燥后,将浸渍后的硅酸铝纤维毡放入高温烧结炉中进行热处理。热处理时,起始温度为50℃,先以2℃/min的升温速率升至200℃,然后以5℃/min的升温速率升至1200℃,保温2h,最后让烧结炉自然冷却至室温,制得具有晶须的莫来石纤维毡。
B、二氧化硅溶胶制备:将硅源、水、醇混合,取正硅酸乙酯440ml、水72ml、乙醇720ml、盐酸1ml,硅微粉20g,硅微粉粒径为1000目,加入容器中搅拌,还可以增加超声分散步骤更好的分散硅微粉,得到硅溶胶。搅拌或超声分散时间为30min-120min,优选的搅拌时间是60mi,优选的超声分散时间是30min。
C、凝胶制备:取500ml硅溶胶,加入1ml氨水后,浇筑至具有晶须的莫来石纤维毡,静置36h获得凝胶。
D、溶剂置换:使用乙醇溶剂进行溶剂置换。
E、干燥:在5℃,5.5MPa下用液态二氧化碳浸泡,并放出置换出的乙醇;然后升温至35℃,10.5MPa并保持3h,然后以0.5MPa/h的速度缓慢泄压至常压,得到绝热层。
经测试,本实施例的气凝胶隔热复合材料的收缩率和导热系数测试结果记录于表1中。
实施例2
本实施例的气凝胶隔热复合材料的制备方法基本同实施例1,不同在于,步骤B)中,硅微粉为30g。
经测试,本实施例的气凝胶隔热复合材料的收缩率和导热系数测试结果记录于表1中。
实施例3
本实施例的气凝胶隔热复合材料的制备方法基本同实施例1,不同在于,步骤B)中,硅微粉替换为了表面镀有二氧化钛镀膜的硅微粉20g。
经测试,本实施例的气凝胶隔热复合材料的收缩率和导热系数测试结果记录于表1中。
本发实施例要解决的技术问题是为了抑制高温情况下热辐射增强,加入二氧化钛遮光剂,但二氧化钛遮光剂会发生团聚的问题。采用加入表面镀有二氧化钛镀膜的硅微粉。在解决二氧化钛团聚问题的同时,还可以抑制气凝胶材料高温收缩的问题。
实施例4
本实施例的气凝胶隔热复合材料的制备方法基本同实施例1,不同在于,步骤C)中,在获得凝胶后,将凝胶破碎为二氧化硅凝胶颗粒,并将破碎的二氧化硅凝胶颗粒50g加入200ml氧化铝溶胶中,并加入15g聚乙二醇使氧化铝溶胶凝胶化。最终获得外壳是氧化铝气凝胶内核是二氧化硅气凝胶的核壳结构气凝胶。
经测试,本实施例的气凝胶隔热复合材料的收缩率和导热系数测试结果记录于表1中。
实施例5
本实施例的气凝胶隔热复合材料的制备方法基本同实施例1,不同在于,步骤B)中,还加入氧化铝凝胶颗粒100g;步骤C中,硅溶胶的取用量为300ml。最终获得外壳是二氧化硅气凝胶内核是氧化铝气凝胶的核壳结构气凝胶。
经测试,本实施例的气凝胶隔热复合材料的收缩率和导热系数测试结果记录于表1中。
实施例6
本对比例的气凝胶隔热复合材料的制备方法基本同实施例1,不同在于,步骤C)中,取200ml二氧化硅溶胶,150ml氧化铝溶胶,加入1ml氨水,静置36h获得凝胶。
经测试,本实施例的气凝胶隔热复合材料的收缩率和导热系数测试结果记录于表2中。
对比例1
本对比例的气凝胶隔热复合材料的制备方法基本同实施例1,不同在于,没有执行步骤A),步骤C)中,使用不带晶须的莫来石纤维毡。
经测试,本实施例的气凝胶隔热复合材料的收缩率和导热系数测试结果记录于表2中。
对比例2
本对比例的气凝胶隔热复合材料的制备方法基本同实施例1,不同在于,没有执行步骤A),步骤C)中,硅溶胶加入氨水后,直接静置36h获得凝胶,没有浇筑至纤维毡。
经测试,本实施例的气凝胶隔热复合材料的收缩率和导热系数测试结果记录于表2中。
对比例3
本对比例的气凝胶隔热复合材料的制备方法基本同实施例1,不同在于,没有执行步骤A);步骤B)中,没有加入硅微粉;步骤C)中,硅溶胶加入氨水后,直接静置36h获得凝胶,没有浇筑至纤维毡。
经测试,本实施例的气凝胶隔热复合材料的收缩率和导热系数测试结果记录于表2中。
表1
表2

