WO2023195496A1 - バーリング構造部材 - Google Patents

バーリング構造部材 Download PDF

Info

Publication number
WO2023195496A1
WO2023195496A1 PCT/JP2023/014139 JP2023014139W WO2023195496A1 WO 2023195496 A1 WO2023195496 A1 WO 2023195496A1 JP 2023014139 W JP2023014139 W JP 2023014139W WO 2023195496 A1 WO2023195496 A1 WO 2023195496A1
Authority
WO
WIPO (PCT)
Prior art keywords
burring
plate
wall portion
less
structural member
Prior art date
Application number
PCT/JP2023/014139
Other languages
English (en)
French (fr)
Inventor
駿介 小林
遼馬 加藤
洋志 首藤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023538999A priority Critical patent/JP7436944B1/ja
Publication of WO2023195496A1 publication Critical patent/WO2023195496A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/08Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws

Definitions

  • This application discloses a burring structural member.
  • a burring structural member can be obtained by performing burring on a high-tensile steel plate.
  • a steel plate is subjected to burring, it is preferable that the steel plate has excellent bending workability.
  • Patent Document 1 discloses a technique for suppressing in-bending cracks that occur in a steel plate when bending is performed by reducing the area of scale scratches on the surface of the steel plate to a predetermined value or less.
  • Burring structural members are often applied to parts that receive external forces. For example, it can be envisaged that the burring wall is bent back by an external force. Conventional burring structural members are susceptible to rupture of the burring wall before desired properties (such as maximum load) are achieved if the burring wall is bent back or compressed. In this regard, in conventional burring structural members, there is room for improvement in fracture resistance when the burring wall portion is bent back or compressed.
  • the critical length of the crack on the inside of the bending of the burring wall, which causes breakage differs depending on the toughness of the burring structural member, the bending shape of the burring wall, and the like.
  • burring hole a burring wall provided around the burring hole and having a vertical wall and a curved wall connected to the vertical wall; and a burring wall provided around the burring wall and having the curved wall.
  • a BCI value calculated by the following formula (1) based on the Charpy impact value vE (0) and the maximum length Lc of a crack on the inside of the bend of the curved wall portion is 2.5 or more
  • the radius of curvature R on the inside of the bend of the curved wall portion is larger than R1 calculated by the following formula (2), Burring structural member.
  • the unit of vE(0) is J/cm 2
  • the unit of Lc is ⁇ m
  • the unit of R1 is mm.
  • the burring structure member of the present disclosure even when the burring structure is bent back or compressed, the burring structure is difficult to break.
  • An example of a planar shape of a burring structural member is schematically shown. This is an example of the cross-sectional shape of the burring structural member, and schematically shows the cross-sectional shape taken along the line II-II in FIG. An example of the form of internal bending cracks in a curved wall portion is shown. A method for specifying the radius of curvature of a curved wall portion is shown. An example of the flow of a method for manufacturing a burring structural member is shown. The state of the test piece after bending is shown. The state of the test piece after being bent back is shown. The results of Examples are shown. ⁇ (pass) and ⁇ (fail) are plotted with the horizontal axis representing the BCI value and the vertical axis representing the radius of curvature R. The evaluation conditions of the burring structure member in an example are shown.
  • burring structural member of the present disclosure is not limited to this form.
  • the burring structural member 100 includes: burring hole 21, A burring wall portion 22 provided around the burring hole 21 and having a vertical wall portion 22a and a curved wall portion 22b connected to the vertical wall portion 22a; and a burring wall portion 22 provided around the burring wall portion 22.
  • the burring hole 21 and the burring wall portion 22 may be collectively referred to as the “burring structure portion 20”.
  • the plate thickness T of the plate portion 10 is 2.0 mm or more.
  • the Charpy impact value vE(0) at 0° C. of the plate-like portion 10 is 50 J/cm 2 or more.
  • the BCI value calculated by the following formula (1) based on the Charpy impact value vE(0) and the maximum length Lc of the crack on the inside of the bend of the curved wall portion 22b is 2.5 or more.
  • the radius of curvature R on the inside of the curved wall portion 22b is larger than R1 calculated by the following equation (2).
  • the plate-shaped part 10 has a first surface 11 on one side and a second surface 12 on the opposite side to the first surface 11.
  • the burring wall portion 22 protrudes from the first surface 11 of the plate-like portion 10 to one side.
  • the plate-shaped portion 10 is provided around the burring wall portion 22 and connected to a curved wall portion 22b, which will be described later. In the burring structure member 100, it is sufficient that the plate-shaped portion 10 is present even in a small amount.
  • the shape of the outer edge of the plate-shaped portion 10 (the overall planar shape of the burring structural member 100) is not particularly limited, and may be appropriately determined depending on the use of the burring structural member 100.
  • the plate-shaped portion 10 does not need to be completely flat, and may have, for example, irregularities, bends, notches, etc., as long as the radius of curvature is sufficiently larger than the radius of curvature of the curved wall portion. (For example, 10 times or more, 25 times or more, 50 times or more, or 100 times or more), the entire shape may be gently curved.
  • the plate-like portion 10 has a plate thickness T.
  • the plate thickness T is 2.0 mm or more.
  • the burring structure member 100 of the present disclosure can be said to solve a particular problem when the plate thickness T of the plate-shaped portion 10 is 2.0 mm or more.
  • the plate thickness T may be set to 2.2 mm or more, 2.4 mm or more, 2.8 mm or more, 3.0 mm or more, or 3.4 mm or more, and 8.0 mm or less, 7.0 mm or less, 6.0 mm. Hereinafter, it may be 5.0 mm or less or 4.0 mm or less. If necessary, the plate thickness T of the plate-shaped portion 10 may be 2.0 mm or more and 8.0 mm or less. The plate thickness T may be the same in the entire plate-like part 10, or may be different for each part of the plate-like part 10.
  • vE(0) at 0°C The Charpy impact value vE(0) of the plate-shaped portion 10 at 0° C. is 50 J/cm 2 or more. If vE(0) of the plate-shaped portion is too small, work hardening will become noticeable in the curved wall portion 22b during burring, and the effect of work hardening may cause breakage when the burring wall portion 22 is bent back or compressed. It becomes more likely to occur. If vE(0) is 50 J/cm 2 or more, such problems are unlikely to occur. If necessary, vE(0) may be set to 60 J/cm 2 or more, 70 J/cm 2 or more, or 80 J/cm 2 or more.
  • vE(0) is not particularly limited, but may be set to 300 J/cm 2 or less, 250 J/cm 2 or less, 200 J/cm 2 or less, 160 J/cm 2 or less, or 140 J/cm 2 or less, as necessary. You can also use it as If necessary, vE(0) may be limited to a certain range (a certain range with a lower limit and an upper limit). In this case, the lower limit and upper limit may be any combination of the above lower limit and upper limit.
  • vE(0) is 50 J/cm 2 or more and 200 J/cm 2 or less, 50 J/cm 2 or more and 180 J/cm 2 or less, 50 J/cm 2 or more and 160 J/cm 2 or less, or 50 J/cm 2 or more and 140 J/cm 2 or less.
  • the Charpy impact value vE(0) at 0°C of the plate part 10 is determined by Charpy impact value vE(0) of the 2.5 mm sub-size V-notch test piece taken from the plate part 10 according to JIS Z 2242:2018. This is determined by conducting tests. For plates with a thickness of less than 2.5 mm, the test can be performed at the full thickness.
  • the tensile strength TS of the plate-shaped portion 10 is 780 MPa or more, 800 MPa or more, 850 MPa or more, 900 MPa or more, 950 MPa or more, 980 MPa or more, 1000 MPa or more, 1050 MPa or more, 1100 MPa or more, 1150 MPa or more, 1180 MPa or more, 1200 MPa or more, It may be 1250 MPa or more, 1300 MPa or more, 1350 MPa or more, 1400 MPa or more, 1450 MPa or more, or 1470 MPa or more.
  • the upper limit of the tensile strength of the plate-shaped portion 10 is not particularly limited, but may be, for example, 2500 MPa or less, 2200 MPa or less, 2000 MPa or less, 1800 MPa or less, 1500 MPa or less, 1300 MPa or less, or 1180 MPa or less.
  • the tensile strength TS of the plate-like portion 10 may be limited to a certain range (a certain range having a lower limit and an upper limit).
  • the lower limit and upper limit may be any combination of the above lower limit and upper limit.
  • the tensile strength TS of the plate-shaped portion 10 may be 780 MPa or more and 2500 MPa or less, or 980 MPa or more and 2500 MPa or less. It may be.
  • the "tensile strength" of the plate-like part referred to in the present application is in accordance with JIS Z 2241:2011.
  • the burring structure section 20 has a burring hole 21 and a burring wall section 22.
  • the burring hole 21 is a hole that penetrates one side and the other side of the burring structure 20.
  • the planar shape (opening shape) of the burring hole 21 is circular.
  • "Circular" does not necessarily have to be a perfect circle, and may have an error within an allowable degree for industrial production. For example, if the length of a straight line from one point on the outer edge of the opening shape of the burring hole 21 to another point on the outer edge through the centroid of the opening shape is considered as the diameter of the burring hole 21, the minimum If the ratio of the maximum diameter to the diameter is 1.00 or more and 1.10 or less, it can be considered "circular".
