WO2023199419A1 - ジョセフソン接合素子、量子デバイス及びジョセフソン接合素子の製造方法 - Google Patents

ジョセフソン接合素子、量子デバイス及びジョセフソン接合素子の製造方法 Download PDF

Info

Publication number
WO2023199419A1
WO2023199419A1 PCT/JP2022/017665 JP2022017665W WO2023199419A1 WO 2023199419 A1 WO2023199419 A1 WO 2023199419A1 JP 2022017665 W JP2022017665 W JP 2022017665W WO 2023199419 A1 WO2023199419 A1 WO 2023199419A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
film
superconducting
region
superconducting film
Prior art date
Application number
PCT/JP2022/017665
Other languages
English (en)
French (fr)
Inventor
誠 中村
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2022/017665 priority Critical patent/WO2023199419A1/ja
Publication of WO2023199419A1 publication Critical patent/WO2023199419A1/ja

Links

Images

Definitions

  • the present disclosure relates to a Josephson junction element, a quantum device, and a method for manufacturing a Josephson junction element.
  • a Josephson junction device has two superconducting films and an insulating film between them.
  • one superconducting film included in a Josephson junction element is processed by reactive ion etching after film formation, and damage is inevitably caused near the side surfaces of the superconducting film that remain after processing. Damage to a superconducting film can change the properties of the Josephson junction between the damaged region and the other superconducting film. Furthermore, during reactive ion etching of a superconducting film, damage inevitably occurs to the insulating film. The characteristics of the Josephson junction may also vary if the Josephson junction includes a region where damage has occurred in the insulating film.
  • An object of the present disclosure is to provide a Josephson junction element, a quantum device, and a method for manufacturing a Josephson junction element that can obtain stable characteristics.
  • a first superconducting film, a first insulating film provided on the first superconducting film, and a second superconducting film provided on the first insulating film the surface layer portion of the first insulating film has a first region and a second region around the first region, and the electrical insulation property of the first region is the same as that of the second region.
  • a Josephson junction element is provided in which the second superconducting film is higher in electrical insulation than the region and is located inside a boundary between the first region and the second region in plan view.
  • FIG. 1 is a sectional view showing a Josephson junction element according to a first embodiment.
  • FIG. 2 is a plan view showing the Josephson junction element according to the first embodiment.
  • FIG. 3 is a cross-sectional view (part 1) showing the method for manufacturing the Josephson junction element according to the first embodiment.
  • FIG. 4 is a cross-sectional view (Part 2) showing the method for manufacturing the Josephson junction element according to the first embodiment.
  • FIG. 5 is a cross-sectional view (part 3) showing the method for manufacturing the Josephson junction element according to the first embodiment.
  • FIG. 6 is a cross-sectional view (part 4) showing the method for manufacturing the Josephson junction element according to the first embodiment.
  • FIG. 7 is a cross-sectional view (No.
  • FIG. 8 is a cross-sectional view (part 6) showing the method for manufacturing the Josephson junction element according to the first embodiment.
  • FIG. 9 is a cross-sectional view (No. 7) showing the method for manufacturing the Josephson junction element according to the first embodiment.
  • FIG. 10 is a cross-sectional view (No. 8) showing the method for manufacturing the Josephson junction element according to the first embodiment.
  • FIG. 11 is a cross-sectional view (Part 9) showing the method for manufacturing the Josephson junction element according to the first embodiment.
  • FIG. 12 is a cross-sectional view (No. 10) showing the method for manufacturing the Josephson junction element according to the first embodiment.
  • FIG. 13 is a cross-sectional view showing a part of FIG. 1 in an enlarged manner.
  • FIG. 14 is a sectional view showing a portion corresponding to FIG. 13 in the Josephson junction element according to the reference example.
  • FIG. 15 is a cross-sectional view showing a Josephson junction element according to the second embodiment.
  • FIG. 16 is a plan view showing a Josephson junction element according to the second embodiment.
  • FIG. 17 is a cross-sectional view (part 1) showing the method for manufacturing the Josephson junction element according to the second embodiment.
  • FIG. 18 is a cross-sectional view (part 2) showing the method for manufacturing the Josephson junction element according to the second embodiment.
  • FIG. 19 is a cross-sectional view (part 3) showing the method for manufacturing the Josephson junction element according to the second embodiment.
  • FIG. 20 is a cross-sectional view (Part 4) showing the method for manufacturing the Josephson junction element according to the second embodiment.
  • FIG. 21 is a cross-sectional view (part 5) showing the method for manufacturing the Josephson junction element according to the second embodiment.
  • FIG. 22 is a cross-sectional view (part 6) showing the method for manufacturing the Josephson junction element according to the second embodiment.
  • FIG. 23 is a cross-sectional view (No. 7) showing the method for manufacturing the Josephson junction element according to the second embodiment.
  • FIG. 24 is a cross-sectional view (part 8) showing the method for manufacturing the Josephson junction element according to the second embodiment.
  • FIG. 25 is a cross-sectional view (part 9) showing the method for manufacturing the Josephson junction element according to the second embodiment.
  • FIG. 26 is a cross-sectional view (No. 10) showing the method for manufacturing the Josephson junction element according to the second embodiment.
  • FIG. 27 is a diagram showing a quantum device according to the third embodiment.
  • FIG. 1 is a sectional view showing a Josephson junction element according to a first embodiment.
  • FIG. 2 is a plan view showing the Josephson junction element according to the first embodiment.
  • FIG. 1 corresponds to a cross-sectional view taken along line II in FIG. In FIG. 2, the wiring 141, the wiring 142, and the insulating film 130 are omitted.
  • the Josephson junction device 100 mainly includes a substrate 110, a superconducting film 121, an insulating film 122, a superconducting film 123, and an insulating film 130. , a wiring 141, and a wiring 142.
  • the substrate 110 includes, for example, a silicon (Si) substrate 111 and an insulating film 112.
  • An insulating film 112 is formed on a silicon substrate 111.
  • the insulating film 112 is, for example, a silicon oxide film.
  • the substrate 110 is a so-called substrate with an oxide film.
  • Superconducting film 121 is provided on insulating film 112.
  • the superconducting film 121 is, for example, a niobium (Nb) film with a thickness of about 200 nm.
  • the insulating film 122 is provided on the superconducting film 121.
  • the insulating film 122 is, for example, an aluminum oxide (Al) film with a thickness of about 20 nm.
  • Superconducting film 123 is provided on insulating film 122.
  • the superconducting film 123 is, for example, a niobium film with a thickness of about 200 nm.
  • the superconducting film 121 is an example of a first superconducting film
  • the insulating film 122 is an example of a first insulating film
  • the superconducting film 123 is an example of a second superconducting film.
  • the surface layer portion of the insulating film 122 has a first region 122A and a second region 122B surrounding the first region 122A.
  • the second region 122B has more damage than the first region 122A, and the electrical insulation of the second region 122B is lower than that of the first region 122A. That is, the electrical insulation of the first region 122A is higher than that of the second region 122B.
  • Superconducting film 123 is provided on first region 122A. In plan view, the superconducting film 123 is located inside the boundary between the first region 122A and the second region 122B.
