WO2023193818A1 - 一种多取代三嗪烷类化合物的合成方法 - Google Patents

一种多取代三嗪烷类化合物的合成方法 Download PDF

Info

Publication number
WO2023193818A1
WO2023193818A1 PCT/CN2023/087394 CN2023087394W WO2023193818A1 WO 2023193818 A1 WO2023193818 A1 WO 2023193818A1 CN 2023087394 W CN2023087394 W CN 2023087394W WO 2023193818 A1 WO2023193818 A1 WO 2023193818A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
preparation
solvent
reaction
following
Prior art date
Application number
PCT/CN2023/087394
Other languages
English (en)
French (fr)
Inventor
沈孝坤
黄金文
Original Assignee
湖北九康通生物医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北九康通生物医药有限公司 filed Critical 湖北九康通生物医药有限公司
Publication of WO2023193818A1 publication Critical patent/WO2023193818A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/38Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the technical field of drug synthesis, and specifically relates to a method for synthesizing multi-substituted triazine compounds.
  • Triazine compound S-217622 (Ia, Ensitrelvir) is a non-peptide small molecule 3CL protein inhibitor developed by Shionogi Company of Japan. It has been tested in vitro against SARS-Cov-2, SAR, MERS and human coronavirus HCoV-229E. All have inhibitory activity, are effective against the mutation of the new coronavirus, and have stronger inhibitory activity against the Omicron strain.
  • S-217622 is undergoing Phase 2-3 clinical trials. Chinese patents have published deuterated derivatives of S-217622, whose pharmacological activity and pharmacokinetic properties are somewhat improved compared with S-217622.
  • Shionogi disclosed the synthesis process of S-217622 on BioRxiv (pictured above, Yuto Unoh, et al. Discovery of S-217622, a Non-Covalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID- 19.bioRxiv 2022.01.26.477782., Document 1), using ethylthioformamidine and isobutyl isocyanate as starting materials to construct a triazine ring, which is alkyl grouped with 2,4,5-trifluorobenzyl bromide The 2,4,5-trifluorobenzyl group was introduced through the alkylation reaction, and the tert-butyl group was removed from trifluoroacetic acid.
  • the triazole fragment and the indazole imine pharmacophore were introduced through alkylation and substitution reactions successively to obtain the target compound S- 217622.
  • the process route is not long, but the yield of the last two key steps is low.
  • substitution reaction to introduce indazole imine ethyl mercaptan with polluting odor is produced, resulting in higher production costs and safety and environmental issues.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of yield and other defects in the preparation method of triazine compounds in the prior art: for this reason, a synthesis method of multi-substituted triazine compounds is provided.
  • the preparation method of the present invention can significantly improve the production of multi-substituted triazines
  • the yield of similar compounds is low, the cost is low and the operation is simple; the product prepared by using the preparation method of the present invention has good inhibitory activity against the new coronavirus 3CL protease, good liver particle metabolism or good pharmacokinetics.
  • the invention provides a method for preparing a compound of formula I, which includes the following steps: in a solvent, compound 12 and compound 7 are subjected to the following Mitsunobu reaction to obtain a compound of formula I;
  • R and R 2 are independently C 1-4 alkyl or C 1-4 alkyl substituted by one or more deuterated;
  • R 1 , R 3 , R 4 , R 5 and R 6 are independently H or deuterium.
  • the C 1-4 alkyl group in the C 1-4 alkyl group and the C 1-4 alkyl group substituted by one or more deuteriums is independently preferably methyl, ethyl methyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl or tert-butyl, for example methyl.
  • the C 1-4 alkyl group substituted by one or more deuteriums is preferably a C 1-4 alkyl group substituted by 3 deuteriums, such as CD 3 .
  • the compound 12 is preferably
  • the compound 7 is preferably
  • the compound I is preferably
  • the Mitsunobu reaction conditions and operations are those conventional for such reactions in this field.
  • the present invention particularly prefers the following conditions and operations;
  • the solvent is preferably an amide solvent, more preferably N, N-dimethylformamide (DMF) and/or N, N-Dimethylacetamide.
  • the amount of the solvent is not specifically limited as long as it does not affect the progress of the reaction.
  • the volume-to-mass ratio of the solvent to the compound 12 is preferably 3-25 mL/g, such as 7.6 mL/g or 11.3 mL/g.
  • the molar ratio of the compound 7 to the compound 12 is preferably (1-1.1):1, for example, 1.1:1.
  • the Mitsunobu reaction is preferably carried out in the presence of triphenylphosphine and an azo reagent.
  • the molar ratio of the triphenylphosphine to the compound 12 is preferably (1.2-1.5):1, for example, 1.2:1.
  • the azo reagent can be a conventional azo compound used in Mitsunobu reaction, preferably isopropyl azodicarboxylate (DIAD), ethyl azodicarboxylate (DEAD), methyl azodicarboxylate and One or more of tert-butyl azodicarboxylate, preferably isopropyl azodicarboxylate (DIAD).
  • DIAD isopropyl azodicarboxylate
  • DEAD ethyl azodicarboxylate
  • methyl azodicarboxylate methyl azodicarboxylate
  • tert-butyl azodicarboxylate preferably isopropyl azodicarboxylate (DIAD).
  • the molar ratio of the azo compound to the compound 12 is preferably (1.2-1.5):1.
  • the temperature of the Mitsunobu reaction is preferably room temperature.
  • the progress of the deprotection reaction can be monitored using conventional monitoring methods in the field (such as TLC, HNMR, HPLC), and the end point of the reaction is when the compound 12 no longer reacts or disappears.
  • the reaction time may be 5-24h, such as 24h.
  • the post-treatment steps may be conventional reaction steps used in such reactions, such as extraction (for example, extraction with dichloromethane), washing, drying, concentration and column chromatography.
  • the preparation method of the compound of formula I may also include the preparation method of the compound 12.
  • the preparation method of the compound 12 is preferably method i, method ii or method iii:
  • the preparation method of compound 12 includes the following steps: in the presence of a deprotecting reagent, compound 11 is subjected to a deprotection reaction of the following formula to obtain compound 12;
  • R, R 5 and R 6 are as mentioned above;
  • the preparation method of compound 12 includes the following steps: in the presence of trifluoroacetic acid, the compound 5 and the compound 10 are reacted as follows to obtain the compound 12;
  • X 1 is halogen (preferably F, Cl, Br or I, such as Cl); R, R 5 and R 6 are as defined above;
  • the preparation method of compound 12 includes the following steps: in a solvent, the compound 14 and the compound 10 are reacted as follows to obtain the compound 12;
  • X 1 is halogen (preferably F, Cl, Br or I, such as Cl); R, R 5 and R 6 are as defined above.
  • the deprotecting reagent can be a conventional deprotecting reagent in the art, such as trifluoroacetic acid.
  • the molar ratio of the deprotecting reagent to the compound 11 can be a conventional molar ratio in the art, preferably ⁇ 10:1.
  • the compound 11 is preferably
  • the deprotecting reagent can be performed in the presence or absence of a solvent.
  • the solvent may be a halogenated hydrocarbon solvent, such as methylene chloride.
  • the temperature of the deprotection reaction is preferably 10-70°C, such as room temperature.
  • the progress of the deprotection reaction can be monitored using conventional monitoring methods in the art (such as TLC, HNMR, HPLC), and the end point of the reaction is when the compound 11 no longer reacts or disappears.
  • the reaction time may be 5-24h, such as 24h.
  • a post-treatment step is further included.
  • the post-treatment steps may be conventional post-treatment steps used in such reactions, such as concentration, beating, filtration and drying.
  • the compound 5 is preferably
  • the compound 10 is preferably
  • the reaction can be carried out in the presence or absence of a solvent.
  • the solvent can be carboxylic acid solvents (such as acetic acid), aromatic hydrocarbons (such as toluene), alkyl halides (such as dichloromethane, dichloroethane, and chloroform, etc.
  • alcoholic solvents such as ethanol, propanol, tert-butanol or amyl alcohol
  • nitrile solvents such as acetonitrile
  • ether solvents such as tetrahydrofuran, dioxane or ethylene glycol dimethyl ether
  • sulfones One or more of solvents (such as dimethyl sulfoxide) and amide solvents (such as N,N-dimethylformamide, N,N-dimethylacetamide and N-methylpyrrolidone).
  • the molar ratio of the compound 10 to the compound 5 can be a conventional molar ratio in the art, preferably (1.05-1.2):1, for example, 1.1:1.
  • the reaction temperature is preferably 60-120°C, such as 60-80°C.
  • the progress of the reaction can be monitored using conventional monitoring methods in the art (such as TLC, HNMR, HPLC), and the end point of the reaction is when the compound 5 no longer reacts or disappears.
  • the reaction time may be 5-24h, such as 24h.
  • the compound 14 is preferably
  • the compound 10 is preferably
  • the conditions and operations of the reaction can be conventional conditions and operations in the art, and the following conditions and operations are preferred:
  • the solvent can be a solvent commonly used for reactions in this field, preferably an alcohol solvent (such as ethanol, propanol, tert-butyl alcohol or pentanol), a nitrile solvent (such as acetonitrile), an ether solvent (such as Tetrahydrofuran, dioxane or ethylene glycol dimethyl ether), sulfone solvents (such as dimethyl sulfoxide) and amide solvents (such as N,N-dimethylformamide, N,N-dimethylacetamide and N-methylpyrrolidone), more preferably alcoholic solvents (such as tert-butyl alcohol).
  • an alcohol solvent such as ethanol, propanol, tert-butyl alcohol or pentanol
  • a nitrile solvent such as acetonitrile
  • an ether solvent such as Tetrahydrofuran, dioxane or ethylene glycol dimethyl ether
  • sulfone solvents such as di
  • the compound 13 is preferably
  • the compound 10 is preferably
  • the molar ratio of the compound 10 to the compound 14 can be a conventional molar ratio in the art, preferably (1-1.2):1, for example, 1.1:1.
  • the reaction temperature is preferably 80-120°C, such as 60-80°C.
  • the progress of the reaction can be monitored using conventional monitoring methods in the art (such as TLC, HNMR, HPLC), and the end point of the reaction is when the compound 14 no longer reacts or disappears.
  • the reaction time may be 1-8h, such as 3h.
  • the preparation method of compound 12 may also include the preparation method of compound 11 (in method i).
  • the preparation method of compound 11 is preferably method a or method b:
  • the preparation method of the compound 11 includes the following steps: in a solvent, the compound 5 and the compound 10 are reacted as follows to obtain the compound 11;
  • the preparation method of the compound 11 includes the following steps: in a solvent, the compound 13 and the compound 10 are reacted as follows to obtain the compound 11;
  • the compound 5 is preferably
  • the compound 10 is preferably
  • the molar ratio of the compound 10 to the compound 5 can be a conventional molar ratio in the art, preferably (1.05-1.2): 1; other conditions and operations of the reaction are the same as described Other conditions and operations in method ii.
  • the preparation method of compound 11 may also include the preparation method of compound 5, which The preparation method includes the following steps: in the presence of a base, compound 3 and compound 4 are subjected to the following alkylation reaction in a solvent to obtain the compound 5;
  • X 3 is halogen; R 5 and R 6 are as defined above.
  • the halogen is preferably F, Cl, Br or I, such as Br.
  • the base can be a conventional base in the art, preferably a tertiary amine base (such as triethylamine or diisopropylethylamine), an alkali metal carbonate (such as potassium carbonate), an alkali metal base (such as Sodium hydroxide or potassium hydroxide), alkali metal tert-butoxide (such as potassium tert-butoxide or sodium tert-butoxide), lithium bis(trimethylsilyl)amide (LHMDS), bis(trimethylsilyl)amide
  • KHMDS potassium amide
  • sodium hydride more preferably a tertiary amine base (such as diisopropylethylamine) and/or an alkali metal carbonate (such as potassium carbonate).
  • the molar ratio of the base to the compound 3 can be a conventional molar ratio in the art, preferably (1.2-1.5):1, for example, 1.2:1.
  • the molar ratio of the compound 4 to the compound 3 can be a conventional molar ratio in the art, preferably (1.1-1.2):1, for example, 1.1:1.
  • the temperature of the reaction is preferably 10-120°C, such as 60°C.
  • the progress of the reaction can be monitored using conventional monitoring methods in the art (such as TLC, HNMR, HPLC), and the end point of the reaction is when the compound 3 no longer reacts or disappears.
  • the reaction time may be 3-12h, such as 8h.
  • the post-treatment steps after the reaction can be conventional post-treatment steps used in such reactions, such as pH adjustment, extraction, washing with saturated brine, drying, concentration and column chromatography.
  • the preparation method of compound 5 may also include the preparation method of compound 3.
  • the preparation method of compound 3 includes the following steps: in the presence of an organic base, in a solvent, compound 1, compound 2 and 1 , 1'-carbonyldiimidazole (CDI) undergoes the following cyclization reaction to obtain the compound 3;
  • the compound 2 is tert-butylamine (t-BuNH 2 ) or tert-butyl isocyanate (t-BuNCO);
  • the conditions and operations of the cyclization reaction can be conventional conditions and operations for such reactions in the art.
  • the following conditions and operations are particularly preferred in the present invention:
  • the organic base is preferably a tertiary amine base (such as triethylamine and/or diisopropylethylamine), pyridine and N, N-dimethylaniline and One or more of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), such as 1,8-diazabicyclo[5.4.0]undec-7 -ene.
  • DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
  • the molar ratio of the organic base to the compound 1 is preferably (2.0-2.5):1, such as 2.3:1 or 2.4:1.
  • the molar ratio of the 1,1'-carbonyldiimidazole to the compound 1 is preferably (2.0-2.5):1, such as 2.2:1.
  • the temperature of the cyclization reaction is preferably 30-115°C, such as 50°C.
  • the progress of the cyclization reaction can be monitored using conventional monitoring methods in the field (such as TLC, HNMR, HPLC), and the end point of the reaction is when the compound 1 no longer reacts or disappears.
  • the reaction time can be 5-24h, such as overnight.
  • the post-treatment steps after the cyclization reaction can be conventional post-treatment steps used in such reactions, such as cooling, adjusting the pH value (for example, adjusting the pH value to 1-2 with hydrochloric acid), filtration, water washing and drying.
  • the compound 13 is preferably
  • the compound 10 is preferably
  • the solvent is preferably a mixed solvent of alcohol solvent and acetic acid, and is further preferably tert-butyl alcohol and acetic acid.
  • the volume ratio of the alcohol solvent to acetic acid is preferably (2-7):1, such as 5:1.
  • the molar ratio of the compound 10 to the compound 13 can be a conventional molar ratio in the art, preferably (1-1.2):1, such as 1.1:1; other conditions and operations of the reaction Other conditions and operations are the same as described in method iii.
  • the invention also provides a method for preparing the compound of formula I, which includes the following steps: in an alkaline reagent and in a solvent, compound 12 and compound 8 are subjected to the following alkylation reaction to obtain the compound of formula I;
  • X 2 is halogen; R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are all as defined above.
  • the compound 12 is preferably
  • the preparation method of the compound of formula I preferably includes the above-mentioned preparation method of compound 12; the conditions and operations of the preparation method of compound 12 are the same as described above.
  • the compound 8 is preferably
  • the compound I is preferably
  • the alkylation reaction conditions and operations may be conventional conditions and operations for such reactions in the art.
  • the present invention particularly prefers the following conditions and operations;
  • the solvent is preferably a nitrile solvent (such as acetonitrile), an ether solvent (such as dioxane) and an amide solvent (such as N,N-dimethylformamide (DMF), N,N - One or more of dimethylacetamide (DMA) or N-methylpyrrolidone (NMP), more preferably an amide solvent (such as N, N-dimethylformamide (DMF) or N, N-Dimethylacetamide (DMA)).
  • the amount of the solvent is not specifically limited as long as it does not affect the progress of the reaction.
  • the volume to mass ratio of the solvent to the compound 12 is preferably 5-30 mL/g, such as 7.6 mL/g.