Claims (15)

  1. 一种气凝胶隔热复合材料,其特征在于,所述气凝胶隔热复合材料包括绝热层,所述绝热层包括陶瓷纤维和二氧化硅气凝胶和抗收缩添加剂,所述陶瓷纤维表面具有陶瓷枝晶,所述陶瓷纤维包括氧化铝纤维、硅酸铝纤维、莫来石纤维中的至少一种,所述二氧化硅气凝胶具有疏水特性,并完全包裹于陶瓷纤维和陶瓷枝晶的表面。
  2. 根据权利要求1所述的气凝胶隔热复合材料,其特征在于,所述抗收缩添加剂为硅微粉。
  3. 根据权利要求2所述的气凝胶隔热复合材料,其特征在于,所述硅微粉的粒径是1000-3000目。
  4. 根据权利要求3所述的气凝胶隔热复合材料,其特征在于,所述硅微粉的添加量是1%-15%。
  5. 根据权利要求4所述的气凝胶隔热复合材料,其特征在于,所述绝热层还含有遮光剂,所述遮光剂选自二氧化钛粉或石墨粉。
  6. 根据权利要求5所述的气凝胶隔热复合材料,其特征在于,所述硅微粉的表面覆有二氧化钛膜。
  7. 根据权利要求6所述的气凝胶隔热复合材料,其特征在于,所述二氧化钛膜是氮掺杂或者氟掺杂的二氧化钛膜。
  8. 根据权利要求7所述的气凝胶隔热复合材料,其特征在于,所述气凝胶的粒径范围是10μm-900μm。
  9. 根据权利要求8所述的气凝胶隔热复合材料,其特征在于,所述气凝胶隔热复合材料还包括导热层、吸热层、热反射层的至少一种。
  10. 根据权利要求9所述的气凝胶隔热复合材料,其特征在于,所述导热层的导热系数范围是20W/m·K-50W/m·K。
  11. 根据权利要求10所述的气凝胶隔热复合材料,其特征在于,所述气凝胶隔热复合材料还包括高温膨胀层,所述高温膨胀层包含高温发泡 剂、多功能碳颗粒和稳定剂。
  12. 根据权利要求11所述的气凝胶隔热复合材料,其特征在于,所述高温发泡剂是碳化硅粉末或颗粒;所述多功能碳颗粒可以是石墨、石墨烯;所述稳定剂是二氧化锰。
  13. 权利要求1-12任意一项所述的气凝胶隔热复合材料的制备方法,其特征在于,所述气凝胶隔热复合材料的制备方法包括:
    A、纤维枝晶制备:将纤维毡进行浸渍与进行冷冻干燥处理;第一次的浸渍液是正硅酸甲酯溶液、第二次的浸渍液是AlNO3溶液、第三次的浸渍液是NH4F溶液;完成第三次浸渍与冷冻后,对纤维毡进行烘干;
    B、二氧化硅溶胶制备:将硅源、水、醇、硅微粉混合并搅拌,得到二氧化硅溶胶,搅拌时间为30-60min;
    C、二氧化硅凝胶制备:向制得的二氧化硅溶胶中加入碱,调节ph值后浇筑至步骤A中所制得的纤维毡并静置;
    D、溶剂置换:使用乙醇对二氧化硅凝胶进行溶剂置换;
    E、干燥:使用常温常压干燥或超临界干燥方式对溶剂置换后的二氧化硅凝胶进行干燥。
  14. 根据权利要求13所述的制备方法,其特征在于,所述正硅酸甲酯溶液、AlNO3溶液、NH4F溶液的硅源、铝源、氟源摩尔比为1:3:12。
  15. 根据权利要求14所述的制备方法,其特征在于,所述超临界干燥方式是乙醇超临界干燥,所述乙醇超临界干燥的方法是升温至超过240℃,压力超过8Mpa后,缓慢泄压。
PCT/CN2023/089759 2022-04-22 2023-04-21 一种枝晶增强的气凝胶隔热复合材料 WO2023202700A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2022/088412 2022-04-22
PCT/CN2022/088413 WO2023201689A1 (zh) 2022-04-22 2022-04-22 一种耐高温气凝胶防排烟风管及其制造方法
PCT/CN2022/088412 WO2023201688A1 (zh) 2022-04-22 2022-04-22 一种耐高温防排烟风管及其制造方法
CNPCT/CN2022/088413 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023202700A1 true WO2023202700A1 (zh) 2023-10-26