  • the size of the burring hole 21 is not particularly limited, and may be determined depending on the use of the burring structural member 100.
  • the burring hole 21 may have a circular opening shape with a diameter D.
  • the diameter D of the burring hole 21 is, for example, 5.0 mm or more, 10.0 mm or more, 20.0 mm or more, 30.0 mm or more, 40.0 mm or more, 50.0 mm or more, 60.0 mm or more, 70.0 mm or more, It may be 80.0 mm or more, or 90.0 mm or more, and 500 mm or less, 300 mm or less, 100 mm or less, 90.0 mm or less, 80.0 mm or less, 70.0 mm or less, 60.0 mm or less, 50.0 mm or less , 40.0 mm or less, 30.0 mm or less, 20.0 mm or less, or 10.0 mm or less.
  • the diameter D may be limited to a certain range (a certain range having a lower limit and an upper limit).
  • the lower limit and upper limit may be any combination of the above lower limit and upper limit.
  • the diameter D may be 5.0 mm or more and 500 mm or less.
  • the diameter D of the burring hole 21 may be 5 times or more or 10 times or more the above-mentioned plate thickness T, or may be 100 times or less or 50 times or less.
  • the diameter D of the burring hole 21 may be 5 times or more and 100 times or less the above-mentioned plate thickness T.
  • the burring wall 22 is provided around the burring hole 21.
  • the opening shape of the burring hole 21 is defined by the inner wall of the burring wall portion 22.
  • the burring wall 22 may have a cylindrical portion.
  • the burring wall portion 22 protrudes from the first surface 11 of the plate-like portion 10 to one side.
  • the protruding direction of the burring wall portion 22 is a direction that intersects with the surface direction of the plate-like portion 10 , and may be, for example, a direction orthogonal to the surface direction of the plate-like portion 10 .
  • the burring wall portion 22 includes a vertical wall portion 22a and a curved wall portion 22b.
  • the vertical wall part 22a has a cylindrical shape, for example, has a burring end surface 22ax on one side, and a curved wall on the opposite side to the one side. 22b.
  • the vertical wall portion 22a may have a surface along the punching direction during burring processing.
  • the inner wall surfaces of the vertical wall portions 22a facing each other may be parallel to each other.
  • the direction of the outer wall surface of the vertical wall portion 22a and the direction of the first surface 11 of the plate-like portion 10 intersect with each other, and may be orthogonal to each other, for example.
  • the burring wall portion 22 may have a predetermined height H from the first surface 11 to the burring end surface 22ax of the vertical wall portion 22a.
  • the height H may be, for example, 5 mm or more, 10 mm or more, 20 mm or more, 30 mm or more, 40 mm or more, or 50 mm or more, and 500 mm or less, 400 mm or less, 300 mm or less, 200 mm or less, or 100 mm or less. It's okay. If necessary, the height H may be limited to a certain range (a certain range having a lower limit and an upper limit). In this case, the lower limit and upper limit may be any combination of the above lower limit and upper limit.
  • the height H may be 5 mm or more and 500 mm or less.
  • the height H may be, for example, 2 times or more, 5 times or more, 8 times or more, or 10 times or more, and 200 times or less, 150 times or less, or 100 times the thickness T of the plate-shaped portion 10. It may be 50 times or less, or 50 times or less.
  • the height H may be greater than or equal to twice the thickness T of the plate-like portion 10 and less than or equal to 200 times.
  • the curved wall portion 22b has, for example, a ring-shaped shape provided around the vertical wall portion 22a, and the vertical wall portion 22a and the plate-like portion 10 Connect with. More specifically, the curved wall portion 22b is connected to the vertical wall portion 22a on one side, and connected to the plate-shaped portion 10 on the opposite side to the one side.
  • the curved wall portion 22b has a radius of curvature R and connects the plate-like portion 10 and the vertical wall portion 22a, for example, the first surface 11 of the plate-like portion 10 and the outer wall surface of the curved wall portion 22b. There is no discontinuity between the vertical wall portion 22a and the outer wall surface of the vertical wall portion 22a.
  • the crack length is such that the BCI value and the R1 value fall within predetermined ranges.
  • the maximum length Lc of the internal bending crack of the curved wall portion 22b is preferably as short as possible, and is preferably 50 ⁇ m or less, for example.
  • the maximum length Lc may be 0 ⁇ m (no cracks), but it may be difficult to completely eliminate cracks.
  • the maximum length Lc may be 0 ⁇ m or more and 50 ⁇ m or less, more than 0 ⁇ m, 1 ⁇ m or more, 3 ⁇ m or more, 5 ⁇ m or more, 7 ⁇ m or more, or 10 ⁇ m or more, 45 ⁇ m or less, 40 ⁇ m or less, 35 ⁇ m or less, Alternatively, it may be 30 ⁇ m or less.
  • the maximum length Lc of the crack on the inside of the curved wall portion 22b is specified by observing the cross section of the burring structure portion 20.
  • the cross section of the burring structure 20 can be obtained, for example, by electric discharge machining (for example, wire cutting).
  • the cross section to be observed is the entire area inside the bend of the curved wall portion 22b, and a plurality of images may be acquired when observing the entire area inside the bend.
  • the observation field of view for each of the plurality of images is preferably 50 ⁇ m ⁇ 50 ⁇ m.
  • the cross section of the same burring structure 20 divided into eight equal parts in a plan view is observed throughout the entire inside of the bend, the maximum length of the crack inside the bend in each cross section is identified, and the longest one is selected as described above.
  • the length of the crack on the inside of the curved wall portion 22b is the minimum length from the tip of the crack (the tip at the deepest position from the surface of the curved wall portion 22b) to the inside surface of the curved wall portion 22b. Refers to distance.
  • the curved wall portion 22b has a radius of curvature R on the inside of the bend.
  • the radius of curvature R of the curved wall portion 22b only needs to be larger than R1 calculated by equation (2) described later.
  • the radius of curvature R of the curved wall portion 22b may be, for example, 0.5 mm or more and 10.0 mm or less.
  • the radius of curvature R may be 1.0 mm or more, 2.0 mm or more, or 3.0 mm or more, and may be 8.0 mm or less, 6.0 mm or less, or 5.0 mm or less.
  • the radius of curvature R of the curved wall portion 22b is the cross-sectional shape of the burring structure member 100, and is the cross-sectional shape along the central axis of the burring hole 21 (the shape of the cross-section including the central axis). ). That is, as shown in FIG. 4, in the cross-sectional shape, a straight line A is drawn along the first surface 11 of the plate-like portion 10 (the portion of the first surface 11 that can be considered flat near the curved wall portion 22b). , and draw a straight line B along the outer wall surface of the vertical wall portion 22a (the surface of the outer wall surface along the protruding direction during burring processing). Identify the intersection O between straight line A and straight line B.
  • the burring wall 22 may have a thickness T2.
  • the thickness T2 may be appropriately determined depending on the desired strength and the like.
  • the thickness T2 may be 1.8 mm or more, 2.0 mm or more, 2.2 mm or more, 2.6 mm or more, 2.8 mm or more, or 3.2 mm or more, and 10.0 mm or less, 8.0 mm or less, or 6.0 mm. Hereinafter, it may be 5.0 mm or less or 4.0 mm or less.
  • the thickness T2 may be, for example, 1.8 mm or more and 10.0 mm or less.
  • the thickness T2 may be substantially the same throughout the burring wall portion 22, or may be different for each portion of the burring wall portion 22.
  • the thickness T2 may be thicker or thinner than the plate thickness T of the plate-shaped portion 10, but it tends to be thinner than the plate thickness T due to the nature of burring.
  • the ratio T2/T between the thickness T2 and the plate thickness T may be 0.5 or more, 0.6 or more, or 0.7 or more, and may be 1.2 or less, 1.1 or less, or 1 It may be less than .0.
  • the ratio T2/T between the thickness T2 and the plate thickness T may be, for example, 0.5 or more and 1.2 or less.
  • the BCI value calculated by the following formula (1) is 2.5 or more. If the BCI value is too small, the influence of the crack length on toughness will be large, and even if the shape of the burring structure 20 is devised, breakage is likely to occur during unbending or compression.
  • the upper limit of the BCI value is not particularly limited.
  • the BCI value may be, for example, 2.5 or more and 30.0 or less.
  • the BCI value may be 3.0 or more, 4.0 or more, or 5.0 or more, and 28.0 or less, 26.0 or less, 24.0 or less, 22.0 or less, 20.0 or less. , 18.0 or less, 16.0 or less, 14.0 or less, 12.0 or less, or 10.0 or less.
  • formula (1) is an empirical formula, and when the BCI value is calculated, the unit of the denominator Lc is ⁇ m, the unit of the numerator vE(0) is J/cm 2 , and the following formula ( The unit of the BCI value calculated by 1) is J/(cm 2 ⁇ m).
  • radius of curvature R and R1 calculated by formula (2)
  • the radius of curvature R on the inside of the bend of the curved wall portion 22b is calculated by the following formula (2). is larger than R1.
  • formula (2) is an experimental formula, and in formula (2), the units on the left and right sides are not the same, the unit of R1 on the left side is mm, and the unit of the BCI value substituted on the right side is , as mentioned above, is J/(cm 2 ⁇ m).
  • no unit conversion is performed, that is, R1 (mm) is a numerical value obtained by directly substituting the BCI value calculated by the above formula (1) into formula (2).
  • the burring structural member 100 is made of metal.
  • the burring structural member 100 may be made of steel, for example.