  • the alkaline reagent is preferably an alkali metal carbonate (such as potassium carbonate or sodium carbonate and/or cesium carbonate) and/or a tertiary amine base (such as diisopropylethylamine), more preferably Alkali metal carbonates (eg potassium carbonate).
  • alkali metal carbonate such as potassium carbonate or sodium carbonate and/or cesium carbonate
  • a tertiary amine base such as diisopropylethylamine
  • Alkali metal carbonates eg potassium carbonate
  • the molar ratio of the compound alkaline reagent to the compound 12 is preferably (1.5-3):1, such as 2.5:1.
  • the molar ratio of the compound 8 to the compound 12 is preferably (1-1.2):1, such as 1.1:1.
  • the temperature of the alkylation reaction is preferably 50-100°C, more preferably 70-80°C.
  • the progress of the alkylation reaction can be monitored using conventional monitoring methods in the field (such as TLC, HNMR, HPLC), and the end point of the reaction is when the compound 12 no longer reacts or disappears.
  • the reaction time may be 2-8h, such as 5h.
  • the post-treatment steps may be conventional reaction steps used in such reactions, such as extraction (for example, extraction with dichloromethane), washing, drying, concentration and column chromatography.
  • the present invention also provides a preparation method of compound 11, which is method I or method II:
  • the method I includes the following steps: in a solvent, the compound 5 and the compound 10 are reacted as follows to obtain the compound 11;
  • the method II includes the following steps: in a solvent, the compound 13 and the compound 10 are reacted as follows to obtain the compound 11;
  • the present invention also provides a preparation method of compound 12, which is method i, method ii or method iii:
  • the preparation method of compound 12 includes the following steps: in the presence of a deprotecting reagent, compound 11 is subjected to a deprotection reaction of the following formula to obtain compound 12;
  • R, R 5 and R 6 are as mentioned above;
  • the preparation method of compound 12 includes the following steps: in the presence of trifluoroacetic acid, the compound 5 and the compound 10 are reacted as follows to obtain the compound 12;
  • X 1 is halogen (preferably F, Cl, Br or I, such as Cl); R, R 5 and R 6 are as defined above;
  • the preparation method of compound 12 includes the following steps: in a solvent, the compound 14 and the compound 10 are reacted as follows to obtain the compound 12;
  • X 1 is halogen (preferably F, Cl, Br or I, such as Cl); R, R 5 and R 6 are as defined above.
  • the invention also provides a compound of the following formula:
  • R, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as mentioned above.
  • the compound is preferably any of the following compounds:
  • the invention provides a method for preparing a compound of formula I, which includes the following steps: in a solvent, compound 9 and compound 10 are subjected to the following substitution reaction to obtain a compound of formula I;
  • X 1 is halogen
  • R and R 2 are independently C 1-4 alkyl or C 1-4 alkyl substituted by 1 or more deuterated;
  • R 1 , R 3 , R 4 , R 5 and R 6 are independently H or deuterium.
  • the halogen is preferably F, Cl, Br or I, such as Cl.
  • the C 1-4 alkyl group in the C 1-4 alkyl group and the C 1-4 alkyl group substituted by one or more deuteriums is independently preferably methyl, ethyl methyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl or tert-butyl, for example methyl.
  • the C 1-4 alkyl group substituted by one or more deuteriums is preferably a C 1-4 alkyl group substituted by 3 deuteriums, such as CD 3 .
  • the compound 9 is preferably For example
  • the compound 10 is preferably For example
  • the compound I is preferably For example
  • substitution reaction conditions and operations may be conventional conditions and operations for such reactions in the art.
  • the present invention particularly prefers the following conditions and operations;
  • the solvent is preferably an alcohol solvent (such as tert-butanol), a nitrile solvent (such as acetonitrile), an ether solvent (such as dioxane or ethylene glycol dimethyl ether), a sulfone solvent (such as For example, dimethyl sulfoxide) and amide solvents (such as N,N-dimethylformamide (DMF) and/or N,N-dimethylacetamide (DMA) or N-methylpyrrolidone (NMP))
  • the amount of the solvent is not specifically limited as long as it does not affect the progress of the reaction.
  • the volume to mass ratio of the solvent to the compound 9 is preferably 8-15 mL/g, such as 11.9 mL/g.
  • the molar ratio of the compound 10 to the compound 9 is preferably (1-1.2):1, such as 1.1:1.
  • the temperature of the substitution reaction is preferably 50-100°C, such as 60°C-90°C.
  • the progress of the substitution reaction can be monitored using conventional monitoring methods in the field (such as TLC, HNMR, HPLC), and the end point of the reaction is when the compound 10 no longer reacts or disappears.
  • the reaction time may be 2-16h, such as 5-10h.
  • the post-treatment steps may be conventional reaction steps used in such reactions, such as concentration and column chromatography.
  • the preparation method of the compound of formula I may also include the preparation method of the compound 9.
  • the preparation method of the compound 9 is preferably method 1 or method 2:
  • the preparation method of the compound 9 includes the following steps: in a solvent, the compound 6 and the compound 7 are subjected to the following Mitsunobu reaction (Mitsunobu reaction) to obtain the compound 9;
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as mentioned above;
  • the preparation method of the compound 9 includes the following steps: in the presence of an alkaline reagent and in a solvent, the compound 6 and the compound 9 are subjected to the following alkylation reaction to obtain the compound 9;
  • X 2 is halogen (F, Cl, Br or I, such as Cl); R 1 and R 2 are as defined above.
  • the compound 7 is preferably
  • the Mitsunobu reaction conditions and operations may be those conventional for such reactions in the art.
  • the present invention particularly prefers the following conditions and operations;
  • the solvent can be one or more of alkyl halide solvents, ether solvents and amide solvents, preferably ether solvents and amide solvents (such as N, N-dimethylformamide ( DMF) or N,N-dimethylacetamide), more preferably amide solvents (such as N,N-dimethylformamide (DMF) or N,N-dimethylacetamide).
  • the amount of the solvent is not specifically limited as long as it does not affect the progress of the reaction.
  • the volume to mass ratio of the solvent to the compound 6 is preferably 2-8 mL/g, such as 5 mL/g.
  • the molar ratio of the compound 7 to the compound 6 is preferably (1-1.1):1, for example, 1:1.
  • the Mitsunobu reaction is preferably carried out in the presence of triphenylphosphine and an azo reagent.
  • the molar ratio of the triphenylphosphine to the compound 6 is preferably (1.2-1.5):1, for example, 1.2:1.
  • the azo reagent is preferably one of isopropyl azodicarboxylate (DIAD), ethyl azodicarboxylate (DEAD), methyl azodicarboxylate and tert-butyl azodicarboxylate, or There are many, preferably isopropyl azodicarboxylate (DIAD).
  • the molar ratio of the azo reagent to the compound 6 is preferably (1.2-1.5):1, such as 1.3:1.
  • the temperature of the Mitsunobu reaction is preferably room temperature.
  • Method 1 the progress of the Mitsunobu reaction can be monitored using conventional monitoring methods in the field (such as TLC, HNMR, HPLC), and the end point of the reaction is when the compound 6 no longer reacts or disappears.
  • the reaction time may be 5-24h, such as 12h.
  • a post-treatment step is further included.
  • the post-treatment steps may be conventional reaction steps used in such reactions, such as extraction (for example, extraction with dichloromethane), washing, drying, concentration and column chromatography.
  • the halogen is preferably F, Cl, Br or I, such as Cl.
  • the compound 8 is preferably
  • the alkylation reaction conditions and operations may be those conventional for such reactions in the art.
  • the present invention particularly prefers the following conditions and operations;
  • the solvent is preferably a nitrile solvent (such as acetonitrile), an ether solvent (such as dioxane) and an amide solvent (such as N,N-dimethylformamide (DMF), N,N - One or more of dimethylacetamide (DMA) and N-methylpyrrolidone (NMP)), more preferably an amide solvent (such as N, N-dimethylformamide (DMF) or N, N-Dimethylacetamide (DMA)).
  • the amount of the solvent is not specifically limited as long as it does not affect the progress of the reaction.
  • the volume to mass ratio of the solvent to the compound 6 is preferably 2-8 mL/g, such as 5 mL/g.
  • the alkaline reagent is preferably an alkali metal carbonate (such as potassium carbonate, sodium carbonate, cesium carbonate, etc.) and/or a tertiary amine base (such as triethylamine, diisopropylethylamine and diisopropylethylamine). Methylaniline, etc.), more preferably alkali metal carbonates (such as potassium carbonate).
  • alkali metal carbonate such as potassium carbonate, sodium carbonate, cesium carbonate, etc.
  • a tertiary amine base such as triethylamine, diisopropylethylamine and diisopropylethylamine.
  • Methylaniline, etc. more preferably alkali metal carbonates (such as potassium carbonate).
  • the molar ratio of the alkaline reagent to the compound 6 is preferably (1-3):1, for example, 2.5:1.
  • the molar ratio of the compound 8 to the compound 6 is preferably (1-1.2):1, such as 1.1:1.
  • the temperature of the alkylation reaction is preferably 50-100°C, more preferably 70-80°C, such as 60°C.
  • the progress of the alkylation reaction can be monitored using conventional monitoring methods in the art (such as TLC, HNMR, HPLC), and the end point of the reaction is when the compound 6 no longer reacts or disappears.
  • the reaction time may be 2-8h, such as 5h.
  • a post-treatment step is further included.
  • the post-treatment steps may be conventional reaction steps used in such reactions, such as extraction (for example, extraction with dichloromethane), washing, drying, concentration and column chromatography.
  • the preparation method of compound 9 may also include the preparation method of compound 6.
  • the preparation method of compound 6 includes the following steps: in the presence of a deprotecting reagent, compound 5 is subjected to a deprotection reaction of the following formula: Obtain the compound 6;
  • R 5 and R 6 are independently H or deuterium.
  • the deprotecting reagent may be a conventional deprotecting reagent in the art, such as trifluoroacetic acid.
  • the molar ratio of the deprotecting reagent to the compound 6 can be a conventional molar ratio in this field, preferably ⁇ 10:1.
  • the deprotection reaction can be carried out in the presence or absence of a solvent.
  • the solvent may be a halogenated hydrocarbon solvent, such as methylene chloride.
  • the temperature of the deprotection reaction is preferably 10-70°C, such as room temperature.
  • the progress of the deprotection reaction can be monitored using conventional monitoring methods in the field (such as TLC, HNMR, HPLC), and the end point of the reaction is when the compound 5 no longer reacts or disappears.
  • the reaction time may be 5-24h, such as 24h.
  • post-treatment steps can be conventional post-treatment steps used in such reactions, such as concentration, beating, filtration, drying and column chromatography.
  • the preparation method of compound 6 may also include the preparation method of compound 5.
  • the conditions and operations of the preparation method of compound 5 are the same as described above.
  • the present invention also provides a method for preparing compound 9, which includes the following steps: in a solvent, compound 6 and compound 7 are subjected to the following Mitsunobu reaction to obtain the compound 9;
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same as mentioned above; the conditions and operations of the Mitsunobu reaction are the same as mentioned above.
  • the invention also provides a method for preparing compound 9, which includes the following steps: in the presence of an alkaline reagent and in a solvent, compound 6 and compound 9 are subjected to the following alkylation reaction to obtain the compound 9;
  • intermediates 13a, 14a, 4b, 7b, 7c, 7d, 8b, 8c, 8d, 10b and 14b are homemade, and other reagents and raw materials used are commercially available.
  • the positive progressive effect of the present invention is that: the preparation method of the present invention can greatly increase the yield of multi-substituted triazine compounds with low cost and simple operation; the products prepared by the preparation method of the present invention are effective against the new coronavirus It has good viral 3CL protease inhibitory activity, good hepatic particle metabolism or good pharmacokinetics.
  • room temperature refers to 10-35°C
  • overnight refers to 12-20 hours.
  • reaction progress is detected by TLC, and known compounds are used as reference substances to judge the reaction progress.
  • Compound 10a was prepared according to the method of patent WO2019153080A1.
  • Compound 10b (6-chloro-2-trideuteromethyl-2H-indazole-5-amine was synthesized using the same method as compound 10a, using deuterated methyl iodide instead of methyl iodide.
  • Source Supplier: Genscript; Cat. No.: C6721FL040-3.
  • the incubation system contained 2019-nCoV 3CL protease (0.2 ⁇ M), fluorescently labeled peptide (20 ⁇ M) and a series of concentrations of the test compound (0-20 ⁇ M).
  • the fluorescence intensity of the system when incubated for 2-3 minutes was measured using a microplate reader.
  • the excitation wavelength and detection wavelength were 320nm and 405nm respectively.
  • S-217622 As the positive control drug. From the above results, it can be seen that some compounds of the present invention, that is, deuterium substitutions in the specific structure of S-217622, have an inhibitory activity on the 3CL proteolytic enzyme of the SARS-CoV-2 novel coronavirus that is comparable to that of S-217622. The inhibitory activity of some deuterated compounds is significantly stronger than that of S217622.
  • Kunming mouse liver microsomes (IPHASE/Huizhi Taikang) were prepared by ultracentrifugation. Fresh mouse liver was weighed, minced with a blender in 3 times the volume of Tris-HCl buffer, and then homogenized. Homogenize with a pulp machine. The above operations are all performed in an ice bath below 4°C. Centrifuge the homogenate at 7000g for 20 minutes at 4°C. Take the supernatant and centrifuge at 10000g for 30 minutes at 4°C. Discard the supernatant and the precipitate will be small. Mouse liver microsomes were suspended in 0.25 mol/L sucrose solution and stored in liquid nitrogen. The protein content of mouse liver microsomes measured by Lowry method was 7.8 mg/mL.
  • mouse liver microsomes in vitro incubation system.
  • the final volume of the incubation system is 5ml, which contains mouse liver microsomes 2.0mg/mL, glucose-6-phosphate 0.01mmol/mL, G6-PDH 1U/mL, and magnesium chloride 4.0umol. /mL, NADP 0.5umol/mL, NADH 1.0umol/mL, mix and shake well, shake in a 37°C water bath, prepare two copies of each sample, add the test substance to the mouse liver microsomal enzyme incubation solution, Make the concentration of the test substance 50mg/L, shake it thoroughly, and incubate it at 37°C. At the same time, use heat-inactivated liver homogenate as a blank control experiment.
  • the hepatocyte metabolic clearance rate of the deuterium-substituted triazine derivatives of the present invention at different positions is significantly reduced. After deuteration, the metabolism of S-217622 is achieved.
  • Half-life extension effect On the basis of retaining the effectiveness against SARS-CoV-2, the half-life is significantly extended, the demand for dosage is reduced, side effects are reduced, and the therapeutic window is expanded. Therefore, the present invention is used to make a treatment for coronavirus infection-related diseases. The drug has very good prospects.
  • the mass ratio of G10:CVL201:niacinamide is 5.3:1.
  • Intravenous injection (0.5mg/kg), 0.2ml of blood was taken from the rat jugular vein at 0.033h, 0.25h, 0.5h, 1h, 2h, 4h, 8h and 24h after drug administration, and EDTA-K2 was used for anticoagulation. Place on ice after collection.
  • Plasma samples were collected and placed on ice, and centrifuged to separate plasma within 1 hour (centrifugation conditions: 6800g, 6 minutes, 2-8°C). Plasma samples were stored in a -80°C refrigerator before analysis.
  • Id 20 ⁇ L plasma sample was subjected to protein precipitation with 400 ⁇ L methanol containing 10 ng/mL IS (IS is Verapamil). The mixture was vortexed for 1 min and then centrifuged at 18000 g for 7 min. Transfer 300 ⁇ L of supernatant to a 96-well plate. 8 ⁇ L of the supernatant was subjected to LC-MS/MS analysis.
  • IS Verapamil
  • Mobile phase A 0.1% formic acid aqueous solution
  • Mobile phase B 0.1% formic acid in acetonitrile solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种多取代三嗪烷类式I化合物的合成方法,具体如下:方法一:将化合物12和化合物7进行光延反应,得到式I化合物;方法二:将化合物12和化合物8进行烷基化反应,得到式I化合物。所述制备方法可以大幅提升多取代三嗪烷类化合物的收率且成本低和操作简单,具有良好的应用前景。