Family

ID=88419291

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2023/089757 WO2023202698A1 (zh) 2022-04-22 2023-04-21 一种防火电热建材及其制备方法
PCT/CN2023/089760 WO2023202701A1 (zh) 2022-04-22 2023-04-21 一种二氧化硅气凝胶热屏蔽复合材料及其制造方法
PCT/CN2023/089759 WO2023202700A1 (zh) 2022-04-22 2023-04-21 一种枝晶增强的气凝胶隔热复合材料
PCT/CN2023/089758 WO2023202699A1 (zh) 2022-04-22 2023-04-21 一种透明柔性发热片材及其制备方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/089757 WO2023202698A1 (zh) 2022-04-22 2023-04-21 一种防火电热建材及其制备方法
PCT/CN2023/089760 WO2023202701A1 (zh) 2022-04-22 2023-04-21 一种二氧化硅气凝胶热屏蔽复合材料及其制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089758 WO2023202699A1 (zh) 2022-04-22 2023-04-21 一种透明柔性发热片材及其制备方法

Country Status (1)

Country Link
WO (4) WO2023202698A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503356A (zh) * 2011-11-11 2012-06-20 广州大学 定向纤维气凝胶隔热复合材料及其制备方法
JP2014035042A (ja) * 2012-08-09 2014-02-24 Panasonic Corp 断熱材
CN103911030A (zh) * 2014-04-08 2014-07-09 中山科邦化工材料技术有限公司 一种气凝胶保温隔热涂料制备方法
CN105482673A (zh) * 2016-01-06 2016-04-13 苏州环明电子科技有限公司 一种新型隔热涂料及其制备方法
CN109721059A (zh) * 2019-02-27 2019-05-07 天津摩根坤德高新科技发展有限公司 一种二氧化硅气凝胶及其制备方法
CN111302760A (zh) * 2018-12-11 2020-06-19 天津大学 莫来石晶须/纤维协同增强二氧化硅气凝胶多尺度复合结构及其制备方法和应用
CN113968052A (zh) * 2020-07-24 2022-01-25 欧文斯科宁知识产权资产有限公司 一种绝热板材、制造绝热板材的方法、防排烟风管以及建筑构造

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310470A (ja) * 1996-05-24 1997-12-02 Nippon Kyoryo Kk ガラス質塗膜の施工方法
JP5615514B2 (ja) * 2008-05-15 2014-10-29 ニチアス株式会社 断熱材、これを用いた断熱構造及び断熱材の製造方法
DE102009033367B4 (de) * 2009-07-16 2016-03-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung eines Aerogel-Aerogel Verbundwerkstoffes
CN101698592B (zh) * 2009-11-13 2012-12-26 航天特种材料及工艺技术研究所 一种硅铝气凝胶复合材料及其制备方法
CN101792299B (zh) * 2010-01-08 2012-05-23 中国人民解放军国防科学技术大学 耐高温氧化铝-氧化硅气凝胶隔热复合材料的制备方法
CN101955350B (zh) * 2010-09-28 2013-08-28 航天特种材料及工艺技术研究所 一种改性氧化铝气凝胶复合材料及其制备方法
EP2481859A1 (en) * 2011-01-17 2012-08-01 Aspen Aerogels Inc. Composite aerogel thermal insulation system
CN104556964A (zh) * 2014-12-30 2015-04-29 纳诺科技有限公司 一种疏水型二氧化硅气凝胶绝热复合材料及其制备方法
CN104556969B (zh) * 2014-12-30 2017-10-13 纳诺科技有限公司 一种疏水型二氧化硅气凝胶绝热复合材料的制备方法
CN104556965A (zh) * 2014-12-30 2015-04-29 纳诺科技有限公司 一种疏水型二氧化硅气凝胶绝热复合材料
CN205510437U (zh) * 2016-03-18 2016-08-24 北京新宇阳科技有限公司 一种高分子电热板
JP6693222B2 (ja) * 2016-03-29 2020-05-13 日立化成株式会社 エアロゲル複合体の製造方法、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
CN107973579A (zh) * 2017-12-25 2018-05-01 陕西华特新材料股份有限公司 一种硅酸钙绝热板的制作方法
CN108909080A (zh) * 2018-09-19 2018-11-30 光之科技(天津)有限公司 一种采暖建材及其制备方法
KR102002008B1 (ko) * 2019-02-28 2019-07-22 주식회사 제이에스기술 복합 단열 방수 공법
CN110789191B (zh) * 2019-11-21 2022-02-01 中国科学院兰州化学物理研究所 一种柔性气凝胶隔热材料及其制备方法
CN110952740A (zh) * 2019-12-11 2020-04-03 光之科技(北京)有限公司 一种发热建材及其制备方法
CN114180988A (zh) * 2020-09-14 2022-03-15 南京工业大学 一种耐高温气凝胶隔热片的制备方法
WO2023040965A1 (zh) * 2021-09-17 2023-03-23 中科润资(重庆)节能科技有限公司 一种稀土掺杂二氧化硅气凝胶及其制备方法和应用
CN113716572B (zh) * 2021-09-18 2023-01-17 巩义市泛锐熠辉复合材料有限公司 一种氧化铝-氧化硅气凝胶复合材料的制备方法
CN113831103A (zh) * 2021-09-30 2021-12-24 巩义市泛锐熠辉复合材料有限公司 一种耐高温氧化铝-氧化硅气凝胶复合材料的制备方法
CN113860847A (zh) * 2021-09-30 2021-12-31 巩义市泛锐熠辉复合材料有限公司 一种Al2O3-SiO2气凝胶复合材料的制备方法
CN114908947B (zh) * 2022-04-26 2023-10-20 中科润资(重庆)节能科技有限公司 一种耐高温防排烟风管及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503356A (zh) * 2011-11-11 2012-06-20 广州大学 定向纤维气凝胶隔热复合材料及其制备方法
JP2014035042A (ja) * 2012-08-09 2014-02-24 Panasonic Corp 断熱材
CN103911030A (zh) * 2014-04-08 2014-07-09 中山科邦化工材料技术有限公司 一种气凝胶保温隔热涂料制备方法
CN105482673A (zh) * 2016-01-06 2016-04-13 苏州环明电子科技有限公司 一种新型隔热涂料及其制备方法
CN111302760A (zh) * 2018-12-11 2020-06-19 天津大学 莫来石晶须/纤维协同增强二氧化硅气凝胶多尺度复合结构及其制备方法和应用
CN109721059A (zh) * 2019-02-27 2019-05-07 天津摩根坤德高新科技发展有限公司 一种二氧化硅气凝胶及其制备方法
CN113968052A (zh) * 2020-07-24 2022-01-25 欧文斯科宁知识产权资产有限公司 一种绝热板材、制造绝热板材的方法、防排烟风管以及建筑构造