  • the magnitude of damage to the first region 122A and the second region 122B can be determined using, for example, a transmission electron microscope (TEM). That is, in TEM observation, the first region 122A and the second region 122B can be distinguished because the phase contrast is different between a region with large damage and a region with small damage.
  • TEM transmission electron microscope
  • a groove 121Z is formed in the superconducting film 121, and a groove 122Z is formed in the insulating film 122.
  • the groove 122Z is connected to the groove 121Z, and the insulating film 112 is exposed through the grooves 121Z and 122Z.
  • the grooves 121Z and 122Z are, for example, grooves for element isolation.
  • the insulating film 130 covers the substrate 110, the superconducting film 121, the insulating film 122, and the superconducting film 123.
  • the insulating film 130 is, for example, a silicon oxide film.
  • a contact hole 122X is formed in the insulating film 122, and a contact hole 130X is formed in the insulating film 130.
  • the contact hole 130X is connected to the contact hole 122X, and the superconducting film 121 is exposed through the contact holes 122X and 130X.
  • the contact hole 122X penetrates, for example, the second region 122B.
  • Wiring 141 is provided on insulating film 130 and is in contact with superconducting film 121 through contact holes 122X and 130X.
  • the wiring 141 is, for example, a niobium film.
  • a contact hole 130Y is formed in the insulating film 130.
  • the superconducting film 123 is exposed through the contact hole 130Y.
  • a recess 123Y connected to the contact hole 130Y may be formed on the surface of the superconducting film 123.
  • the wiring 142 is provided on the insulating film 130 and is in contact with the superconducting film 123 through the contact hole 130Y.
  • the wiring 142 is, for example, a niobium film.
  • 3 to 12 are cross-sectional views showing a method for manufacturing the Josephson junction element according to the first embodiment.
  • a substrate 110 having a silicon substrate 111 and an insulating film 112 is prepared, and a superconducting film 121, an insulating film 122, and a superconducting film 123 are formed on the insulating film 112.
  • a resist pattern 191 is formed on the superconducting film 123.
  • the resist pattern 191 includes an opening 191X.
  • the opening 191X generally overlaps with the region where the second region 122B of the insulating film 122 is formed.
  • the superconducting film 123 is etched using the resist pattern 191 as a mask.
  • This etching is, for example, reactive ion etching (RIE) using a reactive gas 150 containing sulfur hexafluoride (SF 6 ) as a main component.
  • RIE reactive ion etching
  • SF 6 sulfur hexafluoride
  • the superconducting film 123 has an internal region 123A that is not damaged by etching inside the damaged region 123B. Further, the vicinity of the upper surface of the insulating film 122 is also damaged by etching, and a first region 122A and a second region 122B around the first region 122A are formed in the surface layer portion of the insulating film 122. Greater etching damage occurs in the second region 122B than in the first region 122A, and the electrical insulation of the second region 122B becomes lower than that of the first region 122A.
  • the first region 122A is formed inside the outer edge of the resist pattern 191 in plan view.
  • the resist pattern 191 is removed.
  • the superconducting film 123 is etched to remove the damaged region 123B.
  • This etching is, for example, isotropic etching such as wet etching.
  • the superconducting film 123 is etched by about 20 nm in a direction parallel to the surface of the substrate 110. That is, the superconducting film 123 is reduced in plan view by isotropic etching.
  • the superconducting film 123 is located on the first region 122A, and is located inside the boundary between the first region 122A and the second region 122B in plan view.
  • the etchant may be, for example, an HF solution, a mixed solution of HF and H2O2 , a mixed solution of HF, H2SO4 , and HNO3 , or a mixed solution of HF and HNO3.
  • a mixed solution can be used.
  • the material of the superconducting film 123 is aluminum, for example, a diluted HCl solution or a diluted H 2 SO 4 solution can be used as the etchant.
  • a resist pattern 192 is formed on the insulating film 122 and the superconducting film 123.
  • the resist pattern 192 includes an opening 192Z. In plan view, the opening 192Z overlaps the region where the grooves 121Z and 122Z are formed.
  • the insulating film 122 is milled using the resist pattern 192 as a mask.
  • a groove 122Z is formed in the insulating film 122.
  • the superconducting film 123 is etched using the resist pattern 192 as a mask. This etching is, for example, RIE using a reactive gas containing sulfur hexafluoride as a main component.
  • a groove 121Z is formed in the superconducting film 121.
  • the resist pattern 192 is removed. After that, an insulating film 130 covering the substrate 110, superconducting film 121, insulating film 122, and superconducting film 123 is formed.
  • the insulating film 130 is formed by, for example, a chemical vapor deposition (CVD) method.
  • a resist pattern 193 is formed on the insulating film 130.
  • the resist pattern 193 includes openings 193X and 193Y.
  • the opening 193X overlaps with the region where the contact holes 122X and 130X are formed, and the opening 193Y overlaps with the region where the contact hole 130Y is formed.
  • the insulating film 130 is etched using the resist pattern 193 as a mask.
  • This etching is, for example, RIE using a reactive gas containing fluorocarbon (CF 4 ) as a main component.
  • contact holes 130X and 130Y are formed in the insulating film 130.
  • the insulating film 122 is milled using the resist pattern 193 as a mask.
  • a contact hole 130X is formed in the insulating film 122.
  • a recess 123Y may be formed in a portion of the superconducting film 123 exposed from the contact hole 130Y.
  • a wiring 141 that contacts the superconducting film 121 through the contact holes 122X and 130X, and a wiring 142 that contacts the superconducting film 123 through the contact hole 130Y are formed on the insulating film 130.
  • the Josephson junction device 100 can be manufactured.
  • the Josephson junction element becomes finer, the proportion of the damaged region in the superconducting film increases, and the change in characteristics may become more pronounced. Therefore, the present invention is particularly suitable for such cases. It is valid.
  • FIG. 13 is a cross-sectional view showing a part of FIG. 1 in an enlarged manner.
  • FIG. 14 is a sectional view showing a portion corresponding to FIG. 13 in the Josephson junction element according to the reference example.
  • the second region 122B is damaged by RIE (see FIG. 5).
  • no RIE damage occurs in the first region 122A.
  • the second region 122B is more damaged than the first region 122A.
  • the superconducting film 123 is located inside the boundary between the first region 122A and the second region 122B in plan view. Therefore, the Josephson junction 100A between the superconducting film 121 and the superconducting film 123 is separated from the second region 122B. Therefore, according to the first embodiment, stable characteristics can be obtained.
  • the superconducting film 123 includes a damaged region 123B, and in plan view, the superconducting film 123 straddles the boundary between the first region 122A and the second region 122B. , including the part outside this boundary.
  • the superconducting film 121 and the superconducting film 123 in addition to the Josephson junction 100A separated from the second region 122B, there is also a Josephson junction 100B including the second region 122B.
  • the Josephson junction 100B may be a Josephson junction between the superconducting film 121 and the damaged region 123B. Therefore, in the reference example, the characteristics tend to fluctuate.
  • FIG. 15 is a cross-sectional view showing a Josephson junction element according to the second embodiment.
