CN108439964B - 一种纳米孔陶瓷绝热卷材及其制备方法 - Google Patents

一种纳米孔陶瓷绝热卷材及其制备方法 Download PDF

Info

Publication number
CN108439964B
CN108439964B CN201810109329.XA CN201810109329A CN108439964B CN 108439964 B CN108439964 B CN 108439964B CN 201810109329 A CN201810109329 A CN 201810109329A CN 108439964 B CN108439964 B CN 108439964B
Authority
CN
China
Prior art keywords
nano
coiled material
temperature
modified nano
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810109329.XA
Other languages
English (en)
Other versions
CN108439964A (zh
Inventor
段国栋
陈世忠
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangshui Huaxia Special Material Technology Development Co ltd
Original Assignee
Xiangshui Huaxia Special Material Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangshui Huaxia Special Material Technology Development Co ltd filed Critical Xiangshui Huaxia Special Material Technology Development Co ltd
Priority to CN201810109329.XA priority Critical patent/CN108439964B/zh
Publication of CN108439964A publication Critical patent/CN108439964A/zh
Application granted granted Critical
Publication of CN108439964B publication Critical patent/CN108439964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/803
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Inorganic Fibers (AREA)
  • Thermal Insulation (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种纳米孔陶瓷绝热卷材及其制备方法,该卷材以耐高温纤维毡为增强材料,纳米二氧化硅和纳米氧化铝原位生成的纳米孔莫来石陶瓷为基材,同时辅以高温红外屏蔽材料,获得的纳米孔陶瓷绝热卷材柔性好,25℃导热系数≤0.015W/(m·K),1000℃导热系数≤0.040W/(m·K)。该卷材可任意裁切,施工便捷,可广泛应用于高音速飞行器、军用舰船、金属熔炼、陶瓷烧结等高温领域的绝热节能与防护。