Description

一种多取代三嗪烷类化合物的合成方法
本申请要求申请日为2022年4月8日的中国专利申请2022103701296的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于药物合成技术领域,具体涉及一种多取代三嗪烷类化合物的合成方法。
背景技术
三嗪烷类化合物S-217622(Ia,Ensitrelvir)是日本盐野义公司开发的非肽类小分子3CL蛋白抑制剂,体外实验对SARS-Cov-2、SAR、MERS和人冠状病毒HCoV-229E等均有抑制活性,对新型冠状病毒的变异的有效,对奥密克戎毒株的抑制活性更强,目前,S-217622正在进行2-3期临床试验。中国专利公布了S-217622的氘代衍生物,其药理活性和药代动力学性质与S-217622相比都有一定提高。
盐野义公司在BioRxiv上公开了S-217622的合成工艺(上图,Yuto Unoh,et al.Discovery of S-217622,a Non-Covalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19.bioRxiv 2022.01.26.477782.,文献1),以乙硫基甲脒和异氰酸异丁酯为起始物料构建三嗪烷环,经与2,4,5-三氟苄溴进行烷基化反应引入2,4,5-三氟苄基,三氟乙酸脱叔丁基,在先后用烷基化和取代反应引入三氮唑片段和吲唑亚胺药效团,得到目标化合物S-217622。该工艺路线不长,但存在最后两步关键步骤收率较低,取代反应引入吲唑亚胺的反应过程中产生有污染臭味的乙硫醇,导致生产成本较高和安全环保问题。
基于此,特提出本发明。
发明内容
本发明所要解决的技术问题是为了克服现有技术中三嗪烷类化合物制备方法中收率等的缺陷:为此,而提供了一种多取代三嗪烷类化合物的合成方法。本发明的制备方法可以大幅提升多取代三嗪烷 类化合物的收率且成本低和操作简单;采用本发明的制备方法制得的产品对新型冠状病毒3CL蛋白酶抑制活性佳、肝微粒代谢佳或药代动力学佳。
本发明通过下述技术方案解决上述技术问题:
本发明提供了一种式I化合物的制备方法,其包括如下步骤;在溶剂中,将化合物12和化合物7进行如下光延反应,得到式I化合物;
其中,R和R2独立地为C1-4烷基或被1个或多个氘代的C1-4烷基;
R1、R3、R4、R5和R6独立地为H或氘。
R和R2中,所述的C1-4烷基和所述的被1个或多个氘取代的C1-4烷基中的C1-4烷基独立地优选为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基,例如甲基。
R和R2中,所述的被1个或多个氘取代的C1-4烷基优选为被3个氘取代的C1-4烷基,例如CD3
本发明中,所述的化合物12优选为
本发明中,所述的化合物7优选为
本发明中,所述的化合物I优选为
本发明中,所述的光延反应条件和操作为本领域此类反应常规的条件和操作。本发明特别优选如下条件和操作;
本发明中,所述的溶剂优选为酰胺类溶剂,进一步优选为N,N-二甲基甲酰胺(DMF)和/或N, N-二甲基乙酰胺。所述的溶剂的用量可不做具体限定,只要不影响反应进行即可。所述的溶剂与所述的化合物12的体积质量比优选为3-25mL/g,例如7.6mL/g或11.3mL/g。
本发明中,所述的化合物7与所述的化合物12的摩尔比优选为(1-1.1):1,例如1.1:1。
本发明中,所述的光延反应优选在三苯基膦和偶氮试剂存在下进行。
其中,所述的三苯基膦与所述的化合物12的摩尔比优选为(1.2-1.5):1,例如1.2:1。
其中,所述的偶氮试剂可以为光延反应所用常规的偶氮类化合物,优选为偶氮二甲酸异丙酯(DIAD)、偶氮二甲酸乙酯(DEAD)、偶氮二甲酸甲酯和偶氮二甲酸叔丁酯中的一种或多种,优选偶氮二甲酸异丙酯(DIAD)。
其中,所述的偶氮类化合物与所述的化合物12的摩尔比优选为(1.2-1.5):1。
所述的光延反应的温度优选为室温。
所述的脱保护反应的进程可以采用本领域常规的监测方法进行监测(例如TLC、HNMR、HPLC),以所述的化合物12不再反应或者消失作为反应的终点。所述的反应时间可为5-24h,例如24h。
所述的光延反应结束后,还进一步包括后处理步骤。所述的后处理步骤可以为此类反应所用的常规反应步骤,例如萃取(例如采用二氯甲烷萃取)、洗涤、干燥、浓缩和柱层析。
所述的式I化合物的制备方法还可包括所述的化合物12的制备方法,所述的化合物12制备方法优选方法i、方法ii或方法iii、:
方法i:
所述的化合物12制备方法包括如下步骤:在脱保护试剂存在下,将化合物11进行如下式的脱保护反应,得到所述的12化合物;
R、R5和R6的定义同前所述;
方法ii:
所述的化合物12制备方法包括如下步骤:在三氟醋酸存在下中,将所述的化合物5和所述的化合物10进行如下反应,得到所述的12化合物;
其中,X1为卤素(优选为F、Cl、Br或I,例如Cl);R、R5和R6的定义同前所述;
方法iii:
所述的化合物12制备方法包括如下步骤:在溶剂中,将所述的化合物14和所述的化合物10进行如下反应,得到所述的12化合物;
其中,X1为卤素(优选为F、Cl、Br或I,例如Cl);R、R5和R6的定义同前所述。
方法i中,所述的脱保护试剂可以为本领域常规的脱保护试剂,例如三氟醋酸。
方法i中,所述的脱保护试剂与所述的化合物11的摩尔比可以为本领域常规的摩尔比,优选为≥10:1。
方法i中,所述的化合物11优选为
方法i中,所述的脱保护试剂可以在溶剂存在或不存在下进行。当所述的反应在溶剂存在下进行时,所述的溶剂可以为卤代烃类溶剂,例如二氯甲烷。
方法i中,所述的脱保护反应的温度优选为10-70℃,例如室温。
方法i中,所述的脱保护反应的进程可以采用本领域常规的监测方法进行监测(例如TLC、HNMR、HPLC),以所述的化合物11不再反应或者消失作为反应的终点。所述的反应时间可为5-24h,例如24h。
方法i中,所述的脱保护反应结束后,还进一步包括后处理步骤。所述的后处理步骤可以为此类反应所用的常规后处理步骤,例如浓缩、打浆、过滤和干燥。
方法ii中,所述的化合物5优选为
方法ii中,所述的化合物10优选为
方法ii中,所述的反应可以在溶剂存在下或者不存在下进行反应。当所述的反应在溶剂存在下进行反应时,所述的溶剂可以为羧酸类溶剂(如乙酸)、芳香烃(如甲苯)、卤代烷(如二氯甲烷、二氯乙烷、和氯仿等)、醇类溶剂(例如乙醇、丙醇、叔丁醇或戊醇)、腈类溶剂(例如乙腈)、醚类溶剂(例如四氢呋喃、二氧六环或乙二醇二甲醚)、砜类溶剂(例如二甲亚砜)和酰胺类溶剂(例如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和N-甲基吡咯烷酮)中一种或多种。
方法ii中,所述的化合物10与所述的化合物5的摩尔比可以为本领域常规的摩尔比,优选(1.05-1.2):1,例如1.1:1。
方法ii中,所述的反应的温度优选为60-120℃,例如60-80℃。
方法ii中,所述的反应的进程可以采用本领域常规的监测方法进行监测(例如TLC、HNMR、HPLC),以所述的化合物5不再反应或者消失作为反应的终点。所述的反应时间可为5-24h,例如24h。
方法iii中,所述的化合物14优选为
方法iii中,所述的化合物10优选为
方法iii中,所述的反应的条件和操作可以为本领域常规的条件和操作,优选如下的条件和操作:
方法iii中,所述的溶剂可以为本领域反应常用的溶剂,优选为醇类溶剂(例如乙醇、丙醇、叔丁醇或戊醇)、腈类溶剂(例如乙腈)、醚类溶剂(例如四氢呋喃、二氧六环或乙二醇二甲醚)、砜类溶剂(例如二甲亚砜)和酰胺类溶剂(例如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和N-甲基吡咯烷酮)中一种或多种,更优选为醇类溶剂(例如叔丁醇)。
方法iii中,所述的化合物13优选为
方法iii中,所述的化合物10优选为
方法iii中,所述的化合物10与所述的化合物14的摩尔比可以为本领域常规的摩尔比,优选(1-1.2):1,例如1.1:1。
方法iii中,所述的反应的温度优选为80-120℃,例如60-80℃。
方法iii中,所述的反应的进程可以采用本领域常规的监测方法进行监测(例如TLC、HNMR、HPLC),以所述的化合物14不再反应或者消失作为反应的终点。所述的反应时间可为1-8h,例如3h。
所述的化合物12的制备方法还可包括所述的化合物11(方法i中)的制备方法,所述的化合物11的制备方法优选为方法a或方法b:
方法a:
所述的化合物11的制备方法包括如下步骤:在溶剂中,将所述的化合物5和所述的化合物10进行如下反应,得到所述化合物11;
X1、R5、R6和R定义均同前所述;
方法b:
所述的化合物11的制备方法包括如下步骤:在溶剂中,将所述的化合物13和所述的化合物10进行如下反应,得到所述化合物11;
X1、R5、R6和R定义均同前所述。
方法a中,所述的化合物5优选为
方法a中,所述的化合物10优选为
方法a中,所述的化合物10与所述的化合物5的摩尔比可以为本领域常规的摩尔比,优选(1.05-1.2):1;所述的反应的其他条件和操作均同所述的方法ii中其他条件和操作。
方法a中,所述的化合物11的制备方法还可包括所述的化合物5的制备方法,所述的化合物5 的制备方法包括如下步骤:在碱存在下,将化合物3和化合物4在溶剂中进行如下的烷基化反应,得到所述的化合物5;
X3为卤素;R5和R6的定义均同前所述。
X3中,所述的卤素优选为F、Cl、Br或I,例如Br。
其中,所述的碱可以为本领域常规的碱,优选为叔胺碱(例如三乙胺或二异丙基乙基胺)、碱金属碳酸盐(例如碳酸钾)、碱金属碱(例如氢氧化钠或氢氧化钾)、叔丁醇碱金属盐(例如叔丁醇钾或叔丁醇钠)、双(三甲基硅基)氨基锂(LHMDS)、双(三甲基硅基)氨基钾(KHMDS)和氢化钠中一种或多种,更优选为叔胺碱(例如二异丙基乙基胺)和/或碱金属碳酸盐(例如碳酸钾)。
其中,所述的碱与所述的化合物3的摩尔比可以为本领域常规的摩尔比,优选(1.2-1.5):1,例如1.2:1。
其中,所述的化合物4与所述的化合物3的摩尔比可以为本领域常规的摩尔比,优选(1.1-1.2):1,例如1.1:1。
其中,所述的反应的温度优选为10-120℃,例如60℃。
所述的反应的进程可以采用本领域常规的监测方法进行监测(例如TLC、HNMR、HPLC),以所述的化合物3不再反应或者消失作为反应的终点。所述的反应时间可为3-12h,例如8h。
所述的反应结束后的后处理步骤可以为此类反应所用的常规后处理步骤,例如调节pH值、萃取、饱和食盐水洗涤、干燥、浓缩和柱层析。
所述的化合物5的制备方法还可包括所述的化合物3的制备方法,所述的化合物3的制备方法包括如下步骤:在有机碱存在下,在溶剂中,将化合物1、化合物2和1,1'-羰基二咪唑(CDI)进行如下环化反应,得到所述的化合物3;
所述的化合物2为叔丁胺(t-BuNH2)或异氰酸叔丁酯(t-BuNCO);
所述的环化反应的条件和操作可以为本领域此类反应常规的条件和操作,本发明特别优选如下条件和操作:
所述的有机碱优选为叔胺碱(例如三乙胺和/或二异丙基乙基胺)、吡啶和N,N-二甲基苯胺和 1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)中的一种或多种,例如1,8-二氮杂双环[5.4.0]十一碳-7-烯。
所述的有机碱与所述的化合物1的摩尔比,优选为(2.0-2.5):1,例如2.3:1或2.4:1。
所述的1,1'-羰基二咪唑与所述的化合物1的摩尔比,优选为(2.0-2.5):1,例如2.2:1。
所述的环化反应的温度优选为30-115℃,例如50℃。
所述的环化反应的进程可以采用本领域常规的监测方法进行监测(例如TLC、HNMR、HPLC),以所述的化合物1不再反应或者消失作为反应的终点。所述的反应时间可为5-24h,例如过夜。
所述的环化反应结束后的后处理步骤可以为此类反应所用的常规后处理步骤,例如冷却、调节pH值(例如盐酸调至pH值为1-2)、过滤、水洗和干燥。
方法b中,所述的化合物13优选为
方法b中,所述的化合物10优选为
方法b中,所述的溶剂优选为醇类溶剂和乙酸的混合溶剂,进一步优选为叔丁醇和乙酸。所述的醇类溶剂与乙酸的体积比优选为(2-7):1,例如5:1。