  • FIG. 16 is a plan view showing a Josephson junction element according to the second embodiment.
  • FIG. 15 corresponds to a cross-sectional view taken along the line XV-XV in FIG. 16.
  • the wiring 141, the wiring 142, and the insulating film 130 are omitted.
  • the Josephson junction device 200 mainly includes a substrate 110, a superconducting film 121, an insulating film 122, a superconducting film 123, and an insulating film 224. , an insulating film 130, a wiring 141, and a wiring 142.
  • the insulating film 224 is provided on the superconducting film 123.
  • the insulating film 224 is, for example, an aluminum oxide film with a thickness of about 20 nm. That is, the material of the insulating film 224 is the same as that of the insulating film 122, and the thickness of the insulating film 224 is equal to the thickness of the insulating film 122.
  • the insulating film 224 is an example of a second insulating film.
  • the insulating film 130 covers the substrate 110, the superconducting film 121, the insulating film 122, the superconducting film 123, and the insulating film 224.
  • the insulating film 130 is an example of a third insulating film.
  • a contact hole 122X is formed in the insulating film 122, and a contact hole 130X is formed in the insulating film 130.
  • the contact hole 130X is connected to the contact hole 122X, and the superconducting film 121 is exposed through the contact holes 122X and 130X.
  • the contact hole 122X penetrates, for example, the second region 122B.
  • Wiring 141 is provided on insulating film 130 and is in contact with superconducting film 121 through contact holes 122X and 130X.
  • the wiring 141 is an example of a first wiring.
  • Contact holes 122X and 130X are examples of first openings.
  • a contact hole 224Y is formed in the insulating film 224.
  • the contact hole 130Y is connected to the contact hole 224Y, and the superconducting film 123 is exposed through the contact holes 224Y and 130Y.
  • the recess 123Y is not formed on the surface of the superconducting film 123, and the surface of the superconducting film 123 is flat.
  • Wiring 142 is provided on insulating film 130 and is in contact with superconducting film 123 through contact holes 224Y and 130Y.
  • the wiring 142 is an example of a second wiring.
  • Contact holes 224Y and 130Y are examples of second openings.
  • 17 to 26 are cross-sectional views showing a method of manufacturing a Josephson junction element according to the second embodiment.
  • a substrate 110 having a silicon substrate 111 and an insulating film 112 is prepared, and a superconducting film 121, an insulating film 122, a superconducting film 123, and an insulating film are disposed on the insulating film 112. Form.
  • a resist pattern 191 is formed on the insulating film 224.
  • the resist pattern 191 includes an opening 191X.
  • the opening 191X generally overlaps with the region where the second region 122B of the insulating film 122 is formed.
  • the insulating film 224 is milled using the resist pattern 191 as a mask. Furthermore, as in the first embodiment, the superconducting film 123 is etched. As a result, a damaged region 123B is formed near the side surface of the superconducting film 123.
  • the superconducting film 123 has an internal region 123A that is not damaged by etching inside the damaged region 123B. Further, a first region 122A and a second region 122B around the first region 122A are formed in the surface layer portion of the insulating film 122.
  • the resist pattern 191 is removed.
  • the superconducting film 123 is isotropically etched to remove the damaged region 123B. That is, the superconducting film 123 is reduced in plan view by isotropic etching. As a result, the superconducting film 123 is located on the first region 122A, and is located inside the boundary between the first region 122A and the second region 122B in plan view.
  • a resist pattern 192 is formed on the insulating film 122, superconducting film 123, and insulating film 224.
  • the resist pattern 192 includes an opening 192Z. In plan view, the opening 192Z overlaps the region where the grooves 121Z and 122Z are formed.
  • the insulating film 122 is milled using the resist pattern 192 as a mask. As a result, a groove 122Z is formed in the insulating film 122. Furthermore, as in the first embodiment, the superconducting film 123 is etched using the resist pattern 192 as a mask. As a result, a groove 121Z is formed in the superconducting film 121.
  • the resist pattern 192 is removed. Thereafter, an insulating film 130 covering the substrate 110, superconducting film 121, insulating film 122, superconducting film 123, and insulating film 224 is formed.
  • the insulating film 130 is formed by, for example, a CVD method.
  • a resist pattern 193 is formed on the insulating film 130 similarly to the first embodiment.
  • the resist pattern 193 includes openings 193X and 193Y.
  • opening 193X overlaps with a region where contact holes 122X and 130X are formed
  • opening 193Y overlaps with a region where contact holes 224Y and 130Y are formed.
  • the insulating film 130 is etched as in the first embodiment. As a result, contact holes 130X and 130Y are formed in the insulating film 130. Furthermore, the insulating films 122 and 224 are milled using the resist pattern 193 as a mask. As a result, a contact hole 130X is formed in the insulating film 122, and a contact hole 130Y is formed in the insulating film 224.
  • the material of the insulating film 224 is the same as that of the insulating film 122 and the thickness of the insulating film 224 is equal to the thickness of the insulating film 122, if milling of the insulating film 122 is stopped when the superconducting film 121 is exposed, Milling of the insulating film 224 also stops when the superconducting film 123 is exposed.
  • a wiring 141 that contacts the superconducting film 121 through the contact holes 122X and 130X, and a wiring 142 that contacts the superconducting film 123 through the contact holes 224Y and 130Y are formed on the insulating film 130. do.
  • the Josephson junction element 200 according to the second embodiment can be manufactured.
  • the second embodiment can also achieve the same effects as the first embodiment. Furthermore, in the second embodiment, formation of recesses 123Y on the surface of superconducting film 123 can be suppressed. Therefore, damage to the superconducting film 123 due to the formation of the recess 123Y can be suppressed.
  • the thickness of the insulating film 224 matches the thickness of the insulating film 122, the insulating film 224 may be thicker or thinner than the insulating film 122. Furthermore, although it is desirable that the material of the insulating film 224 is the same as the material of the insulating film 122, it is not necessarily the same material. In any case, it is desirable that the difference in timing between the milling of the insulating film 224 and the milling of the insulating film 122 be small.
  • the material of the superconducting films 121 and 123 is not particularly limited, and may include, for example, niobium, aluminum, niobium nitride, titanium nitride, or any combination thereof.
  • the material of the insulating films 122 and 224 is not particularly limited, and may include aluminum oxide, aluminum nitride, hafnium oxide, yttrium oxide, or any combination thereof.
  • FIG. 27 is a diagram showing a quantum device according to the third embodiment.
  • a quantum device 300 includes a quantum bit 310, a readout circuit 320, and wirings 331 and 332.
  • Qubit 310 includes Josephson junction elements 311, 312, and 313.
  • Readout circuit 320 includes Josephson junction elements 321 and 322. The readout circuit 320 is connected between the wiring 331 and the wiring 332.
  • Qubit 310 is provided inside readout circuit 320.
  • Read circuit 320 reads the state of quantum bit 310.
  • Josephson junction elements 311, 312, 313, 321 and 322 are Josephson junction elements 100 or 200.
  • Quantum device 300 since it includes the Josephson junction element 100 or 200, stable characteristics can be obtained.
  • Quantum device 300 can be used, for example, in a quantum computer.