  • the chemical composition and metal structure of the steel material are not particularly limited, and may be appropriately determined depending on the use of the burring structural member 100.
  • the chemical composition of the steel constituting the burring structural member 100 is, in mass %, C: 0.01 to 1.0%, Si: 0.01 to 3.50%, Mn: 0.10.
  • V 0-1.00%
  • Ti 0-1.00%
  • W 0-1.00%
  • Sn 0-1.00%
  • Sb 0-0.50%
  • Ta 0-0.10%
  • B 0-0.0100%
  • Ca 0-0.100%
  • Mg 0-0.100%
  • Zr 0-0.100 %
  • Hf 0 to 0.100%
  • REM 0 to 0.0050%
  • the balance may be Fe and impurities.
  • the lower limit of the content of optionally added elements may be 0.0001% or 0.001%.
  • the burring structure member 100 may have a plurality of burring structures 20.
  • the burring structure member 100 may further include another burring structure that protrudes to one side from the first surface 11 (projects in the same direction as the burring wall 22).
  • it may further include another burring structure that protrudes to the other side of the second surface 12 (that protrudes in the opposite direction to the burring wall 22).
  • the position of the burring structure part 20 in the burring structure member 100 is also not particularly limited, and may be determined as appropriate depending on the use of the burring structure member 100.
  • the burring structural member 100 of the present disclosure has excellent durability, with the burring wall 22 being difficult to break when the burring wall 22 is bent back or compressed. .
  • the burring structural member 100 of the present disclosure can be applied to harsh environments where large external forces are applied.
  • the burring structural member 100 of the present disclosure may be used as an automobile suspension component. Specific examples of automobile suspension parts include lower arms, upper arms, and trail links.
  • the burring structural member 100 of the present disclosure can be manufactured by performing burring on a part of a metal plate that is a workpiece.
  • the method for manufacturing the burring structural member 100 includes the following steps S1 and S2.
  • the method for manufacturing the burring structural member 100 may include one or both of the following S3 and S4 in addition to the following S1 and S2. That is, by any one of three methods: 1) a method including S1, S2, and S3, 2) a method including S1, S2, and S4, and 3) a method including S1, S2, S3, and S4.
  • a burring structural member 100 can be manufactured.
  • the metal plate 101 has a first surface 11 on one side and a second surface 12 on the opposite side to the first surface 11, and a plate-like portion 10 is formed around the punch hole 101a.
  • the plate thickness T of the plate portion 10 is 2.0 mm or more, and the Charpy impact value vE(0) at 0° C. of the plate portion 10 is 50 J/cm 2 or more.
  • the burring structure 20 by raising the peripheral edge 101b of the punched hole 101a toward one side of the first surface 11.
  • the burring structure 20 has a burring hole 21 and a burring wall 22
  • the burring wall 22 is provided around the burring hole 21 .
  • the burring wall portion 22 has a vertical wall portion 22a and a curved wall portion 22b, and the curved wall portion 22b connects the vertical wall portion 22a and the plate-shaped portion 10.
  • S4 Polish or grind the curved inner surface of the curved wall portion 22b after burring so that both of the following requirements (A) and (B) are satisfied.
  • the maximum length Lc of the crack on the inside of the curved wall portion 22b is measured in advance using the method described above for a burring structural member manufactured by the same burring method, and then the curved wall portion 22b is Determine the target polishing thickness (or target grinding thickness) for the inside of the bend. After that, it is preferable to perform polishing (or grinding) while measuring the thickness of the curved wall portion 22b to ensure that the target polishing thickness (or grinding thickness) is achieved.
  • the unit of vE(0) is J/cm 2
  • the unit of Lc is ⁇ m
  • the unit of R1 is mm.
  • S1 and S2 may be performed using a punch or die.
  • the length of the crack on the inside of the bend that occurs in the curved wall portion 22b of the burring structure 20 may vary depending on the material and surface properties of the portion that will become the curved wall portion 22b, burring processing conditions (degree of thinning), etc. .
  • the inventor confirmed that the structures satisfying the relationships of formulas (1) and (2) above were found. It wasn't done.
  • special measures are required in the manufacturing process. For example, by performing one or both of S3 and S4 above, a burring structural member that satisfies the relationships of formulas (1) and (2) above can be obtained.
  • the contact condition between the workpiece (metal plate 101) and the mold during burring is determined in advance so that both of the above requirements (A) and (B) are satisfied. adjust. For example, during the burring process, it is preferable to adjust so that the inner side of the curved wall portion 22b does not contact the mold as much as possible. Note that the portion that will become the vertical wall portion 22a may be in contact with the mold.
  • a burring structure member that satisfies the above formulas (1) and (2) can also be obtained by devising processing conditions during such burring processing.
  • the bent inner surface of the curved wall portion 22b after the burring process is polished or ground so that both of the above requirements (A) and (B) are satisfied.
  • polishing or grinding the bending inner surface of the curved wall portion 22b cracks on the bending inner side can be reduced or removed, and a burring structure member satisfying the above formulas (1) and (2) can be obtained.
  • the manufacturing method of the present disclosure may include the following S5.
  • S5 Before S2, reduce the surface roughness of at least a portion of the surface of the metal plate 101 that will become the curved wall portion 22b.
  • the method for reducing the surface roughness of the metal plate in S5 is not particularly limited.
  • the surface of a metal plate may be polished.
  • a known method may be used for polishing. Examples include mechanical polishing using sandpaper, chemical polishing, and the like.
  • each evaluation was performed by bending and unbending a plate-shaped test piece.
  • a case in which the bent part of a plate-shaped specimen that has been bent is unbended, and a case in which the burring wall part is unbended to a plate-shaped specimen that has been burred. Since there is no substantial difference in the effect that cracks on the inside of bending have on unbending, the following example deals with the phenomenon that occurs when unbending is performed on the burring wall of a burring structural member. It can be said that the simulation was performed appropriately, and the performance of the burring structure part of the burring structural member was appropriately evaluated.
  • the test pieces were steel plate A (tensile strength TS: 1005 MPa, Charpy impact value vE(0): 53.2 J/cm 2 ) and steel plate B (tensile strength TS: 992 MPa, Charpy impact value vE(0): 80.
  • test piece having a width of 30 mm, a length of 200 mm, and a plate thickness of 2 mm was bent at a predetermined radius of curvature R under the same conditions as the bending process described above. That is, another test piece was prepared for each bending condition that was the same as the above-mentioned test piece for cross-sectional observation after bending, and the test piece was subjected to the unbending test described below.
  • the test piece after bending can be considered to have the same maximum length Lc and BCI value as those in Evaluation 1 above. After bending, the test piece was bent back by pulling both ends of the test piece.
  • Fig. 7 shows the pass and fail results in a graph with the horizontal axis as the BCI value and the vertical axis as the radius of curvature R for test pieces with a tensile strength of 980 MPa class (obtained from steel plates A to C). Show what is plotted.
  • the punch hole was centered at the center in the width direction of the steel plate and at a position 70 mm from one end in the length direction.
  • a steel plate was placed in a mold, the punched hole was punched out, and the peripheral edge of the punched hole was raised to one side, thereby obtaining a burring structure member having a burring hole and a burring wall.
  • FIG. 8 shows the shape of the burring structural member in plan view. As shown in FIG. 8, the diameter D of the burring hole was 50 mm. Further, the height H of the burring wall portion was 15 mm, and the thickness T2 of the burring wall portion was 2.0 mm. Furthermore, the radius of curvature R on the inside of the curved wall portion of the burring wall portion was 1.0 mm for steel plate D, and 2.0 mm for steel plates C and E.
  • Comparative Examples 1-1, 2-1, 2-2 and 3-1 After performing burring on each of the steel plates C to E, the following evaluations were performed as they were without any particular polishing after the burring. Note that Comparative Example 2-1 and Comparative Example 2-2 are the same except that the contact state between the steel plate and the mold during burring is different.
  • a load was applied to the end surface 22ax (stroke control: 100 mm/s or more).
  • stroke control 100 mm/s or more.
  • the load is reduced by 20% after reaching the maximum load, if the crack on the inside of the burring curved wall has grown by 10 mm or more toward the plate-shaped part around the burring wall (as shown in Figure 8). If the length Ld of the crack was 10 mm or more), it was evaluated that the burring wall was broken (fail).
  • the plate thickness T of the plate-shaped portion is 2.0 mm or more.
  • the Charpy impact value vE(0) at 0° C. of the plate-like portion is 50 J/cm 2 or more.
  • the BCI value calculated by the following formula (1) based on the Charpy impact value vE(0) and the maximum length Lc of cracks on the inside of the curved wall portion is 2.5 or more.
  • the radius of curvature R on the inside of the curved wall portion is larger than R1 calculated by the following formula (2).