方法b中,所述的化合物10与所述的化合物13的摩尔比可以为本领域常规的摩尔比,优选(1-1.2):1,例如1.1:1;所述的反应的其他条件和操作均同所述的方法iii中其他条件和操作。
本发明还提供了一种式I化合物的制备方法,其包括如下步骤;在碱性试剂中,在溶剂中,将化合物12和化合物8进行如下烷基化反应,得到式I化合物;
其中,X2为卤素;R、R1、R2、R3、R4、R5和R6的定义均同前所述。
本发明中,所述的化合物12优选为
本发明中,所说的式I化合物的制备方法优选包括上述的化合物12的制备方法;所述的化合物12的制备方法的条件和操作均同前所述。
本发明中,所述的化合物8优选为
本发明中,所述的化合物I优选为
本发明中,所述的烷基化反应条件和操作可以为本领域此类反应常规的条件和操作。本发明特别优选如下条件和操作;
本发明中,所述的溶剂优选为腈类溶剂(例如乙腈)、醚类溶剂(例如二氧六环)和酰胺类溶剂(例如N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMA)或N-甲基吡咯烷酮(NMP))中的一种或多种,更优选为酰胺类溶剂(例如N,N-二甲基甲酰胺(DMF)或N,N-二甲基乙酰胺(DMA))。所述的溶剂的用量可不做具体限定,只要不影响反应进行即可。所述的溶剂与所述的化合物12的体积质量比优选为5-30mL/g,例如7.6mL/g。
本发明中,所述的碱性试剂优选为碱金属碳酸盐(例如碳酸钾或碳酸钠和/或碳酸铯)和/或叔胺碱(例如二异丙基乙基胺),更优选为碱金属碳酸盐(例如碳酸钾)。
本发明中,所述的化合物碱性试剂与所述的化合物12的摩尔比优选为(1.5-3):1,例如2.5:1。
本发明中,所述的化合物8与所述的化合物12的摩尔比优选为(1-1.2):1,例如1.1:1。
所述的烷基化反应的温度优选为50-100℃,更优选70-80℃。
所述的烷基化反应的进程可以采用本领域常规的监测方法进行监测(例如TLC、HNMR、HPLC),以所述的化合物12不再反应或者消失作为反应的终点。所述的反应时间可为2-8h,例如5h。
所述的烷基化反应结束后,还进一步包括后处理步骤。所述的后处理步骤可以为此类反应所用的常规反应步骤,例如萃取(例如采用二氯甲烷萃取)、洗涤、干燥、浓缩和柱层析。
本发明还提供了一种化合物11的制备方法,其为方法I或方法II:
所述的方法I包括如下步骤:在溶剂中,将所述的化合物5和所述的化合物10进行如下反应,得到所述化合物11;
所述的方法II包括如下步骤:在溶剂中,将所述的化合物13和所述的化合物10进行如下反应,得到所述化合物11;
其中,X1、R、R5和R6的定义均同前所述,所述的反应的条件和操作均同前所述。
本发明还提供了一种化合物12的制备方法,其为方法i、方法ii或方法iii、:
方法i:
所述的化合物12制备方法包括如下步骤:在脱保护试剂存在下,将化合物11进行如下式的脱保护反应,得到所述的12化合物;
R、R5和R6的定义同前所述;
方法ii:
所述的化合物12制备方法包括如下步骤:在三氟醋酸存在下中,将所述的化合物5和所述的化合物10进行如下反应,得到所述的12化合物;
其中,X1为卤素(优选为F、Cl、Br或I,例如Cl);R、R5和R6的定义同前所述;
方法iii:
所述的化合物12制备方法包括如下步骤:在溶剂中,将所述的化合物14和所述的化合物10进行如下反应,得到所述的12化合物;
其中,X1为卤素(优选为F、Cl、Br或I,例如Cl);R、R5和R6的定义同前所述。
方法i至iii中的反应的条件和操作均同前所述。
本发明还提供了一种如下式的化合物:
其中,R、R1、R2、R3、R4、R5和R6的定义均同前所述。
所述的化合物优选如下任一化合物:
本发明提供了一种式I化合物的制备方法,其包括如下步骤:在溶剂中,将化合物9和化合物10进行如下取代化反应,得到式I化合物;
其中,X1为卤素;
R和R2独立地为C1-4烷基或被1个或多个氘代的C1-4烷基;
R1、R3、R4、R5和R6独立地为H或氘。
X1中,所述的卤素优选为F、Cl、Br或I,例如Cl。
R和R2中,所述的C1-4烷基和所述的被1个或多个氘取代的C1-4烷基中的C1-4烷基独立地优选为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基,例如甲基。
R和R2中,所述的被1个或多个氘取代的C1-4烷基优选为被3个氘取代的C1-4烷基,例如CD3
本发明中,所述的化合物9优选为 例如
本发明中,所述的化合物10优选为例如
本发明中,所述的化合物I优选为 例如
本发明中,所述的取代化反应条件和操作可以为本领域此类反应常规的条件和操作。本发明特别优选如下条件和操作;
本发明中,所述的溶剂优选为醇类溶剂(例如叔丁醇)、腈类溶剂(例如乙腈)、醚类溶剂(例如二氧六环或乙二醇二甲醚)、砜类溶剂(例如二甲亚砜)和酰胺类溶剂(例如N,N-二甲基甲酰胺(DMF)和/或N,N-二甲基乙酰胺(DMA)或N-甲基吡咯烷酮(NMP))中的一种或多种,更优选为 醇类溶剂(例如叔丁醇)和/或腈类溶剂(例如乙腈)。所述的溶剂的用量可不做具体限定,只要不影响反应进行即可。所述的溶剂与所述的化合物9的体积质量比优选为8-15mL/g,例如11.9mL/g。
本发明中,所述的化合物10与所述的化合物9的摩尔比优选为(1-1.2):1,例如1.1:1。
所述的取代反应的温度优选为50-100℃,例如60℃-90℃。
所述的取代反应的进程可以采用本领域常规的监测方法进行监测(例如TLC、HNMR、HPLC),以所述的化合物10不再反应或者消失作为反应的终点。所述的反应时间可为2-16h,例如5-10h。
所述的取代反应结束后,还进一步包括后处理步骤。所述的后处理步骤可以为此类反应所用的常规反应步骤,例如浓缩和柱层析。
所述的式I化合物的制备方法还可包括所述的化合物9的制备方法,所述的化合物9的制备方法优选方法1或方法2:
方法1:
所述的化合物9的制备方法包括如下步骤:在溶剂中,将化合物6和化合物7进行如下光延反应(Mitsunobu反应),得到所述的化合物9;
R1、R2、R3、R4、R5和R6的定义同前所述;
方法2:
所述的化合物9的制备方法包括如下步骤:在碱性试剂存在下,在溶剂中,将化合物6和化合物9进行如下的烷基化反应,得到所述的化合物9;
其中,X2为卤素(F、Cl、Br或I,例如Cl);R1和R2的定义同前所述。
方法1中,所述的化合物7优选为
方法1中,所述的光延反应条件和操作可以为本领域此类反应常规的条件和操作。本发明特别优选如下条件和操作;
方法1中,所述的溶剂可以为卤代烷类溶剂、醚类溶剂和酰胺类溶剂中的一种或多种,优选为醚类溶剂和酰胺类溶剂(例如N,N-二甲基甲酰胺(DMF)或N,N-二甲基乙酰胺),更优选酰胺类溶剂(例如N,N-二甲基甲酰胺(DMF)或N,N-二甲基乙酰胺)。所述的溶剂的用量可不做具体限定,只要不影响反应进行即可。所述的溶剂与所述的化合物6的体积质量比优选为2-8mL/g,例如5mL/g。
方法1中,所述的化合物7与所述的化合物6的摩尔比优选为(1-1.1):1,例如1:1。
方法1中,所述的光延反应优选在三苯基膦和偶氮试剂存在下进行。
其中,所述的三苯基膦与所述的化合物6的摩尔比优选为(1.2-1.5):1,例如1.2:1。
其中,所述的偶氮试剂优选为偶氮二甲酸异丙酯(DIAD)、偶氮二甲酸乙酯(DEAD)、偶氮二甲酸甲酯和偶氮二甲酸叔丁酯中的一种或多种,优选偶氮二甲酸异丙酯(DIAD)。
其中,所述的偶氮试剂与所述的化合物6的摩尔比优选为(1.2-1.5):1,例如1.3:1。
方法1中,所述的光延反应的温度优选为室温。
方法1中,所述的光延反应的进程可以采用本领域常规的监测方法进行监测(例如TLC、HNMR、HPLC),以所述的化合物6不再反应或者消失作为反应的终点。所述的反应时间可为5-24h,例如12h。
方法1中,所述的光延反应结束后,还进一步包括后处理步骤。所述的后处理步骤可以为此类反应所用的常规反应步骤,例如萃取(例如采用二氯甲烷萃取)、洗涤、干燥、浓缩和柱层析。
方法2中,X2中,所述的卤素优选为F、Cl、Br或I,例如Cl。
方法2中,所述的化合物8优选为
方法2中,所述的烷基化反应条件和操作可以为本领域此类反应常规的条件和操作。本发明特别优选如下条件和操作;
方法2中,所述的溶剂优选为腈类溶剂(例如乙腈)、醚类溶剂(例如二氧六环)和酰胺类溶剂(例如N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMA)和N-甲基吡咯烷酮(NMP))中的一种或多种,更优选为酰胺类溶剂(例如N,N-二甲基甲酰胺(DMF)或N,N-二甲基乙酰胺(DMA))。所述的溶剂的用量可不做具体限定,只要不影响反应进行即可。所述的溶剂与所述的化合物6的体积质量比优选为2-8mL/g,例如5mL/g。
方法2中,所述的碱性试剂优选为碱金属碳酸盐(例如碳酸钾、碳酸钠和碳酸铯等)和/或叔胺碱(例如三乙胺、二异丙基乙基胺和二甲基苯胺等),更优选为碱金属碳酸盐(例如碳酸钾)。
方法2中,所述的碱性试剂与所述的化合物6的摩尔比优选为(1-3):1,例如2.5:1。
方法2中,所述的化合物8与所述的化合物6的摩尔优选为(1-1.2):1,例如1.1:1。
方法2中,所述的烷基化反应的温度优选为50-100℃,更优选70-80℃,例如60℃。
方法2中,所述的烷基化反应的进程可以采用本领域常规的监测方法进行监测(例如TLC、HNMR、HPLC),以所述的化合物6不再反应或者消失作为反应的终点。所述的反应时间可为2-8h,例如5h。
方法2中,所述的烷基化反应结束后,还进一步包括后处理步骤。所述的后处理步骤可以为此类反应所用的常规反应步骤,例如萃取(例如采用二氯甲烷萃取)、洗涤、干燥、浓缩和柱层析。
所述的化合物9的制备方法还可包括所述的化合物6的制备方法,所述的化合物6的制备方法包括如下步骤:在脱保护试剂存在下,将化合物5进行如下式的脱保护反应,得到所述的化合物6;
其中,R5和R6独立地为H或氘。
所述的脱保护试剂可以为本领域常规的脱保护试剂,例如三氟醋酸。
其中,所述的脱保护试剂与所述的化合物6的摩尔比可以为本领域常规的摩尔比,优选为≥10:1。
所述的脱保护反应可以在溶剂存在或不存在下进行。当所述的脱保护反应在溶剂存在下进行时,所述的溶剂可以为卤代烃类溶剂,例如二氯甲烷。
所述的脱保护反应的温度优选为10-70℃,例如室温。
所述的脱保护反应的进程可以采用本领域常规的监测方法进行监测(例如TLC、HNMR、HPLC),以所述的化合物5不再反应或者消失作为反应的终点。所述的反应时间可为5-24h,例如24h。
所述的脱保护反应结束后,还进一步包括后处理步骤。所述的后处理步骤可以为此类反应所用的常规后处理步骤,例如浓缩、打浆、过滤,干燥和柱层析等。
所述的化合物6的制备方法还可包括所述的化合物5的制备方法,所述的化合物5的制备方法的条件和操作均同前所述。
本发明还提供了一种化合物9的制备方法,其包括如下步骤:在溶剂中,将化合物6和化合物7进行如下光延反应,得到所述的化合物9;
其中,R1、R2、R3、R4、R5和R6的定义同前所述;所述的光延反应的条件和操作均同前所述。
本发明还提供了一种化合物9的制备方法,其包括如下步骤:在碱性试剂存在下,在溶剂中,将化合物6和化合物9进行如下的烷基化反应,得到所述的化合物9;
其中,X2、R1、R2、R3、R4和R5的定义同前所述,所述的烷基化反应的条件和操作均同前所述。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明中中间体13a、14a、4b,7b,7c,7d,8b,8c,8d,10b和14b为自制,其他所用试剂和原料均市售可得。
本发明的积极进步效果在于:采用本发明的本发明的制备方法可以大幅提升多取代三嗪烷类化合物的收率且成本低和操作简单;采用本发明的制备方法制得的产品对新型冠状病毒3CL蛋白酶抑制活性佳、肝微粒代谢佳或药代动力学佳。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
本发明中室温是指10-35℃,过夜是指12-20小时。
本发明中,反应进程采用TLC进行检测,以已知化合物作为对照品,以此来判断反应进程。
相关的反应路线:

中间体制备
化合物13a(3-叔丁基-6-(乙硫基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4(1H,3H)-二酮)和化合物14a参考专利CN105452234B第[0648]-[0654]段方法制备,采用4b作为苄氯试剂,采用类似化合物14a的合成方法,制备得到14b。
化合物4b(1-(氯甲基-d2)-2,4,5-三氟苯)的合成
氮气保护下,将四氘铝锂悬溶于无水四氢呋喃中,滴加入2,4,5-三氟苯甲酸溶解的四氢呋喃溶液,加毕,升温回流1h,冷却,加1mL淬灭,再加入无水硫酸镁搅拌30min,过滤,浓缩至干,得4b-1,直接用于下一步。
将4b-1用无水二氯甲烷重新溶解,加入氯化亚砜,室温搅拌3h,TLC检测反应完毕,将反应液倒入冰水中,用二氯甲烷萃取3次,合并有机相,用饱和食盐水、碳酸氢钠和水洗涤,无水硫酸钠干燥,过滤,浓缩,得4b,LC-MS(ESI)183[M+H]+1H NMR(300MHz,CDCl3)δ7.34-7.24(m,1H),6.69-6.88(m,1H).
化合物7b((1-甲基-1H-1,2,4-三唑-3-基-5-d)甲醇)的合成
将(1-甲基-1H-1,2,4-三唑-3-基)甲醇(7a)溶解于无水四氢呋喃中,冰浴冷却,滴加入LiHMDS, 加毕,30min后滴加入重水,搅拌1h,将反应液倒入水中,用盐酸调pH至6-7左右,乙酸乙酯萃取,合并有机相,无水硫酸钠干燥,浓缩,用硅胶柱层析纯化得化合物7b,LC-MS(ESI):114.1(M+)。
化合物7c(1-甲基-d3-1H-1,2,4-三唑-3-基)甲醇的合成
将1H-1,2,4三唑-3-甲酸甲酯e溶解于无水四氢呋喃中,冰浴冷却,加入LiHMDS,反应30min左右,再滴加入氘代碘甲烷,加毕,升至室温搅拌反应2h,加水淬灭,二氯甲烷萃取,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,得7c-1。1H NMR(400MHz,CDCl3)δ8.17(s,1H),4.01(s,3H);LC-MS(ESI)145.1[M+1]+.
氮气保护下,将7c-1溶解于无水四氢呋喃中,滴加入四氢铝锂的四氢呋喃溶液,升温回流反应1h,冷却至室温,缓慢加入1mL水淬灭,再加入无水硫酸镁,搅拌1h,过滤,浓缩,得7c,LC-MS(ESI):116.1(M+);1H NMR(400MHz,CDCl3)δ8.04(d,J=36.0Hz,1H),4.76(s,2H),3.48(s,1H)。
化合物7d((1-甲基-1H-1,2,4-三唑-3-基)甲醇-d2(7d))的合成
氮气保护下,将四氘铝锂悬溶于无水四氢呋喃中,滴加入1-甲基-1H-1,2,4-三氮唑-3-甲酸甲酯溶解的四氢呋喃溶液,加毕,升温回流1h,冷却,加1mL淬灭,再加入无水硫酸镁搅拌30min,过滤,浓缩至干,得7d,LC-MS(ESI,m/z):115.1(M+);1H NMR(400MHz,DMSO-d6)δ8.23(s,1H),3.81(s,3H),3.20(s,1H).
化合物8b((1-甲基-1H-1,2,4-三唑-3-基-5-d)氯甲烷盐酸盐)
将(1-甲基-1H-1,2,4-三唑-3-基-5-氘)甲醇)(7b)2-03溶解于无水二氯甲烷中,加入氯化亚砜,室温搅拌3h,减压浓缩除去溶剂和过量得氯化亚砜,残渣用乙醚打浆,过滤,真空干燥,得8b。LC-MS(ESI,m/z):132.0[M+H]+
化合物8c((1-甲基-d3-1H-1,2,4-三唑-3-基-5-氘)氯甲烷盐酸盐)
将(1-甲基-d3-1H-1,2,4-三唑-3-基)甲醇)(7c)溶解于无水二氯甲烷中,加入氯化亚砜,室温搅拌3h,减压浓缩除去溶剂和过量得氯化亚砜,残渣用乙醚打浆,过滤,真空干燥,得8c。LC-MS(ESI):135.0[M+H]+1H NMR(400MHz,DMSO)δ8.06(s,1H),4.78(s,2H).
化合物8d(3-氯甲基-d2-1-甲基-1H-1,2,4-三氮唑盐酸盐
将((1-甲基-1H-1,2,4-三唑-3-基)甲醇-d2(7d))溶解于无水二氯甲烷中,加入氯化亚砜,室温搅拌3h,减压浓缩除去溶剂和过量得氯化亚砜,残渣用乙醚打浆,过滤,真空干燥,得8c。LC-MS(ESI,m/z):134.0[M+H]+
化合物10a参照专利WO2019153080A1方法制备制备得到。
采用与化合物10a相同的方法,用氘代碘甲烷替代碘甲烷合成得到化合物10b(6-氯-2-三氘甲基-2H-吲唑-5-胺
实施例1 6-(1H-吡唑-1-基)-3-叔丁基-1,3,5-三嗪-2,4(1H,3H)-二酮(化合物3)的合成
在冰浴冷却下,向叔丁胺(73.14g,1.0mol)的DMF溶液(2L)中加入1,1'-羰基二咪唑(170.3g,1.05mmol)和DBU(167.5g,1.10mmol),搅拌3h后加入吡唑-1-甲基甲脒(110.12g,1.0mmol)搅拌了5小时。再加入1,1'-羰基二咪唑(194.58g,1.2mol)和DBU(182.7g,120mmol),升温50℃搅拌反应过夜(15h左右)。冷却,将反应液倒入冰水中,用稀盐酸调节pH至1-2,有固体物析出,过滤,水洗,干燥,得化合物3,200.1g,收率:85%。LC-MS(ESI,m/z):235.1(M+)
实施例2 6-(1H-吡唑-1-基)-3-叔丁基-1,3,5-三嗪-2,4(1H,3H)-二酮(化合物3)的合成
在冰浴冷却下向吡唑-1-甲基甲脒盐酸盐(146.6g,1.0mol)和DMF(2L)的混合液中加入叔丁基异氰酸酯(105g,105mmol)和DBU(182.7g,1.2mol),搅拌了5小时。再加入1,1'-羰基二咪唑(194.6g,1.2mmol)和DBU(182.7mL,1.2mol),升温50℃搅拌反应过夜。冷却,将反应液倒入冰水中,用稀盐酸调节pH至1-2,有固体物析出,过滤,水洗,干燥,得化合物3,202.3g,收率:86%。LC-MS(ESI,m/z):235.1(M+)
实施例3 3-叔丁基-6-(1H-吡唑-1-基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪-2,4(1H,3H)-二酮(化合物5a)的合成
将化合物3(23.5g,100mmol)和二异丙基乙基胺(10.6g,120mmol)溶解于DMF中,室温下搅拌30min,再缓慢滴加入2,4,5-三氟苄溴(4a,24.75g,110mmol),加毕,升温60℃反应8h,TLC检测反应完毕。将反应液冷却至室温,倒入冰水中,用稀盐酸1调节pH值至酸性,乙酸乙酯萃取,合并有机相,用饱和食盐水水洗涤,无水硫酸钠干燥。减压浓缩,粗品用硅胶柱层析纯化得化合物5,36.1g,收率95.2%。LC-MS(ESI,m/z):379.1(M+)
实施例4 3-叔丁基-6-(1H-吡唑-1-基)-1-(2,4,5-三氟)二氘苄基-1,3,5-三嗪-2,4(1H,3H)-二酮(化合物5b)的合成
将化合物3(23.5g,100mmol)和二异丙基乙基胺(10.6g,120mmol)溶解于DMF中,室温下搅拌30min,再缓慢滴加入1-(氯甲基-d2)-2,4,5-三氟苯(4b,24.75g,110mmol),加毕,升温60℃反应8h,TLC检测反应完毕。将反应液冷却至室温,倒入冰水中,用稀盐酸1调节pH值至酸性,乙酸乙酯萃取,合并有机相,用饱和食盐水水洗涤,无水硫酸钠干燥。减压浓缩,粗品用硅胶柱层析纯化得化合物5,36.1g,收率95.2%。LC-MS(ESI,m/z):381.1(M+)
实施例5 1-(2,4,5-三氟苄基)-6-(1H-吡唑-1-基)-1,3,5-三嗪-2,4(1H,3H)-二酮(化合物6a)的合成
将化合物5(35g,92.26mmol)溶解于二氯甲烷,加入三氟乙酸(l00mL),在室温下搅拌24h左右。将反应液减压浓缩,残渣用石油醚-乙酸乙酯混合溶剂打浆,过滤干燥得化合物6a,29.0g,收率:97.3%。LC-MS(ESI,m/z):323.1(M+)
实施例6 1-(2,4,5-三氟苄基-d2)-6-(1H-吡唑-1-基)-1,3,5-三嗪-2,4(1H,3H)-二酮(化合物6b)的合成
将化合物5b(35g,92.26mmol)溶解于二氯甲烷,加入三氟乙酸(l00mL),在室温下搅拌24h左右。将反应液减压浓缩,残渣用石油醚-乙酸乙酯混合溶剂打浆,过滤干燥得化合物6b,29.0g,收率:97.0%。LC-MS(ESI,m/z):325.1(M+)
实施例7 3-((1-甲基-1H-1,2,4-三唑-3-基)甲基)-6-(1H-吡唑-1-基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4(1H,3H)-二酮(化合物9a)的合成
将化合物6a(10.0g,30.9mmol)、(1-甲基-1H-1,2,4-三唑-3-基)甲醇(7a,3.51g,31mmol)和三苯基膦(9.43g,36mmol)溶解于无水DMF(50mL),加入DIAD(7.28g,36mmol),室温搅拌反应24h.加水淬灭,二氯甲烷萃取,合并有机相,用饱和氯化钠洗涤,无水硫酸钠干燥,减压浓缩,残渣用硅胶拌样柱层析(二氯甲烷-甲醇混合溶剂梯度洗脱)分离纯化,得化合物9a,11.63g,90%。LC-MS(ESI,m/z):418.1(M+)
实施例8 3-((1-甲基-1H-1,2,4-三唑-3-基-5-氘)甲基)-6-(1H-吡唑-1-基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4(1H,3H)-二酮(化合物9b)的合成
将化合物6a(10.0g,30.9mmol)溶解于无水DMA(50mL),加入碳酸钾(10.7g,77.5mmol)和(1-甲基-1H-1,2,4-三唑-3-基-5-氘)氯甲烷盐酸盐(8b,6.10g,36.3mmol),升温60℃搅拌反应24h.冷却至室温,将反应液倒入水中,二氯甲烷萃取,合并有机相,用饱和氯化钠洗涤,无水硫酸钠干燥,减压浓缩,残渣用硅胶拌样柱层析(二氯甲烷-甲醇混合溶剂梯度洗脱)分离纯化,得化合物9b,10.7g,83%。LC-MS(ESI,m/z):419.1(M+)
实施例9(E)-3-叔丁基-6-((6-氯-2-甲基-2H-吲唑-5-基)亚胺基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷- 2,4-二酮(化合物11a)
将化合物5a(37.9g,100mmol)与6-氯-2-甲基-2H-吲唑-5-胺(10a,20.0g,110.5mmol)溶解于叔丁醇(500mL)中,升温回流反应3h,减压浓缩,残渣用硅胶柱层析纯化,得化合物11a,44.36g,收率90%.LC-MS(ESI,m/z):492.1(M+);1H-NMR(400MHz,DMSO-d6):δ10.56-9.39(m,1H),8.41-8.23(m,1H),7.66-7.13(m,4H),5.14(s,2H),4.15(s,3H),1.57(s,9H)
实施例10(E)-3-叔丁基-6-((6-氯-2-甲基-2H-吲唑-5-基)亚胺基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(化合物11b)
将3-叔丁基-6-(乙硫基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4(1H,3H)-二酮(37.3g,100mmol,化合物13,参考文献制备)与6-氯-2-三氘甲基-2H-吲唑-5-胺(10b,20.2g,111.6mmol)溶解于叔丁醇(150mL)和乙酸(50mL)缓和溶剂中中,升温回流反应3h,减压浓缩,残渣用硅胶柱层析纯化,得化合物11b,19.8g,收率40%。LC-MS(ESI,m/z):495.2(M+).
实施例11(E)-6-((6-氯-2-甲基-2H-吲唑-5-基)亚胺基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(化合物12a)的合成
将化合物11a(41.9g,85mmol)溶解三氟乙酸(l00mL),在室温下搅拌24h左右。将反应液减压浓缩,残渣用石油醚打浆,过滤,干燥,得化合物12a,36.0g,收率97%。LC-MS(ESI,m/z):436.1(M+);1H NMR(400MHz,DMSO-d6)11.34(s,1H),10.63(s,1H),8.27(s,1H),7.70-7.56(m,3H),7.14(s,1H),5.16(s,2H),4.17(s,3H).
实施例12(E)-6-((6-氯-2-甲基-2H-吲唑-5-基)亚胺基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(化合物12a)的合成
将化合物5a和化合物10a溶解于三氟乙酸中,加热至50℃搅拌反应5h,冷却至室温,有固体析出,过滤,水洗,干燥,得化合物12a,收率90%。LC-MS(ESI,m/z):436.1(M+)。1H NMR(400MHz,DMSO-d6)11.34(s,1H),10.63(s,1H),8.27(s,1H),7.70-7.56(m,3H),7.14(s,1H),5.16(s,2H),4.17(s,3H).
实施例13(E)-6-((6-氯-2-甲基-2H-吲唑-5-基)亚胺基)-1-(2,4,5-三氟苯基)二氘甲基-1,3,5-三嗪烷-2,4-二酮(化合物12b)的合成
将化合物6b(32.3g,100mmol)与6-氯-2-甲基-2H-吲唑-5-胺(10a,20.0g,110.5mmol)溶解于叔丁醇(500mL)中,升温回流反应3h,减压浓缩,残渣用硅胶柱层析纯化,得化合物12b,44.36g,收率90%。LC-MS(ESI,m/z):438.1(M+)
实施例14(E)-6-((6-氯-2-甲基-2H-吲唑-5-基)亚胺基)-1-(2,4,5-三氟苯基)二氘甲基-1,3,5-三嗪烷- 2,4-二酮(化合物12b)的合成
将化合物5b(37.9g,100mmol)与6-氯-2-甲基-2H-吲唑-5-胺(10a,20.0g,110.5mmol)溶解于三氟乙酸(500mL)中,升温回流反应3h,减压浓缩,残渣用硅胶柱层析纯化,得化合物12b,46.58g,收率94%。LC-MS(ESI,m/z):438.1(M+).
实施例15(E)-6-((6-氯-2-三氘甲基-2H-吲唑-5-基)亚胺基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(化合物12c)的合成
将6-乙硫基-1-(2,4,5三氟)二氘苄基-1,3,5-三嗪-2,4(1H,3H)-二酮(32.3g,100mmol,化合物14b)与6-氯-2-三氘甲基-2H-吲唑-5-胺(20.0g,110.5mmol,化合物10b)溶解于特戊醇(500mL)中,升温回流反应3h,减压浓缩,残渣用硅胶柱层析纯化,得化合物11a,44.36g,收率90%。LC-MS(ESI,m/z):438.1(M+)
实施例16(E)-6-((6-氯-2-甲基-2H-吲唑-5-基)胺基)-3-((1-甲基-1H-1,2,4-三唑-3-基)甲基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(Ia)的合成
将化合物9a(4.18g,10mmol)和6-氯-2-甲基-2H-吲唑-5-胺(10a,2.0g,11mmol)溶解于叔丁醇中(50mL),升温80℃搅拌反应5h.减压浓缩,残渣用硅胶拌样柱层析(二氯甲烷-甲醇混合溶剂梯度洗脱)分离纯化,得目标化合物Ia,4.52g,85%。LC-MS(ESI,m/z):532.1(M+);1H NMR(400MHz,DMSO-d6:DCl=4:1)δ9.05(s,1H),8.41(s,1H),7.80(s,1H),7.57(s,1H),7.46-7.55(m,2H),5.29(s,2H),5.08(s,2H),3.92(s,3H).
实施例17(E)-6-((6-氯-2-甲基-2H-吲唑-5-基)胺基)-3-((1-甲基-1H-1,2,4-三唑-3-基)甲基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(Ia)的合成