Description

一种纳米孔陶瓷绝热卷材及其制备方法
技术领域
本发明涉及防火、绝热、复合材料领域,具体涉及一种纳米孔陶瓷绝热卷材及其制备方法。
背景技术
传统工业炉窑等高温设备为达到保温节能的目的,通常在重质保温砖砌筑体或重质不定形保温材料施工体外增加保温层。重质层很厚,窑炉体积庞大、笨重,对间歇式炉来说,蓄热损失大。保温层采用传统的耐火纤维如硅酸铝纤维、莫来石纤维虽可满足耐温要求,但在高温段隔热效果方面已经难以满足实际应用的要求,导致了巨大的热量损失能源浪费,同时也可能造成热安全事故。为解决这一问题,研究与开发使用温度高、体积密度小、隔热性能好的保温材料是减少热量损失,提高能源利用率的有效方法之一。
多孔陶瓷具有低密度、高渗透率、耐腐蚀、良好的隔热性能、耐高温和使用寿命长等优点,可用作耐火材料、隔热材料、传感器、热敏电阻和多孔压电陶瓷、热交换器等。CN103145444A报道了一种低成本保温隔热轻质多孔莫来石陶瓷的制备方法,利用了莫来石材料的耐高温特性,采用工业莫来石粉作为主要原料,加入助剂后通过混料、制浆、发泡、固化、干燥和烧结工序获得孔隙率为80~ 86%,密度为0. 43~0. 62g/cm3,导热系数为0.09~0.22W/ (m·K),抗压强度为1.0~5.0MPa的轻质多孔莫来石陶瓷材料。专利CN101723701A报道了钛酸盐多孔隔热材料的制备方法,将六钛酸钾材料、氧化钛和钾盐混合成型,烧结后水洗,所得的钛酸盐多孔陶瓷密度1.52~2.23g/cm3,孔隙率15~65%,抗折强度24.4~50.3MPa,250℃下热导率为0.194~0.356W/(m.K),900℃下热导率为0.157~0.279W/(m.K)。专利CN104987115A公开了利用六钛酸钾晶须制备隔热保温陶瓷的方法,六钛酸钾晶体的隧道结构以及高的红外反射特性使其具有很低的热导率以及负的温度系数。以六钛酸钾晶须为主要原料,加入助剂后,通过高速搅拌发泡、注模成型、干燥和烧结等工序,获得成品,密度0.2~0.4g/cm3,25℃下热导率为0.027~0.034W/(m·K),800℃下热导率0.010 ~0.035W/(m·K),抗压强度较高0.30~0.60MPa。
上述专利报道的陶瓷材料密度偏高或常温导热系数高,成品为硬质材料,使用范围受限。
发明内容
本发明的目的在于提供一种纳米孔陶瓷绝热复合卷材及其制备方法,所述纳米孔陶瓷绝热复合材料以耐高温纤维为增强材料,辅以高温红外屏蔽材料,通过原位生成纳米孔莫来石基材获得。该微纳米陶瓷绝热复合材料25℃导热系数≤0.015W/(m·K),1000℃导热系数≤0.040W/(m·K)。可广泛应用于高音速飞行器、军用舰船、金属熔炼、陶瓷烧结等高温领域的绝热节能与防护。
为实现上述目的,本发明所述一种纳米孔陶瓷绝热复合卷材的制备方法,包含如下步骤:(1)增强材料:采用可耐1000℃以上高温的硅酸铝纤维卷材,平铺后于卷材表面喷覆耐高温红外屏蔽剂六钛酸钾晶须,用量为卷材的1~5w.t.%,半干状态下备用。(2)改性纳米氧化硅溶胶:将4mol四乙氧基硅烷和1mol甲基三乙氧基硅烷,加入19mol水,50~70mol乙醇,调节pH~4,进行水解,利用乙醇调节体积,得到摩尔浓度为1.0mol/L改性纳米二氧化硅溶胶。(3)改性纳米氧化铝溶胶:将4mol异丙醇铝和 1mol六水氯化铝球磨后,加入等体积的乙醇进行浸泡润湿,加入120mol温度为80-90℃的热水,0.5mol乙酰乙酸乙酯,分三批加入0.6mol硝酸,整个过程在75℃下恒温搅拌下进行至异丙醇铝完全水解后,真空浓缩氧化铝摩尔浓度为1.0mol/L,得到淡蓝色改性纳米氧化铝溶胶。(4)复合:设计Si/Al摩尔比为1:(5-10),取1体积的改性纳米氧化硅溶胶,加入4~9体积的乙醇进行稀释,调节pH~8,与同体积的改性纳米氧化铝溶胶进行在线混合后,立即喷淋并浸透增强材料,1~5min左右,固化成型为湿料。(5)将步骤(4)所述的湿料在pH~8.5的乙醇中浸泡24h后,采用超临界或亚临界干燥,干燥温度为220-270℃,维持压力10-16MPa,2-4h后卸压排出材料中的介质得到干料。干料经1000℃热处理后,得到发明所述纳米孔陶瓷绝热卷材。
与现有技术相比较,本发明的优异效果如下。
(1)本发明遮光剂通过表面喷涂改性增强体的方式,降低遮光剂的用量,提高遮光剂添加效率,方法简单有效,工艺稳定可控。