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

ジョセフソン接合素子は、第1超伝導膜と、前記第1超伝導膜の上に設けられた第1絶縁膜と、前記第1絶縁膜の上に設けられた第2超伝導膜と、を有し、前記第1絶縁膜の表層部は、第1領域と、前記第1領域の周囲の第2領域と、を有し、前記第1領域の電気絶縁性は、前記第2領域の電気絶縁性よりも高く、平面視で、前記第2超伝導膜は、前記第1領域と前記第2領域との境界の内側にある。

Description

ジョセフソン接合素子、量子デバイス及びジョセフソン接合素子の製造方法
 本開示は、ジョセフソン接合素子、量子デバイス及びジョセフソン接合素子の製造方法に関する。
 ジョセフソン接合素子を含む量子ビットの量子コンピュータへの適用について検討が行われている。ジョセフソン接合素子は、2つの超伝導膜と、その間の絶縁膜とを有する。
米国特許出願公開第2017/0179193号明細書 特開昭62-213287号公報 特開平5-145132号公報 米国特許出願公開第2014/0357493号明細書
 従来、ジョセフソン接合素子に含まれる一方の超伝導膜は成膜後に反応性イオンエッチングにより加工されており、加工後に残存する超伝導膜の側面の近傍には不可避的にダメージが生じる。超伝導膜にダメージが生じると、このダメージが生じた領域と他方の超伝導膜との間のジョセフソン接合の特性が変動し得る。更に、超伝導膜の反応性イオンエッチング時には絶縁膜にも不可避的にダメージが生じる。ジョセフソン接合が絶縁膜のダメージが生じた領域を含む場合にも、ジョセフソン接合の特性が変動し得る。
 本開示の目的は、安定した特性を得ることができるジョセフソン接合素子、量子デバイス及びジョセフソン接合素子の製造方法を提供することにある。
 本開示の一形態によれば、第1超伝導膜と、前記第1超伝導膜の上に設けられた第1絶縁膜と、前記第1絶縁膜の上に設けられた第2超伝導膜と、を有し、前記第1絶縁膜の表層部は、第1領域と、前記第1領域の周囲の第2領域と、を有し、前記第1領域の電気絶縁性は、前記第2領域の電気絶縁性よりも高く、平面視で、前記第2超伝導膜は、前記第1領域と前記第2領域との境界の内側にあるジョセフソン接合素子が提供される。
 本開示によれば、安定した特性を得ることができる。
図1は、第1実施形態に係るジョセフソン接合素子を示す断面図である。 図2は、第1実施形態に係るジョセフソン接合素子を示す平面図である。 図3は、第1実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その1)である。 図4は、第1実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その2)である。 図5は、第1実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その3)である。 図6は、第1実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その4)である。 図7は、第1実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その5)である。 図8は、第1実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その6)である。 図9は、第1実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その7)である。 図10は、第1実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その8)である。 図11は、第1実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その9)である。 図12は、第1実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その10)である。 図13は、図1の一部を拡大して示す断面図である。 図14は、参考例に係るジョセフソン接合素子中で図13に相当する部分を示す断面図である。 図15は、第2実施形態に係るジョセフソン接合素子を示す断面図である。 図16は、第2実施形態に係るジョセフソン接合素子を示す平面図である。 図17は、第2実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その1)である。 図18は、第2実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その2)である。 図19は、第2実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その3)である。 図20は、第2実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その4)である。 図21は、第2実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その5)である。 図22は、第2実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その6)である。 図23は、第2実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その7)である。 図24は、第2実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その8)である。 図25は、第2実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その9)である。 図26は、第2実施形態に係るジョセフソン接合素子の製造方法を示す断面図(その10)である。 図27は、第3実施形態に係る量子デバイスを示す図である。
 以下、本開示の実施形態について添付の図面を参照しながら具体的に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省くことがある。
 (第1実施形態)
 まず、第1実施形態について説明する。第1実施形態はジョセフソン接合素子に関する。図1は、第1実施形態に係るジョセフソン接合素子を示す断面図である。図2は、第1実施形態に係るジョセフソン接合素子を示す平面図である。図1は、図2中のI-I線に沿った断面図に相当する。図2では、配線141、配線142及び絶縁膜130を省略している。
 図1及び図2に示すように、第1実施形態に係るジョセフソン接合素子100は、主として、基板110と、超伝導膜121と、絶縁膜122と、超伝導膜123と、絶縁膜130と、配線141と、配線142とを有する。
 基板110は、例えば、シリコン(Si)基板111と、絶縁膜112とを有する。絶縁膜112はシリコン基板111の上に形成されている。絶縁膜112は、例えば酸化シリコン膜である。基板110は、いわゆる酸化膜付き基板である。超伝導膜121は絶縁膜112の上に設けられている。超伝導膜121は、例えば厚さが200nm程度のニオブ(Nb)膜である。絶縁膜122は超伝導膜121の上に設けられている。絶縁膜122は、例えば厚さが20nm程度の酸化アルミニウム(Al)膜である。超伝導膜123は絶縁膜122の上に設けられている。超伝導膜123は、例えば厚さが200nm程度のニオブ膜である。超伝導膜121は第1超伝導膜の一例であり、絶縁膜122は第1絶縁膜の一例であり、超伝導膜123は第2超伝導膜の一例である。
 絶縁膜122の表層部は、第1領域122Aと、第1領域122Aの周囲の第2領域122Bとを有する。第2領域122Bには第1領域122Aよりも大きなダメージが生じており、第2領域122Bの電気絶縁性が第1領域122Aの電気絶縁性よりも低くなっている。つまり、第1領域122Aの電気絶縁性は、第2領域122Bの電気絶縁性よりも高い。超伝導膜123は第1領域122Aの上に設けられている。平面視で、超伝導膜123は、第1領域122Aと第2領域122Bとの境界の内側にある。第1領域122A及び第2領域122Bのダメージの大きさは、例えば透過型電子顕微鏡(transmission electron microscope:TEM)を用いて特定することができる。すなわち、TEM観察において、ダメージが大きい領域とダメージが小さい領域との間では位相コントラストが異なるため、第1領域122Aと第2領域122Bとを区別することができる。