Also Published As

Publication number Publication date
WO2023202701A1 (zh) 2023-10-26
WO2023202699A1 (zh) 2023-10-26
WO2023202698A1 (zh) 2023-10-26

Similar Documents

Publication Publication Date Title
US20220177765A1 (en) Aerogel composites including phase change materials
CN114907092B (zh) 一种耐高温气凝胶防排烟风管及其制造方法
CN113716572B (zh) 一种氧化铝-氧化硅气凝胶复合材料的制备方法
WO2023040965A1 (zh) 一种稀土掺杂二氧化硅气凝胶及其制备方法和应用
CN105536655A (zh) 一种气凝胶材料的快速制备方法
CN101456720A (zh) 一种六钛酸钾晶须复合SiO2气凝胶隔热材料的制备方法
CN101628804A (zh) 一种气凝胶绝热复合材料及其制法
CN108822873A (zh) 一种新型纳米级微孔隔热材料及其制备方法
CN113831103A (zh) 一种耐高温氧化铝-氧化硅气凝胶复合材料的制备方法
WO2014126490A1 (en) Flexible hybrid aerogels prepared under subcritical conditions and their preparation process
WO2023040966A1 (zh) 一种保温隔热材料及其制备方法和应用
CN114908947B (zh) 一种耐高温防排烟风管及其制造方法
CN110436953B (zh) 一种耐高温Al-Si-B-O陶瓷气凝胶材料及其合成方法
CN111825423A (zh) 一种高效隔热片及其制备方法
WO2023202700A1 (zh) 一种枝晶增强的气凝胶隔热复合材料
CN110976836B (zh) 一种低热耗散长寿命钢包衬体及其制备方法
CN108439964B (zh) 一种纳米孔陶瓷绝热卷材及其制备方法
CN110759706A (zh) 一种坠毁幸存存储器用隔热材料的制备方法
WO2023201690A1 (zh) 一种耐高温气凝胶防排烟风管
WO2023201689A1 (zh) 一种耐高温气凝胶防排烟风管及其制造方法
WO2023201688A1 (zh) 一种耐高温防排烟风管及其制造方法
CN108071050A (zh) 新型纳米隔热纸及其制备方法
CN112743932A (zh) 一种防隔热集成一体化材料及其制备方法
KR101544082B1 (ko) 내부에 다공질 연화층을 포함하는 무기 내화 단열보드
CN113549382A (zh) 一种海泡石保温涂料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791352

Country of ref document: EP

Kind code of ref document: A1