将化合物12a(13.1g,30mmol)和3-氯甲基-1-甲基-1H-1,2,4-三氮唑盐酸盐(8a,5.54g,33mmol)溶解于N,N-二甲基甲酰胺中,加入碳酸钾(10.35g,75mmol)升温80℃搅拌反应5h,冷却至室温,将反应液倒入水中,二氯甲烷萃取,合并有机相,再用水洗涤,无水硫酸钠干燥,减压浓缩,残渣用硅胶柱层析分离纯化,得目标化合物Ia,8.14g,收率51%。LC-MS(ESI,m/z):532.1(M+H)+1H NMR(400MHz,DMSO-d6:DCl=4:1)δ9.05(s,1H),8.41(s,1H),7.80(s,1H),7.57(s,1H),7.46-7.55(m,2H),5.29(s,2H),5.08(s,2H),3.92(s,3H).
实施例18(E)-6-((6-氯-2-甲基-2H-吲唑-5-基)胺基)-3-((1-甲基-1H-1,2,4-三唑-3-基-5-氘)甲基)-1- (2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(Ib)的合成
将化合物9b(4.18g,10mmol)和6-氯-2-甲基-2H-吲唑-5-胺(10a,2.03g,11mmol)溶解于特戊醇中(50mL),升温100℃反应10h.减压浓缩,残渣用硅胶拌样柱层析(二氯甲烷-甲醇混合溶剂梯度洗脱)分离纯化,得目标化合物Ib,4.43g,83%。LC-MS(ESI,m/z):533.1(M+)
或,将化合物12a(13.1g,30mmol)和3-氯甲基-1-甲基-1H-1,2,4-三氮唑-5-氘盐酸盐(8a,5.54g,33mmol)溶解于N,N-二甲基甲酰胺中,加入碳酸铯(10.35g,75mmol)升温50℃搅拌反应8h,冷却至室温,将反应液倒入水中,二氯甲烷萃取,合并有机相,再用水洗涤,无水硫酸钠干燥,减压浓缩,残渣用硅胶柱层析分离纯化,得目标化合物Ib,8.14g,收率51%。LC-MS(ESI,m/z):533.1(M+)
实施例19(E)-6-((6-氯-2-甲基-2H-吲唑-5-基)胺基)-3-((1-三氘甲基-1H-1,2,4-三唑-3-基)甲基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(Ic)的合成
将化合物12a(13.1g,30mmol)和3-氯甲基-1-三氘甲基-1H-1,2,4-三氮唑盐酸盐(8c,5.54g,33mmol)溶解于N,N-二甲基甲酰胺中,加入碳酸钾(10.35g,75mmol)升温80℃搅拌反应5h,冷却至室温,将反应液倒入水中,二氯甲烷萃取,合并有机相,再用水洗涤,无水硫酸钠干燥,减压浓缩,残渣用硅胶柱层析分离纯化,得目标化合物Ic,8.14g,收率51%。LC-MS(ESI,m/z):534.1(M+);1H NMR(400MHz,Pyridine-d5)δ8.33(s,1H),8.02-7.91(m,1H),7.87(s,2H),7.86(s,1H),7.38(s,1H),7.13-7.22(m,1H),5.66(s,3H),5.57(s,3H),3.99(s,3H).
实施例20(E)-6-((6-氯-2-三氘甲基-2H-吲唑-5-基)胺基)-3-((1-甲基-1H-1,2,4-三唑-3-基-5-氘)甲基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(Ia)的合成
将化合物12a(13.2g,30mmol)、三苯基膦(9.43g,36mmol)和(1-甲基-1H-1,2,4-三唑-3-基)甲醇(7a,3.83g,33mmol)溶解于DMA(150mL)中,滴加入偶氮二甲酸异丁酯(DIAD),室温搅拌反应24h,将反应液倒入水中,用二氯甲烷萃取,合并有机相,水洗涤,无水硫酸钠干燥,减压浓缩,残渣用硅胶柱层析分离纯化,得目标化合物Ia,13.6g,收率85%。LC-MS(ESI,m/z):532.1(M+)
实施例21(E)-6-((6-氯-2-甲基-2H-吲唑-5-基)胺基)-3-((1-甲基-d3-1H-1,2,4-三唑-3-基)甲基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(Ic)的合成
将化合物12a(13.1g,30mmol)、三苯基膦(9.43g,36mmol)和(1-甲基-d3-1H-1,2,4-三唑-3-基)甲醇(7c,3.76g,33mmol)溶解于无水DMF(100mL)中,滴加入偶氮二甲酸乙酯(DEAD),室温搅拌反应24h,将反应液倒入水中,用二氯甲烷萃取,合并有机相,水洗涤,无水硫酸钠干燥,减压浓缩,残渣用硅胶柱层析分离纯化,得目标化合物Ic,14.1g,收率88%。LC-MS(ESI,m/z)535.1(M+H)+1H NMR(400MHz,Pyridine-d5)δ8.33(s,1H),8.02–7.91(m,1H),7.87(s,2H),7.86(s,1H),7.38(s,1H),7.13-7.22(m,1H),5.66(s,3H),5.57(s,3H),3.99(s,3H).
实施例22(E)-6-((6-氯-2-甲基-2H-吲唑-5-基)胺基)-3-((1-甲基-1H-1,2,4-三唑-3-基)甲基-d2)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(Id)的合成
将化合物12a(13.1g,30mmol)和3-氯甲基-d2-1-甲基-1H-1,2,4-三氮唑盐酸盐(8d,5.64g,33mmol)溶解于N,N-二甲基乙酰胺(100mL)中,加入碳酸钾10.35g,75mmol),升温80℃搅拌反应5h,冷却至室温,将反应液倒入水中,二氯甲烷萃取,合并有机相,再用水洗涤,无水硫酸钠干燥,减压浓缩,残渣用硅胶柱层析分离纯化,得目标化合物Id,8.03g,收率50%。LC-MS(ESI,m/z):534.1(M+H)+1H NMR(400MHz,DMSO-d6)δ11.05(s,0.6H,NH),9.70(s,0.4H,NH),8.36(s,1H),8.28(s,1H),7.71(s,1H),7.40-7.65(m,2H),7.15(s,1H),5.23(s,2H),4.15(s,3H),3.80(s,3H);
实施例23(E)-6-((6-氯-2-甲基-2H-吲唑-5-基)胺基)-3-((1-甲基-1H-1,2,4-三唑-3-基)甲基)-1-(2,4,5-三氟)二氘苄基-1,3,5-三嗪烷-2,4-二酮(Ie)的合成
将化合物12b(13.1g,30mmol)和3-氯甲基-1-甲基-1H-1,2,4-三唑盐酸盐(8a,5.64g,33mmol)溶解于N,N-二甲基乙酰胺(100mL)中,加入碳酸钾10.35g,75mmol),升温80℃搅拌反应5h,冷却至室温,将反应液倒入水中,二氯甲烷萃取,合并有机相,再用水洗涤,无水硫酸钠干燥,减压浓缩,残渣用硅胶柱层析分离纯化,得目标化合物Ie,8.03g,收率50%。LC-MS(ESI,m/z):533.1(M+).1H NMR(400MHz,DMSO-d6)δ11.07(brs),9.68(brs),8.23-8.44(m,2H),7.59-7.81(m,2H),7.13(s,1H),4.92(s,2H),4.14(s,3H),3.81(s,3H).
实施例24(E)-6-((6-氯-2-甲基-d3-2H-吲唑-5-基)胺基)-3-((1-甲基-1H-1,2,4-三唑-3-基)甲基)-1-(2,4,5-三氟苄基)-1,3,5-三嗪烷-2,4-二酮(If)的合成
将化合物12c(13.1g,30mmol)和(1-甲基-1H-1,2,4-三唑-3-基)氯甲烷盐酸盐(8a,5.64g,33mmol)溶解于N,N-二甲基乙酰胺(100mL)中,加入碳酸钾10.35g,75mmol),升温80℃搅拌反应5h,冷却至室温,将反应液倒入水中,二氯甲烷萃取,合并有机相,再用水洗涤,无水硫酸钠干燥,减压浓缩,残渣用硅胶柱层析分离纯化,得目标化合物Id,8.03g,收率50%。LC-MS(ESI,m/z):534.1(M+).1H NMR(400MHz,DMSO-d6)δ11.07(brs),9.68(brs),8.36(s,1H),8.23(s,1H),7.35-7.85(m,3H),7.13(s,1H),5.20(s,2H),4.92(s,2H),3.80(s,3H).
效果实施例1本发明部分化合物对3CL蛋白酶抑制试验。
新型冠状病毒3CL蛋白酶的来源:药明康德SARS-CoV-2WT:货号RP200330A;SARS-CoV-2P132H:货号VSM10-20211213。
荧光标记的多肽MCA-AVLQSGFR-Lys(Dnp)-Lys-NH2来源:供应商:Genscript;货号:C6721FL040-3。
采用文献报道的荧光共振能量转移方法(Jin et al.2020.Structure of Mprofrom SARS-CoV-2 and discovery of its inhibitors.Nature,582:289–293),进行化合物的酶抑制活性测定。以市售荧光标记的多肽MCA-AVLQSGFR-Lys(Dnp)-Lys-NH2为底物(GLBiochem,Shanghai),通过酶动力学方法测定3CL酶的催化活性及初始速度。在化合物的酶抑制活性测定中,孵育体系含有2019-nCoV的3CL蛋白酶(0.2μM),荧光标记多肽(20μM)及系列浓度的待测化合物(0-20μM)。通过酶标仪测定孵育2-3分钟时体系的荧光强度,激发波长及检测波长分别为320nm及405nm。根据加入抑制剂后酶催化底物水解的初始速度变化率,计算不同浓度下待测物的酶抑制率。所有实验均重复3次,并通过Prism5软件计算待测物抑制酶的IC50值。我们测定了如下化合物对新型冠状病毒3CL蛋白酶的抑制活性,具体 结果如表1所示。
表1
在酶抑制活性实验中,我们选用S-217622作为阳性对照药物。通过以上结果,可以看出,在本发明的一些化合物,即在S-217622特定结构的氘取代物,对SARS-CoV-2新型冠状病毒的3CL蛋白水解酶的抑制活性与S-217622相当,部分氘代化合物的抑制活性显著强于S217622。
效果实施例2本发明部分化合物的肝微粒代谢研究
昆明小鼠肝微粒体(IPHASE/汇智泰康)的制备用超速离心法,新鲜小鼠肝称重,于3倍量体积的Tris-HCl缓冲液中,用搅碎机绞碎,然后用匀浆机匀浆,上述操作均在4℃以下冰浴中操作,匀浆液于7000g,4℃离心20分钟,取上悬液于10000g,4℃离心30分钟,弃去上清液,沉淀为小鼠肝微粒体,在0.25mol/L蔗糖溶液中制成悬浮液,液氮中保存。以Lowry法测得小鼠肝微粒体蛋白质含量为7.8mg/mL。
小鼠肝微粒体体外温孵体系组成,温孵体系最终体积为5ml,内含小鼠肝微粒体2.0mg/mL,6-磷酸葡萄糖0.01mmol/mL,G6-PDH 1U/mL,氯化镁4.0umol/mL,NADP0.5umol/mL,NADH 1.0umol/mL,混合摇匀后,于37℃水浴中振荡,每一样品配制两份,将待测物添加到小鼠肝微粒体酶孵育液中,使待测物的浓度为50mg/L,充分振荡,37℃孵育,并同时以加热失活的肝匀浆做空白对照实验。每隔0.5小时在孵育溶液表面通氧气1分钟,分别于0、5、15、30、60分钟取样品0.5mL,到时加入3倍体积的乙腈终止代谢反应,进行测定,计算代谢清除率和半衰期,结果如表2所示。
表2
通过小鼠肝微粒代谢试验结果,可以看到,本发明不同位置的氘取代的三嗪衍生物在小鼠肝微粒中基本不代谢,与S-217622相比无显著差异。
效果实施例2本发明部分化合物的肝细胞代谢研究
1、溶液的制备
将待测试化合物配置成10mM浓度的DMSO储备溶液,然后用乙腈将待测化合物的储备溶液稀释成200μM溶液。
2、肝细胞体孵育
制备总体积为200μL的孵育混合物,最终组分浓度如下:william's E培养基、肝细胞(1百万/mL)和试验化合物或阳性对照(0.5μM)。在37℃±5%CO2培养箱中预培养所有其他成分10分钟后,加入化合物。用移液管混合以获得均匀的悬浮液,并立即将20μL孵育0分钟的样品转移到“淬灭”板的孔中,然后用移液管混合。在15、30、60、120和240分钟时,用移液管混合培养物,并在每个时间点将20L培养物的样品连续转移到单独的“淬灭”板的孔中,然后用移液管混合。在“淬灭”板中加入200μL含IS的乙腈,结果如表3所示。
表3
3、样本分析
将96孔板以4000rpm离心10分钟。取50μL上清液与50μL去离子水混合,然后注入LC-MS/MS系统进行分析。数据处理后,计算Clint、Clapp、Clh和Eh等参数,结果如表9所示。
表9
通过肝细胞代谢试验结果,可以看到,与S-217622相比,本发明在不同位置的氘取代的三嗪衍生物的肝细胞代谢清除率显著降低,氘代后实现了对S-217622代谢半衰期延长的效果。在保留对SARS-CoV-2有效性的基础上,较为显著地延长了半衰期,对剂量的需求降低,减小副作用,同时扩大治疗窗范围,因此,本发明用于制作治疗冠状病毒感染相关疾病的药物具有非常好的前景。
效果实施例3本发明部分化合物的体内药代动力学研究
1、供试品配制
IV:5%DMSO+95%PG
PO:5%DMSO+95%MC(0.5%)
G10:CVL201:烟酰胺的质量比是5.3:1。比如称量6.09mg(5*1.218)CVL201,再称取1.149mg(6.09mg/5.3)烟酰胺,再用5ml溶媒配制成混悬液。
2、实验动物
种属:健康雄性SD(Sprague Dawley)大鼠(SPF级),体重180~220g。
来源:上海市计划生育科学研究所实验动物经营部,动物转移自实验机构动物储备库(999M-017)。
数量:雄性30只
动物挑选:不进行随机分组
3、给药方式与采血时间点
给药前称重,根据体重,计算给药量。通过静脉注射或灌胃口服给药。
服灌胃给药(5mg/kg),于给药药后0.25h,0.5h,1h,2h,4h,6h,8h和24h经大鼠颈静脉取血0.2ml,分离制备血浆,采用LC-MS/MS测定血浆中化合物的浓度。
静脉注射给药(0.5mg/kg),于给药药后0.033h,0.25h,0.5h,1h,2h,4h,8h和24h经大鼠颈静脉取血0.2ml,EDTA-K2抗凝,采集后放置冰上。
5、血浆样品处理
血液样本采集后置于冰上,并于1小时之内离心分离血浆(离心条件:6800g,6分钟,2-8℃)。血浆样本在分析前存放时则放于-80℃冰箱内。
6、样品分析
1)LC-MS/MS测定的样品制备:
S-217622和Ib:将40μL血浆样品用400μL含有10ng/mL IS(IS为维拉帕米,Verapamil)的甲醇进行蛋白质沉淀。将混合物涡旋1分钟,然后以18000g离心7分钟。将400μL上清液转移到96孔板。1μL上清液进行LC-MS/MS分析。
Id:将20μL血浆样品用400μL含有10ng/mL IS(IS为维拉帕米,Verapamil)的甲醇进行蛋白质沉淀。将混合物涡旋1分钟,然后以18000g离心7分钟。将300μL上清液转移到96孔板。8μL上清液进行LC-MS/MS分析。
2)LC-MS/MS分析方法:
流动相A:0.1%甲酸水溶液;
流动相B:0.1%甲酸乙腈溶液;
柱子:ACQUITY UPLC BEH C18 1.7μm 2.1*50mm;
流速:0.60mL/min。
柱温:40℃
梯度洗脱程序表4所示:
表4
S-217622出峰时间:0.69min;MS:Q1/Q3 Masses:532.10/394.00Da
内标出峰时间:0.63min;MS:Q1/Q3 Masses:455.30/165.20Da
Id出峰时间:0.86min;MS:Q1/Q3 Masses:535.10/286.00Da
内标出峰时间:0.82min;MS:Q1/Q3 Masses:455.30/165.20Da。
3)结果分析
通过不同时间点的血药浓度数据,运用Phoenix WinNonlin7.0软件非房室模型计算药代动力学参数,提供AUC0-∞、Cmax、Tmax和T1/2等参数及其平均值和标准差。结果如下图表5所示
表5
实验结果表明,与S-217622相比,氘代化合物Id注射给药后Cmax提供了125%,AUC提高了198%,T1/2延长了124%,口服给药后Cmax提高了145%,AUC提高了144%。可见,S-217622的氘代修饰物Id保留对SARS-CoV-2有效性的基础上,能较为显著提高血药浓度和延长了代谢半衰期,有助于降低用于剂量,减小副作用,同时扩大治疗窗范围,因此,本发明用于制作治疗冠状病毒感染相关疾病的药物具有非常好的前景。