 超伝導膜121に溝121Zが形成され、絶縁膜122に溝122Zが形成されている。溝122Zは溝121Zに繋がっており、溝121Z及び122Zを通じて絶縁膜112が露出している。溝121Z及び122Zは、例えば素子分離用の溝である。絶縁膜130は、基板110、超伝導膜121、絶縁膜122及び超伝導膜123を覆う。絶縁膜130は、例えば酸化シリコン膜である。
 絶縁膜122にコンタクト孔122Xが形成され、絶縁膜130にコンタクト孔130Xが形成されている。コンタクト孔130Xはコンタクト孔122Xに繋がっており、コンタクト孔122X及び130Xを通じて超伝導膜121が露出している。コンタクト孔122Xは、例えば第2領域122Bを貫通している。配線141は、絶縁膜130の上に設けられると共に、コンタクト孔122X及び130Xを通じて超伝導膜121に接触している。配線141は、例えばニオブ膜である。
 絶縁膜130にコンタクト孔130Yが形成されている。コンタクト孔130Yを通じて超伝導膜123が露出している。超伝導膜123の表面に、コンタクト孔130Yに繋がる凹部123Yが形成されていてもよい。配線142は、絶縁膜130の上に設けられると共に、コンタクト孔130Yを通じて超伝導膜123に接触している。配線142は、例えばニオブ膜である。
 次に、第1実施形態に係るジョセフソン接合素子100の製造方法について説明する。図3~図12は、第1実施形態に係るジョセフソン接合素子の製造方法を示す断面図である。
 まず、図3に示すように、シリコン基板111と、絶縁膜112とを有する基板110を準備し、絶縁膜112の上に、超伝導膜121、絶縁膜122及び超伝導膜123を形成する。
 次いで、図4に示すように、超伝導膜123の上にレジストパターン191を形成する。レジストパターン191は開口部191Xを備える。平面視で、開口部191Xは概ね絶縁膜122の第2領域122Bが形成される領域と重なる。
 その後、図5に示すように、レジストパターン191をマスクとして、超伝導膜123のエッチングを行う。このエッチングは、例えば六フッ化硫黄(SF)を主成分とする反応性ガス150を用いた反応性イオンエッチング(reactive ion etching:RIE)である。このエッチングは、絶縁膜122が露出するまで行う。この結果、超伝導膜123のレジストパターン191に覆われていた部分が残存する。残存する超伝導膜123の側面の近傍はエッチングによるダメージを受け、超伝導膜123の側面の近傍にダメージ領域123Bが形成される。超伝導膜123は、ダメージ領域123Bの内側に、エッチングのダメージを受けていない内部領域123Aを有する。また、絶縁膜122の上面の近傍もエッチングによるダメージを受け、絶縁膜122の表層部に、第1領域122Aと、第1領域122Aの周囲の第2領域122Bとが形成される。第2領域122Bには第1領域122Aよりも大きなエッチングのダメージが生じ、第2領域122Bの電気絶縁性が第1領域122Aの電気絶縁性よりも低くなる。第1領域122Aは、平面視で、レジストパターン191の外縁の内側に形成される。
 続いて、図6に示すように、レジストパターン191を除去する。次いで、超伝導膜123のエッチングを行うことにより、ダメージ領域123Bを除去する。このエッチングは、例えば湿式エッチング等の等方性エッチングである。例えば、基板110の表面に平行な方向で、超伝導膜123を20nm程度エッチングする。つまり、等方性エッチングにより超伝導膜123を平面視で縮小する。この結果、超伝導膜123は第1領域122Aの上に位置し、平面視で、第1領域122Aと第2領域122Bとの境界の内側に位置するようになる。超伝導膜123の材料がニオブである場合、エッチャントとしては、例えば、HF溶液、HFとHとの混合溶液、HFとHSOとHNOとの混合溶液又はHFとHNOとの混合溶液を用いることができる。超伝導膜123の材料がアルミニウムである場合、エッチャントとしては、例えば、希釈HCl溶液又は希釈HSO溶液を用いることができる。
 その後、図7に示すように、絶縁膜122及び超伝導膜123の上にレジストパターン192を形成する。レジストパターン192は開口部192Zを備える。平面視で、開口部192Zは溝121Z及び122Zが形成される領域と重なる。
 続いて、図8に示すように、レジストパターン192をマスクとして、絶縁膜122のミリングを行う。この結果、絶縁膜122に溝122Zが形成される。更に、レジストパターン192をマスクとして、超伝導膜123のエッチングを行う。このエッチングは、例えば六フッ化硫黄を主成分とする反応性ガスを用いたRIEである。この結果、超伝導膜121に溝121Zが形成される。
 次いで、図9に示すように、レジストパターン192を除去する。その後、基板110、超伝導膜121、絶縁膜122及び超伝導膜123を覆う絶縁膜130を形成する。絶縁膜130は、例えば化学気相成長(chemical vapor deposition:CVD)法により形成する。
 続いて、図10に示すように、絶縁膜130の上にレジストパターン193を形成する。レジストパターン193は開口部193X及び193Yを備える。平面視で、開口部193Xはコンタクト孔122X及び130Xが形成される領域と重なり、開口部193Yはコンタクト孔130Yが形成される領域と重なる。
 次いで、図11に示すように、レジストパターン193をマスクとして、絶縁膜130のエッチングを行う。このエッチングは、例えばフロロカーボン(CF)を主成分とする反応性ガスを用いたRIEである。この結果、絶縁膜130にコンタクト孔130X及び130Yが形成される。更に、レジストパターン193をマスクとして、絶縁膜122のミリングを行う。この結果、絶縁膜122にコンタクト孔130Xが形成される。この時、超伝導膜123のコンタクト孔130Yから露出した部分に凹部123Yが形成されてもよい。
 その後、図12に示すように、コンタクト孔122X及び130Xを通じて超伝導膜121に接触する配線141と、コンタクト孔130Yを通じて超伝導膜123に接触する配線142とを絶縁膜130の上に形成する。
 このようにして、第1実施形態に係るジョセフソン接合素子100を製造することができる。ジョセフソン接合素子が微細化されるほど、超伝導膜中でダメージが生じた領域が占める割合が高くなるため、特性の変化が顕著になるおそれがあるため、本発明はそのような場合に特に有効である。
 ここで、第1実施形態に係るジョセフソン接合素子100により得られる効果について、参考例と比較しながら説明する。図13は、図1の一部を拡大して示す断面図である。図14は、参考例に係るジョセフソン接合素子中で図13に相当する部分を示す断面図である。
 図13に示すように、絶縁膜122の表層部には、第1領域122A及び第2領域122Bが存在し、第2領域122Bには、RIE(図5参照)のダメージが生じているのに対し、第1領域122Aには、RIEのダメージが生じていない。つまり、第2領域122Bには、第1領域122Aよりも大きなダメージが生じている。そして、第1実施形態では、平面視で、超伝導膜123が、第1領域122Aと第2領域122Bとの境界の内側にある。このため、超伝導膜121と超伝導膜123との間のジョセフソン接合100Aは第2領域122Bから離れている。このため、第1実施形態によれば安定した特性を得ることができる。
 一方、図14に示すように、参考例では、超伝導膜123がダメージ領域123Bを含んでおり、平面視で、超伝導膜123が、第1領域122Aと第2領域122Bとの境界を跨ぎ、この境界よりも外側の部分を含む。超伝導膜121と超伝導膜123との間には、第2領域122Bから離れたジョセフソン接合100Aに加えて、第2領域122Bを含むジョセフソン接合100Bも存在する。また、ジョセフソン接合100Bは、超伝導膜121とダメージ領域123Bとの間のジョセフソン接合となることもある。従って、参考例では、特性が変動しやすい。
 (第2実施形態)
 次に、第2実施形態について説明する。第2実施形態はジョセフソン接合素子に関する。図15は、第2実施形態に係るジョセフソン接合素子を示す断面図である。図16は、第2実施形態に係るジョセフソン接合素子を示す平面図である。図15は、図16中のXV-XV線に沿った断面図に相当する。図16では、配線141、配線142及び絶縁膜130を省略している。