Abstract

バーリング構造部が曲げ戻された場合でも破断し難いバーリング構造部材を提供する。本開示のバーリング構造部材は、板状部の板厚Tが、2.0mm以上であり、板状部の0℃におけるシャルピー衝撃値vE(0)が、50J/cm以上であり、当該シャルピー衝撃値vE(0)(J/cm)と、バーリング構造部の曲壁部の曲げ内側の割れの最大長さLc(μm)とに基づいてBCI=vE(0)/Lcで計算されるBCI値が、2.5以上であり、曲壁部の曲げ内側の曲率半径R(mm)が、R1=25/BCI-1.5で計算されるR1よりも大きい。

Description

バーリング構造部材
 本願はバーリング構造部材を開示する。
 軽量で高強度である部品として高張力鋼からなるものが開発されている。例えば、高張力鋼板に対してバーリング加工を施すことで、バーリング構造部材が得られる。鋼板に対してバーリング加工が施される場合、当該鋼板は曲げ加工性に優れることが好ましい。例えば、特許文献1には、鋼板表面のスケール傷部の面積を所定以下とすることで、曲げ加工が施された際に鋼板に生じる曲げ内割れを抑制する技術が開示されている。
国際公開第2020/184372号
 バーリング構造部材は、外力を受ける部分に適用される場合が多い。例えば、バーリング壁部が外力を受けて曲げ戻されるようなことが想定され得る。従来のバーリング構造部材は、バーリング壁部が曲げ戻された場合又は圧縮された場合、所望の特性(最大荷重など)が発揮される前にバーリング壁部が破断する虞がある。この点、従来のバーリング構造部材においては、バーリング壁部が曲げ戻し又は圧縮された際の耐破断性について、改善の余地がある。
 バーリング壁部が曲げ戻し又は圧縮された場合にバーリング壁部が破断する原因の一つは、バーリング壁部の曲げ内側に存在する割れである。ここで、本発明者の新たな知見によると、破断の原因となるバーリング壁部の曲げ内側の割れの限界長さは、バーリング構造部材の靭性やバーリング壁部の曲げ形状等によって異なる。本発明者は、バーリング壁部の曲げ内側の曲率半径Rと、靭性や曲げ内側の割れに関する指標(BCI値=靭性値vE(0)/曲げ内側の割れの最大長さLc)とが所定の条件を満たす場合に、バーリング壁部が曲げ戻し又は圧縮された際の破断を抑制できることを見出した。
 本願は上記課題を解決するための手段として、以下の複数の態様を開示する。
<態様1>
 バーリング孔、
 前記バーリング孔の周囲に設けられ、かつ、縦壁部と、前記縦壁部に接続された曲壁部とを有する、バーリング壁部、及び
 前記バーリング壁部の周囲に設けられ、かつ、前記曲壁部に接続された、板状部、
 を有する、バーリング構造部材であって、
 前記板状部の板厚Tが、2.0mm以上であり、
 前記板状部の0℃におけるシャルピー衝撃値vE(0)が、50J/cm以上であり、
 前記シャルピー衝撃値vE(0)と、前記曲壁部の曲げ内側の割れの最大長さLcとに基づいて下記式(1)で計算されるBCI値が、2.5以上であり、
 前記曲壁部の曲げ内側の曲率半径Rが、下記式(2)で計算されるR1よりも大きい、
 バーリング構造部材。
 BCI=vE(0)/Lc   …(1)
 R1=25/BCI-1.5  …(2)
 ここで、vE(0)の単位はJ/cmであり、Lcの単位はμmであり、R1の単位はmmである。
<態様2>
 前記曲壁部の曲率半径Rが、0.5mm以上10.0mm以下である、
 態様1のバーリング構造部材。
<態様3>
 前記板状部の板厚Tが、2.0mm以上8.0mm以下である、
 態様1又は2のバーリング構造部材。
<態様4>
 前記板状部の引張強さTSが、780MPa以上である、
 態様1~3のいずれかのバーリング構造部材。
<態様5>
 前記板状部の引張強さTSが、980MPa以上である、
 態様4のバーリング構造部材。
 本開示のバーリング構造部材においては、バーリング構造部が曲げ戻された場合又は圧縮された場合でも、バーリング構造部が破断し難い。
バーリング構造部材の平面形状の一例を概略的に示している。 バーリング構造部材の断面形状の一例であって、図1におけるII-II矢視断面の形状を概略的に示している。 曲壁部の曲げ内割れの形態の一例を示している。 曲壁部の曲率半径を特定する方法を示している。 バーリング構造部材の製造方法の流れの一例を示している。 曲げ加工後の試験片の状態を示している。 曲げ戻し後の試験片の状態を示している。 実施例の結果を示している。横軸をBCI値、縦軸を曲率半径Rとして、○(合格)及び×(不合格)をプロットしたものである。 実施例におけるバーリング構造部材の評価条件を示している。
 以下、本開示のバーリング構造部材の一実施形態について説明するが、本開示のバーリング構造部材は、この形態に限定されるものではない。
 図1及び2に示されるように、一実施形態に係るバーリング構造部材100は、
  バーリング孔21、
  前記バーリング孔21の周囲に設けられ、かつ、縦壁部22aと、前記縦壁部22aに接続された曲壁部22bとを有する、バーリング壁部22、及び
  前記バーリング壁部22の周囲に設けられ、かつ、前記曲壁部22bに接続された、板状部10、
 を有する。以下、バーリング孔21及びバーリング壁部22をまとめて「バーリング構造部20」という場合がある。
 バーリング構造部材100において、前記板状部10の板厚Tは、2.0mm以上である。前記板状部10の0℃におけるシャルピー衝撃値vE(0)は、50J/cm以上である。前記シャルピー衝撃値vE(0)と、前記曲壁部22bの曲げ内側の割れの最大長さLcとに基づいて下記式(1)で計算されるBCI値は、2.5以上である。前記曲壁部22bの曲げ内側の曲率半径Rは、下記式(2)で計算されるR1よりも大きい。
 BCI=vE(0)/Lc   …(1)
 R1=25/BCI-1.5  …(2)
 ここで、vE(0)の単位はJ/cmであり、Lcの単位はμmであり、R1の単位はmmである。
1.板状部
 図1及び2に示されるように、板状部10は、一方側に第1面11を有し、第1面11とは反対側に第2面12を有する。バーリング壁部22は、板状部10の第1面11よりも一方側に突出している。
1.1 平面形状
 図1及び2に示されるように、板状部10はバーリング壁部22の周囲に設けられ、後述の曲壁部22bに接続される。バーリング構造部材100においては、板状部10がわずかでも存在していればよい。板状部10の外縁の形状(バーリング構造部材100の全体としての平面形状)は特に限定されるものではなく、バーリング構造部材100の用途に応じて適宜決定されればよい。板状部10は、完全な平板状である必要はなく、例えば、凹凸、曲がり、切り欠き等を一部に有していてもよく、曲壁部の曲率半径より十分大きな曲率半径であれば(例えば、10倍以上、25倍以上、50倍以上又は100倍以上)、全体が緩やかに湾曲した形状であってもよい。
1.2 板厚
 図2に示されるように、板状部10は板厚Tを有する。板厚Tは2.0mm以上である。本発明者が確認した限りでは、従来のバーリング構造部材において、バーリング壁部を曲げ戻し又は圧縮された際の破断の問題は、板状部の板厚が2.0mm以上である場合に起こり易い。この点、本開示のバーリング構造部材100は、板状部10の板厚Tが2.0mm以上である場合において特有の課題を解決するものといえる。一方で、板厚Tが厚過ぎる場合は、バーリング加工を施した場合に曲げ内側に大きな割れが生じ易く、曲壁部22bの曲率半径Rが上記式(2)で計算されるR1以下となる虞があり、また、そもそもバーリング加工が難しくなる虞がある。必要に応じて、板厚Tを2.2mm以上、2.4mm以上、2.8mm以上、3.0mm以上又は3.4mm以上としてもよく、8.0mm以下、7.0mm以下、6.0mm以下、5.0mm以下又は4.0mm以下としてもよい。必要に応じて、板状部10の板厚Tは、2.0mm以上8.0mm以下であってもよい。板厚Tは、板状部10の全体において同一であってもよいし、板状部10の部位ごとに異なっていてもよい。
1.3 0℃におけるシャルピー衝撃値vE(0)
 板状部10の0℃におけるシャルピー衝撃値vE(0)は、50J/cm以上である。仮に、板状部のvE(0)が小さすぎると、バーリング加工の際、曲壁部22bにおいて加工硬化が顕著となり、加工硬化の影響によってバーリング壁部22の曲げ戻しや圧縮の際に破断が生じ易くなる。vE(0)が50J/cm以上であれば、このような問題が生じ難い。必要に応じて、vE(0)を60J/cm以上、70J/cm以上又は80J/cm以上としてもよい。vE(0)の上限は特に限定されるものではないが、必要に応じて、300J/cm以下、250J/cm以下、200J/cm以下、160J/cm以下又は140J/cm以下としてもよい。必要に応じて、vE(0)をある特定の範囲(下限と上限とがある特定の範囲)に制限してもよい。この場合のその下限と上限は、前記の下限と上限とを任意に組み合わせてもよく、例えば、vE(0)は、50J/cm以上200J/cm以下、50J/cm以上180J/cm以下、50J/cm以上160J/cm以下、又は、50J/cm以上140J/cm以下であってもよい。尚、板状部10の0℃におけるシャルピー衝撃値vE(0)は、板状部10から採取した2.5mmサブサイズのVノッチ試験片に対して、JIS Z 2242:2018に準じてシャルピー衝撃試験を行うことにより求められるものである。板厚が2.5mm未満のものについては、全厚で試験を行えばよい.
1.4 引張強さTS