(2)本发明采用改性纳米氧化硅和改性氧化铝溶胶作为基材主要原料,物料活性高,获得的材料兼具低温、高温绝热性能优异。
(3) 本发明采用连续在线混合以及喷淋浸渍复合的方式,工艺连续可控,可有效保证湿料的稳定型。
(4)通过乙醇的超临界或亚临界干燥,经过高温高压工艺,强化湿料的纳米骨架结构,最大限度的保证陶瓷材料孔隙率和孔结构。
(5)本发明绝热复合材料为原位生成的莫来石纳米孔陶瓷材料,纳米孔材耐高温性能良好,可在1000℃稳定使用,最高使用温度达1300℃。
附图说明
图1 本发明所述微纳米陶瓷绝热卷材实物图。
图2 本发明所述微纳米陶瓷绝热卷材SEM图。
具体实施方式
下面通过具体实施例结合附图对本发明作进一步说明,但保护范围不受实施例的限制:
实施例1
将浓度为3%的六钛酸钾晶须稀释液,采用喷涂的方法,喷涂于密度为130kg/m3的硅酸铝纤维针刺毡表面,自然晾干10min后,作为增强材料备用。按照Si/Al摩尔比1:5设计,将1体积1.0mol/L的改性纳米氧化硅溶胶,加入4体积的乙醇进行稀释,调节pH~8,与5体积1.0mol/L的改性纳米氧化铝溶胶进行连续在线混合,并喷淋浸渍到增强材料卷材中,经2min固化后,得到湿料;湿料在pH~9的乙醇中浸泡24h后,采用超临界干燥,干燥温度为270℃,维持压力16MPa,2-4h后卸压排出材料中的介质得到干料。干料经1000℃热处理后,得到发明所述微纳米陶瓷绝热卷材。密度248kg/m3,复合材料1000℃处理24h后,收缩率小于1%,25℃导热系数为0.013W/(m·K),1000℃导热系数为0.035W/(m·K)。
实施例2
将浓度为5%的六钛酸钾晶须稀释液,采用喷涂的方法,喷涂于密度为130kg/m3的硅酸铝纤维针刺毡表面,自然晾干10min后,作为增强材料备用。按照Si/Al摩尔比1:10设计,将1体积1.0mol/L的改性纳米氧化硅溶胶,加入9体积的乙醇进行稀释,调节pH~8,与10体积1.0mol/L的改性纳米氧化铝溶胶进行连续在线混合,并喷淋浸渍到增强材料卷材中,经5min固化后,得到湿料;湿料在pH~9的乙醇中浸泡24h后,采用超临界干燥,干燥温度为260℃,维持压力14MPa,2-4h后卸压排出材料中的介质得到干料,干料经1000℃热处理后,得到发明所述微纳米陶瓷绝热卷材。密度260kg/m3,复合材料1000℃处理24h后,收缩率小于1%,25℃导热系数为0.013W/(m·K),1000℃导热系数为0.034W/(m·K)。
实施例3
将浓度为3%的六钛酸钾晶须稀释液,采用喷涂的方法,喷涂于密度为130kg/m3的硅酸铝纤维针刺毡表面,自然晾干10min后,作为增强材料备用。采用喷涂的方法,喷涂于密度为130kg/m3的硅酸铝纤维针刺毡表面,自然晾干10min后,作为增强材料备用。按照Si/Al摩尔比1:5设计,将1体积1.0mol/L的改性纳米氧化硅溶胶,加入4体积的乙醇进行稀释,调节pH~8,与5体积1.0mol/L的改性纳米氧化铝溶胶进行连续在线混合,并喷淋浸渍到增强材料卷材中,经2min固化后,得到湿料;湿料在pH~9的乙醇中浸泡24h后,采用亚临界干燥,干燥温度为220℃,维持压力10MPa,2-4h后卸压排出材料中的介质得到干料。干料经1000℃热处理后,得到发明所述微纳米陶瓷绝热卷材密度263kg/m3,复合材料1000℃处理24h后,收缩率小于1%,25℃导热系数为0.015W/(m·K),1000℃导热系数为0.040W/(m·K)。
实施例4
将浓度为3%的六钛酸钾晶须稀释液,采用喷涂的方法,喷涂于密度为130kg/m3的硅酸铝纤维板表面,自然晾干10min后,作为增强材料备用。按照Si/Al摩尔比1:10设计,将1体积1.0mol/L的改性纳米氧化硅溶胶,加入9体积的乙醇进行稀释,调节pH~8,与10体积1.0mol/L的改性纳米氧化铝溶胶进行连续在线混合,并喷淋浸渍到增强材料卷材中,经5min固化后,得到湿料;湿料在pH~9的乙醇中浸泡24h后,采用亚临界干燥,干燥温度为230℃,维持压力14MPa,2-4h后卸压排出材料中的介质得到干料,干料经1000℃热处理后,得到发明所述微纳米陶瓷绝热卷材。密度272kg/m3,复合材料1000℃处理24h后,收缩率小于1%,25℃导热系数为0.015W/(m·K),1000℃导热系数为0.038W/(m·K)。