 図15及び図16に示すように、第2実施形態に係るジョセフソン接合素子200は、主として、基板110と、超伝導膜121と、絶縁膜122と、超伝導膜123と、絶縁膜224と、絶縁膜130と、配線141と、配線142とを有する。
 絶縁膜224は超伝導膜123の上に設けられている。絶縁膜224は、例えば厚さが20nm程度の酸化アルミニウム膜である。つまり、絶縁膜224の材料は絶縁膜122の材料と同種であり、絶縁膜224の厚さは絶縁膜122の厚さと等しい。絶縁膜224は第2絶縁膜の一例である。
 絶縁膜130は、基板110、超伝導膜121、絶縁膜122、超伝導膜123及び絶縁膜224を覆う。絶縁膜130は第3絶縁膜の一例である。
 絶縁膜122にコンタクト孔122Xが形成され、絶縁膜130にコンタクト孔130Xが形成されている。コンタクト孔130Xはコンタクト孔122Xに繋がっており、コンタクト孔122X及び130Xを通じて超伝導膜121が露出している。コンタクト孔122Xは、例えば第2領域122Bを貫通している。配線141は、絶縁膜130の上に設けられると共に、コンタクト孔122X及び130Xを通じて超伝導膜121に接触している。配線141は第1配線の一例である。コンタクト孔122X及び130Xは第1開口部の一例である。
 絶縁膜224にコンタクト孔224Yが形成されている。コンタクト孔130Yはコンタクト孔224Yに繋がっており、コンタクト孔224Y及び130Yを通じて超伝導膜123が露出している。本実施形態では、超伝導膜123の表面に凹部123Yが形成されておらず、超伝導膜123の表面は平坦である。配線142は、絶縁膜130の上に設けられると共に、コンタクト孔224Y及び130Yを通じて超伝導膜123に接触している。配線142は第2配線の一例である。コンタクト孔224Y及び130Yは第2開口部の一例である。
 他の構成は第1実施形態と同様である。
 次に、第2実施形態に係るジョセフソン接合素子200の製造方法について説明する。図17~図26は、第2実施形態に係るジョセフソン接合素子の製造方法を示す断面図である。
 まず、図17に示すように、シリコン基板111と、絶縁膜112とを有する基板110を準備し、絶縁膜112の上に、超伝導膜121、絶縁膜122、超伝導膜123及び絶縁膜を形成する。
 次いで、図18に示すように、絶縁膜224の上にレジストパターン191を形成する。レジストパターン191は開口部191Xを備える。平面視で、開口部191Xは概ね絶縁膜122の第2領域122Bが形成される領域と重なる。
 その後、図19に示すように、レジストパターン191をマスクとして、絶縁膜224のミリングを行う。更に、第1実施形態と同様に、超伝導膜123のエッチングを行う。この結果、超伝導膜123の側面の近傍にダメージ領域123Bが形成される。超伝導膜123は、ダメージ領域123Bの内側に、エッチングのダメージを受けていない内部領域123Aを有する。また、絶縁膜122の表層部に、第1領域122Aと、第1領域122Aの周囲の第2領域122Bとが形成される。
 続いて、図20に示すように、レジストパターン191を除去する。次いで、第1実施形態と同様に、超伝導膜123の等方性エッチングを行うことにより、ダメージ領域123Bを除去する。つまり、等方性エッチングにより超伝導膜123を平面視で縮小する。この結果、超伝導膜123は第1領域122Aの上に位置し、平面視で、第1領域122Aと第2領域122Bとの境界の内側に位置するようになる。
 その後、図21に示すように、絶縁膜122、超伝導膜123及び絶縁膜224の上にレジストパターン192を形成する。レジストパターン192は開口部192Zを備える。平面視で、開口部192Zは溝121Z及び122Zが形成される領域と重なる。
 続いて、図22に示すように、第1実施形態と同様に、レジストパターン192をマスクとして、絶縁膜122のミリングを行う。この結果、絶縁膜122に溝122Zが形成される。更に、第1実施形態と同様に、レジストパターン192をマスクとして、超伝導膜123のエッチングを行う。この結果、超伝導膜121に溝121Zが形成される。
 次いで、図23に示すように、レジストパターン192を除去する。その後、基板110、超伝導膜121、絶縁膜122、超伝導膜123及び絶縁膜224を覆う絶縁膜130を形成する。絶縁膜130は、例えばCVD法により形成する。
 続いて、図24に示すように、第1実施形態と同様に、絶縁膜130の上にレジストパターン193を形成する。レジストパターン193は開口部193X及び193Yを備える。平面視で、開口部193Xはコンタクト孔122X及び130Xが形成される領域と重なり、開口部193Yはコンタクト孔224Y及び130Yが形成される領域と重なる。
 次いで、図25に示すように、レジストパターン193をマスクとして、第1実施形態と同様に、絶縁膜130のエッチングを行う。この結果、絶縁膜130にコンタクト孔130X及び130Yが形成される。更に、レジストパターン193をマスクとして、絶縁膜122及び224のミリングを行う。この結果、絶縁膜122にコンタクト孔130Xが形成され、絶縁膜224にコンタクト孔130Yが形成される。絶縁膜224の材料が絶縁膜122の材料と同種であり、絶縁膜224の厚さが絶縁膜122の厚さと等しいため、超伝導膜121が露出した時に絶縁膜122のミリングを停止すれば、超伝導膜123が露出した時に絶縁膜224のミリングも停止する。
 その後、図26に示すように、コンタクト孔122X及び130Xを通じて超伝導膜121に接触する配線141と、コンタクト孔224Y及び130Yを通じて超伝導膜123に接触する配線142とを絶縁膜130の上に形成する。
 このようにして、第2実施形態に係るジョセフソン接合素子200を製造することができる。
 第2実施形態によっても第1実施形態と同様の効果を得ることができる。また、第2実施形態では、超伝導膜123の表面での凹部123Yの形成を抑制することができる。従って、凹部123Yの形成に伴う超伝導膜123のダメージを抑制することができる。
 なお、絶縁膜224の厚さが絶縁膜122の厚さと一致していることが望ましいが、絶縁膜224が絶縁膜122より厚くてもよく、薄くてもよい。また、絶縁膜224の材料が絶縁膜122の材料と同種であることが望ましいが、必ずしも同種でなくてもよい。いずれにしても、絶縁膜224のミリングと絶縁膜122のミリングとの間で、終了のタイミングのずれが小さいことが望ましい。
 超伝導膜121及び123の材料は特に限定されず、例えば、ニオブ、アルミニウム、窒化ニオブ若しくは窒化チタン又はこれらの任意の組み合わせを含んでもよい。また、絶縁膜122及び224の材料も特に限定されず、酸化アルミニウム、窒化アルミニウム、酸化ハフニウム若しくは酸化イットリウム又はこれらの任意の組み合わせを含んでもよい。
 (第3実施形態)
 次に、第3実施形態について説明する。第3実施形態は量子デバイスに関する。図27は、第3実施形態に係る量子デバイスを示す図である。
 第3実施形態に係る量子デバイス300は、量子ビット310と、読み出し回路320と、配線331及び332とを有する。量子ビット310は、ジョセフソン接合素子311、312及び313を含む。読み出し回路320は、ジョセフソン接合素子321及び322を含む。読み出し回路320は、配線331と配線332との間に接続されている。量子ビット310は読み出し回路320の内側に設けられている。読み出し回路320は量子ビット310の状態を読み出す。ジョセフソン接合素子311、312、313、321及び322は、ジョセフソン接合素子100又は200である。
 第3実施形態に係る量子デバイス300によれば、ジョセフソン接合素子100又は200を含むため、安定した特性を得ることができる。量子デバイス300は、例えば量子コンピュータに使用することができる。
 以上、好ましい実施の形態等について詳説したが、上述した実施の形態等に制限されることはなく、請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態等に種々の変形及び置換を加えることができる。
 100、200、311、312、313、321、322:ジョセフソン接合素子
 121、123、超伝導膜
 122、130、224:絶縁膜
 122A:第1領域
 122B:第2領域
 123A:内部領域
 123B:ダメージ領域
 123Y:凹部
 122X、130X、130Y、224Y:コンタクト孔
 141、142:配線
 300:量子デバイス
 310:量子ビット
 320:読み出し回路