 本発明者の知見によれば、材料の高強度化とともに、曲壁部22bの曲げ内側に割れが生じ易くなる。すなわち、バーリング壁部22が曲げ戻し又は圧縮された際の破断の問題は、特に、高張力鋼板において生じ易い。この点、板状部10の引張強さTSは、780MPa以上、800MPa以上、850MPa以上、900MPa以上、950MPa以上、980MPa以上、1000MPa以上、1050MPa以上、1100MPa以上、1150MPa以上、1180MPa以上、1200MPa以上、1250MPa以上、1300MPa以上、1350MPa以上、1400MPa以上、1450MPa以上、又は、1470MPa以上であってもよい。板状部10の引張強さの上限は特に限定されるものではないが、例えば、2500MPa以下、2200MPa以下、2000MPa以下、1800MPa以下、1500MPa以下、1300MPa以下、又は、1180MPa以下であってもよい。必要に応じて、板状部10の引張強さTSをある特定の範囲(下限と上限とがある特定の範囲)に制限してもよい。この場合のその下限と上限は、前記の下限と上限とを任意に組み合わせてもよい、例えば、板状部10の引張強さTSは、780MPa以上2500MPa以下であってもよく、980MPa以上2500MPa以下であってもよい。尚、本願にいう板状部の「引張強さ」とは、JIS Z 2241:2011にしたがうものである。
2.バーリング構造部
 図1及び2に示されるように、バーリング構造部20は、バーリング孔21と、バーリング壁部22と、を有する。
2.1 バーリング孔
 図1及び2に示されるように、バーリング孔21はバーリング構造部20の一方側と他方側とを貫通する孔である。図1に示されるように、バーリング孔21の平面形状(開口形状)は、円形である。「円形」とは、完全な円である必要はなく、工業生産上許容し得る程度の誤差を有していてよい。例えば、バーリング孔21の開口形状の外縁の一点から、当該開口形状の図心を通って、外縁の他の一点までを結ぶ直線の長さを、当該バーリング孔21の直径とみなした場合、最小直径に対する最大直径の比が1.00以上1.10以下である場合に「円形」とみなすことができる。
 バーリング孔21の大きさは、特に限定されるものではなく、バーリング構造部材100の用途に応じて決定されればよい。バーリング孔21は、直径Dの円形からなる開口形状を有していてもよい。バーリング孔21の直径Dは、例えば、5.0mm以上、10.0mm以上、20.0mm以上、30.0mm以上、40.0mm以上、50.0mm以上、60.0mm以上、70.0mm以上、80.0mm以上、又は、90.0mm以上であってもよく、500mm以下、300mm以下、100mm以下、90.0mm以下、80.0mm以下、70.0mm以下、60.0mm以下、50.0mm以下、40.0mm以下、30.0mm以下、20.0mm以下、又は、10.0mm以下であってもよい。必要に応じて、直径Dをある特定の範囲(下限と上限とがある特定の範囲)に制限してもよい。この場合のその下限と上限は、前記の下限と上限とを任意に組み合わせてもよい、例えば、直径Dは、5.0mm以上500mm以下であってもよい。また、バーリング孔21の直径Dは、上記の板厚Tの5倍以上又は10倍以上であってもよいし、100倍以下又は50倍以下であってもよい。例えば、バーリング孔21の直径Dは、上記の板厚Tの5倍以上100倍以下であってよい。
2.2 バーリング壁部
 図1及び2に示されるように、バーリング壁部22はバーリング孔21の周囲に設けられる。言い換えれば、バーリング孔21の開口形状は、バーリング壁部22の内壁によって画定される。図1及び2に示されるように、バーリング壁部22は円筒状部分を有していてもよい。また、図2に示されるように、バーリング壁部22は、板状部10の第1面11よりも一方側に突出している。バーリング壁部22の突出方向は、板状部10の面方向と交差する方向であり、例えば、板状部10の面方向と直交する方向であってよい。また、図2に示されるように、バーリング壁部22は、縦壁部22aと、曲壁部22bと、を有する。
2.2.1 縦壁部
 図2に示されるように、縦壁部22aは、例えば筒状の形状を有し、一方側においてバーリング端面22axを有し、一方側とは反対側において曲壁部22bに接続される。
2.2.1.1 縦壁部の向き
 縦壁部22aは、バーリング加工時の打ち抜き方向に沿った面を有し得る。例えば、図2に示されるように、バーリング孔21の中心軸に沿った断面形状において、互いに対向する縦壁部22aの内壁面が、互いに平行であってもよい。また、図2に示されるように、縦壁部22aの外壁面の向きと板状部10の第1面11の向きとは、互いに交差しており、例えば、互いに直交していてもよい。
2.2.1.2 高さ
 図2に示されるように、バーリング壁部22は、第1面11から縦壁部22aのバーリング端面22axまでにおいて、所定の高さHを有していてよい。高さHは、例えば、5mm以上、10mm以上、20mm以上、30mm以上、40mm以上、又は、50mm以上であってもよく、500mm以下、400mm以下、300mm以下、200mm以下、又は、100mm以下であってもよい。必要に応じて、高さHをある特定の範囲(下限と上限とがある特定の範囲)に制限してもよい。この場合のその下限と上限は、前記の下限と上限とを任意に組み合わせてもよい、例えば、高さHは、5mm以上500mm以下であってもよい。或いは、高さHは、例えば、板状部10の板厚Tの2倍以上、5倍以上、8倍以上、又は、10倍以上であってもよく、200倍以下、150倍以下、100倍以下、又は、50倍以下であってもよい。例えば、高さHは、板状部10の板厚Tの2倍以上200倍以下であってもよい。
2.2.2 曲壁部
 図2に示されるように、曲壁部22bは、例えば縦壁部22aの周囲に設けられたリング状の形状を有し、縦壁部22aと板状部10とを接続する。より具体的には、曲壁部22bは、一方側において縦壁部22aに接続され、一方側とは反対側において板状部10に接続される。曲壁部22bは、曲率半径Rを有しつつ、板状部10と縦壁部22aとを接続しており、例えば、板状部10の第1面11と、曲壁部22bの外壁面と、縦壁部22aの外壁面との間に途切れがない。
2.2.2.1 曲げ内側の割れの長さ
 図3に示されるように、曲壁部22bの曲げ内側には、割れ(き裂)が発生し易い。本発明者の知見によると、曲壁部22bの曲げ内側の割れが長すぎる(深すぎる)と、後述するBCI値が過剰に小さくなり、かつ、R1値が過剰に大きくなる虞がある。この点、本開示のバーリング構造部材100においては、BCI値及びR1値が所定の範囲となるような割れ長さに収めることが好ましい。曲壁部22bの曲げ内割れの最大長さLcは、短いほうがよく、例えば、50μm以下であることが好ましい。最大長さLcは0μm(割れが無い)であってもよいが、割れを完全に0とすることが難しい場合もある。最大長さLcは、0μm以上50μm以下であってもよく、0μm超、1μm以上、3μm以上、5μm以上、7μm以上、又は、10μm以上であってもよく、45μm以下、40μm以下、35μm以下、又は、30μm以下であってもよい。
 尚、曲壁部22bの曲げ内側の割れの最大長さLcは、バーリング構造部20についての断面を観察することによって特定される。バーリング構造部20の断面は、例えば、放電加工(例えば、ワイヤカット)により取得できる。観察する断面は曲壁部22bの曲げ内側全域とし、曲げ内側全域を観察するにあたって複数の画像を取得してもよい。当該複数の画像の一枚当たりの観察視野は、50μm×50μmとするとよい。同一のバーリング構造部20を平面視において8等分した断面について、曲げ内側全域の断面観察を行い、各々の断面における曲げ内側の割れの最大長さを特定し、このうち最も長いものを上記の最大長さLcとして特定する。また、本願において、曲壁部22bの曲げ内側の割れの長さとは、当該割れの先端(曲壁部22bの表面から最も深い位置にある先端)から曲壁部22bの曲げ内側表面までの最小距離をいう。
2.2.2.2 曲率半径
 図2に示されるように、曲壁部22bは、曲げ内側において曲率半径Rを有する。曲壁部22bの曲率半径Rは、後述する式(2)で計算されるR1よりも大きければよい。曲壁部22bの曲率半径Rは、例えば、0.5mm以上10.0mm以下であってもよい。曲率半径Rは、1.0mm以上、2.0mm以上、又は、3.0mm以上であってもよく、8.0mm以下、6.0mm以下、又は、5.0mm以下であってもよい。
 尚、図4に示されるように、曲壁部22bの曲率半径Rは、バーリング構造部材100の断面形状であって、バーリング孔21の中心軸に沿った断面形状(中心軸を含む断面の形状)に基づいて特定し得る。すなわち、図4に示されるように、当該断面形状において、板状部10の第1面11(第1面11のうち、曲壁部22bの近傍にある平坦とみなせる部分)に沿って直線Aを引き、縦壁部22aの外壁面(外壁面のうちバーリング加工時の突出方向に沿った面)に沿って直線Bを引く。直線Aと直線Bとの交点Oを特定する。当該交点Oから、角AOBを4等分する3本の直線C、D及びEを引く。直線Cと曲壁部22bの外壁面との交点P1と、直線Dと曲壁部22bの外壁面との交点P2と、直線Eと曲壁部22bの外壁面との交点P3とを特定する。これら3つの交点P1、P2及びP3を通る一つの円を特定し、当該円の半径を曲壁部22bの曲率半径Rとする。尚、曲率半径Rを特定する際、曲げ内側の割れの存在は無視し、すなわち、割れが存在しないものとして曲率半径Rを特定すればよい。
2.2.3 バーリング壁部の厚み