Claims (14)

  1. 一种式I化合物的制备方法,其特征在于,其包括如下步骤;在溶剂中,将化合物12和化合物7进行如下的光延反应,得到式I化合物;
    其中,R和R2独立地为C1-4烷基或被1个或多个氘代的C1-4烷基;
    R1、R3、R4、R5和R6独立地为H或氘。
  2. 如权利要求1所述的式I化合物的制备方法,其特征在于,所述的化合物12为
    和/或,所述的化合物7为
    和/或,所述的化合物I为
    和/或,所述的溶剂为酰胺类溶剂,进一步优选为N,N-二甲基甲酰胺和/或N,N-二甲基乙酰胺;
    和/或,所述的溶剂与所述的化合物12的体积质量比为3-25mL/g,例如7.6mL/g或11.3mL/g;
    和/或,所述的化合物7与所述的化合物12的摩尔比为(1-1.1):1,例如1.1:1;
    和/或,所述的光延反应在三苯基膦和偶氮试剂存在下进行;
    所述的偶氮试剂为偶氮二甲酸异丙酯、偶氮二甲酸乙酯、偶氮二甲酸甲酯和偶氮二甲酸叔丁酯中的一种或多种,优选偶氮二甲酸异丙酯;
    所述的偶氮试剂与所述的化合物12的摩尔比为(1.2-1.5):1;
    和/或,所述的光延反应的温度为室温。
  3. 如权利要求1或2所述的式I化合物的制备方法,其特征在于,所述的式I化合物的制备方法还包括所述的化合物12的制备方法,所述的化合物12制备方法为方法i、方法ii或方法iii:
    方法i:
    所述的化合物12制备方法包括如下步骤:在脱保护试剂存在下,将化合物11进行如下式的脱保护反应,得到所述的12化合物;
    R、R5和R6的定义均如权利要求1或2所述;
    方法ii:
    所述的化合物12制备方法包括如下步骤:在三氟醋酸存在下中,将所述的化合物5和所述的化合物10进行如下反应,得到所述的12化合物;
    其中,X1为卤素;R、R5和R6的定义如权利要求1或2所述;
    方法iii:
    所述的化合物12制备方法包括如下步骤:在溶剂中,将所述的化合物14和所述的化合物10进行如下的反应,得到所述的12化合物;
    其中,X1为卤素;R、R5和R6的定义均如权利要求1或2所述。
  4. 如权利要求3所述的式I化合物的制备方法,其特征在于,方法i中,所述的脱保护试剂为三氟醋酸;
    和/或,方法i中,所述的脱保护试剂与所述的化合物11的摩尔比为≥10:1;
    和/或,方法i中,所述的化合物11为
    和/或,方法i中,所述的脱保护试剂可以在溶剂存在或不存在下进行;当所述的反应在溶剂存在下进行时,所述的溶剂可以为卤代烃类溶剂,例如二氯甲烷;
    和/或,方法i中,所述的脱保护反应的温度为10-70℃,例如室温;
    和/或,方法ii中,所述的化合物5为
    和/或,方法ii中,所述的化合物10为
    和/或,方法ii中,所述的反应在溶剂存在下或者不存在下进行反应;
    当所述的反应在溶剂存在下进行反应时,所述的溶剂可为羧酸类溶剂、醇类溶剂、腈类溶剂、醚类溶剂、砜类溶剂和酰胺类溶剂中一种或多种;
    和/或,方法ii中,所述的化合物10与所述的化合物5的摩尔比为(1.05-1.2):1,例如1.1:1;
    和/或,方法ii中,所述的反应的温度为60-120℃,例如60-80℃;
    和/或,方法iii中,所述的化合物14为
    和/或,方法iii中,所述的化合物10为
    和/或,方法iii中,所述的化合物13优选为
    和/或,方法iii中,所述的溶剂为醇类溶剂、腈类溶剂、醚类溶剂、砜类溶剂和酰胺类溶剂中一种或多种,优选为醇类溶剂,进一步优选为叔丁醇;
    和/或,方法iii中,所述的化合物10与所述的化合物14的摩尔比为(1.05-1.2):1,例如1.1:1;
    和/或,方法iii中,所述的反应的温度为60-120℃,例如60-80℃。
  5. 如权利要求1-4中任一项所述的式I化合物的制备方法,其特征在于,所述的化合物12的制备方法还可包括所述的化合物11的制备方法,所述的化合物11的制备方法为方法a或方法b:
    方法a:
    所述的化合物11的制备方法包括如下步骤:在溶剂中,将所述的化合物5和所述的化合物10进行如下反应,得到所述化合物11;
    X1为卤素;R、R5和R6的定义均如权利要求1或2所述;
    方法b:
    所述的化合物11的制备方法包括如下步骤:在溶剂中,将所述的化合物13和所述的化合物10进行如下反应,得到所述化合物11;
    X1为卤素;R5、R6和R定义均如权利要求1或2所述。
  6. 如权利要求5所述的式I化合物的制备方法,其特征在于,方法a中,所述的化合物5为
    和/或,方法a中,所述的化合物10为
    和/或,方法a中,所述的化合物10与所述的化合物5的摩尔比为(1.05-1.2):1;所述的反应的其他条件和操作均如权利要求3或4中所述的方法ii中其他条件和操作;
    和/或,方法a中,所述的化合物11的制备方法还包括所述的化合物5的制备方法,所述的化合物5的制备方法包括如下步骤:在碱存在下,将化合物3和化合物4在溶剂中进行如下的烷基化反应,得到所述的化合物5;
    X3为卤素;R5和R6的定义均如权利要求1或2所述;
    和/或,方法b中,所述的化合物13为
    和/或,方法b中,所述的化合物10为
    和/或,方法b中,所述的溶剂为醇类溶剂和乙酸的混合溶剂,进一步优选为叔丁醇和乙酸;所述的醇类溶剂与乙酸的体积比优选为(2-7):1,例如5:1;
    和/或,方法b中,所述的化合物10与所述的化合物13的摩尔比为(1-1.2):1,例如1.1:1;
    和/或,方法b中,所述的反应的其他条件和操作均均如权利要求3或4中所述的方法iii中其他条件和操作。
  7. 如权利要求6所述的式I化合物的制备方法,其特征在于,X3中,所述的卤素为F、Cl、Br或I,例如Br;
    和/或,方法a中,所述的碱为叔胺碱、碱金属碳酸盐、碱金属碱、叔丁醇碱金属盐、双(三甲基硅基)氨基锂、双(三甲基硅基)氨基钾和氢化钠中一种或多种,优选为叔胺碱和/或碱金属碳酸盐;进一步优选为二异丙基乙基胺和/或碳酸钾;
    和/或,方法a中,所述的碱与所述的化合物3的摩尔比为(1.2-1.5):1,例如1.2:1;
    和/或,方法a中,所述的化合物4与所述的化合物3的摩尔比为(1.1-1.2):1,例如1.1:1;
    和/或,方法a中,所述的反应的温度为10-120℃,例如60℃。
  8. 如权利要求1-7中任一项所述的式I化合物的制备方法,其特征在于,所述的化合物5的制备方法还包括所述的化合物3的制备方法,所述的化合物3的制备方法包括如下步骤:在有机碱存在下,在溶剂中,将化合物1、化合物2和1,1'-羰基二咪唑进行如下环化反应,得到所述的化合物3;
    所述的化合物2为叔丁胺或异氰酸叔丁酯;
  9. 如权利要求8所述的式I化合物的制备方法,其特征在于,所述的有机碱为叔胺碱、吡啶和N,N-二甲基苯胺和1,8-二氮杂双环[5.4.0]十一碳-7-烯中的一种或多种,例如1,8-二氮杂双环[5.4.0]十一碳-7-烯;
    和/或,所述的有机碱与所述的化合物1的摩尔比为(2.0-2.5):1,例如2.3:1或2.4:1;
    和/或,所述的1,1'-羰基二咪唑与所述的化合物1的摩尔比为(2.0-2.5):1,例如2.2:1;
    和/或,所述的环化反应的温度为30-115℃,例如50℃。
  10. 一种式I化合物的制备方法,其特征在于,其包括如下步骤;在碱性试剂中,在溶剂中,将化合物12和化合物8进行如下烷基化反应,得到式I化合物;
    其中,X2为卤素;R、R1、R2、R3、R4、R5和R6的定义均权利要求1或2所述。
  11. 如权利要求10所述的式I化合物的制备方法,其特征在于;
    所述的化合物8为
    和/或,所述的化合物I为
    和/或,所述的溶剂为腈类溶剂、醚类溶剂和酰胺类溶剂中的一种或多种,优选为酰胺类溶剂,进一步优选为N,N-二甲基甲酰胺或N,N-二甲基乙酰胺;
    和/或,所述的碱性试剂为碱金属碳酸盐和/或叔胺碱,优选为碱金属碳酸盐,例如碳酸钾和/或碳酸铯;
    和/或,所述的化合物碱性试剂与所述的化合物12的摩尔比为(1.5-3.0):1,例如2.5:1;
    和/或,所述的化合物8与所述的化合物12的摩尔比为(1-1.2):1,例如1.1:1;
    和/或,所述的烷基化反应的温度为50-100℃,优选70-80℃
    和/或,所述的化合物12的制备方法均如权利要求3或4所述的化合物12的制备方法。
  12. 一种化合物11的制备方法,其特征在于,其为方法I或方法II:
    所述的方法I包括如下步骤:在溶剂中,将所述的化合物5和所述的化合物10进行如下反应,得到所述化合物11;
    其中,X1为卤素;R、R5和R6的定义均如权利要求1或3中任一项所述,所述的反应的条件和操作均如权利要求5或6中方法a所述;
    所述的方法II包括如下步骤:在溶剂中,将所述的化合物13和所述的化合物10进行如下反应,得到所述化合物11;
    其中,X1为卤素;R、R5和R6的定义均如权利要求1或2所述,所述的反应的条件和操作均如权利要求5或6中方法b所述。
  13. 一种化合物12的制备方法,其特征在于,其为方法i、方法ii或方法iii:
    方法i:
    所述的化合物12制备方法包括如下步骤:在脱保护试剂存在下,将化合物11进行如下式的脱保护反应,得到所述的12化合物;
    R、R5和R6的定义均如权利要求1或2所述;
    方法ii:
    所述的化合物12制备方法包括如下步骤:在三氟醋酸存在下中,将所述的化合物5和所述的化合物10进行如下反应,得到所述的12化合物;
    其中,X1为卤素;R、R5和R6的定义均如权利要求1或2所述;
    方法iii:
    所述的化合物12制备方法包括如下步骤:在溶剂中,将所述的化合物14和所述的化合物10进行如下反应,得到所述的12化合物;
    其中,X1为卤素;R、R5和R6的定义均如权利要求1或2所述;
    方法i至iii中的反应的条件和操作均如权利要求3或4所述。
  14. 一种如下式的化合物:
    其中,R、R1、R2、R3、R4、R5和R6的定义均如权利要求1或2所述;
    所述的化合物优选如下任一化合物:
PCT/CN2023/087394 2022-04-08 2023-04-10 一种多取代三嗪烷类化合物的合成方法 WO2023193818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210370129 2022-04-08
CN202210370129.6 2022-04-08