Claims (14)

  1.  第1超伝導膜と、
     前記第1超伝導膜の上に設けられた第1絶縁膜と、
     前記第1絶縁膜の上に設けられた第2超伝導膜と、
     を有し、
     前記第1絶縁膜の表層部は、
     第1領域と、
     前記第1領域の周囲の第2領域と、
     を有し、
     前記第1領域の電気絶縁性は、前記第2領域の電気絶縁性よりも高く、
     平面視で、前記第2超伝導膜は、前記第1領域と前記第2領域との境界の内側にあることを特徴とするジョセフソン接合素子。
  2.  前記第2超伝導膜の上に設けられた第2絶縁膜と、
     前記第1絶縁膜、前記第2超伝導膜及び前記第2絶縁膜を覆う第3絶縁膜と、
     を有し、
     前記第1絶縁膜及び前記第3絶縁膜に、前記第1超伝導膜に達する第1開口部が形成され、
     前記第2絶縁膜及び前記第3絶縁膜に、前記第2超伝導膜に達する第2開口部が形成され、
     前記第1開口部を通じて前記第1超伝導膜に接続された第1配線と、
     前記第2開口部を通じて前記第2超伝導膜に接続された第2配線と、
     を有することを特徴とする請求項1に記載のジョセフソン接合素子。
  3.  前記第2絶縁膜の材料は、前記第1絶縁膜の材料と同種であり、
     前記第2絶縁膜の厚さは、前記第1絶縁膜の厚さと等しいことを特徴とする請求項2に記載のジョセフソン接合素子。
  4.  平面視で、前記第2超伝導膜は、前記第2絶縁膜の外縁の内側にあることを特徴とする請求項2又は3に記載のジョセフソン接合素子。
  5.  前記第1絶縁膜の材料は、酸化アルミニウム、窒化アルミニウム、酸化ハフニウム若しくは酸化イットリウム又はこれらの任意の組み合わせを含むことを特徴とする請求項1乃至3のいずれか1項に記載のジョセフソン接合素子。
  6.  前記第1超伝導膜及び前記第2超伝導膜の材料は、ニオブ、アルミニウム、窒化ニオブ若しくは窒化チタン又はこれらの任意の組み合わせを含むことを特徴とする請求項1乃至3のいずれか1項に記載のジョセフソン接合素子。
  7.  ジョセフソン接合素子を有する量子デバイスであって、
     前記ジョセフソン接合素子は、
     第1超伝導膜と、
     前記第1超伝導膜の上に設けられた第1絶縁膜と、
     前記第1絶縁膜の上に設けられた第2超伝導膜と、
     を有し、
     前記第1絶縁膜の表層部は、
     第1領域と、
     前記第1領域の周囲の第2領域と、
     を有し、
     前記第1領域の電気絶縁性は、前記第2領域の電気絶縁性よりも高く、
     平面視で、前記第2超伝導膜は、前記第1領域と前記第2領域との境界の内側にあることを特徴とする量子デバイス。
  8.  前記第2超伝導膜の上に設けられた第2絶縁膜と、
     前記第1絶縁膜、前記第2超伝導膜及び前記第2絶縁膜を覆う第3絶縁膜と、
     を有し、
     前記第1絶縁膜及び前記第3絶縁膜に、前記第1超伝導膜に達する第1開口部が形成され、
     前記第2絶縁膜及び前記第3絶縁膜に、前記第2超伝導膜に達する第2開口部が形成され、
     前記第1開口部を通じて前記第1超伝導膜に接続された第1配線と、
     前記第2開口部を通じて前記第2超伝導膜に接続された第2配線と、
     を有することを特徴とする請求項7に記載の量子デバイス。
  9.  前記第2絶縁膜の材料は、前記第1絶縁膜の材料と同種であり、
     前記第2絶縁膜の厚さは、前記第1絶縁膜の厚さと等しいことを特徴とする請求項8に記載の量子デバイス。
  10.  平面視で、前記第2超伝導膜は、前記第2絶縁膜の外縁の内側にあることを特徴とする請求項8又は9に記載の量子デバイス。
  11.  前記第1絶縁膜の材料は、酸化アルミニウム、窒化アルミニウム、酸化ハフニウム若しくは酸化イットリウム又はこれらの任意の組み合わせを含むことを特徴とする請求項7乃至9のいずれか1項に記載の量子デバイス。
  12.  前記第1超伝導膜及び前記第2超伝導膜の材料は、ニオブ、アルミニウム、窒化ニオブ若しくは窒化チタン又はこれらの任意の組み合わせを含むことを特徴とする請求項7乃至9のいずれか1項に記載の量子デバイス。
  13.  第1超伝導膜の上に第1絶縁膜を設ける工程と、
     前記第1絶縁膜の上に第2超伝導膜を設ける工程と、
     反応性イオンエッチングにより前記第2超伝導膜を加工する工程と、
     加工された前記第2超伝導膜の側壁をエッチングする工程と、
     を有することを特徴とするジョセフソン接合素子の製造方法。
  14.  前記第2超伝導膜を設ける工程と前記第2超伝導膜を加工する工程との間に、
     前記第2超伝導膜の上に第2絶縁膜を設ける工程と、
     前記第2絶縁膜を加工する工程と、
     を有し、
     前記第2超伝導膜の側壁をエッチングする工程の後に、
     前記第1絶縁膜、前記第2超伝導膜及び前記第2絶縁膜を覆う第3絶縁膜を設ける工程と、
     前記第1絶縁膜及び前記第3絶縁膜に、前記第1超伝導膜に達する第1開口部を形成し、前記第2絶縁膜及び前記第3絶縁膜に、前記第2超伝導膜に達する第2開口部を形成する工程と、
     前記第1開口部を通じて前記第1超伝導膜に接続された第1配線と、前記第2開口部を通じて前記第2超伝導膜に接続された第2配線と、を設ける工程と、
     を有することを特徴とする請求項13に記載のジョセフソン接合素子の製造方法。
PCT/JP2022/017665 2022-04-13 2022-04-13 ジョセフソン接合素子、量子デバイス及びジョセフソン接合素子の製造方法 WO2023199419A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017665 WO2023199419A1 (ja) 2022-04-13 2022-04-13 ジョセフソン接合素子、量子デバイス及びジョセフソン接合素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017665 WO2023199419A1 (ja) 2022-04-13 2022-04-13 ジョセフソン接合素子、量子デバイス及びジョセフソン接合素子の製造方法