 図2に示されるように、バーリング壁部22は厚みT2を有していてよい。厚みT2は目的とする強度等に応じて適宜決定されればよい。厚みT2は、1.8mm以上、2.0mm以上、2.2mm以上、2.6mm以上、2.8mm以上又は3.2mm以上としてもよく、10.0mm以下、8.0mm以下、6.0mm以下、5.0mm以下又は4.0mm以下としてもよい。厚みT2は、例えば、1.8mm以上10.0mm以下であってもよい。厚みT2は、バーリング壁部22の全体において略同一であってもよいし、バーリング壁部22の部位ごとに異なっていてもよい。厚みT2は、板状部10の板厚Tよりも厚くても薄くてもよいが、バーリング加工の性質上、板厚Tよりも薄くなり易い。具体的には、厚みT2と板厚Tとの比T2/Tは、0.5以上、0.6以上又は0.7以上であってもよく、1.2以下、1.1以下又は1.0以下であってもよい。厚みT2と板厚Tとの比T2/Tは、例えば、0.5以上1.2以下であってもよい。
2.3 BCI値
 本開示のバーリング構造部材100においては、下記式(1)で計算されるBCI値が、2.5以上である。仮に、BCI値が小さ過ぎると、靭性に対する割れ長さの影響が大きくなり、バーリング構造部20の形状等を工夫したとしても、曲げ戻し又は圧縮中に破断が発生し易い。BCI値の上限は特に限定されない。BCI値は、例えば、2.5以上30.0以下であってもよい。BCI値は、3.0以上、4.0以上、又は、5.0以上であってもよく、28.0以下、26.0以下、24.0以下、22.0以下、20.0以下、18.0以下、16.0以下、14.0以下、12.0以下、又は、10.0以下であってもよい。尚、本願において、式(1)は実験式であり、BCI値が計算される際の分母Lcの単位はμmであり、分子vE(0)の単位はJ/cmであり、下記式(1)により算出されるBCI値の単位はJ/(cm・μm)である。
 BCI=vE(0)/Lc   …(1)
2.4 曲率半径Rと式(2)で計算されるR1との関係
 本開示のバーリング構造部材100においては、曲壁部22bの曲げ内側の曲率半径Rが、下記式(2)で計算されるR1よりも大きい。尚、式(2)は実験式であり、式(2)において、左辺と右辺とで単位は揃っておらず、左辺のR1の単位はmmであり、右辺に代入されるBCI値の単位は、上述の通り、J/(cm・μm)である。R1を計算するにあたり特に単位換算はせず、すなわち、上記式(1)により算出されたBCI値を式(2)にそのまま代入して得られる数値がR1(mm)である。本発明者の知見によれば、上記の板厚T、上記のシャルピー衝撃値vE(0)、及び、上記のBCI値に係る要件が満たされ、かつ、曲率半径RがR1よりも大きい場合、バーリング構造部材100の材質や強度等によらず、バーリング構造部20を曲げ戻し又は圧縮を受けた場合に破断が生じ難くなる。
 R1=25/BCI-1.5  …(2)
3.バーリング構造部材の材質
 バーリング構造部材100は金属製であることが自明である。バーリング構造部材100は、例えば、鋼材からなっていてもよい。この場合、鋼材における化学組成や金属組織は特に限定されるものではなく、バーリング構造部材100の用途に応じて適宜決定され得る。本開示の技術によれば、種々の化学組成や金属組織を有するバーリング構造部材100において、バーリング構造部20の曲げ戻し又は圧縮時の耐破断性を向上させることができる。化学組成の一例として、バーリング構造部材100を構成する鋼の化学組成は、質量%で、C:0.01~1.0%、Si:0.01~3.50%、Mn:0.10~5.00%、P:0.100%以下、S:0.0300%以下、N:0.0100%以下、O:0~0.020%、Al:0~1.000%以下、Cr:0~2.00%、Cu:0~2.00%、Ni:0~2.00%、Mo:0~3.00%、Co:0~3.00%、Nb:0~0.150%、V:0~1.00%、Ti:0~1.00%、W:0~1.00%、Sn:0~1.00%、Sb:0~0.50%、Ta:0~0.10%、As:0~0.050%、B:0~0.0100%、Ca:0~0.100%、Mg:0~0.100%、Zr:0~0.100%、Hf:0~0.100%、REM:0~0.0050%、残部Fe及び不純物であってもよい。また、上記化学組成において、任意添加元素の含有量の下限は0.0001%又は0.001%であってもよい。
4.バーリング構造部の数や位置
 バーリング構造部材100において、バーリング構造部20の数は1つに限定されるものではない。バーリング構造部材100は、バーリング構造部20を複数有していてもよい。また、バーリング構造部材100は、バーリング構造部20に加えて、第1面11よりも一方側に突出する(バーリング壁部22と同じ方向に突出する)その他のバーリング構造部をさらに備えていてもよいし、第2面12よりも他方側に突出する(バーリング壁部22とは反対方向に突出する)その他のバーリング構造部をさらに備えていてもよい。バーリング構造部材100におけるバーリング構造部20の位置についても特に限定されるものではなく、バーリング構造部材100の用途に応じて適宜決定されればよい。
5.バーリング構造部材の用途
 上述したように、本開示のバーリング構造部材100は、バーリング壁部22が曲げ戻された場合又は圧縮された場合にバーリング壁部22が破断し難く、優れた耐久性を有する。この点、本開示のバーリング構造部材100は、大きな外力が印加される過酷な環境に適用することが可能である。例えば、本開示のバーリング構造部材100は、自動車の足回り部品として用いられてもよい。自動車の足回り部品の具体例としては、ロアアームやアッパーアーム、トレールリンクが挙げられる。
6.バーリング構造部材の製造方法
 本開示のバーリング構造部材100は、被加工材である金属板の一部にバーリング加工を施すことで製造され得る。例えば、図5に示されるように、バーリング構造部材100の製造方法は、下記S1及びS2を備える。また、バーリング構造部材100の製造方法は、下記S1及びS2に加えて、下記S3及びS4のうちの一方又は両方を備えていてもよい。つまり、1)S1、S2およびS3を含む方法、2)S1、S2およびS4を含む方法、3)S1、S2、S3およびS4を含む方法、という3つの方法の中のいずれかの方法により、バーリング構造部材100を製造することができる。
 S1:金属板101の一部に抜き孔101aを設けること。ここで、前記金属板101は、一方側の第1面11と、前記第1面11とは反対側の第2面12と、を有し、前記抜き孔101aの周囲に板状部10が存在する。前記板状部10の板厚Tは、2.0mm以上であり、前記板状部10の0℃におけるシャルピー衝撃値vE(0)は、50J/cm以上である。
 S2:前記抜き孔101aの周縁部101bを前記第1面11よりも一方側に立ち上げることでバーリング構造部20を設けること。ここで、前記バーリング構造部20は、バーリング孔21と、バーリング壁部22とを有し、前記バーリング壁部22は、前記バーリング孔21の周囲に設けられる。前記バーリング壁部22は、縦壁部22aと、曲壁部22bと、を有し、前記曲壁部22bは、前記縦壁部22aと板状部10とを接続する。
 S3:前記S2よりも前において、以下の要件(A)及び(B)の両方が満たされるように、前記S2の工程におけるバーリング加工時の被加工部材(金属板101)と金型との接触具合を予め調整すること。
 S4:以下の要件(A)及び(B)の両方が満たされるように、バーリング加工後の曲壁部22bの曲げ内側表面に対して研磨又は研削を施すこと。なお、この場合、事前に同じバーリング加工方法により製造されたバーリング構造部材に対し、前述の方法にて曲壁部22bの曲げ内側の割れの最大長さLcを測定した上で、曲壁部22bの曲げ内側の目標研磨厚さ(又は目標研削厚さ)を決める。その後、曲壁部22bの厚さを測定しながら研磨(又は研削)することで、目標の研磨厚さ(又は研削厚さ)となるように確実に研磨(又は研削)することが、好ましい。
 (A)前記シャルピー衝撃値vE(0)と、前記曲壁部22bの曲げ内側の割れの最大長さLcとに基づいて下記式(1)で計算されるBCI値が、2.5以上となること。
 (B)前記曲壁部22bの曲げ内側の曲率半径Rが、下記式(2)で計算されるR1よりも大きいこと。
 BCI=vE(0)/Lc   …(1)
 R1=25/BCI-1.5  …(2)
 ここで、vE(0)の単位はJ/cmであり、Lcの単位はμmであり、R1の単位はmmである。
 S1やS2はパンチやダイを用いて実施すればよい。ここで、バーリング構造部20の曲壁部22bに生じる曲げ内側の割れの長さは、曲壁部22bとなる部分の材質や表面性状、バーリング加工条件(減肉の度合い)等によって変化し得る。本発明者は、板状部の引張強さが780MPa以上である多くのバーリング構造体について、上記方法にてLcを調査した結果、上記式(1)及び(2)の関係を満たすものは確認されなかった。この点、上記式(1)及び(2)を満たすバーリング構造部材を得るためには、その製造工程において特殊な工夫が必要となる。例えば、上記S3及びS4のうちの一方又は両方を行うことで、上記式(1)及び(2)の関係を満たすバーリング構造部材が得られる。
 S3においては、上記の要件(A)及び(B)の両方が満たされるように、前記S2よりも前において、バーリング加工時の被加工部材(金属板101)と金型との接触具合を予め調整する。例えば、バーリング加工時に、曲壁部22bの曲げ内側となる部分が、金型にできるだけ接触しないように調整するとよい。尚、縦壁部22aとなる部分は、金型に接触してもよい。このようなバーリング加工時の加工条件を工夫することによっても、上記式(1)及び(2)を満たすバーリング構造部材を得ることができる。