Claims (6)

1.一种纳米孔陶瓷绝热卷材,其特征是:该卷材以硅酸铝纤维为增强材料,纳米孔莫来石陶瓷为基材,辅以高温红外屏蔽材料,获得的柔性耐高温纳米孔陶瓷复合卷材,该复合卷材25℃导热系数≤0.015W/(m·K),1000℃导热系数≤0.040W/(m·K);
所述纳米孔陶瓷绝热卷材的制备方法,包含如下步骤:
(1)增强材料:采用可耐1000℃以上高温的硅酸铝纤维,平铺后于卷材表面喷覆耐高温红外屏蔽剂六钛酸钾晶须浆料,半干状态下备用;
(2)改性纳米二氧化硅溶胶:将4mol乙氧基硅烷和1mol甲基三乙氧基硅烷,加入19mol水,50~70mol乙醇,调节pH=4,进行水解,利用乙醇调节体积,得到摩尔浓度为1.0mol/L改性纳米二氧化硅溶胶;
(3)改性纳米氧化铝溶胶:将4mol异丙醇铝和1mol六水氯化铝球磨后,加入与步骤(2)等体积的乙醇进行浸泡润湿,加入120mol温度为80-90℃的热水,0.5mol乙酰乙酸乙酯,分三批加入0.6mol硝酸,整个过程在75℃恒温搅拌下进行至异丙醇铝完全水解后,真空浓缩至氧化铝摩尔浓度为1.0mol/L,得到淡蓝色改性纳米氧化铝溶胶;
(4)复合:设计Si/Al摩尔比为1:(5-10),取1体积的改性纳米二氧化硅溶胶,加入4~9体积的乙醇进行稀释,调节pH=8,与同体积的改性纳米氧化铝溶胶进行在线混合后,立即喷淋并浸透增强材料,1~5min,固化成型为湿料;
(5)将步骤(4)所述的湿料在pH=8.5的乙醇中浸泡24h后,采用超临界或亚临界干燥,干燥温度为220-270℃,维持10-16MPa的压力,2-4h后卸压排出材料中的介质得到干料,干料经1000℃热处理后,得到所述纳米孔陶瓷绝热卷材。
2.一种如权利要求1所述的一种纳米孔陶瓷绝热卷材,其特征在于:所述纳米孔莫来石陶瓷基材是改性纳米氧化硅和改性纳米氧化铝经1000℃以上高温反应原位生成的。
3.一种如权利要求1所述的一种纳米孔陶瓷绝热卷材的制备方法,其特征在于:步骤(1)所述六钛酸钾晶须具有红外反射特性和负温度系数,用量为硅酸铝纤维的1~5wt. %。
4.一种如权利要求1所述的一种纳米孔陶瓷绝热卷材的制备方法,其特征在于:步骤(1)所述耐高温红外屏蔽剂添加方式为配成水性浆料后均匀喷涂于硅酸铝纤维表面。
5.一种如权利要求1所述的一种纳米孔陶瓷绝热卷材的制备方法,其特征在于:步骤(4)中两种改性纳米氧化物溶胶混合方式为在线连续混合,混料比为体积比1:1。
6.一种如权利要求1所述的一种纳米孔陶瓷绝热卷材的制备方法,其特征在于:步骤(5)所述的干燥方式为乙醇超临界或亚临界干燥。
CN201810109329.XA 2018-02-05 2018-02-05 一种纳米孔陶瓷绝热卷材及其制备方法 Active CN108439964B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810109329.XA CN108439964B (zh) 2018-02-05 2018-02-05 一种纳米孔陶瓷绝热卷材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810109329.XA CN108439964B (zh) 2018-02-05 2018-02-05 一种纳米孔陶瓷绝热卷材及其制备方法

Publications (2)

Publication Number Publication Date
CN108439964A CN108439964A (zh) 2018-08-24
CN108439964B true CN108439964B (zh) 2020-12-15

Family

ID=63191430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810109329.XA Active CN108439964B (zh) 2018-02-05 2018-02-05 一种纳米孔陶瓷绝热卷材及其制备方法

Country Status (1)

Country Link
CN (1) CN108439964B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269001B (zh) * 2018-12-04 2022-05-03 响水华夏特材科技发展有限公司 无卤无氨超临界工艺生产的气凝胶复合卷材
CN111662067A (zh) * 2020-06-05 2020-09-15 深圳市达鸿新材料科技有限公司 一种防火卷材用硅酸铝耐高温棉及其制备方法
CN112341227A (zh) * 2020-10-23 2021-02-09 航天材料及工艺研究所 一种耐高温纳米隔热材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1050520A1 (de) * 1999-05-07 2000-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Supramolekulare Vorstufen zur Herstellung dichter Keramiken
CN101302091A (zh) * 2008-05-19 2008-11-12 武汉理工大学 一种纳米孔硅质复合隔热材料及其制备方法
CN101698592A (zh) * 2009-11-13 2010-04-28 航天特种材料及工艺技术研究所 一种硅铝气凝胶复合材料及其制备方法
CN101955350A (zh) * 2010-09-28 2011-01-26 航天特种材料及工艺技术研究所 一种改性氧化铝气凝胶复合材料及其制备方法
CN102173161A (zh) * 2010-12-15 2011-09-07 谢刚 工业隔热卷材及其制备方法
CN103411098A (zh) * 2013-08-28 2013-11-27 航天特种材料及工艺技术研究所 一种耐高温一体化刚性隔热构件及其制备方法
CN103693936A (zh) * 2013-12-13 2014-04-02 广西大学 一种纳米粉末基复合隔热材料的制备方法
CN104926344A (zh) * 2015-05-22 2015-09-23 中国人民解放军国防科学技术大学 硅酸铝纤维增强氧化物陶瓷及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920005731B1 (ko) * 1990-02-22 1992-07-16 한국과학기술연구원 다결정 물라이트섬유 및 그의 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1050520A1 (de) * 1999-05-07 2000-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Supramolekulare Vorstufen zur Herstellung dichter Keramiken
CN101302091A (zh) * 2008-05-19 2008-11-12 武汉理工大学 一种纳米孔硅质复合隔热材料及其制备方法
CN101698592A (zh) * 2009-11-13 2010-04-28 航天特种材料及工艺技术研究所 一种硅铝气凝胶复合材料及其制备方法
CN101955350A (zh) * 2010-09-28 2011-01-26 航天特种材料及工艺技术研究所 一种改性氧化铝气凝胶复合材料及其制备方法
CN102173161A (zh) * 2010-12-15 2011-09-07 谢刚 工业隔热卷材及其制备方法
CN103411098A (zh) * 2013-08-28 2013-11-27 航天特种材料及工艺技术研究所 一种耐高温一体化刚性隔热构件及其制备方法
CN103693936A (zh) * 2013-12-13 2014-04-02 广西大学 一种纳米粉末基复合隔热材料的制备方法
CN104926344A (zh) * 2015-05-22 2015-09-23 中国人民解放军国防科学技术大学 硅酸铝纤维增强氧化物陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
铝硅酸盐纤维增强氧化物陶瓷基复合材料的制备与性能;王义;《中国博士学位论文全文数据库》;20170215;正文第7、22-24、49-59、107-112、138-139页 *