Publications (1)

Publication Number Publication Date
WO2023193818A1 true WO2023193818A1 (zh) 2023-10-12

Family

ID=88244127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087394 WO2023193818A1 (zh) 2022-04-08 2023-04-10 一种多取代三嗪烷类化合物的合成方法

Country Status (2)

Country Link
CN (1) CN116891459A (zh)
WO (1) WO2023193818A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153968A (zh) * 2010-08-10 2013-06-12 盐野义制药株式会社 三唑衍生物及含有其的具有镇痛作用的药物组合物
CN114805313A (zh) * 2022-03-30 2022-07-29 浙江美诺华药物化学有限公司 一种蛋白酶抑制剂的合成方法
CN114805314A (zh) * 2022-04-20 2022-07-29 杭州国瑞生物科技有限公司 一种恩赛特韦的合成方法
WO2023027198A1 (ja) * 2021-11-24 2023-03-02 塩野義製薬株式会社 トリアジン誘導体を含有する経口投与する製剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153968A (zh) * 2010-08-10 2013-06-12 盐野义制药株式会社 三唑衍生物及含有其的具有镇痛作用的药物组合物
WO2023027198A1 (ja) * 2021-11-24 2023-03-02 塩野義製薬株式会社 トリアジン誘導体を含有する経口投与する製剤
CN114805313A (zh) * 2022-03-30 2022-07-29 浙江美诺华药物化学有限公司 一种蛋白酶抑制剂的合成方法
CN114805314A (zh) * 2022-04-20 2022-07-29 杭州国瑞生物科技有限公司 一种恩赛特韦的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UNOH YUTO, UNOH YUTO, UEHARA SHOTA, NAKAHARA KENJI, NOBORI HARUAKI, YAMATSU YUKIKO, YAMAMOTO SHIHO, MARUYAMA YUKI, TAODA YOSHIYUKI: "Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 65, no. 9, 12 May 2022 (2022-05-12), US , pages 6499 - 6512, XP093007183, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.2c00117 *

Also Published As

Publication number Publication date
CN116891459A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
JP4920410B2 (ja) 代謝モジュレーターとしての縮合アリールおよびヘテロアリール誘導体ならびに代謝に関連する障害の予防および治療
ES2393430T3 (es) Derivados de imidazo[1,2-A]-piridina útiles como inhibidores de ALK
WO2018017983A1 (en) Compounds useful for treating disorders related to ret
CN110092745B (zh) 一种含芳环的化合物及其应用
JP2011520935A (ja) Gpr119受容体アゴニスト
US10093657B2 (en) Inhibitors of bruton's tyrosine kinase
WO2011113366A1 (zh) 制备氘代二苯基脲的方法
TW201704230A (zh) 化合物
JP7406691B2 (ja) トリアゾロピリミジン系化合物の結晶形、塩のタイプおよびその調製方法
WO2022166817A1 (zh) 一种杂环化合物、其中间体、其制备方法及其应用
EP3154547B1 (en) Pyrimidine compounds and methods using the same
EP3080098B1 (en) Inhibitors of bruton's tyrosine kinase
EP3725786A1 (en) Crystal form and salt form of tgf-bri inhibitor and preparation method therefor
JP5784604B2 (ja) Jnk阻害剤
WO2023193818A1 (zh) 一种多取代三嗪烷类化合物的合成方法
CN116693514A (zh) 一类芳香环取代的甲氧基衍生物及其用途
Karstens et al. Discovery of SYD5115, a novel orally active small molecule TSH-R antagonist
JP7289017B2 (ja) ピロリジニルウレア誘導体の結晶及びその使用
CN110229150B (zh) 咪唑并[4,5-c]吡啶类衍生物及其用途
CN108368085B (zh) 一种取代的嘧啶二酮化合物及其药物组合物
CN117843621A (zh) 一种新型哒嗪类化合物及其药物组合物和用途
CN103933032A (zh) 作为抗癌药物的吡唑类衍生物的使用方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784379

Country of ref document: EP

Kind code of ref document: A1