 S4においては、上記の要件(A)及び(B)の両方が満たされるように、バーリング加工後の曲壁部22bの曲げ内側表面に対して研磨又は研削を施す。例えば、サンドペーパーやグラインダー等で曲壁部22bの曲げ内側表面を研磨又は研削するとよい。従来においては、このような研磨・研削は行われていなかった。曲壁部22bの曲げ内側表面を研磨又は研削することで、曲げ内側の割れを低減又は除去することができ、上記式(1)及び(2)を満たすバーリング構造部材を得ることができる。
 また、本開示の製造方法は、下記S5を備えていてもよい。
 S5:前記S2よりも前において、前記金属板101の表面のうち、少なくとも前記曲壁部22bとなる部分の表面の表面粗さを低減すること。
 本発明者の知見によれば、S2よりも前において、金属板の表面粗さを低減しておくことで、バーリング加工後の曲壁部22bの曲げ内側に生じる割れの長さを小さくすることができる。S5において金属板の表面粗さを低減する方法は特に限定されるものではない。例えば、金属板の表面を研磨することがあり得る。研磨は公知の方法を採用すればよい。例えば、サンドペーパー等を用いた機械研磨や化学研磨等が挙げられる。
 以下、実施例を示しつつ本開示の技術による効果等について、より詳細に説明するが、本開示の技術は以下の実施例に限定されるものではない。
1.板状の試験片を用いた評価
 以下の実施例においては、板状の試験片に対して曲げ及び曲げ戻しを行うことで各評価を行った。曲げ加工が施された板状の試験片に対して曲げ部分の曲げ戻しを施した場合と、バーリング加工が施された板状の試験片に対して、バーリング壁部の曲げ戻しを施した場合とで、曲げ内側の割れが、曲げ戻しに与える影響に実質的な差異はないことから、以下の実施例は、バーリング構造部材のバーリング壁部に対して曲げ戻しを行った場合において生じる現象を適切に模擬できているといえ、バーリング構造部材のバーリング構造部における性能が適切に評価されたものといえる。
1.1 評価条件及び評価基準
1.1.1 評価1(曲げ評価)
 図6Aに示されるように、幅30mm、長さ200mm及び板厚2mmを有する試験片に対して、種々の加工条件により、所定の曲率半径Rにて曲げ加工を施した。試験片は、鋼板A(引張強さTS:1005MPa、シャルピー衝撃値vE(0):53.2J/cm)、鋼板B(引張強さTS:992MPa、シャルピー衝撃値vE(0):80.1J/cm)、鋼板C(引張強さTS:983MPa、シャルピー衝撃値vE(0):133.8J/cm)、鋼板D(引張強さTS:785MPa、シャルピー衝撃値vE(0):152.2J/cm)、鋼板E(引張強さTS:1188MPa、シャルピー衝撃値vE(0):64.1J/cm)、及び、鋼板F(引張強さTS:1236MPa、シャルピー衝撃値vE(0):36.7J/cm)の各々から切り出して用意した。バーリング加工を模擬すべく、曲げ加工における曲げ角度は90°とした。曲げ加工後の試験片の断面を観察し、曲げ内側に生じた割れの最大長さLcと、下記式(1)で計算されるBCI値とを特定した。また、BCI値に基づいて、下記式(2)で計算されるR1を特定し、曲率半径Rが当該R1よりも大きいか否かを判断した。
 BCI=vE(0)/Lc   …(1)
 R1=25/BCI-1.5  …(2)
1.1.2 評価2(曲げ戻し評価)
 上記の曲げ加工と同じ条件で、幅30mm、長さ200mm及び板厚2mmを有する試験片に対して、所定の曲率半径Rにて曲げ加工を施した。つまり、上記の曲げ加工後の断面観察用の試験片と同じ曲げ加工条件毎に、もう1つずつ試験片を作成し、後述の曲げ戻し試験に供した。曲げ加工後の試験片は、上記評価1におけるものと同様の最大長さLc及びBCI値を有するものとみなすことができる。曲げ加工後の試験片に対して、試験片の両端を引っ張ることで曲げ戻しを行った。曲げ戻しは、試験片の曲げ角度が180°となるまで(すなわち、曲げのない平らな状態となるまで)行った。図6Bの上側試験片のように、曲げ戻しが完了する前に試験片の破断が生じたものを「不合格」、下側試験片のように破断することなく曲げ戻しが完了したものを「合格」と評価した。
1.2 評価結果
 下記表1に評価結果を示す。また、図7に、引張強さが980MPa級の試験片(鋼板A~Cから取得したもの)について、横軸をBCI値、縦軸を曲率半径Rとするグラフに合格及び不合格の結果をプロットしたものを示す。
Figure JPOXMLDOC01-appb-T000001
 尚、上記実施例では、板厚2.0mmの試験片について評価を行った場合を例示したが、板厚が2.0mmを超える場合においても同様の効果が確認されている。一方、板厚が2.0mmを下回ると、vE(0)やBCIやRによらず、バーリング構造部が曲げ戻された時にそもそも破断が生じ難い傾向にあり、vE(0)やBCIやRを制御することによる効果が小さい。
2.バーリング構造部材の作製
 幅80mm、長さ180mm、厚さ2.3mmの鋼板C~Eの各々に対して、抜き孔を設けた。ここで、鋼板Cの引張強さTSは983MPaであり、シャルピー衝撃値vE(0)は133.8J/cmであり、鋼板Dの引張強さTSは785MPaであり、シャルピー衝撃値vE(0)は152.2J/cmであり、鋼板Eの引張強さTSは1188MPaであり、シャルピー衝撃値vE(0)は64.1J/cmである。抜き孔は、鋼板の幅方向中央の位置、かつ、長さ方向一端から70mmの位置に中心を有するものとした。鋼板を金型に設置したうえで、当該抜き孔をパンチで打ち抜き、抜き孔の周縁部を一方側に立ち上げることで、バーリング孔とバーリング壁部とを有するバーリング構造部材を得た。図8にバーリング構造部材の平面視における形状を示す。図8に示されるように、バーリング孔の直径Dは50mmとした。また、バーリング壁部の高さHは15mm、バーリング壁部の厚みT2は2.0mmとした。さらに、バーリング壁部の曲壁部の曲げ内側の曲率半径Rは、鋼板Dについては1.0mm、鋼板C及びEについては2.0mmとした。
2.1 比較例1-1、2-1、2-2及び3-1
 鋼板C~Eの各々に対してバーリング加工を施したうえで、バーリング加工後に特に研磨を行うことなく、そのまま下記評価を行った。尚、比較例2-1と比較例2-2とでは、バーリング加工時の鋼板と金型との接触状態が異なること以外は、同様である。
2.2 実施例1-1、2-1、2-3及び3-1
 鋼板C~Eの各々に対してバーリング加工を施すにあたって、鋼板と金型との接触状態を比較例1-1、2-1、2-2及び3-1とは変化させる(具体的には、曲壁部の曲げ内側となる部分が曲げ内側にできるだけ接触しないように制御する)ものとした。バーリング加工後の研磨は行わなかった。
2.3 実施例1-2、2-2及び3-2
 鋼板C~Eの各々に対して比較例1-1、2-1及び3-1と同様にしてバーリング加工を施したうえで、バーリング加工後に曲壁部の曲げ内側表面をサンドペーパーで研磨した。具体的には、事前に同じバーリング加工方法により製造されたバーリング構造部材に対し、曲壁部の曲げ内側の割れの最大長さLcを測定した上で、曲壁部の曲げ内側の目標研磨厚さを決定した。その後、曲壁部の厚さを測定しながら研磨することで、目標の研磨厚さとなるように研磨した。
3.バーリング構造部材の評価
 上記のようにして作製したバーリング構造部材を各2個ずつ作成した。その中の各1個のバーリング構造体に対し、バーリング構造部を平面視において8等分した断面について、曲げ内側全域の断面観察を行い、各々の断面における曲げ内側の割れの最大長さを特定し、このうち最も長いものを上記の最大長さLcとして特定した。残りの各1個のバーリング構造体に対し、以下の圧縮荷重負荷試験に供した。圧縮荷重試験においては、温度を0℃に保ちつつ、バーリングの凸部に対して、板状部の面に垂直な方向に圧縮応力(図2の場合において、図2の上方から下方に、バーリング端面22axに対し荷重を付加)を加えた(ストローク制御:100mm/s以上)。最大荷重到達後、20%荷重が低下した際に、バーリング曲壁部の曲げ内側のき裂が、バーリング壁部の周囲の板状部側へと10mm以上進展していた場合(図8に示されるき裂の長さLdが10mm以上である場合)、バーリング壁部が破断したもの(不合格)と評価した。
4.評価結果
 下記表2にバーリング構造部材の最大長さLc、作製条件及び評価結果などをまとめた。
Figure JPOXMLDOC01-appb-T000002
 表1、2及び図7に示される結果から、以下の要件(A)~(D)のいずれか1つでも満たさないバーリング構造部材は、バーリング壁部が曲げ戻し又は圧縮された際にバーリング壁部の破断が生じ易いのに対し、以下の要件(A)~(D)のすべてを満たすバーリング構造部材は、バーリング壁部が曲げ戻し又は圧縮されたとしても、バーリング壁部の破断が生じ難いものといえる。
(A)板状部の板厚Tが、2.0mm以上であること。
(B)板状部の0℃におけるシャルピー衝撃値vE(0)が、50J/cm以上であること。
(C)シャルピー衝撃値vE(0)と、曲壁部の曲げ内側の割れの最大長さLcとに基づいて下記式(1)で計算されるBCI値が、2.5以上であること。
(D)曲壁部の曲げ内側の曲率半径Rが、下記式(2)で計算されるR1よりも大きいこと。
 BCI=vE(0)/Lc   …(1)
 R1=25/BCI-1.5  …(2)
 ここで、vE(0)の単位はJ/cmであり、Lcの単位はμmであり、R1の単位はmmである。
10 板状部
 11 第1面
 12 第2面
20 バーリング構造部
 21 バーリング孔
 22 バーリング壁部
  22a 縦壁部
  22ax バーリング端面
  22b 曲壁部
100 バーリング構造部材
101 金属板
101a 抜き孔
101b 抜き孔の周縁部