Also Published As

Publication number Publication date
CN108439964A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
CN101792299B (zh) 耐高温氧化铝-氧化硅气凝胶隔热复合材料的制备方法
CN102584162B (zh) 一种一元或多元气凝胶隔热材料及其制备方法
CN108439964B (zh) 一种纳米孔陶瓷绝热卷材及其制备方法
CN106699209B (zh) 连续氧化铝纤维增强氧化铝陶瓷基复合材料的制备方法
CN113716572B (zh) 一种氧化铝-氧化硅气凝胶复合材料的制备方法
CN102795826B (zh) 一种气凝胶/无机轻集料复合保温隔热材料及其制备方法
CN102276236B (zh) 一种耐高温Si-C-O气凝胶隔热复合材料及其制备方法
CN101913835B (zh) 一种泡沫陶瓷增强纤维气凝胶隔热材料及其制备方法
CN106747540B (zh) 一种气凝胶纤维复合材料的制备方法
CN104987124B (zh) 一种立方相氧化锆纤维增强的氧化锆泡沫陶瓷及其制备方法
CN109251005B (zh) 一种增强二氧化硅气凝胶材料的制备方法
CN105780126B (zh) 一种由原位生成的晶须搭接而成的多孔莫来石的制备方法
CN107805064A (zh) 一种纤维增强耐高温镁铝尖晶石气凝胶的制备方法
CN111825423A (zh) 一种高效隔热片及其制备方法
CN106854086B (zh) 一种耐高温的莫来石型气凝胶复合材料及其制备方法
CN108774072B (zh) 一种刚性隔热瓦及其制备方法
CN106957179A (zh) 一种SiBN纤维增强SiO2‑BN‑Al2O3透波复合材料的制备方法
CN106431186B (zh) 一种纤维负载金红石型TiO2复合SiO2气凝胶的制备方法
CN111454071A (zh) 岩棉纤维增强氧化硅基高强度隔热复合材料及其制备方法
CN104909669A (zh) 一种纯无机防火玻化微珠保温砂浆及其制作方法
CN105601168A (zh) 一种无机保温材料及其制备方法
CN113003947A (zh) 一种硅基气凝胶-发泡材料隔热复合材料的制备方法
CN106145881B (zh) 一种疏水型纤维毡增强钛硅复合气凝胶及制备方法
CN111039695A (zh) 碳化硅拓补骨架结构增强氧化铝多孔陶瓷的制备方法
CN107954726A (zh) 耐腐蚀莫来石耐火砖及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: The invention relates to a nano porous ceramic thermal insulation coil and a preparation method thereof

Effective date of registration: 20210826

Granted publication date: 20201215

Pledgee: China Construction Bank Corporation Xiangshui sub branch

Pledgor: XIANGSHUI HUAXIA SPECIAL MATERIAL TECHNOLOGY DEVELOPMENT Co.,Ltd.

Registration number: Y2021980008354