Publications (1)

Publication Number Publication Date
WO2023199419A1 true WO2023199419A1 (ja) 2023-10-19

Family

ID=88329252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017665 WO2023199419A1 (ja) 2022-04-13 2022-04-13 ジョセフソン接合素子、量子デバイス及びジョセフソン接合素子の製造方法

Country Status (1)

Country Link
WO (1) WO2023199419A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396973A (ja) * 1986-10-14 1988-04-27 Fujitsu Ltd ジヨセフソン接合素子の製造方法
JPH04188683A (ja) * 1990-11-19 1992-07-07 Sanyo Electric Co Ltd プレーナ型トンネルジョセフソン素子及びその製造方法
JPH11507436A (ja) * 1995-06-06 1999-06-29 マイコンテック・インコーポレイテッド 複合超電導量子干渉素子および回路
JP2003218413A (ja) * 2002-01-22 2003-07-31 National Institute Of Advanced Industrial & Technology 超伝導放射線検出器およびその作製方法
JP2009064880A (ja) * 2007-09-05 2009-03-26 National Institute For Materials Science 高温超伝導単結晶上での面内型ジョセフソン接合形成法
WO2013051362A1 (ja) * 2011-10-04 2013-04-11 東京エレクトロン株式会社 半導体装置の製造方法
US20150236235A1 (en) * 2014-02-14 2015-08-20 D-Wave Systems Inc. Systems and methods for fabrication of superconducting circuits

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396973A (ja) * 1986-10-14 1988-04-27 Fujitsu Ltd ジヨセフソン接合素子の製造方法
JPH04188683A (ja) * 1990-11-19 1992-07-07 Sanyo Electric Co Ltd プレーナ型トンネルジョセフソン素子及びその製造方法
JPH11507436A (ja) * 1995-06-06 1999-06-29 マイコンテック・インコーポレイテッド 複合超電導量子干渉素子および回路
JP2003218413A (ja) * 2002-01-22 2003-07-31 National Institute Of Advanced Industrial & Technology 超伝導放射線検出器およびその作製方法
JP2009064880A (ja) * 2007-09-05 2009-03-26 National Institute For Materials Science 高温超伝導単結晶上での面内型ジョセフソン接合形成法
WO2013051362A1 (ja) * 2011-10-04 2013-04-11 東京エレクトロン株式会社 半導体装置の製造方法
US20150236235A1 (en) * 2014-02-14 2015-08-20 D-Wave Systems Inc. Systems and methods for fabrication of superconducting circuits

Similar Documents

Publication Publication Date Title
TWI409925B (zh) 包含電容的晶片載體基板及其製造方法
JP4417439B2 (ja) エッチング・ストップ層を利用する半導体装置構造とその方法
JP2001156170A (ja) 多層配線の製造方法
US20080303141A1 (en) Method for etching a substrate and a device formed using the method
TWI792360B (zh) 半導體裝置的形成方法及其用於製造積體電路的方法
US20210210594A1 (en) Metal insulator metal (mim) structure and manufacturing method thereof
US10957576B2 (en) Dynamic random access memory and method of fabricating the same
KR100732773B1 (ko) 절연층들간의 들뜸을 방지한 반도체 소자 제조 방법
JP3312604B2 (ja) 半導体装置の製造方法
WO2023199419A1 (ja) ジョセフソン接合素子、量子デバイス及びジョセフソン接合素子の製造方法
JP5128851B2 (ja) 半導体装置及びその製造方法
TW200428578A (en) Semiconductor device having trench isolation
US20230402288A1 (en) Method of removing step height on gate structure
US20180331044A1 (en) Semiconductor device and fabrication method thereof
US6204107B1 (en) Method for forming multi-layered liner on sidewall of node contact opening
TW202147552A (zh) 半導體結構
JP3571236B2 (ja) 半導体装置の製造方法
JPH0697288A (ja) 半導体装置の製造方法
TWI767662B (zh) 半導體結構與其製作方法
CN108807267B (zh) 半导体装置及其制造方法
TWI809529B (zh) 減少主動區域消蝕的淺溝渠隔離結構形成方法以及其半導體結構
JP6814839B2 (ja) ダイナミックランダムアクセスメモリ及びその製造方法
US7871829B2 (en) Metal wiring of semiconductor device and method of fabricating the same
US7528076B2 (en) Method for manufacturing gate oxide layer with different thicknesses
JPH10256373A (ja) 半導体装置及び半導体装置の製造方法