Claims (5)

  1.  バーリング孔、
     前記バーリング孔の周囲に設けられ、かつ、縦壁部と、前記縦壁部に接続された曲壁部とを有する、バーリング壁部、及び
     前記バーリング壁部の周囲に設けられ、かつ、前記曲壁部に接続された、板状部、
     を有する、バーリング構造部材であって、
     前記板状部の板厚Tが、2.0mm以上であり、
     前記板状部の0℃におけるシャルピー衝撃値vE(0)が、50J/cm以上であり、
     前記シャルピー衝撃値vE(0)と、前記曲壁部の曲げ内側の割れの最大長さLcとに基づいて下記式(1)で計算されるBCI値が、2.5以上であり、
     前記曲壁部の曲げ内側の曲率半径Rが、下記式(2)で計算されるR1よりも大きい、
     バーリング構造部材。
     BCI=vE(0)/Lc   …(1)
     R1=25/BCI-1.5  …(2)
     ここで、vE(0)の単位はJ/cmであり、Lcの単位はμmであり、R1の単位はmmである。
  2.  前記曲壁部の曲率半径Rが、0.5mm以上10.0mm以下である、
     請求項1に記載のバーリング構造部材。
  3.  前記板状部の板厚Tが、2.0mm以上8.0mm以下である、
     請求項1又は2に記載のバーリング構造部材。
  4.  前記板状部の引張強さTSが、780MPa以上である、
     請求項1~3のいずれか1項に記載のバーリング構造部材。
  5.  前記板状部の引張強さTSが、980MPa以上である、
     請求項4に記載のバーリング構造部材。
PCT/JP2023/014139 2022-04-06 2023-04-05 バーリング構造部材 WO2023195496A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023538999A JP7436944B1 (ja) 2022-04-06 2023-04-05 バーリング構造部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022063610 2022-04-06
JP2022-063610 2022-04-06

Publications (1)

Publication Number Publication Date
WO2023195496A1 true WO2023195496A1 (ja) 2023-10-12

Family

ID=88243093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014139 WO2023195496A1 (ja) 2022-04-06 2023-04-05 バーリング構造部材

Country Status (2)

Country Link
JP (1) JP7436944B1 (ja)
WO (1) WO2023195496A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541428B1 (ja) * 2012-08-28 2014-07-09 新日鐵住金株式会社 鋼板
JP6536763B1 (ja) * 2017-10-30 2019-07-03 Jfeスチール株式会社 フェライト系ステンレス鋼板およびその製造方法
WO2020195605A1 (ja) * 2019-03-26 2020-10-01 日本製鉄株式会社 鋼板、鋼板の製造方法およびめっき鋼板
JP6822611B2 (ja) * 2019-01-09 2021-01-27 日本製鉄株式会社 熱間圧延鋼板および溶接継手、ならびにそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541428B1 (ja) * 2012-08-28 2014-07-09 新日鐵住金株式会社 鋼板
JP6536763B1 (ja) * 2017-10-30 2019-07-03 Jfeスチール株式会社 フェライト系ステンレス鋼板およびその製造方法
JP6822611B2 (ja) * 2019-01-09 2021-01-27 日本製鉄株式会社 熱間圧延鋼板および溶接継手、ならびにそれらの製造方法
WO2020195605A1 (ja) * 2019-03-26 2020-10-01 日本製鉄株式会社 鋼板、鋼板の製造方法およびめっき鋼板

Also Published As

Publication number Publication date
JP7436944B1 (ja) 2024-02-22
JPWO2023195496A1 (ja) 2023-10-12

Similar Documents

Publication Publication Date Title
EP2226406B1 (en) Stainless austenitic low Ni alloy
US20090020276A1 (en) Aluminum alloy brazing sheet and aluminum alloy tube for heat exchanger
JP5412202B2 (ja) 耐水素脆性に優れた高強度ステンレス鋼線及びそれを用いたステンレス鋼成形品
KR20180090884A (ko) 비조질 기계 부품용 강선 및 비조질 기계 부품
CN1045633C (zh) 用于形成波纹管的铁素体不锈钢
JPWO2018193810A1 (ja) 高強度低熱膨張合金線
KR102306264B1 (ko) 절삭 가공용 선재
WO2012165470A1 (ja) プレス成形性と強度のバランス、及び耐食性に優れた純チタン板、並びにその製造方法
JP7436944B1 (ja) バーリング構造部材
JP7259917B2 (ja) 角形鋼管および建築構造物
JP5656432B2 (ja) プレス成形性に優れたフェライト・オーステナイト系ステンレス鋼板およびその製造方法
Mudhaffar et al. Influence of hot clad rolling process parameters on life cycle of reinforced bar of stainless steel carbon steel bars
WO2020158684A1 (ja) Cu-Al-Mn系形状記憶合金の成形体及びその製造方法
Balawender The ability to clinching as a function of material hardening behavior
JP7013302B2 (ja) 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材および加工品
JP7036298B1 (ja) バーリング加工部材
TWI778844B (zh) 捲鐵心、捲鐵心之製造方法及捲鐵心製造裝置
JP7318602B2 (ja) 試験体の作製方法、及び高張力鋼板の遅れ破壊特性評価方法
JP2019173069A (ja) 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材
JP6331948B2 (ja) トーションビームの製造方法及びトーションビーム
JP2021032696A (ja) 鋳造材の疲労試験方法
KR102619894B1 (ko) 강판 및 부재
JP5654376B2 (ja) メタルダイアフラム及びその製造方法
WO2021010352A1 (ja) ブランク材の製造方法、プレス成形品の製造方法、形状判定方法、形状判定プログラム、ブランク材の製造装置、及びブランク材
JP2013013911A (ja) 成形部材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023538999

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784780

Country of ref document: EP

Kind code of ref document: A1